
SMOC: A Secure Mobile Cloud Computing Platform

Zijiang Hao, Yutao Tang, Yifan Zhang†, Ed Novak, Nancy Carter, Qun Li

{hebo, yytang, ejnovak, njcarter, liqun}@cs.wm.edu, †zhangy@binghamton.edu

College of William and Mary, Williamsburg, VA, USA
†State University of New York at Binghamton, Binghamton, NY, USA

Abstract—Mobile devices are now ubiquitous in the modern
world. In this paper, we propose a novel and practical mobile-cloud
platform for smart mobile devices. Our platform allows users
to run the entire mobile device operating system and arbitrary
applications on a cloud-based virtual machine. It has two design
fundamentals. First, applications can freely migrate between the
user’s mobile device and a backend cloud server. We design a file
system extension to enable this feature, so users can freely choose
to run their applications either in the cloud (for high security
guarantees), or on their local mobile device (for better user
experience). Second, in order to protect user data on the smart
mobile device, we leverage hardware virtualization technology,
which isolates the data from the local mobile device operating
system. We have implemented a prototype of our platform using
off-the-shelf hardware, and performed an extensive evaluation of
it. We show that our platform is efficient, practical, and secure.

I. INTRODUCTION

Smart mobile devices are gradually becoming the dominant

daily computing platform for many people [1], [2]. While many

applications today run directly on individual mobile devices, we

envision a mobile-cloud computing model emerging whereby

individual devices run user interface software with the bulk of

computation performed on a virtual machine (VM) running in

a commodity cloud hardware environment [3]. In this paper,

we aim to build a platform that supports free migration of apps

between smart mobile devices and cloud based hardware.

In the mobile-cloud model, user input on the mobile device

is transmitted to cloud processes running on the VM. Results

from cloud processing are transformed into display content and

then transmitted back to the mobile device. The mobile device

and the cloud VM share functionality to meet user needs.

By moving heavy computational processes from the mobile

device to the cloud VM, the mobile-cloud model improves

user response time and reduces device energy consumption. It

also has security advantages, e.g., sensitive data can be stored

in the cloud, safeguarded from a compromised mobile device

OS or app, and also protected from exposure to a thief. A

user could acquire a new smart mobile device, download the

interface software, and resume arbitrary tasks from before the

compromise or theft occurred.

There are already solutions for the mobile-cloud model in

recent literature. We believe, however, that our platform has

greater potential than what is immediately obvious and can

achieve more than what existing solutions can do. There are two

concepts underlying our platform that differentiate it. First, we

are proposing a resource sharing platform in the sense that an

app can freely change its executing location between the mobile

device and the cloud. In contrast, existing solutions only allow

apps to run in the cloud. Second, our platform provides security

guarantees even when the mobile device operating system has

been compromised, which is a feature that existing solutions

cannot offer.

We achieve the first concept by running a VM in the cloud

which has an execution environment compatible with that on

the smart mobile device. Our platform shares resources between

this cloud VM and the mobile device in both directions, i.e.,

the mobile device shares its files and I/O devices with the cloud

VM when the app is running in the cloud, and the cloud VM

shares its files with the mobile device when the app is running

on the mobile device. The cloud VM does not need to share

its (virtual) I/O devices with the mobile device in the latter

case, because they are not involved in the app’s execution. Our

system currently only supports offline migration, i.e., when an

app wants to change its executing location, our platform will

cease its execution if it is running, transfer all the related data

to the target location, and re-launch the app if necessary. We

leave online migration to future work.

Considering the first concept, our platform is clearly different

from most existing solutions, such as Chrome OS [4]. Like

many others, Chrome OS follows a client-server computing

model in which the cloud behaves as a server that hosts

apps, while the smart mobile device behaves as a client that

communicates with the cloud. This model fails to meet a wide

range of user needs, because it only allows apps to run in the

cloud. Our platform, on the other hand, is a resource sharing

platform, in which apps can run on both locations and can

freely change their executing location.

The second concept is achieved by leveraging the hardware

virtualization functionality on the smart mobile device. To

be more specific, we suppose that a hypervisor runs on the

smart mobile device, which hosts a guest OS. The guest OS

could be malicious, and may launch attacks on the apps that

it hosts. The apps may also be malicious, compromised, or

attacked by the guest OS. In any case, they may leak sensitive

information stored on the smart mobile device or input by the

user. However, we trust the hypervisor, because the hypervisor

is always much smaller than the guest OS, and can be fully

verified through formal verification or manual audit. Moreover,

the hypervisor is unlikely to install any third-party applications

or libraries, and thus gets rid of many potential risks. We also

trust the cloud, under the assumption that it is established by a

famous company with high concern for their reputation, such

as Amazon, Google, Apple, and Microsoft. These companies



usually have the technical strength to protect their clouds, and

are unlikely to intentionally compromise user privacy.

