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Abstract—We propose HoWiES, a system that saves energy
consumed by WiFi interfaces in mobile devices with the assistance
of ZigBee radios. The core component of HoWiES is a WiFi-
ZigBee message delivery scheme that enables WiFi radios to con-
vey different messages to ZigBee radios in mobile devices. Based
on the WiFi-ZigBee message delivery scheme, we design three
protocols that target at three WiFi energy saving opportunities in
scanning, standby and wakeup respectively. We have implemented
the HoWiES system with two mobile devices platforms and two
AP platforms. Our real-world experimental evaluation shows that
our system can convey thousands of different messages from
WiFi radios to ZigBee radios with an accuracy over 98%, and
our energy saving protocols, while maintaining the comparable
wakeup delay to that of the standard 802.11 power save mode,
save 88% and 85% of energy consumed in scanning state and
standby state respectively.

I. INTRODUCTION

WiFi radio interface in mobile devices is attracting an

increasing amount of applications ranging from mobile social

networking [1]–[3] to mobile localization [4]–[6]. However,

WiFi interface consumes a considerable amount of power when

it is active, and is a major source of energy consumption

affecting user experience. We observe that there are three

scenarios where a WiFi radio has to stay active without per-

forming any real communications. First, a WiFi radio has to

stay active to scan for networks in the scanning state. The power

consumption for network scanning is considerably salient for

the lack of WiFi coverage in many places. Second, during PSM

(Power Save Mode) standby, a WiFi radio needs to constantly

switch to active to receive wireless access point (AP) beacons

and check if the AP has buffered its packets. Recent works

[7], [8] show that users usually leave their smartphones idle

for most of the time. The long idle time contributes to a

non-negligible amount of WiFi energy consumption. Third,

when waken up from PSM standby, a WiFi radio has to stay

active doing nothing while waiting for its turn to communicate

with the AP if there are multiple devices contending for the

channel. The WiFi radio power consumptions in the above

scenarios are significant: our measurements show that the power

consumptions of WiFi scanning and PSM standby in a Samsung

Galaxy S2 smartphone account for 65% and 11% of the entire

system power consumption respectively, and recent works [9],

[10] show that the wakeup contentions could cause up to

four times more power consumption. To reduce these energy

consumptions, we propose that the operations of a WiFi radio

in those scenarios can be delegated to a low power ZigBee

radio. In this case, WiFi radio will be turned off when there

is no packet to transmit and receive, and the ZigBee radio is

responsible for discovering the presence of WiFi networks and

detecting if the AP intends for the device to communicate.

This way, the significant power consumptions on WiFi radio

in those scenarios are reduced to the reasonably low power

consumptions on ZigBee radio.

ZigBee radio (i.e., IEEE 802.15.4 [11] compliant radio) is

designed for low power communication working on 2.4GHz

ISM band, which coincides with most of the WiFi standards.

Recently, more and more attempts have been made by both

industry and academia to integrate ZigBee radios with smart-

phones for smart home applications [12], health monitoring

[13], and energy savings [14], [15]. Indeed, as we did in

our system implementation, a ZigBee radio can be directly

connected to a mobile device via USB interface. With the

unveiling of the first Android phone with ZigBee capability

[16], and due to its usefulness in many areas, we believe that

ZigBee will become a standard interface in mobile devices in

the near future.

In this work, we design and implement HoWiES, a system

that uses ZigBee radio to wake up a WiFi interface when it

detects that a WiFi network is available (during the network

scanning) or that the AP would intend to communicate with the

device (during PSM standby). Given that it is not possible for

ZigBee to decode WiFi packets directly, it is necessary to build

a channel that a WiFi AP can encode information so that ZigBee

radio would understand. Fortunately, the same frequency band

occupied by both ZigBee and WiFi enables ZigBee radio to

sample background energy during WiFi transmission. This side

channel, albeit with limited bandwidth, is sufficient for wireless

AP to transmit information to ZigBee radios in mobile devices.

We demonstrate that, by using a simple coding scheme, our

system can create a communication channel in which an AP can

convey thousands of messages to ZigBee radios. When ZigBee

decodes the information transmitted through the side channel,

it can either ignore the message if it is not for the device,

or wake up the WiFi radio for communication. This WiFi-

ZigBee message delivery scheme is the foundation of the entire

HoWiES system. Based on this foundation, we have designed

and implemented three protocols that specifically target at the

three significant WiFi energy saving opportunities in WiFi

scanning, standby and wakeup respectively.

Our work is inspired by Esense [17], the first work proposing

to enable information delivery from WiFi to and ZigBee radios

by using energy sampling. The scenario is that when there is a

WiFi packet being transmitted in the air, a ZigBee radio, which

is continuously sampling background energy, will generate a



certain number (denoted as #+
consec) of consecutive positive

energy samples (i.e., samples with energy readings greater than

a certain threshold). Esense mainly studies the distributions of

#+
consec when sampling WiFi traffic generated by replaying

several public WiFi traces. Esense proposes and validates that

those #+
consec that rarely appear can form an alphabet and

each character in the alphabet can represent a different piece of

information conveyed from WiFi radios to ZigBee radios. The

major differences between our work and Esense, which are also

the contributions of this work, can be summarized as follows.

First, instead of letting each character in the alphabet cor-

respond to a piece of information, we study how to use the

combinations of the characters to form different messages. With

our method, it is possible to expand the message capacity

infinitely while using only a small size of alphabet. Our

implemented system is able to reliably convey 2744 different

messages from WiFi to ZigBee, while this number of Esense is

100. However, it is a challenging open problem to design a mes-

sage encoding/decoding scheme that forms/detects messages

by using/interpreting the combinations of alphabet characters,

since the existence of normal WiFi packets will make the

scheme suffer from detection errors. To address this challenge,

we design a self-correcting message encoding/decoding scheme

that can effectively reduce skewed messages due to the inter-

ference from normal WiFi packets.

