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Abstract—The soaring adoption of location-based social net-
works (LBSNs) makes it possible to analyze human socio-
spatial behaviors based on large-scale realistic data, which is
important to both the research community and the design of new
location-based social applications. However, performing direct
measurements on LBSNs is impractical, because of the security
mechanisms of existing LBSNs, and high time and resource costs.
The problem is exacerbated by the scarcity of available LBSN
datasets, which is mainly due to the privacy concerns and the
hardness of distributing large-volume data. As a result, only a
very few number of LBSN datasets are publicly released. In
this paper, we extract and study the universal statistical features
of three LBSN datasets, and propose LBSNSim, a trace-driven
model for generating synthetic LBSN datasets capturing the
properties of the original datasets. Our evaluation shows that
LBSNSim provides an accurate representation of target LBSNs.

I. INTRODUCTION

In the past few years, LBSNs have gained soaring popularity

and attracted millions of users [1]. Compared with traditional

online social networks, LBSNs take a step further in that

they provide the location-based features. Users of LBSNs can

check-in at different venues (e.g., airports, restaurants) and

notify their friends, sharing with friends information about

the places they visited. These check-ins, combined with the

online friendship connections revealed through the LBSNs,

provide an unprecedented opportunity to study human socio-

spatial behaviors based on large-scale voluntarily contributed

data. This in turn facilitates a variety of services, such as

urban planning, friendship recommendation, place of interest

recommendation, traffic forecasting, marketing campaigns, and

epidemiological modeling.

However, it is difficult to perform direct measurements of

existing LBSNs, which usually take approaches to defend

against automated crawlers. For example, Foursquare, the most

popular LBSN, requires user authorization to collect personal

information, and it has limited the access rate. As a result,

a direct measurement typically incurs high time and resource

costs [4], [5]. To circumvent this difficulty, researchers have

resorted to the publicly available datasets. Nevertheless, the

number of LBSN datasets available to the community is very

limited. This is mainly due to the concerns of compromising

user privacy and the high costs of distributing large datasets.

User locations may reveal highly sensitive and private informa-

tion, such as interests, habits, and health conditions, especially

when they are in the hands of adversaries. The threat is more

serious with regard to LBSNs, because users’ physical loca-

tions are now being correlated with their profile information.

Even if the datasets are anonymized before being published,

user identities can still be recovered from the anonymized

location traces and social graphs [10], [13]. Therefore, these

privacy concerns strongly discourage sharing LBSN datasets.

Given the soaring adoption of LBSNs, the lack of available

datasets has significantly impeded the research in this area.

An attractive alternative to shared original datasets is the

synthetic datasets generated by measurement-calibrated mod-

els. There are three advantages of using synthetic datasets as

replacements for real datasets. First, the synthetic datasets are

randomly generated, and thus they do not compromise any

user privacy. Second, compared with sharing the large datasets,

the cost of sharing the models is negligible. Third, LBSN

datasets with different properties can be generated on demand,

which can help researchers improve the statistical confidence

in their experimental results. Previous work investigated the

graph models that produce synthetic social graphs of online

social networks [8], [9], [16], [17]. Given all these advantages

of the model-generated LBSN datasets, however, no LBSN

model has been proposed in the literature.

In this paper, we propose LBSNSim, a trace-driven mod-

el for generating synthetic LBSN datasets that capture the

characteristics of the real datasets. We first analyze the data

from three LBSNs: Foursquare, Gowalla, and Brightkite (Sec-

tion III). Our findings suggest that the LBSNs share many

universal social and spatial properties. For example, the user

check-in numbers follow an exponentially truncated power law

distribution. The displacements between consecutive check-ins

made by each user follow a two-segment distribution, whose

transition point has a clear meaning. Similarly, the temporal

intervals between consecutive check-ins also follow a two-

segment distribution. Additionally, the friend distances follow

a truncated Weibull distribution. Previous work only show that

some measurements of LBSNs, such as the check-in numbers

and displacements, exhibit a heavy-tail pattern [4], [15]. To

the best of our knowledge, this is the first time that specific

distributions have been found and explained for a wide range

of statistical features of LBSNs.

Based on our findings we develop LBSNSim (Section IV),

which takes as input a set of known venues, and outputs the

check-in history of all the synthetic users and their friendship

graph. Our model consists of three components: generating the

initial location of each user, building the friendship graph by

considering both social and spatial factors, and generating all
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the check-ins of each user.