Under these assumptions, our platform offers security guar-

antees concerning an untrusted guest OS running untrusted

apps. Our novel approach is to make the hypervisor responsible

for sharing the smart mobile device’s input interfaces with the

cloud, and for blocking hardware input events from traveling

to the guest OS. By doing this, we can guarantee that the guest

OS can learn nothing about the user’s input, while at the same

time remain responsible for sharing the smart mobile device’s

output interfaces with the cloud. To the best of our knowledge,

we are the first to leverage hardware virtualization to support

security reinforcement for smart mobile devices.

The following example elaborates on this idea. Consider a

smart mobile device, running a compromised guest OS, which

executes a malicious background service that stealthily records

the user’s input through a software keyboard on the screen and

sends it to a remote, malicious user. In this case, if the user runs

a banking app directly on the smart mobile device, or through

any existing mobile-cloud solution, her account and password

are likely to be leaked to the malicious user. If the user runs the

banking app on our platform, however, there is no such security

concern. The hypervisor will capture the touch events from the

software keyboard and forward them directly to the cloud VM,

bypassing the guest OS entirely. Meanwhile, the banking app

functions properly on the cloud VM, because it receives the

user’s input from the hypervisor.

To summarize, our contributions in this paper are three-fold.

• We propose a secure mobile-cloud computing platform

which is designed as a resource sharing platform in the

sense that apps running on it can freely change their

executing location. This is a more flexible design than

those of existing solutions, and it meets a wider range of

user needs.

• We are the first to leverage hardware virtualization on the

smart mobile device to provide security guarantees in the

case that the smart mobile device’s operating system is

untrusted.

• We implement a prototype system following our platform

design, and conduct several experiments on this system.

The results demonstrate that our platform is efficient and

practical.

II. RELATED WORK

Mobile offloading. An increasing amount of attention has been

invested in mobile offloading recently. CloneCloud [5], [6]

partitions a mobile application automatically by using static

analysis and dynamic profiling, such that part of the application

can be offloaded to the cloud to achieve performance and

an energy efficiency improvement. It also provides a runtime

system to facilitate the offloading. MAUI [7] also approaches

the topic of mobile offloading from the perspective of automatic

mobile program partition. The main objective of the partition

is to dynamically decide which part of the program should be

offloaded to achieve maximum energy savings. COMET [8]

implements a runtime system on top of the Dalvik Virtual

Machine, the virtual machine used by Android, to allow for

simultaneous executions of the same multi-threaded application

in several machines. The enabling foundation is a distributed

shared memory model. In contrast with these existing works,

our platform is a resource sharing platform through which the

user can run an app on either the cloud or the smart mobile

device.

Thin client architecture in mobile computing. When a user

decides to run a mobile application in the cloud with our

system, we essentially turn the local mobile device into a

thin client. MobiDesk [9] introduces a mobile virtual desktop

hosting infrastructure that transparently decouples the display,

operating system, and the network of a user’s computing session

from end-user mobile devices, and moves them to hosting

providers. SmartVNC [10] is a system to port VNC, which is

a remote computing solution, to smartphones while achieving

the same level of user experience as on PCs. While work

like MobiDesk and SmartVNC try to reduce workloads in

mobile devices by turning the devices into thin clients, other

works have also studied the energy consumption implication

of applying the thin client architecture in mobile computing

[11], [12]. Distinct from these works, our platform adopts a

spilt client design, combined with hardware virtualization on

the smart mobile device, to provide security guarantees even if

the smart mobile device’s guest OS is untrusted.

Exploiting hardware virtualization technology. Hardware

virtualization technologies on the x86 architecture [13], [14]

have long been used to develop solutions to protect system

security. For example, SecVisor [15] utilizes AMD-V [14]

(formally known as AMD Secure Virtual Machine (SVM)) to

build a hypervisor with a small code base to ensure the code

integrity of guest OS kernels. Specifically, the hypervisor by

SecVisor is able to prevent code injection attacks by allowing

only user-approved code to run in kernel mode. TrustVisor

[16] also uses AMD-V to build a small hypervisor to ensure

the guest OS’s data integrity and secrecy, in addition to code

integrity. Lares [17] exploits Intel VT-x [13] to achieve active

security monitoring inside a virtual machine environment. In

our platform, we choose to allow the mobile device OS and

apps to run on VMs in the cloud. Part of the reason for this

choice is to utilize these existing solutions to ensure we have

a secure execution environment in the cloud. On the local

device side, we exploit the newly developed ARM hardware

virtualization technology [18] to protect the user’s input and

data collected by various on-board sensors, which can reveal

sensitive information about the user. Although there are some

efforts to use this technology to build general purpose hyper-

visors [19], [20], to the best of our knowledge, we are the first

to utilize it to build a system specifically for security/privacy.