Second, instead of focusing on studying the feasibility to

enable WiFi radios to communicate with ZigBee radios, we

target at designing and implementing a practical system that

saves WiFi energy for mobile devices in different aspects by

using our WiFi-ZigBee message delivery scheme. Although

ZigBee radios are more power efficient than WiFi radios, it

is not trivial to design and implement a system that saves WiFi

energy in several aspects with the assistance of ZigBee radios.

For example, an active ZigBee radio consumes comparable

amount of energy to a WiFi radio that is in PSM standby.

To save the energy a WiFi radio spends during standby, we

have managed to get the ZigBee interface to synchronize with

the wireless AP, and to duty-cycle the ZigBee the interface to

reduce its power consumption.

Third, instead of using trace-driven experiments, we evaluate

our system with extensive real-world experiments. Our evalu-

ation results show that our system can convey thousands of

messages from WiFi radios to ZigBee radios with an accuracy

over 98%, and our energy saving protocols, while maintaining

the comparable wakeup delay to that of the standard 802.11

PSM, save 88% and 85% of energy consumed in WiFi scanning

and standby respectively.

II. RELATED WORK

Energy saving in WiFi scanning. To save the energy spent

in scanning WiFi networks, several projects have considered,

without turning on WiFi radios, predicting WiFi networks

availability by using different context information [18], tracking

and learning user movements [19], or collecting information

about bluetooth devices and cell towers [20]. Similar to our

solution, ZiFi [14] discovers WiFi networks with the assistance

TABLE I: System power consumption in WiFi scanning state

with WiFi scanning with WiFi off scanning/overall pert.

Galaxy S2 766 mW 265 mW 65.4%

T400 14498 mW 12732 mW 12.2%

of ZigBee radios. The idea of ZiFi is using ZigBee to detect

WiFi beacon patterns, which indicate the existence of WiFi

networks. Our solution takes a different approach: we enable

APs to advertise themselves by broadcasting messages that

are understandable by ZigBee radios. Thus, an advantage of

our solution is that with HoWiES, mobile devices are able to

selectively wake up and associate to the APs.

Energy saving in WiFi standby. To save the energy spent in

WiFi standby, researchers have proposed to turn off WiFi radios

when they are idle, and wake them up through a low-power non-

WiFi channel when there are incoming WiFi activities. Wake-

on-wireless [21] establishes the low-power channel by attaching

a additional device to both APs and WiFi clients. Cell2Notify

[22] considers using cellular channel to wakeup WiFi radios for

VOIP calls. In our system, we establish the low-power channel

directly between APs and devices’ ZigBee radios through which

APs can wake up standby devices selectively.

Energy saving in WiFi wakeup. Recent works have shown

and addressed the energy waste problems caused by wakeup

contentions between WiFi clients that belong to the same AP

[9] or multiple interfering APs [10]. In our system, our solution

naturally solves the problem of wakeup contentions between

clients associated with the same AP by waking up WiFi clients

one at a time. To alleviate wakeup contention between clients

associated with different APs, we coordinate APs such that

there are not two interfering APs wake up their client at the

same time.

III. MOTIVATION AND BACKGROUND

This work is motivated by the following observations made

from our experimental measurements and investigations of

current WiFi energy saving research literatures.

A. WiFi energy saving opportunities

We observe that there are multiple significant energy saving

opportunities for WiFi stations (i.e., mobile devices operating

as stations in a infrastructure WiFi network as specified in

the IEEE 802.11 standards.) in several of their working states,

which are detailed as follows.

Opportunity 1 - scanning state: The first significant WiFi

energy opportunity lies in the scanning state. Stations in scan-

ning state constantly iterate through all the channels to search

available WiFi networks. We have measured the system power

consumption of two mobile platforms, a Samsung Galaxy S2

smartphone and a Lenovo T400 laptop, in the WiFi radio

scanning state. From the measurement results (Table I), we can

see that about 65% and 12% of the system power consumption

are spent in WiFi scanning for the Galaxy S2 smartphone

and the Lenovo T400 laptop respectively. Moreover, recent

research shows that people spend only half of their daily life in

areas with WiFi signal coverages [18], which means their WiFi

devices would spend about 12 hours a day in the high-power

scanning state if they do not turn off WiFi radio when they are



TABLE II: System power consumption in WiFi standby state

with WiFi standby with WiFi off standby/overall pert.

Galaxy S2 298 mW 265 mW 11.1%

T400 14078 mW 12732 mW 9.6%

outside of WiFi coverages. Therefore, we are motivated to find

an energy efficient way for mobile devices to discover WiFi

networks instead of using power-hungry WiFi radios.

Opportunity 2 - standby state: The power management

mode of WiFi stations can be either CAM (Constantly Awake

Mode) or PSM (Power Save Mode). The difference between

these two modes lies in when WiFi stations are in standby: a

CAM station keeps its WiFi radio on all the time; a PSM station

puts its WiFi radio into sleep (i.e., stay in a low-power state)

for most of the time when there is no traffic, and periodically

wakes up the radio to receive and check AP beacons, through

which the AP informs the PSM stations about their packets

buffered at the AP.

Table II presents the measurement results of the standby

state power consumption of a Galaxy S2 smartphone and a

T400 laptop, which are by default configured as PSM and

CAM stations respectively by the device drivers. The Galaxy

S2 smartphone consumes 33 mW more power, which accounts

for about 11% of the overall system power, in the WiFi standby

state than when the WiFi radio is turned off. This power

overhead mainly comes from the periodic wakeup to check

beacons, because when we increased the smartphone’s wakeup

interval, the power overhead decreased accordingly. The T400

laptop also consumes about 10 percent of its system power in

the standby state. Recent works [7], [8] show that smartphone

users usually leave their phones idle for most of the time,

which makes the standby power consumption of WiFi radios

even salient regarding saving energies for mobile devices.