We evaluate the fidelity of LBSNSim by comparing the

properties of the real LBSN datasets with their synthetic

model-generated counterparts (Section V). The results demon-

strate that LBSNSim provides an accurate representation of the

target LBSNs: it generates synthetic datasets that accurately

capture the statistical features of the original datasets. Besides,

our application-level test shows that the application results

obtained by using the model-generated datasets closely match

those obtained by using the original datasets, which validates

the feasibility of substituting real datasets with synthetic

datasets. As the first generative model of LBSNs, LBSNSim

has wide applications for the research community and in

guiding the design of the systems and applications centered

on LBSNs.

II. RELATED WORK

Previous studies have attempted to investigate the check-

in properties of LBSNs. Cheng et al. found that LBSN

users follow the “Levy Flight” mobility pattern, which is

characterized by a mixture of short, random movements with

occasional long jumps [4]. Scellato et al. presented a study of

the socio-spatial properties of LBSNs [18]. They found that

in LBSNs long range social ties have a higher probability of

occurrence than in other social systems. User behavior with

regard to LBSNs has been analyzed by Lindqvist et al. [11].

The authors conducted interviews and surveys to investigate

how and why people use LBSNs, as well as their privacy

concerns related to the location-sharing functions.

Researchers have also leveraged the socio-spatial informa-

tion of LBSNs for location prediction and friendship predic-

tion. Cho et al. proposed a location prediction model built

on the idea that human check-ins are based on the movement

between two latent states “work” and “home” [5]. Noulas et

al. proposed a venue recommendation scheme relying on per-

forming personalized random walks on a user-place network,

where a user is linked to her friends and the venues she has

visited before [14]. Scellato et al. built a supervised learning

framework that exploits the features extracted from LBSNs

to predict new friendship links between friends-of-friends and

place-friends, which are the users visiting the same place [19].

Sala et al. explored the feasibility of replacing real so-

cial graphs of online social networks with synthetic graphs

generated from calibrated graph models [16]. The authors

compared six existing graph models. They found that two

models consistently generate synthetic graphs with common

graph metric values similar to those of the original graphs,

and one produces high fidelity results in application-level tests.

In a followup work the authors investigated how to share so-

cial network graphs without compromising user privacy [17].

Previous research has also studied how to generate synthetic

social graphs with different properties [8], [9].

III. DATA ANALYSIS

In this section, we investigate the statistical characteristics

of the original datasets from three LBSNs: Gowalla [5],

TABLE I
STATISTICS OF THE DATASETS

Dataset Users Edges Check-ins Venues Timestamps

Gowalla 196,591 950,327 3,674,591 675,483 02/2009-10/2010

Brightkite 58,228 214,078 2,920,919 476,744 04/2008-10/2010

Foursquare 93,115 NA 7,956,679 428,343 09/2010-01/2011

Brightkite [5], and Foursquare [4]. We consider the check-

ins whose locations have latitude between 24◦N and 50◦N,

and longitude between 64◦W and 126◦W. This includes the

mainland of the USA, where the three LBSNs have the

majority of check-ins.

The statistics of the three datasets analyzed in this

section are shown in Table I. The Foursquare dataset

does not contain the friendship graph, since Foursquare

does not allow unauthorized access to users’ friend list-

s. Each check-in in the datasets is stored as a tu-

ple 〈userID, time, latitude, longitude, venueID〉, and each

friendship edge is stored as a tuple 〈userIDA, userIDB〉.
Check-ins at the same venue have the same GPS coordinates,

provided by the corresponding LBSN. Besides these three

datasets, we have also studied two more datasets from Gowal-

la [3] and Foursquare [7]. The results are very similar and are

thus omitted to save space.

We extract and analyze the following data: the number of

check-ins of each user, the spatial displacement of consecutive

check-ins, the temporal interval of consecutive check-ins,

distance between friends, the number of friends of each user,

and the number of check-ins at each venue. Our findings

suggest that the datasets share many universal features, which

guides the design and evaluation of LBSNSim.