III. PLATFORM DESIGN

Our platform spans across the user’s local mobile device and

a remote cloud server. We believe that such a mobile-cloud

computing platform is more capable than what people usually



think and can achieve more than what existing solutions can

do. In this section, we describe our platform design in detail.

A. Design goals

The main design goal of our platform is to share the

necessary resources between the smart mobile device and the

cloud, such that an app can run either on the smart mobile

device or in the cloud, arbitrarily. This design goal contains

two aspects. First, the platform must be capable of executing

an app in the cloud without any modifications to the app itself.

This is possible only if the platform shares the smart mobile

device’s I/O interfaces with the cloud, such that an app running

in the cloud can receive the user’s input (e.g., from touch screen,

sensors, keyboard, etc.) and render the output (e.g., display,

sound, etc.) on the mobile device. Second, an app installed in

the cloud should be able to be downloaded to the smart mobile

device and work properly, as it does in the cloud. This can be

achieved if the app can access the same resources regardless of

its location. For example, files accessed by the app should be

synchronized across both locations.

Running apps in the cloud is necessary for several reasons.

First, the user may not trust the app (e.g., because the app

has access to sensitive data) but may still want to run it. In

this case, she may utilize our platform and run the app on a

VM in the cloud. Even if the app compromises this VM, it

cannot affect other apps and data on the user’s local mobile

device, and the user may simply delete the VM afterwards.

In this way, even a malicious app is completely quarantined.

Moreover, commercial clouds often provide powerful anti-virus

services, and a malicious app is more likely to be caught if these

services are implemented in the cloud used in our platform.

Second, smart mobile devices are always resource constrained

[21]–[23]. To solve this problem, our platform allows the user to

offload apps from the smart mobile device to the cloud, which

typically has abundant resources. Third, some organization or

developer may want to publish an app without disclosing any

proprietary secrets about it (e.g., the binary of the app might be

reverse engineered to compromise some critical algorithms). In

this case, the organization/developer may publish the app using

our platform and only allow the app to run in the cloud. In this

way, no malicious user can recover a complete binary file for

further analysis.

After being deployed, our platform will have some apps

installed in the cloud by default. However, the user may want

to download an app from the cloud to the smart mobile device

for some reason, for example, the latency between the smart

mobile device and the cloud becomes unacceptable. This can be

achieved transparently in our platform, because all resources,

including files, are shared between the smart mobile device and

the cloud.

The cloud exploited in our platform is considered a commer-

cial cloud. However, it could also be a private cloud established

by, and serving, only a single user. Consider the scenario where

a user does not trust an app, but still wants to run it. She may

build a private cloud which does not connect to the Internet,

and deploy our platform on this cloud in conjunction with her

smart mobile device through a local area network. She can then

run the app in the private cloud to prevent her mobile device

from being attacked by the app.

Another design goal of our platform is to provide a se-

cure environment for the user to run apps. As we mentioned

previously, the VM in the cloud is isolated from the smart

mobile device, and thus a malicious app running on the VM

cannot affect any other apps running on the smart mobile

device. Moreover, commercial clouds often provide powerful

anti-virus services, which can be utilized on our platform to

defend against malicious apps. These are two cases in which our

platform can provide strong security guarantees. We have yet

to consider another important scenario; suppose a user wants

to run a banking app on the smart mobile device, but the smart

mobile device’s operating system has been compromised and a

malicious background service stealthily records the user’s input

and sends it to a malicious user. In this scenario, running the

banking app on the smart mobile device is dangerous because

the malicious user may learn the user’s banking account and

password via her input. Our platform provides a secure envi-

ronment that defends against this attack by leveraging hardware

virtualization on the smart mobile device.

B. Design details

Hardware

Host OS

Hypervisor

Guest OS

APP

VM

Display, Sound, etc.

Touch Screen, Sensors, 

Keyboard, etc.

Smart Mobile Device

Cloud

Input 

Proxy

Output 

Renderer

Input 

Injector

Output 

Proxy

Fig. 1: An app is running in the cloud in our platform.

Fig. 1 demonstrates our design when an app is running in the

cloud on our platform. The app is running in the cloud, hosted

by a VM which has an execution environment compatible

with that of the smart mobile device. This allows the app to

run without requiring any changes. Hardware virtualization is

enabled on the smart mobile device. A hypervisor running on

the smart mobile device hosts one or more guest OSes in which

the app can be executed.