Ideally, WiFi radios should sleep without periodic wakeup or

be completely turned off as long as there is no WiFi activities.

Meanwhile, it must be possible to wake up the WiFi radios if

there are incoming packets for them.

Opportunity 3 - energy waste due to wakeup contention:

When multiple PSM stations working at the same channel and

associated either with the same AP [9] or with multiple co-

located APs [10], are waken up to receive buffered packets at

the same time, the contention between these stations will make

them stay awake but without performing any communication

tasks, which further causes about up to 4 times more energy

consumption. Motivated by these research results, we want our

approach to wake up standby WiFi radios to avoid these energy-

expensive wakeup contentions.

B. ZigBee radio assisted WiFi energy savings

Compared with WiFi radios, ZigBee radios are more power

efficient. Table III lists the power consumptions we measured

of ZigBee radio CC2420 and WiFi radio BCM4330 in different

operating modes. Since ZigBee is able to work at the same fre-

quency band as WiFi while consumes significantly less energy,

it would provide great assistance in saving WiFi energy for

mobile devices if we could make ZigBee radios communicate

with WiFi radios. Esense [17] is the first effort to enable

TABLE III: Power consumption of CC2420 and BCM4330.

CC2420 (ZigBee) BCM4330 (WiFi) ZigBee/WiFi ratio

Rx/Tx 56 mW 435 mW 0.129

Idle/Standby 1.2 mW 33 mW 0.036

communications between a WiFi radio and a ZigBee radio.

The idea is using ZigBee radio to continuously sample the

background energy in the air. Once there is a WiFi packet being

transmitted, the sampling ZigBee radio will generate several

consecutive samples whose energy readings are above a certain

threshold, which we call positive samples. Esense studies

how the number of consecutive positive samples (denoted as

#+
consec) distributes when sampling WiFi packets replayed from

several public WiFi traces. Esense proposes that each of those

rarely occurring #+
consec when sampling the public WiFi traces

can be used to convey a certain message from WiFi to ZigBee.

The experimental results of Esense show that it is able to deliver

up to 100 different messages from WiFi to ZigBee.

The message capacity achieved by Esense is far from enough

for being applicable to WiFi energy savings in mobile devices,

since there could be up to 2007 stations associated with an

AP [23]. Therefore, we are motivated to study how to extend

the WiFi-ZigBee message capacity by using combinations

of different #+
consec to represent a message. Based on our

new WiFi-ZigBee message delivery scheme, we design and

implement three protocols that exploit the three opportunities

to save WiFi energies for mobile devices.

IV. SYSTEM DESIGN

A. WiFi-ZigBee message delivery scheme

The high level idea. Let us assume the messages that WiFi

radios can deliver to ZigBee radios correspond to different

numbers. A WiFi radio encodes the number that it wants to

convey to a ZigBee radio by sending a sequence of WiFi

packets (called WiFi-ZigBee message packets), whose sizes

are chosen from a group of predefined values, using a fixed

transmission rate. These predefined packets sizes form the

alphabet of our message delivery scheme. The ZigBee radio

determines the size of each packet by sampling background

energy, and obtains the number that the WiFi radio wants to

convey by interpreting the combination of packet sizes.

Alphabet construction. The alphabet A is a set of b packet

sizes: A = {S1, · · · , Sb}, where S1 < · · · < Sb. In order to

ensure that ZigBee radios can detect a WiFi-ZigBee message

(abbreviated to “message” in later descriptions), we need to

make message packets be distinguishable from normal WiFi

packets. To this end, we carefully choose the predefined sizes

for message packets and select the message packets transmis-

sion rate such that the air time of a message packet is longer

than those of normal WiFi packets.

To study the air times of normal WiFi packets, we deployed

WiFi sniffers in our office building and the university’s library,

both of which are heavy WiFi usage spots, and sniffed WiFi

packets for three days. By looking at the sizes and the trans-

mission rates of the sniffed packets, we observed that WiFi

packets transmitted using low transmission rates were small in

size (these packets were usually 802.11 management/control



frames like beacons and ACKs), and packets that were large

in size were usually transmitted using high transmission rates

(these packets were usually for massive data transmission like

video streaming). This led to another observation that over

95% of all the sniffed packets had an air time less than 1

millisecond. Therefore, we ensure the air time of a message

packet to be longer than those of normal WiFi packets by

selecting large sizes for massage packets and sending them at

the lowest transmission rate. Meanwhile, the difference between

two adjacent predefined message packet sizes should be set

appropriately to ensure ZigBee will not generate the same

number of energy samples for message packets with different

sizes. We will detail our choices of the predefined packet sizes

for the alphabet later in Section V.

WiFi-ZigBee message encoding: A WiFi radio encodes a

WiFi-ZigBee message M by sending a sequence of l message

packets, whose size are chosen from the alphabet A, using the

transmission rate R. Here we call l the length of the message.

The value of the message is calculated as

v(M) =
i=l∑

i=1

(Ipi,A − 1)bi−1 (1)

where b is the size of the alphabet A, pi represents the i-th

of the l message packets and Ipi,A is the index of the packet

pi’s size in the alphabet A, for example, Ii,A = j if the size

of packet pi is Sj (Sj ∈ A, 1 ≤ j ≤ b). Then the capacity

of a message delivery scheme, which is the total amount of

numbers that the scheme can encode, is bl. Here R, l, b and A
are fixed and shared between WiFi and ZigBee radios.