A. Number of check-ins

We begin with an investigation of the number of check-ins

made by each user. Figure 1 shows the log-log CCDF (com-

plementary cumulative distribution function) of the number of

check-ins made by each user in the three datasets. All the plots

exhibit a sizable downward curvature and cannot be fitted with

a straight line, indicating a significant deviation from a power

law distribution. Instead, by analyzing the data, we find that

they can be well fitted with an exponentially truncated power

law distribution [6], whose probability density function is

p(x) ∝ x−αe−λx, (1)

where α and λ are two parameters to be estimated for

each dataset. Regarding this density function, we first give

a property (Lemma 1) that will be used when we formally

define the distribution (Lemma 2) and estimate the parameters

(Lemma 3).

Lemma 1: Define

Fx(α, λ) =

∫ +∞

x

t−αe−λtdt.

Then

Fx(α, λ) = λα−1Γ(1− α, λx),
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Fig. 1. Exponentially truncated power law distribution of check-in numbers.

where Γ(a, x) is the incomplete gamma function defined as

Γ(a, x) =

∫ +∞

x

ta−1e−tdt.

Proof: Substituting λt in Fx(α, λ) by s, we have

Fx(α, λ) =

∫ +∞

λx

(
s

λ
)−αe−s · 1

λ
ds.

Rearranging the terms proves the lemma.

In practice, there exists a lower bound xmin and an upper

bound xmax of the feasible x. Taking this into account, we

derive the probability density function.

Lemma 2: The probability density function for variable x ∈
[xmin, xmax] satisfying equation (1) is as follows.

p(x) =
λ1−α

Γ(1− α, λxmin)− Γ(1− α, λxmax)
x−αe−λx.

Proof: Note that∫ xmax

xmin

x−αe−λxdx =

∫ +∞

xmin

x−αe−λxdx−
∫ +∞

xmax

x−αe−λxdx

= Fxmin
(α, λ)− Fxmax

(α, λ).

Thus,
∫ xmax

xmin
p(x)dx = 1.

To estimate the parameters α and λ, there are generally

two methods, maximum likelihood estimation (MLE) and the

moment method. We implemented both methods and found

that they give similar results, while the moment method

converges much faster. The underlying idea of the moment

method is to equate the population moments with the sample

moments, and solve the resulting equations. We only use the

first and the second moments, since there are two parameters

to be determined. The two population moments are stated in

the following lemma.

Lemma 3: For the distribution defined in Lemma 2, we

have

E[x] =
Γ(2− α, λxmin)− Γ(2− α, λxmax)

λ(Γ(1− α, λxmin)− Γ(1− α, λxmax))

and

E[x2] =
Γ(3− α, λxmin)− Γ(3− α, λxmax)

λ2(Γ(1− α, λxmin)− Γ(1− α, λxmax))
.
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Fig. 2. Several other fits on the Foursquare check-in number data.

Proof: We only give the derivation for E[x]. The deriva-

tion for E[x2] is similar.

E[x] =

∫ xmax

xmin

x · p(x)dx

=

∫ xmax

xmin

x · λ1−αx−αe−λx

Γ(1− α, λxmin)− Γ(1− α, λxmax)
dx

=
λ1−α

∫ xmax

xmin
x−(α−1)e−λxdx

Γ(1− α, λxmin)− Γ(1− α, λxmax)

=
Γ(2− α, λxmin)− Γ(2− α, λxmax)

λ(Γ(1− α, λxmin)− Γ(1− α, λxmax))
,

where the last equality can be obtained by Lemma 1 and the

proof of Lemma 2.

Suppose di is user i’s check-in number. With the moment

method, the estimated two parameters α̂ and λ̂ are the solution

to the system of equations{
E[x] = 1

n

∑
i di

E[x2] = 1
n

∑
i d

2
i .

(2)

Based on the parameters estimated with the moment

method, we plot the CCDF of the fitting distributions in

Figure 1. The figure shows that the exponentially truncated

power law distribution fits the data well. To further investigate

the goodness-of-fit, we use the coefficient of determination of

data fit, also known as R2, as an indicator of fitting errors.

The closer R2 is to 1, the better the distribution fits the data.

As shown in Figure 1, the R2 value is close to 1 for all the

three datasets, indicating a good fit.

We have also tried to fit the data with other distributions.

However, none of them fits the data better than the exponen-

tially truncated power law distribution. For example, as shown

in Figure 2, the R2 values of the three fits on the Foursquare
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Fig. 3. Two-segment distribution of displacements (km).

dataset are all lower than the R2 value of the exponentially

truncated power law fit.