As described in our main design goal, the smart mobile

device needs to share I/O interfaces with the VM such that

the app can work properly in the cloud. To achieve this, two

client programs are provided on the smart mobile device. One

of them, depicted as “Input Proxy” in Fig. 1, is responsible for

capturing the user’s input through the smart mobile device’s

input interfaces (e.g., touch screen, sensors, keyboard, etc.) and

sending it to the VM. The VM will then emulate the user’s

input such that the app can receive it and work properly. On

the other hand, the app generates output (e.g., display, sound,



etc.) when it is running in the cloud and sends the output to the

VM’s output interfaces. The VM will then transfer the app’s

output to the smart mobile device. The other program, depicted

as “Output Renderer” in Fig. 1, is responsible for receiving this

output and rendering it on the smart mobile device so the user

can perceive it. By communicating in this way, the smart mobile

device shares its I/O interfaces with the cloud VM such that

the app can be executed in the cloud instead of on the smart

mobile device.

Hardware

Host OS

Hypervisor

Guest OS

APP
VM

Smart Mobile Device

Cloud

Distributed File System

Fig. 2: An app installed in the cloud is downloaded to, and

executed on, the smart mobile device in our platform.

Fig. 2 demonstrates our design in the case that an app

installed in the cloud is downloaded to, and executed on, the

smart mobile device. Our platform allows the user to either

launch the app in the cloud or download it to the smart mobile

device and execute it. When the user downloads the app to the

smart mobile device, a distributed file system across the VM

that hosts the app in the cloud and the guest OS on the smart

mobile device will be automatically enabled. This distributed

file system is needed in order for the VM to share resources

with the smart mobile device, allowing the app to work properly

without any modifications. Recall that the smart mobile device

needs to share its I/O interfaces with the VM when the app is

running in the cloud. As the app is now running on the smart

mobile device, it can directly access the smart mobile device’s

I/O interfaces, so no I/O interface sharing is needed. However,

the app, previously installed in the cloud, may need to access

some resources (such as files) on the VM to work properly.

For this reason, we design the distributed file system in our

platform.

There are two ways to download an app from the cloud to the

smart mobile device. The first way is offline downloading, in

which the user downloads the app’s binary file when the app is

not running, and executes it on the smart mobile device there-

after. The second way is online downloading, in which the user

migrates the app’s process while the app is running, and contin-

ues its execution on the smart mobile device. For simplicity, our

platform currently only supports offline downloading. However,

conceptually, online downloading could also be achieved. We

leave this to future work. After being downloaded to the smart

mobile device, the app may need to access files on the VM

that previously hosted it. Our distributed file system, spanning

across the smart mobile device and the VM, allows the app to

access such files after it has been downloaded. Therefore, the

app can work properly on the smart mobile device without any

modifications.

Combining these two design elements, illustrated by Fig. 1

and Fig. 2, our platform achieves its main goal. The second

design goal can also be achieved if the hypervisor in Fig. 1 is

trusted. This is a reasonable assumption, because the hypervisor

is always much smaller than the guest OS, and can be fully

verified through formal verification or manual audit. Moreover,

the hypervisor is unlikely to install any third-party applications

or libraries, and thus gets rid of many potential risks.

As we mentioned previously, the guest OS running on the

smart mobile device is untrusted in our platform. It might be

malicious and runs a stealthy key logger in the background. In

this case, the user’s private information, such as the banking

account and password, could be compromised. To solve this

problem, our platform leverages hardware virtualization on the

smart mobile device and adopts a split design for the client

program to share the smart mobile device’s I/O interfaces.

Fig. 1 demonstrates how our platform provides strong security

guarantees in the case that the guest OS is untrusted. The guest

OS runs on the trusted hypervisor, rather than directly on the

smart mobile device’s hardware. The app runs on a VM in

the trusted cloud. The input proxy, residing in the hypervisor,

traps the user’s input such that it cannot be received by the

guest OS, and transfers it to the VM. This is feasible because

the hypervisior is the first layer on the smart mobile device

at which hardware events (such as touch points) arrive, so the

input proxy can process these events before passing them to the

guest OS, or hiding them from the guest OS. Therefore, the app

can work properly in the cloud, but the guest OS cannot learn

anything about the user’s input. On the other hand, the guest

OS is the location where the user “logically” launches the app,

so it should also be the location where the app’s output should

be rendered. For this reason, the output renderer is placed in

the guest OS, responsible for rendering the app’s output.