For instance, for a WiFi-ZigBee message delivery scheme

where WiFi radios encode each message by transmitting 3 WiFi

packets with sizes chosen from 100 and 200 bytes, the alphabet

A is {100, 200}, the size of the alphabet b is 2 and the message

length l is 3. The total number of messages that an WiFi radio

can convey to a ZigBee radio is 23 = 8 (i.e., the capacity of the

scheme is 8). If a WiFi radio encodes a message by sending a

sequence of 3 packets with 200B, 100B and 200B respectively,

essentially it sends out 3 digits with values of 1, 0 and 1 in

that order, and the message is interpreted as number 5 (i.e.,

1× 20 + 0× 21 + 1× 22 = 5).

WiFi-ZigBee message detection and decoding: Algorithm

1 presents the algorithm that ZigBee radios use to detect and

decode WiFi-ZigBee messages. ZigBee radios detect WiFi-

ZigBee messages by continuously sampling background energy

with a frequency H . If a sample’s energy reading is greater than

a threshold E, the sample is a “positive” sample, otherwise

it is a “negative” sample. In the algorithm, the variable PC

(positive sample counter) records the number of the most

recent consecutive positive energy readings that ZigBee radios

have sampled, and the variable IC (message packet interval

counter) records the time since the last message packet in

terms of energy sample count. There are three working states

in the algorithm. In the waiting message (WAITING MSG)

state (line 4-6), a ZigBee radio is waiting for a new WiFi-

ZigBee message. Upon obtaining a positive sample it switches

Algorithm 1: WiFi-ZigBee message detection/decoding

Data: R, l, b,H,E and A = {S1, · · · , Sb}.
Result: Report message value M once a message is detected.

1 PC, IC, i← 0; state← WAITING MSG;

2 while ZigBee listening is enable do

3 Sample background energy, store the reading in e;

4 if (state == WAITING MSG) then

5 if (e > E) /*on positive sample*/ then

6 PC ← 1; state← PKT IN PROGRESS;

7 else if (state == WAITING PKT) then

8 if (e > E) /*on positive sample*/ then

9 PC ← 1; state← PKT IN PROGRESS;

10 else

11 IC++;

12 if (IC ≥ INTERVAL TIME OUT) then

13 PC, IC, i← 0; state← WAITING MSG;

14 else if (state == PKT IN PROGRESS) then

15 if (e > E) /*on positive sample*/ then

16 PC++;

17 else

18 if (PC ≥
HS1
R

) /*message packet detected*/ then

19 i++;

20 Ii ← j, if PC − ⌊
HSj
R
⌋ < 2;

21 if (i == l) /*message detected*/ then

22 Report M =
∑i=l

i=1
(Ii − 1)bi−1;

23 PC, IC, i← 0; state← WAITING MSG;

24 else

25 IC ← 1; PC ← 0; state← WAITING PKT;

26 else

27 if i == 0 /*no message packet has been detected*/ then

28 PC, IC, i← 0; state← WAITING MSG;

29 else

30 IC ← IC + PC;

31 if (IC ≥ INTERVAL TIME OUT) then

32 PC, IC, i← 0; state← WAITING MSG;

33 else

34 PC ← 0; state← WAITING PKT;

to the packet receiving (PKT IN PROGRESS) state (line 6).

In the PKT IN PROGRESS state, the ZigBee radio keeps

incrementing PC as it continuously gets positive samples (line

16). Upon receiving a negative sample, it decides whether

the consecutive positive samples just observed come from a

message packet or from a normal packet. If they come from

a message packet (line 18-25), the ZigBee radio increments

the message packet counter (line 19) and records the index of

the packet’s size in the alphabet (line 20). If all the message

packets have been detected, it reports the message value based

on the formula (1) (line 22), resets counters and switches

back to the WAITING MSG state (line 23). If there are

message packets pending, it switches to the waiting message

packet (WAITING PKT) state (line 25). In the case that the

consecutive positive samples come from a normal packet (line

27-34), the ZigBee radio switches back to the WAITING MSG

state directly if no message packet has been detected (line

28); otherwise, it counts the consecutive positive samples just

observed into message packet interval (line 30). If the message

packet interval is greater than a threshold, it switches back to

the WAITING MSG state (line 32). Otherwise, it goes to the

WAITING PKT state (line 34). In the WAITING PKT state,

the ZigBee radio keeps counting the message packet interval as

they obtains negative samples (line 11), and ceases the decoding

process if the interval is greater than the threshold (line 13).

It goes to the PKT IN PROGRESS state once it obtains a

positive sample (line 9).

Self-correcting message encoding/decoding. Without con-

sidering hidden terminals’ effects, which is a case we will
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discuss at the end of this section, message packets will not

overlap with normal packets in time domain because of the

802.11 CSMA/CA scheme. However, since ZigBee radio can-

not sample with an interval smaller than the IEEE 802.11 short

interframe space (SIFS). it is possible that a ZigBee radio

obtains the same number of energy samples for two message

packets with different sizes if there are two packets sent with

an interval smaller than the ZigBee radio’s sampling interval.

Figure 1 shows an example: A WiFi radio sends out two WiFi-

ZigBee message packets on which a ZigBee radio normally will

generate 2-3 and 4-5 energy samples respectively. However,

before the ZigBee radio could get the first sample after the first

packet is transmitted, the channel is taken by another normal

WiFi client, which transmits a packet causing the ZigBee radio

to generate 2 positive samples on it. Then the positive samples

of the first message packets is mistakenly counted as 5 instead

of 3, which makes the ZigBee radio believe it has detected

two message digits with the same value. We call this kind of

problem background (packet) interference.