All the CCDF plots in Figure 1 show truncations of check-in

numbers larger than several hundred, whose effects are sharp

drops in the frequency of very large check-in numbers. One

possible explanation of the exponential truncations is that the

set of candidate venues a user can check-in is geographically

constrained by factors like boundaries and physical obstruc-

tions. In addition, previous research has shown a check-in

fatigue after prolonged use of LBSNs [11]. As a result, the

frequency of very large check-in numbers in the datasets is

lower than what would be in a power law distribution, whose

CCDF is a straight line in the log-log scale.

B. Displacement of consecutive check-ins

In this subsection we study the spatial displacement of

consecutive check-ins. We measure the distances between all

the pairs of consecutive check-ins made by each user in the

three datasets, and plot the log-log CCDF in Figure 3. It is

easy to see that all the three plots consist of two segments with

different curvature shapes that meet at a transition point. By

analyzing the data we find that user displacements can be well

fitted with an exponentially truncated power law distribution

in the body, and a lognormal distribution in the tail. How to

find the optimal transition point is shown as follows.

Definition 1: Denote by x0 a transition point. An exponen-

tially truncated power law distribution with lognormal in the

tail is defined by the following probability density function

p(x) =

⎧⎨
⎩
β · λ1−α

Γ(1−α,λxmin)−Γ(1−α,λx0)
x−αe−λx if x ≤ x0

(1− β) · 1
(x−x0)σ

√
2π

e
−(ln(x−x0)−μ)2

2σ2 if x > x0,

where β is the probability that x ≤ x0. Denote by px−0
(x)

the probability density for x ≤ x0, and px+
0
(x) the probability

density for x > x0.

The transition point x0 is estimated with MLE. Denote by

d1, d2, . . . , dn the displacement data. Then, for any given x0,

the likelihood L(x0) can be computed as

L(x0) =
∏

di≤x0

px−0
(di) ·

∏
di>x0

px+
0
(di),

where parameters α, λ in px−0
are estimated by our previous

method on set {di | di ≤ x0}, parameters σ, μ in px+
0

are

estimated by the standard routine on set {di − x0 | di > x0},

and parameter β is simply the ratio
|{di|di≤x0}|
|{di}| . The estimated

x0 is the one that maximizes L(x0).
The estimated transition points of the Gowalla, Brightkite,

and Foursquare datasets are shown in Figure 3, which match

closely and are similar to the reach of an ordinary US city. The

results indicate that user inter-checkin displacements exhibit

two different behaviors: displacements within the reach of the

borders of a city correspond to the daily short movements,

and a vast majority of all the user displacements belong to this

type, while displacements beyond the reach of the borders of a

city correspond to the occasional long trips, and only a small

fraction of the displacements fall into this category. Based

on the estimated parameters, we plot the CCDF of the fitting

distributions in Figure 3, which shows that the two-segment

distribution is a good fit to the data.

C. Temporal interval of consecutive check-ins

Next we study the temporal interval of consecutive check-

ins. We plot in Figure 4 the CCDF of the temporal intervals

between all the pairs of consecutive check-ins made by each

user in the three datasets. Again, the plots exhibit a two-

segment pattern. We find that small temporal intervals can

be well fitted with an exponentially truncated power law

distribution, while large temporal intervals can be well fitted

with a Weibull distribution, which meet at a transition point.

We use the technique described in the previous subsection to

estimate the optimal transition point. The results are shown in

Figure 4. The transition points of all the three datasets match

well, and they are close to the temporal length of a week

in seconds (604,800s). This is a strong indicator that user

check-in intervals exhibit two different patterns: the check-in

intervals shorter than one week follow some weekly temporal

rhythms, as shown in previous research [4], [15]. On the other

hand, the check-in intervals longer than a week tend to arise

from the more random check-ins made by users, e.g., when

a user visits a new venue. We plot the CCDF of the fitting

distributions based on the estimated parameters in Figure 4,

which shows good fits to the original data with high R2 values.

D. Distance between friends

In this subsection we study the geographic distance between

friends in LBSNs. We consider two cases. One is we measure

the distance between each pair of friends’ first check-ins,

i.e., their initial locations, and the other is we measure the
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Fig. 4. Two-segment distribution of temporal intervals (seconds).
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Fig. 7. Power law distribution of venue popularity.
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Fig. 5. Truncated Weibull distribution of friend distances (km).
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Fig. 6. Power law distribution of friend numbers.

distance between each pair of friends’ average locations over

all their check-ins. We plot in Figure 5 the CCDF for both

cases. Note that since the Foursquare dataset does not contain

friendship information, we only plot the CCDF figure of the

Gowalla and Brightkite datasets. Figure 5 shows that for both

datasets the initial location curve and the average location

curve match closely, indicating that there is no significant

difference between these two measurements.