Our platform provides security guarantees even if the guest

OS is untrusted, because the VM in the cloud takes the place

of the untrusted guest OS. The app runs on the VM instead

of the guest OS, and the user’s input is sent to the VM but

hidden from the guest OS. However, this implies that our

platform only works if the cloud is trusted. We do trust the

cloud in our platform, as we mentioned previously, by assuming

that the cloud is provided by a famous company with high

concern for their reputation, such as Amazon, Google, Apple,

and Microsoft. These companies are unlikely to intentionally

compromise their users’ privacy. Moreover, their clouds often

provide powerful anti-virus services, and thus a compromised

VM or app running in the cloud will likely be caught by these

anti-virus services.

It is also arguable that the user may delete the guest OS if she

suspects the guest OS has been compromised, and installs a new

one that is safe to execute apps. This solution may also solve the

problem, but has some drawbacks. The main drawback results

from the fact that a smart mobile device is usually resource



constrained and thus can support only a limited number of guest

OSes. In this case, a guest OS on the smart mobile device

may have many apps installed and most of them may have no

security issues, even if they are executed in a compromised

guest OS. Therefore, the user may be unwilling to delete this

guest OS. Meanwhile, the limited resources on the smart mobile

device prohibit the user from installing a new guest OS.

The second design goal can only be archived by the design

illustrated in Fig. 1, which implies that the user needs to execute

the app in the cloud to enjoy strong security guarantees. When

the user downloads the app to the smart mobile device for some

reason, e.g., the latency between the smart mobile device and

the cloud becomes unacceptable, she implies that she wants to

trade strong security guarantees for higher usability. Therefore,

it is natural that our platform does not make the same security

guarantees in this case.

IV. SYSTEM IMPLEMENTATION

To prove that our platform is practical and can work well, we

implement a prototype system, following the design outlined

in the previous section. In this section, we elaborate on the

implementation details of this prototype system.

A. Setup

The smart mobile device used in the prototype is a Samsung

Chromebook. We choose this mobile device because it is one

of a few that support hardware virtualization, which is required

by our platform. The host OS installed on this Chromebook

is Ubuntu Linux and the hypervisor running on this host OS

is KVM plus QEMU. Both KVM and QEMU are customized

for the Chromebook, as provided by [24], the authors of which

also provide a bootloader to enable the hardware virtualization

features of the Chromebook. QEMU emulates a Cortex-A15

VExpress hardware abstraction, and Android is installed on this

hardware abstraction as the guest OS.

The cloud in the prototype system is established on a Lenovo

laptop. The host OS on the cloud is Windows, and VMware

Workstation is installed on the host OS as the hypervisor. A

VM is created on the VMware Workstation with Android-x86

[25] installed as the guest OS.

B. Sharing I/O interfaces

Fig. 3 demonstrates how the components cooperate in the

prototype system when an app is executed in the cloud. Darker

blocks indicate the components where our implementation has

been involved. As depicted in Fig. 3, four components are

implemented to share the I/O interfaces across the smart mobile

device and the cloud. They are input proxy, input injector,

output proxy, and output renderer.

The input proxy works with the input injector to share the

input interfaces across the smart mobile device and the cloud.

As described in Section III-B, the input proxy resides in the

hypervisor on the smart mobile device. We integrate the input

proxy into QEMU in our implementation, because QEMU is

part of the hypervisor. More specifically, we implement the

input proxy’s functionality in QEMU, such that QEMU can

Hardware

Linux

KVM

Android

APP

Android-x86

Samsung Chromebook 

Exynos 5250

Vmware Workstation

Windows

Hardware

Lenovo IdeaPad Y480

Input 

Injector

Output 

Proxy

Input Output

Output 

Renderer

QEMU (integrated 

with Input Proxy)

Fig. 3: An app is executed in the cloud in the prototype

system. Darker blocks indicate the components where our

implementation has been involved.

capture the user’s input from the keyboard (i.e., the hardware

keyboard) as well as an attached accelerometer (SEN-10537

Serial Accelerometer Dongle), and transfer it to the cloud.

There is not much difference between the keyboard and the

accelerometer from QEMU’s point of view. Therefore, we only

focus on the keyboard part in the following discussion.

As the input proxy is integrated in QEMU, we need to define

a way by which QEMU can enter and exit the input proxy mode

to emulate the input proxy’s launch and termination. In our

implementation, QEMU will enter the input proxy mode when

it detects that the user has repeatedly pressed the “Caps Lock”

key six times. After entering the input proxy mode, QEMU

will continue monitoring the keyboard and exit this mode if it

receives an ESC keystroke. When it is in the input proxy mode,

QEMU maintains a connection to the cloud. Upon receiving

a key event from the host OS, QEMU will encrypt the key

code and send it to the cloud. It will not generate the virtual

keyboard interrupt for the guest OS. Therefore, the guest OS

will not know this key event and thus cannot learn the user’s

keyboard input, as described in Section III.