To address the above issue, we design a self-correcting

message encoding/decoding algorithm, which extends the base

encoding/decoding algorithm. With the self-correcting scheme,

ZigBee radios can still extract the correct value of a message

with high possibility even if background interferences exist.

The fundamental observation supporting the self-correcting

scheme is that when background interference happens, it only

affects a minority amount of all the message packets of a

WiFi-ZigBee message. Thus, we can utilize the majority of

correctly detected message packet sizes to help correcting

those wrongly detected message packet sizes. With the self-

correcting scheme, the alphabet A={S1,··· ,Sb} is divided into p

sub-alphabets as A1={S1,Sp+1,S2p+1··· }, A2={S2,Sp+2,S2p+2,··· },

··· , Ap={Sp,S2p,···Sb}. To encode a message, a WiFi radio uses

packet sizes in one randomly chosen sub-alphabet. To decode

a message, a ZigBee radio gets the sizes of all the message

packets using Algorithm 1. If all the sizes are from the same

sub-alphabet, the ZigBee radio can calculate the message value

directly. Otherwise, it indicates that there were background

interferences happened to the message packets. In this case,

the ZigBee radio first identify the correct sub-alphabet (notated

as Ac) as the sub-alphabet to which the majority packet sizes

belong. Then it converts each of those packet sizes that are

not in Ac to the value in Ac that is immediately smaller than

the current wrong size. This approach extends the difference

between two adjacent predefined packet sizes in the alphabet

by a factor of p, which makes it possible to tolerate multiple

interfering background packets. Meanwhile, the capacity of the

message delivery scheme is shrunk from bl to b( b
p
)l−1.

For instance, suppose there is a message delivery scheme

where the alphabet is A = {100, 200, 300, 400} and message

length is 3. An self-correcting scheme with two sub-alphabet

(i.e., p = 2) allows WiFi radios to send a WiFi-ZigBee message

by transmitting 3 packets with sizes chosen from one of the

two sub-alphabets: A1 = {100, 300} and A2 = {200, 400}.

If a ZigBee radio detects that the sizes of the three message

packets are 300B, 100B and 300B, which are from the same

sub-alphabet, it can directly conclude that the message value is

1 × 20 + 0 × 21 + 1 × 22 = 5. If the packet sizes are 300B,

200B and 100B respectively, it indicates that A1 is the correct

sub-alphabet as there are two packet sizes chosen from A1, and

that the second packet (whose size is 200B) was affected by

background interference. In this case, the ZigBee radio replaces

the size 200B in A2 with size 100B in A1, and reports the

message value as 1× 20 + 0× 21 + 0× 22 = 1.

B. HoWiES energy saving protocols

Based on the WiFi-ZigBee message delivery scheme, we

design three HoWiES energy saving protocols that save energy

consumed in WiFi scanning, standby and wakeup respectively.

At the mobile device side, three components relate to HoWiES

operations: The WiFi component performs the ordinary 802.11

operations. The ZigBee component acts as a receiver in the

WiFi-ZigBee message delivery scheme. The HoWiES manager

is a software component that connects the components of

WiFi and ZigBee and performs all the HoWiES management

operations. At the AP side, each AP has a pool of WiFi-ZigBee

message numbers, each of which is assigned to deliver a certain

piece of information from WiFi to ZigBee as specified in the

following protocol descriptions.

HoWiES scanning and association. Figure 2 shows the

HoWiES scanning and association protocol. With this protocol,

mobile devices trying to search and join a HoWiES-enable WiFi

network keep their WiFi radios off while using the ZigBee

radio to detect WiFi network advertisement messages broadcast

regularly by HoWiES-enabled APs (Op.1). Among all the WiFi-

ZigBee message numbers, APs use a set of common numbers to

advertise their networks (in the HoWiES scanning protocol) and

to indicate buffered broadcast/multicast packets (in the HoWiES

wakeup protocol). During the scanning process, a HoWiES

client turn on its WiFi radio and associate to an AP based on the

numbers encoded in the WiFi-ZigBee messages received. For

example, a system operator can configure open APs to encode

“1” in their network advertisement WiFi-ZigBee messages, and

configure encrypted APs to encode “2”. Then mobile devices

can selectively turn on their WiFi radios based on whether

the encountered networks is encrypted. Upon detecting an

advertisement message (Op.2), the ZigBee component notifies

the HoWiES manager about the presence of a WiFi network and

the scale of the WiFi signal strength calculated based on the

energy samples of the message (Op.3). The HoWiES manager

turns on the WiFi radio if the WiFi network meets the device’s

needs (Op.4). The WiFi radio sends an association request,

indicating that the request issuer is HoWiES-capable, to the

AP based on the information in the WiFi beacons (Op.5 and

6). If the association succeeds, the AP chooses a number from
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its message number pool to assign to the newly associated client

as its HoWiES ID, and puts this ID in the association response

(Op.7). Finally, the WiFi component extracts the ID from the

association response and send it to the ZigBee radio via the

HoWiES manager (Op.8-9).

HoWiES standby. This protocol puts mobile devices into

HoWiES standby by turning off the WiFi radio and informing

AP about the status change on the mobile devices. The upper

half of Figure 3 shows the protocol. The HoWiES manager

keeps monitoring the WiFi traffic on the mobile device (Op.1).

On detecting that the WiFi radio has been idle for a certain

amount of time, the HoWiES manager notifies the WiFi radio

to go into HoWiES standby state (Op.2). Then the WiFi radio

informs the AP that it will switch to the HoWiES standby state

and then turns itself off for energy savings (Op.3). Right after

notifying the WiFi component to switch to HoWiES standby,

the HoWiES manager turns on the ZigBee radio for WiFi-

ZigBee message listening during standby (Op.2′). With this

protocol, WiFi radios in HoWiES standby devices do not need

to switch to active periodically to check beacons for buffered

packets. Instead, they can just sleep all the time till the ZigBee

radio detects wakeup messages sent from the AP.