The downward CCDF curves can be well fitted by a

truncated Weibull distribution, which is obtained by restricting

the random variable of Weibull distribution within the range

(0, xmax], and normalizing the probability density function

accordingly. Based on the parameters estimated with MLE, we

plot the CCDF of the fitting distributions in Figure 5. The high

R2 values indicate a good fit. For comparison, we measure the

distances between randomly selected 1,000,000 pairs of arbi-

trary users (strangers). The average distance between friends

(1,040 km) is much smaller than the average distance between

strangers (2,021 km), indicating that friendship tends to be

established between geographically close users in LBSNs.

E. Number of friends

The degree (number of friends) distributions of the Gowalla

and Brightkite datasets are reported in Figure 6. The CCDF

is approximately a straight line in the log-log scale, which

illustrates that user degrees follow a power law distribution.

This result is consistent with the previous findings on online

social networks [12], [16]: the majority of users have small

degrees, while a small number of users have significantly

larger degrees, which are the “hub” nodes in the social graph.

F. Venue popularity

We define the popularity of a venue as the number of

check-ins made at this venue. To investigate the difference in

popularity across all the venues, we plot in Figure 7 the CCDF

of the number of check-ins at each venue in the three datasets.

Again, the CCDF can be approximately fitted with a straight

line in the log-log scale, indicating a power law distribution.

The heavy tail of power law implies that only a few the most

popular venues receive a large number of check-ins.

IV. MODELING LBSNS

Based on our findings, in this section we build LBSNSim,

a trace-driven model that generates synthetic LBSN datasets
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capturing the statistical features of the original datasets. We

assume that the locations of a set of venues are known, which

will be used as the input to our algorithm. The synthetic

users’ check-ins will adhere to these venues in the generated

datasets. We believe that this is a realistic assumption, because

releasing the venue information does not compromise any user

privacy. Also, the information is readily available, which can

be extracted from the published datasets.

The development of our model consists of three steps:

(1) generating the initial location of each synthetic user; (2)

building the friendship graph considering both social and

geographic factors; (3) generating the check-ins of each user.

A. Generating the initial location

To generate the initial location, i.e., the location of the first

check-in, of each user in the synthetic dataset, our algorithm

relies on the hypothesis that the user density is proportional to

the venue density in a given area. To verify this hypothesis, we

discretize the mainland of the USA into 0.1◦ latitude by 0.1◦

longitude cells, and plot in Figure 8 the number of venues in

each cell versus the number of users whose first check-in is in

that cell, based on our Foursquare dataset. The figure signals

a significant linear correlation (the correlation coefficient is

0.9324) between venue density and user density, and thus

verifies our hypothesis. The other two datasets both exhibit

a similar pattern. Our algorithm runs as follows.

Assume the set of venues in cell(i, j) is Vij , and the

total number of synthetic users is n. Starting from the first

to the nth user, for each user, based on our finding, the

probability that her initial location is in cell(i, j) is
|Vij |∑
i,j |Vij | .

Suppose cell(p, q) is selected. The probability of choosing

venue v ∈ Vpq as her initial location is proportional to nv+ ε,
i.e., nv+ε∑

v∈Vpq
nv+|Vpq|ε , where nv is the number of users who

have chosen v as their initial location, and ε is a small constant.

The plus-ε operation guarantees that the venues which have not

been selected before still have an opportunity of being chosen.

c1

c2

c3

c4

(1-�)v (1+�)v

c5

Fig. 10. Ring area to search for the destination node.

This generation process implies the richer-get-richer prop-

erty: the larger number of users that have chosen a venue as

their initial location, the higher probability that the next user

will select this venue as her initial location. This is consistent

with the power law distribution of the number of users that

have chosen each venue as their initial location in the original

dataset, as shown in Figure 9.

B. Building the friendship graph

The second step is to build the friendship graph. As shown

in the previous section, in the real datasets user degrees

follow a power law distribution, and the distances between

friends follow a truncated Weibull distribution. The generated

friendship graph should preserve both properties.