We have considered several places to implement the input

proxy functionality. The first place we have considered is the

host OS’s keyboard driver. However, we have quickly found that

this is not a good choice, because it affects all the programs

residing in the host OS alongside the hypervisor (i.e., any

program running on the host OS will not receive any input

events from the keyboard). The second place is the guest OS’s

keyboard driver. We have also decided against this choice,

because it violates our platform design by making the guest OS

capable of learning the user’s input when the app is running

in the cloud. According to our design in Section III, the

most natural place to implement this functionality is in the

hypervisor. As QEMU is responsible for providing the hardware

abstraction to the guest OS, we have decided to implement this

functionality in QEMU.

The input injector in the cloud, implemented as an Android

app on the Android-x86 VM, is responsible for maintaining

the connection to QEMU. It also listens on this connection for

encrypted key codes sent by QEMU. When an encrypted key

code is received, the input injector will decrypt it, and inject



the key code into the VM through the Linux sendevent utility.

Then the app running on the VM will be notified of the key

event and receive the key code.

The output proxy works with the output renderer to share the

output interfaces across the smart mobile device and the cloud.

We only consider sharing the screen frames in our prototype

system, as this is enough for the user to track the app’s output

on the mobile device in most cases. Therefore, the output proxy

needs to take a screenshot of the Android-x86 VM periodically

and transfer it to the output renderer, which will then render it

on the smart mobile device’s screen.

The output proxy is implemented as another Android app

alongside the input injector on the Android-x86 VM. It is

responsible for maintaining a connection to the output render,

and for sending the VM’s screenshots periodically, as fast

as possible, through this connection. It captures the VM’s

screenshot by invoking the screencap program provided by

Android-x86. A captured screenshot is then stored as a png

image file on the local disk. Finally, the output proxy sends the

file data to the output renderer, which will further display the

screenshot on the smart mobile device’s screen.

The output renderer is implemented as an Android app

running in the Android guest OS on the smart mobile device.

It connects to the output proxy when the app is launched in

the cloud. After the connection has been established, the output

renderer listens to this connection for the VM’s screenshots sent

by the output proxy. When a screenshot is received, the output

renderer stores it as a local png image file and sets this file as

the source of its SurfaceView component. The SurfaceView

component then displays the image file on the screen. This

process is done periodically, as fast as possible, such that the

user will perceive the stream of the app’s screen output as if

the app were running locally.

C. Distributed file system

Fig. 4 demonstrates how the components cooperate in the

prototype system when an app, installed in the cloud, is

downloaded and executed on the smart mobile device. As

discussed in Section III-B, we need to share files between the

cloud VM and the smart mobile device to allow the app to

work properly on the smart mobile device. To achieve this, we

implement a distributed file system across the smart mobile

device and the cloud in our prototype system.

The implementation of the distributed file system contains

three parts, as illustrated in Fig. 4. First, the VFS in the Android

guest OS is modified such that it communicates with a user-

level program depicted as “file system client” in Fig. 4. This is

achieved by leveraging the netlink socket mechanism provided

by Linux, as Linux is the underlying kernel of Android.

Through a netlink socket, a user-level program and the Linux

kernel can communicate with each other in a straightforward

manner. Second, the file system client is a user-level program

running in the Android guest OS on the smart mobile device.

This program is implemented as a Linux binary responsible

for communicating with both the local Linux kernel and the

cloud. Third, the “file system server” in Fig. 4 is a user-level

Hardware

Linux

KVM

Android Android-x86

Samsung Chromebook 

Exynos 5250

Vmware Workstation

Windows

Hardware

Lenovo IdeaPad Y480

QEMU

VFS VFS

File System 

Client

File System 

Server

Distributed File System

APP

Fig. 4: An app, installed in the cloud, is downloaded and execut-

ed on the smart mobile device in the prototype system. Darker

blocks indicate the components where our implementation has

been involved.

program running on the Android-x86 VM in the cloud. This

program is also implemented as a Linux binary, responsible for

communicating with the file system client on the smart mobile

device and executing file operations on the local file system.

As illustrated in Fig. 4, the smart mobile device and the cloud

communicate with each other through a connection between the

file system client and the file system server in the distributed

file system. This can also be implemented in several ways, e.g.,

the VFS on the smart mobile device may directly communicate

with the file system server, or even with the VFS on the VM,

to avoid switching between the kernel and the user space. We

choose to use user-level programs to manage this connection,

because they are more robust and easier to configure, even

though they introduce some overhead when interacting with

the local VFS in the kernel.