HoWiES wakeup. The bottom half of Figure 3 shows

the HoWiES wakeup operations. During standby, the ZigBee

component keeps listening for WiFi-ZigBee messages encoding

the device’s HoWiES ID (Op.4). Once the AP has buffered

incoming packets for a HoWiES standby client, it wakes up

the client by sending out a WiFi-ZigBee message that encodes

the HoWiES ID assigned to the client in the association process

(Op.5). If the buffered packets are broadcast/multicast packets,

a common number, instead of the HoWiES ID, is encoded in

the message. If there are multiple clients that have buffered

packets, the AP wakes them up one by one in a FIFO manner.

The ZigBee component informs the HoWiES manager about the

buffered packets if it detects the number encoded by a WiFi-

ZigBee message matches the device’s HoWiES ID (Op.6). Then

the HoWiES manager turns on the WiFi radio (Op.7), which

in turn gets the buffered packets from the AP (Op. 8-9).

Since APs wake up its HoWiES standby clients one at a time,

this approach naturally solves the wakeup contention problem

causing by waking up multiple WiFi clients associated with the

same AP. However, if multiple interfering APs (i.e., APs that

can hear each other) wake up their own clients at the same time,

the awake times of the clients due to the wakeup contentions

could be extended by a factor of 5 [10]. To solve the problem,

we let each AP exclusively occupies a repeated wakeup period,

during which it can wake up its clients to get their buffered

packets, such that wakeup periods of any two interfering APs do

not overlap. An AP’s wakeup period starts at the beginning of

each of its beacon period (i.e., right after a beacon is sent out),

and lasts a duration of Tdur. The value of Tdur is determined

in the same way as the length of a fair share is determined in

[10]. Interfering APs coordinate their beacon periods [10] to

ensure their wakeup periods do not overlap with each other.

C. Discussions

Dealing with hidden terminals. In designing the self-

correcting message encoding/decoding scheme, we assume that

two WiFi packets will not overlap in time domain due to

802.11 CSMA/CA. However, if there are two hidden nodes

transmitting without knowing each other, their packets could be

concatenated in time domain at a certain place between them.

In this case, the concatenated packet may have an air time equal

to a WiFi-ZigBee message packet, causing a sampling ZigBee

radio to have wrong detections. Similar to the existing solutions

dealing with the hidden terminal problems, we address this

issue by using retransmissions: when an AP sends a message

encoding a client’s HoWiES-ID to wake up the client, it will

keep sending the message with a certain interval until the client

wakes up and fetches the buffered packets.

Variable message length. In our current design, all WiFi-

ZigBee messages have the same length (i.e., use the same

number of packets to encode different messages). A promising

way to increase the efficiency of the message delivery scheme

is to use less packets to encode those frequently used messages

and more packets to encode those rarely used messages (which

is an idea similar to Huffman coding). We leave this exciting

improvement to our future work.

V. SYSTEM IMPLEMENTATION

We have implemented the HoWiES system with the devices

shown in Figure 4. The system has two types of entities:

HoWiES clients/APs. HoWiES clients are implemented in two

mobile platforms: a smartphone platform (Samsung Galaxy

S2) and a laptop platform (Lenovo T400). We enable ZigBee

in both mobile platforms by integrating each of them with

a TelosB mote that has a CC2420 ZigBee radio via USB

interface. HoWiES APs are implemented in two AP platforms:

a laptop platform (Dell Latitude D620/D820) and a standalone

AP platform (Wiligear WBD-500 integrated radio platform).

A. HoWiES client

A HoWiES client has three major components: the WiFi

component (consisting of the WiFi radio and the WiFi driver),



the ZigBee component (consisting of the CC2420 ZigBee radio

and the message detection/decoding TinyOS module) and the

HoWiES manager.

Background energy detection: The CC2420 ZigBee radio

has an RSSI register that records the RSS averaged over 8

symbol periods. The TinyOS provides an interface for programs

to read the value of the RSSI register. However, according to

our experience, the native TinyOS interface needs around 500

µs to get an RSS reading from the register. To increase the RSS

sampling rate (so as to have more packet sizes for the alphabet),

we have managed to reduce the RSS reading interval to about

150 µs. In our implementation, we set the ZigBee RSS reading

interval to 180 µs (i.e., H = 5555) for stable performances.

Message detection/decoding: The ZigBee component con-

tinuously detects and decodes all WiFi-ZigBee messages by

running Algorithm 1, and notifies the HoWiES manager about

the messages that are related to the hosting mobile device (e.g.,

WiFi network advertisements and the device’s HoWiES ID).

Duty cycling ZigBee radio: According to our measurement,

the power consumption that a TelosB mote has when it is

sampling background energy is about 60 mW, which is higher

than the standby WiFi power overheads in Galaxy S2 (33 mW).

To solve this issue, we adopted a solution similar to [24],

where the sensor is put to sleep periodically for energy savings.

We have reduced the energy sampling power consumption of

TelosB mote to 5 mW by duty cycling the ZigBee radio. In our

implementation, a ZigBee radio samples background energy

only during the wakeup period of the AP that its hosting

device is associated with. To synchronize ZigBee radios with

the corresponding APs’ wakeup periods, we let APs broadcast

the durations of their current wakeup periods (i.e., Tdur) via

beacons. Then the HoWiES manager enables ZigBee energy

sampling only in the first Tdur of time of the corresponding

AP’s beacon period (recall that each AP’s wakeup period starts

at the beginning of its beacon period). Before an AP has

to adjust its beacon period (because of topology changes of

interfering APs), it wakes up all its HoWiES standby clients to

let them be able to re-synchronize to its new wakeup period.