We use an extended preferential attachment process, similar

to the one proposed by Capocci et al. [2], to reproduce the

power law degree distribution.

Assume the total number of friendship edges to create is

e. Each user in a social graph is represented as a node. The

process starts with an initial set of m0 nodes with m0 >
e/n, where n is the total number of synthetic users. A clique

topology is generated among those m0 nodes, i.e., each node is

linked to the other m0−1 nodes. These are the startup nodes in

the social graph. For example, they may be the administrators

of the LBSN.

Starting from the (m0 + 1)th user to the nth user, at each

step, a new node and e/n new edges are introduced into the

social graph. For each new edge, with probability p, the edge

connects the new node with an existing node. With probability

1 − p, the edge originates from an existing node and ends

at another existing node, and the probability of choosing an

existing node i as the source node is proportional to i’s degree,

i.e., di∑
i di

. In both cases, how to select the destination node

is explained below.

Given a source node, to choose the destination node of

a friendship edge, we first randomly sample a distance v
from the truncated Weibull fitting distribution of the distances

between friends’ initial locations, which is acquired in Sec-

tion III-D. If v ≥ τ , as shown in Figure 10, we draw a

circular ring area on the map centered at the initial location

of the source node, whose inner radius is (1 − δ)v, and

outer radius is (1 + δ)v, where δ is a tunable parameter. All

the nodes whose initial location is within this ring area are

treated as candidate nodes, from which the destination node

will be chosen. Otherwise, if v < τ , all the nodes whose
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initial location falls into the circular area centered at the initial

location of the source node and with radius v are considered

as candidate nodes. τ is a small threshold distance, which is

set to 0.5 km in our experiments. Assume the set of candidate

nodes is C. The probability of choosing Ci, the ith node in

C, as the destination node is proportional to its degree, i.e.,
dCi∑

Ci∈C dCi
. If |C| = 0, we sample a new distance and repeat

the process.

C. Generating the check-ins

The last step of our model is to generate all the check-ins of

each user. Note that the location of each user’s first check-in

has already been generated in the first step of our model.

As mentioned in the previous section, each check-in is

composed of the location information, represented as a venue

ID, and a timestamp. Our task is to generate both pieces of

information for each check-in, such that the synthetic check-in

traces capture the properties of the original traces.

Our algorithm runs by first assigning a check-in number

to each user. For each synthetic user, we randomly sample

a check-in number from the exponentially truncated power

law fitting distribution of user check-in numbers acquired in

Section III-A. To generate timestamps of these check-ins, we

first need to generate the timestamp of each user’s first check-

in. To achieve this we sorted the timestamps of all the users’

first check-ins in the real dataset in increasing order, and found

that the CCDF of the temporal intervals between consecutive

timestamps in this sorted list can be approximated by a power

law distribution. Given the timestamp of the first synthetic

user’s first check-in, with the power-law parameters estimated

by MLE, we are able to generate a sequence of timestamps of

the other synthetic users’ first check-ins, such that the temporal

intervals follow the power law distribution.

Assume the timestamp of user i’s first check-in is tc1 , and

her check-in number is ni. To generate the timestamps of i’s
following check-ins, we randomly sample ni − 1 temporal

intervals v1, ..., vni−1 from the two-segment fitting distribution

of the temporal intervals between consecutive check-ins made

by users, which is acquired in Section III-C. The timestamp of

the jth check-in made by user i is thus: tcj = tc1 +
∑j−1

k=1 vk.

Now we have generated the timestamps of all the check-

ins, and our next task is to generate the location of each

check-in, i.e., to determine which venue the check-in adheres

to. We achieve this by first sorting all the check-ins by their

timestamps in increasing order. Starting from the first check-in

to the last check-in, for each encountered check-in c, we check

if c is its creator u’s first check-in. If so, then c’s location is the

same as u’s initial location. Otherwise, we randomly sample a

displacement v from the two-segment fitting distribution of the

displacements between consecutive check-ins made by users,

which is acquired in Section III-B. Assume c is u’s ith check-

in, where i > 1. If v ≥ τ , we draw a circular ring area on the

map centered at the location of u’s (i− 1)th check-in, whose

inner radius is (1 − δ)v, and outer radius is (1 + δ)v. All

the venues falling into this ring area are treated as candidate

venues that c may adhere to. If v < τ , we consider all the

venues falling into the circular area centered at the location of

u’s (i− 1)th check-in and with radius v as candidate venues.