When an app is executed in the cloud, it may only access

local files. To access a local file, it will first invoke the system

call sys open() to communicate with the VFS, which will open

the file and return the file descriptor to the app. Through this file

descriptor, the app can read data from the file, write data to the

file, or close the file by invoking the sys read(), sys write()

and sys close() system calls, respectively. When the app is

downloaded from the cloud and executed on the smart mobile

device, however, it may access remote files in the cloud. The

distributed file system is implemented to support this kind of

remote file access in the prototype system.

To implement this distributed file system, we begin with

a simple solution. We redirect every sys open(), sys read(),

sys write() and sys close() system call that is invoked on the

smart mobile device’s VFS to the VM’s VFS running in the

cloud. To be more specific, when an app running on the smart

mobile device tries to open a file that is considered in the

cloud (e.g., in a directory under /sdcard), the smart mobile

device’s VFS will switch to user space by notifying the file

system client of this event. Then the file system client will

redirect the sys open() system call to the file system server in



the cloud with exactly the same parameters. After receiving this

redirected system call, the file system server invokes it on the

VM’s VFS and gets the corresponding file descriptor. It then

returns this file descriptor to the file system client, which will

switch back to the local VFS with the file descriptor it has

received. The VFS logs this file descriptor as a remote one and

returns it to the app. Then the app can use this file descriptor

to read, write, and close the remote file. When the app reads

the file through this file descriptor, the VFS will notice that

this file descriptor actually refers to a remote file. It will then

redirect the sys read() system call to the VM’s VFS similarly

to when it redirects the sys open() system call.

The solution described above is straightforward. However,

it involves too many network communications between the

smart mobile device and the cloud, and too frequent switching

between the user space and the kernel on the smart mobile

device. As a result, it has prohibitively low performance. To

solve this problem, we implemented the distributed file system

differently. Fig 4 illustrates part of this new solution, i.e., how

it works when the app tries to open a remote file in the cloud.

When receiving a sys open() system call from the app and

finding that it wants to open a file in the cloud, the smart

mobile device’s VFS will switch to user space by notifying

the file system client of this event. The file system client then

communicates with the file system server, which will send back

the data of the corresponding file. The file system client then

stores the file on the local disk as a cached file, with a temporary

file path that is not likely to conflict with that of any other file.

Then the smart mobile device’s VFS opens this file instead of

the remote file and returns its file descriptor to the app. The

file descriptor is marked as “remote” and the remote file path is

recorded in the file descriptor by using two fields that we have

added in the file descriptor data structure. Then the app can

use this file descriptor to read and write the cached file. When

closing the file, the VFS will notice that it is a cached file.

It will switch to user space by notifying the file system client

of this event. The file system client then sends the cached file

back to the file system server, which will overwrite its local

file with the cached file in the cloud.

It is arguable that this solution may cause inconsistency when

an app on the smart mobile device and an app in the cloud

access the same file simultaneously. Nevertheless, it is rare

that two apps access the same file simultaneously. Most mobile

OSes, such as Android, forbid or at least recommend against

an app accessing files belonging to another app, for security

purposes. Furthermore, although it is not mandatory, a prudent

way to use our platform is to create a separate VM in the

cloud for every app. Two apps will never access the same file

simultaneously in this case.

V. DISCUSSION

Hypervisor in local mobile device. To allow for consistency

with our system implementation, we present our system design

in a way that used a “type 2” hypervisor (i.e., a hosted

hypervisor that runs in a host OS) in the local mobile device

to achieve high security and privacy guarantees. It is worth

noting that it is not necessary to use type 2 hypervisor in

our design. Actually, a type 1 hypervisor (i.e., bare-metal

hypervisor that runs directly on top of the hardware) fits better

into our goal of providing high security guarantees. This is

because the main reason we use a hypervisor in local mobile

device is to isolate the sensitive inputs (i.e., user taps on

the touch screen, data collected by various on-board sensors)

from local mobile device OS and apps. These components are

greater risks if they are compromised. A type 1 hypervisor,

with a small trusted computing base (TCB), can also fulfill our

needs, but developing a new hypervisor from the ground up,

based on the newly introduced ARM hardware virtualization,

would require a lot of effort in engineering optimal parameter

settings. Therefore, we opt to use KVM, which is a full-

fledge hypervisor that has been recently ported to the ARM

architecture, for a fast proof of concept demonstration of our

system design. For future work, we plan to develop our own

bare-metal hypervisor to further improve our system.