The HoWiES manager: The HoWiES manager is imple-

mented as a Linux kernel module in the mobile device’s OS.

It is responsible for turning on/off WiFi radios as specified

in the protocols, controlling background energy sensing in

ZigBee radio and relaying information between the WiFi and

the ZigBee components. The HoWiES manager communicate

with the ZigBee component via USB serial connection.

B. HoWiES AP

WiFi-ZigBee message parameters selection: In our imple-

mentation, HoWiES APs send out a WiFi-ZigBee message by

transmitting 3 packets (i.e., l = 3) with a transmission rate of

1 Mb/s (i.e., R = 1 Mb/s). We experimentally quantified how

stable the CC2420 radio generates energy samples in sampling

packets with a fixed length. We found that the CC2420 radio

we used can produces 4 different numbers of energy samples

for the same WiFi packet size. Therefore, to ensure ZigBee

will not generate the same number of energy samples for two

TABLE IV: Reliability and accuracy of the implemented WiFi-
ZigBee message delivery scheme in the uncontrolled experiment.

Reliability Accuracy

Total msg Correct msg/detected Correct msg/detected

detected/sent (w/o self-correction) (w/ self-correction)

19,904/20,000 19,223/19,904 19,737/19,904

99.5% 96.6% 99.2%
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Fig. 5: Reliability and accuracy of the implemented WiFi-ZigBee
message delivery scheme in the controlled experiment.

message packets with different sizes, we set the difference

between two adjacent packet sizes in the alphabet to 90 bytes

(i.e. 4R
H

), which gives us 14 packet sizes for the alphabet:

A = {300, 390, · · · , 1470}. Thus, the smallest air time for the

message packet is 2.4 millisecond, which is larger than the air

times of all the sniffed WiFi packets obtained in our experiment

described in the “Alphabet construction” sub-section.

WiFi-ZigBee message packets transmission: HoWiES APs

transmit message packets using a user space packet sending

program implemented with the libpcap library. The user space

program and the WiFi driver located in kernel space are

connected by using the Linux usermode-helper API.

VI. SYSTEM EVALUATION

A. WiFi-ZigBee message delivery

Reliability and accuracy. The message delivery scheme

needs to be reliable, which means HoWiES clients should

reliably detect WiFi-ZigBee messages sent by HoWiES AP

without firing any false alarms (i.e., reporting messages when

there is none). Meanwhile, the message delivery scheme needs

to be accurate, which means HoWiES clients should be able

to correctly decode the detected messages.

We have performed an uncontrolled experiment to evaluate

the reliability and the accuracy performances of the imple-

mented message delivery scheme in real WiFi environments.

We deployed a HoWiES AP and client pair in the university’s

library, and performed the experiment from 8 PM to 10 PM,

a time section during which the library are full of students

surfing web and watching online videos, in several days. In

the experiment, the AP sent different numbers to the client

in different rounds. In each round, the HoWiES AP randomly

chose a number from 1 to 2744, encoded the number into a

WiFi-ZigBee message and transmitted the message for 100

times with an interval of 100 ms. The chosen number is

recorded such that we can use it as ground truth when deciding

if the client has correctly decoded the messages. The HoWiES

client detected and decoded the messages using the base

message encoding/decoding algorithm (i.e., without using the

self-correcting scheme), and output the results to a data file

for analysis. We ran the experiment for 200 rounds. Table IV

shows the results. For the total 20,000 WiFi-ZigBee messages,



99.5% of them were detected by the HoWiES client. Within all

the detected messages, the HoWiES client correctly decoded

96.6% of them. We then examined all the wrongly decoded

messages as follows. We marked an wrongly decoded message

as correctable using the self-correcting scheme with 2 sub-

alphabets (i.e., p = 2), if the following conditions are satisfied.

First, there is only one message packet whose size is wrongly

detected (since we use l = 3, one is the maximum minority

number). Second, the wrong size’s index in the alphabet is

greater than the actual size’s index in the alphabet by 1 (if

using p = 3, this value is 2). We found that after using the

self-correcting algorithm, the accuracy of the message decoding

increased to 99.2%. We further examined what caused the rest

uncorrectable messages. There are two reasons. The first reason

is that some messages have more than one message packet

whose size is wrongly detected. The second reasons is that

although there is only one wrong message packet size, the

energy samples count for that packet is less than the expected

value. This might be because of the imperfection of CC2420

hardware implementation of energy detection.

We also conducted a controlled experiment to study how the

message delivery reliability and accuracy performances respond

to the changes of background traffic. In this experiment, we

produced background traffic by establishing a direct iperf UDP

connection between two 802.11g WiFi nodes (UDP packet size

was 1500 bytes). We varied the connection bandwidth between

the two nodes and observed how our message delivery scheme

responded to that. We have tested background traffic bandwidth

from 1 Mb/s to the saturated bandwidth (30 Mb/s) with a

step length of 3 Mb/s. Similar to the uncontrolled experiment,

the HoWiES AP transmitted messages encoding a randomly

selected number, without using the self-correcting algorithm,

for 100 times in each round. With each background traffic

bandwidth, we performed the test for 100 rounds. Figure 5

(a) presents the message delivery’s reliability performance. For

all the tested background traffic bandwidths, our scheme can

correctly detect at least 99% of them. Figure 5 (b) shows

the accuracy performance. Without using the self-correcting

encoding/decoding algorithm, the accuracy ratio decreased as

the background traffic bandwidth increased. For the saturated

background traffic bandwidths, the accuracy percentage was

92%. Similar to the uncontrolled experiment, we analyzed all

the wrongly decoded messages and marked those that were

correctable. After applying the self-correcting algorithm, the

accuracy percentages for all the background traffic bandwidths

increased to at least 98%.