Assume the set of candidate venues is V . We consider two

cases when determining c’s venue. Let Vf be the set of venues

in V that have been previously checked-in by some of u’s

friends, and Vs = V−Vf . If both Vf and Vs are not empty, then

with probability p′, c adheres to a venue in Vf . The probability

that c adheres to venue i in Vf is proportional to the number

of times that u’s friends have previously checked-in at this

venue, i.e., fi∑
i∈Vf

fi
. With probability 1 − p′, c adheres to a

venue in Vs. The probability that c adheres to venue i in Vs is

proportional to ε plus the number of times that the non-friend

users (strangers) have previously checked-in at this venue, i.e.,
si+ε∑

i∈Vs
si+|Vs|ε . The plus-ε operation guarantees that the venues

which have not been checked-in by any user before still have

an opportunity of being chosen. By introducing the parameter

p′, we take into account the difference between check-ins made

by friends and by strangers. This captures the social influence

on users’ check-in behavior, which was found in previous

research [5], [7]. If either Vf or Vs is empty, then we only

consider the venues in the non-empty set. If both Vf and Vs

are empty, we sample a new distance and repeat the process.

Note that in the original datasets we do not observe an

obvious correlation between the displacement and the temporal

interval of consecutive check-ins. The correlation coefficients

of the Gowalla, Brightkite, and Foursquare datasets are 0.1306,

0.0972, and 0.1256, respectively. This finding is rational

because check-in is a spontaneous user behavior, which is

different from continuous location sensing. It may take a long

time for a user to make two check-ins, while the displacement

between them may be very small. Therefore, when building

the model we do not consider this correlation. Instead, we only

filter out the generated consecutive check-ins which imply an

unrealistically high transit speed.

V. MODEL VERIFICATION

In this section, we evaluate the fidelity of LBSNSim by

verifying whether LBSNSim can generate synthetic LBSN

datasets that capture the statistical features observed in the

original datasets.

A. Experimental Setup

In the evaluation we use the Gowalla dataset as the target

dataset. The parameters of the distributions used in our model

are estimated based on this dataset. The number of users in

the model-generated datasets is 100,000, the number of friend-

ship edges is 500,000, and the total number of check-ins is

5,000,000. The other parameters used in the model are set as:

m0 = 20, p = 0.4, p′ = 0.8, δ = 0.25, ε = 1, τ = 0.5 km. We

use the venues extracted from the Gowalla dataset as the input

to our algorithm. Note that using LBSNSim, researchers can

generate LBSN datasets with different scales and properties

by tuning the parameters in the model, and experiment with

these datasets to produce statistically confident results.
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Fig. 11. Friend distances (km) based on average locations.
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Fig. 12. Radius of gyration (km).

B. Evaluation Results

We have tested a wide range of statistical features, including

distance between friends, radius of gyration (explained later),

temporal intervals considering all the check-ins, node degrees,

venue popularity, and social influence on check-ins. We do

not test the features that are explicitly modeled by LBSNSim,

including the exponentially truncated power law check-in

number distribution, and the two-segment distributions of

the temporal intervals and displacements between consecutive

check-ins made by each user. In the experiments we generate

50 realizations of our model and we observe no significant

difference among them in the statistical features we evaluate,

so for each feature we compare the target dataset with a

randomly selected model-generated dataset. In the application-

level test, we run an LBSN-based application with both the

target dataset and the synthetic datasets as input, and compare

the results to quantify the fidelity of LBSNSim.

Distance between friends. In the previous section, we use

distance as a constraint on friendship generation, by sampling

a distance v from the truncated Weibull fitting distribution of

the distances between friends’ initial locations each time when

a new friendship edge is created, and using it to search for the

destination node of the edge. However, the resulting distance

between the source node and the destination node is only an

approximation of v, as the destination node is chosen from all

the nodes falling into the ring area with inner radius (1− δ)v
and outer radius (1 + δ)v. As shown in Figure 11, even with

this approximation, the distribution of the distances between

friends’ average locations in the model-generated dataset still

matches well with that in the target dataset.

Radius of gyration. The radius of gyration of a user is

defined as the root mean square distance of a user’s check-ins

from their center of mass:
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Fig. 13. Inter-checkin time (seconds) of all the check-ins, rescaled by dividing
by the average time interval.
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Fig. 14. Number of friends of each user, rescaled by dividing by the average
friend number.

Rg =

√√√√ 1

ni

ni∑
j=1

(distance(cj , ca))2,

where ni is user i’s check-in number, cj is the location of

the jth check-in, and ca is the average location over all the

check-ins. Radius of gyration measures the “spread” of a

user’s check-ins: the larger radius of gyration is, the more

widely a user’s check-ins are dispersed. Figure 12 compares

the distribution of radius of gyration in the model-produced

dataset with that extracted from the target dataset, which shows

that the two distributions match well.

Inter-checkin time of all the check-ins. To measure the

distribution of the inter-checkin time considering all the check-

ins, we sort all the user check-ins by their timestamps in

increasing order. Figure 13 plots the distribution of the tem-

poral interval between every pair of consecutive check-ins in

this sorted list, for both the synthetic dataset and the target

dataset. The CCDFs of both distributions can be approximated

by a straight line in the log-log scale, which indicates a power

law distribution, and they also match closely. Note that this

distribution is different from the distribution of the temporal

intervals between consecutive check-ins made by each user,

which has been studied in the data analysis section.

Number of friends. Figure 14 compares the distribution of

the friend numbers in the model-produced dataset with that

in the target dataset. Both CCDF curves are approximately a

straight line in the log-log scale with similar slopes. This val-

idates the correctness of our extended preferential attachment

process used to generate the friendship graph.

Venue popularity. In Figure 15 we plot the distribution of

venue popularity, defined as the number of check-ins at each

venue, in the generated dataset and in the target dataset. The

figure illustrates that our check-in generation method captures

the power-law venue popularity found in the original datasets.
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Fig. 15. Venue popularity, rescaled by dividing by the average venue
popularity.

TABLE II
FALSE POSITIVE AND NEGATIVE RATES OF SYBILDEFENDER

Original Synthetic
F+ F− F+ F−

2000 sybil nodes 0.3% 0.2% 0.4% 0.2%
1000 sybil nodes 0.3% 0.4% 0.3% 0.5%
500 sybil nodes 0.2% 0.6% 0.2% 0.8%

Social influence on check-ins. To quantify the social influ-

ence on users’ check-in behavior, we compare the probability

that two friends have checked-in at the same venue with the

probability that two strangers have checked-in at the same

venue. Each probability is measured by randomly selecting

100,000 pairs of users and counting the number of pairs that

have checked-in at at least one common venue. All the results

are averaged over 50 runs. The friend-case and stranger-case

probabilities for the Gowalla dataset are 16.29% and 0.39%,

respectively. For the model-generated dataset they are 14.50%

and 0.59%. The results demonstrate that similar to the real

datasets, the model-generated datasets exhibit strong social

influence on users’ check-in behavior, i.e., people are more

likely to visit places that their friends visited in the past.

Application-level test. In this subsection, we compare the

results of an LBSN-based application obtained by using the

target dataset with those obtained by using the synthetic

datasets. SybilDefender was proposed in our previous research

to defend against sybil attacks in social networks [20], when

an attacker creates many bogus identities to compromise the

operation of the system. To extend SybilDefender to LBSNs,

we augment the sybil identification algorithm by considering

edge weights, which are defined as the number of venues that

have been checked-in by both ending nodes of a friendship

edge. The algorithm runs by performing weighted random

walks in the friendship graph. At each step of a weighted

random walk, edge weights are considered when choosing

the next hop. The weighted sybil identification algorithm

takes the target dataset and the synthetic datasets as input.

In each experiment we randomly create sybil nodes forming a

connected scale-free topology, with a small number of edges

linking to the largest connected component of the friendship

graph. The results are averaged over 50 runs.

Table II shows the average false positive and negative

rates of the weighted sybil identification algorithm, when

running on the target dataset and on the synthetic datasets.

It demonstrates that the application-level results obtained by

using the synthetic datasets closely match those obtained by

using the original dataset.

VI. CONCLUSION

In this paper, we analyze the statistical features extracted

from the data of three LBSNs, and propose LBSNSim, a

trace-driven model for generating synthetic LBSN datasets

that capture the properties of the original datasets. Evaluation

shows that the synthetic datasets generated by LBSNSim are

sufficiently representative of real-world LBSN datasets in a

wide range of statistical features, and high fidelity results can

be produced using the synthetic datasets in the application-

level test. This verifies the feasibility of using the model-

generated datasets as replacements for real LBSN datasets.
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