Message delivery overheads. To evaluate the message de-

livery overheads imposed on network throughput, we tested

the iperf UDP bandwidth between two directly connected

WiFi nodes while a HoWiES AP was sending WiFi-ZigBee

messages with different frequencies in vicinity. We have tested

the message sending frequencies (Hz) of 0.5, 1, 2, 5, 10, 20,

· · · , 60, 80 and 100. Figure 6 (a) shows the experiment result.

With the message sending frequencies (Hz) of 0.5, 1, and 2,

there were only a negligible amount of throughput degradation
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Fig. 6: HoWiES WiFi-ZigBee message delivery overheads.

on network throughput. With the sending frequencies of 5 and

10, the tested iperf connection still had 90% of its bandwidth.

Then the network bandwidth decreased approximately in linear

as the message sending frequency increased.

To evaluate the overheads imposed on AP performances, we

established an iperf UDP connection between two WiFi node

via a HoWiES AP. Then we tested the bandwidth between

the two WiFi nodes while the HoWiES AP varied the WiFi-

ZigBee sending frequencies in the same way as in the previous

network overhead experiment. We tested our implementation on

two different AP platforms: the Dell Latitude D820 laptop and

the Wiligear WBD-500 standalone AP. Figure 6 (b) shows the

experiment result. Similar to the network overhead experiment,

both AP platforms has a small amount of throughput degrada-

tion when the message sending frequency is smaller than 10.

When the sending frequency is higher than 10, the throughputs

on both platforms decreased linearly as the message sending

frequency increased. The WBD-500 standalone AP had a faster

performance drop than the Dell laptop. This is because the

standalone AP has more constrained computational resources.

B. Energy gain achieved by the energy saving protocols

Power measurement setup and methodology. To measure

the power consumption in the T400 laptop, we use the smart

battery interface come with the operating system. According

to [25], the smart battery interface is highly accurate when

the battery interface reading rate is low. Since we are only

interested in long term energy consumptions, the smart battery

interface satisfies our requirements. To measure the power

consumption in the smartphone, we use the Monsoon power

monitor [26], which provides accurate power readings for hand-

held mobile devices. When we measure the power of a device,

we turn off all the unnecessary applications and services, and

shut down the power-hungry LED screen. To get the power

consumption value for a WiFi operation (e.g., scanning or

standby) in a device, we first measure the baseline system

power consumption (i.e., system power consumption without

running any WiFi operations). Then we measure the system

power when the device is continuously performing the targeted

WiFi operation. Finally, the difference between the two values

is the power consumption for the WiFi operation.

Energy gain in WiFi scanning. We measured the WiFi

scanning power consumptions of three devices: a normal T400

laptop, a normal Galaxy S2 smartphone and a HoWiES client.

Our measurement shows that the T400 laptop, the Galaxy S2

smartphone and the HoWiES client spend 1740 mW, 501 mW

and 61 mW for WiFi scanning respectively. Figure 7 (a) shows

the energy generated by the WiFi scanning operation as the
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time elapses in a 3 minutes duration. Figure 7 (b) shows the

percentages of WiFi scanning power reduction of the HoWiES

client when compared to the normal mobile devices. From the

result we can conclude that our scheme can effectively reduce

power consumptions for the WiFi operation in mobile devices.

Energy gain in WiFi standby. To evaluate the power

savings achieved in the WiFi standby state, we compared

a Galaxy S2 smartphone and its HoWiES-enabled version.

Our measurement shows that the normal Galaxy S2 and the

HoWiES-enabled Galaxy S2 consumes 33 mW and 5 mW in

the standby state respectively. Figure 8 (a) shows the energy

generated during standby as the time elapses in a 3 minutes

duration. Figure 8 (b) compares the standby power consumption

between the two subjects. Although the absolute value of power

consumption gain is small at the first glance, it is still quite

meaningful considering that users usually leave the WiFi radios

in their mobile devices idle most of the time.

C. HoWiES wakeup delay

We evaluate the delay performance of our implemented

system in terms of waking up a standby client. To do the

evaluation, we instrumented the WiFi device driver in AP to

record the times that a 802.11 PSM standby client and a

HoWiES-standby client needs to wake up and get their buffered

packets. On the clients side, the wakeup interval of the normal

Galaxy S2 is set to a beacon period, which is the default setting

used by the WiFi driver. For the HoWiES-enabled Galaxy

S2, it goes to sleeping state once it enters HoWiES standby,

and keeps sleeping until it is waken up by a WiFi-ZigBee

message. Figure 9 shows the empirical CDF of time that a

normal Galaxy S2 and a HoWiES-enabled Galaxy S2 needs

to wake up. Through the figure we can see that the wakeup

delay of our implemented system is already comparable to

that of a normal 802.11 PSM client. Actually there is still

room to improve the wakeup latency in our implementation.

For example, currently an AP is using a user space program to

transmit message packets. This will incur some extra time in

the kernel-user space communication. Moreover, the user space

program cannot set its packets to have higher transmission

priority than other packets, which may cause more extra time

between two message packets.

VII. CONCLUSION

We have presented HoWiES, a Wifi energy saving system

that achieves WiFi energy savings in three different aspects:

scanning energy saving, standby energy saving and standby

wakeup contention reduction. The foundation of the HoWiES

system is a novel WiFi-ZigBee message delivery scheme that

enables WiFi radios to deliver different information to ZigBee

radios. Our extensive evaluations show that our implementation

of the WiFi-ZigBee message delivery scheme works accurately

and reliably with reasonable overheads, and that the whole

system can effectively save energy for WiFi devices.
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