The use of Chromebook in the prototype system. We use a

Samsung Chromebook as the mobile device in our prototype

system implementation. The main reason for this choice is that

it has a hardware configuration that supports ARM hardware

virtualization, and it requires relatively less effort to enable

and run the ARM based KVM, which is the base hypervisor

for our prototype system. Although the Samsung Chromebook

looks more like a regular laptop, it actually shares the hardware

similar to most recent smartphones and tablets. For example,

the Chromebook used in our system has a Samsung Exynox 5

Dual SoC, which is the same SoC found in the Google Nexus

10 tablet. The ARM Cortex-A15 MPcore processor contained in

the Exynos 5 Dual SoC is also used in many other smartphones,

like the Samsung Galaxy S4/S5 smartphones, the Galaxy Note

3 smartphone, and the Galaxy Tab Pro tablets. The 2 GB RAM

capacity in our Chromebook is also the standard configuration

commonly found in the latest smartphones. Therefore, our

choice of using Chromebook as the mobile device can fit well

into the smart mobile device world in terms of computational

capability.

VI. EVALUATION

In this section, we describe the real-world experiments we

have conducted to evaluate the performance of our prototype

system.

A. Experimental setup

Our prototype system consists of two parts, the smart mobile

device and the cloud VM. The smart mobile device is a

Samsung Chromebook featuring the Exynos 5 Dual SoC, 2 GB

RAM and 16 GB SSD hard drive. The Exynos 5 Dual SoC is e-

quipped with a 1.7 GHz dual-core ARM Cortex-A15 processor.

The ARM Cortex-A15 processor has hardware virtualization

support, which allows us to implement the proposed hypervisor

in our prototype system. The Chromebook runs Linux (kernel

version 3.13.0) as the host OS. On top of the hypervisor, we

run Android Jelly Bean (Android version 4.1.1, Linux kernel



0

5000

10000

15000

20000

25000

Network bandwidth (Mb/s)

0.25

 14 KB

 82 KB

 178 KB

 236 KB

 392 KB

 512 KB

0.5 1 2 10 100

R
e
sp

o
n

se
 t

im
e
 (

m
il

li
se

c
o

n
d

)

Fig. 5: App response time if running in the cloud: UI response

time (Y-axis) of screenshots with different size under different

network conditions (X-axis).

version 3.9.0) as the guest OS. The cloud VM runs Android-

x86 [25] as the guest OS (Android version 4.3, Linux kernel

version 3.10.2). It is hosted by the VMware workstation 10.0.1

virtual machine monitor (VMM) running on a host PC with

an Intel Core i7 CPU (2.3 GHz) and 8 GB RAM. The smart

mobile device and the cloud VM are connected through an

802.11n wireless router.

B. Running apps in the cloud: the response time

The most significant feature of our system is that we allow

the entire mobile device OS and the apps to run in the cloud.

Therefore, we first evaluate the app response time when the

apps are running in the cloud. In our system, we send the output

of an app running in the cloud back to the device by first taking

screenshots of the app, and then transmitting them back to the

device. Therefore, there are two major factors that can affect

app response time, network bandwidth and the size of each

screenshot. We design an experiment to evaluate the impacts

of these two factors. In our experiment, we use an image viewer

app to open different pictures. Remember that with our system,

the app launch and the picture opening operations are triggered

by the user on the mobile device side, and the actual operations

are conducted on the cloud side. Once a picture is opened, our

system takes a screenshot of it, and sends the screenshot back

to the mobile device to display to the user. We measure the

response time as the time difference between the point when the

user triggers the picture opening action on the mobile device,

and the point when the screenshot is sent back from the cloud

and displayed. We choose different pictures, such that we have

screenshots with different sizes (14 KB, 82 KB, 178 KB, 236

KB, 392 KB, and 512 KB are used in our experiment). We

also configure the wireless router to achieve different network

bandwidth rates (0.25 Mb/s, 0.5 Mb/s, 1 Mb/s, 2 Mb/s, 10 Mb/s,

and 100 Mb/s are used in our experiment).

Fig. 5 depicts the experiment results. We can see that

network bandwidth has a significant impact on app response

time when the bandwidth is small. But this impact gradually

TABLE I: Hypervisor overhead

Native OS With unmodified hypervisor With our hypervisor

Delay 4 ms 63 ms 65 ms

diminishes as the available bandwidth increases. For example,

when the network bandwidth is fixed at 0.25 Mb/s, it takes

only 0.5 second to open a picture 14 KB in size. But it needs

almost 24 seconds to get back a 512 KB screenshot. The

response time ratio for these two screenshot sizes (i.e., 512KB

14KB
)

is 24second

0.5second
= 48. But when the network bandwidth is set at 100

Mb/s, the response time ratio for the same screenshot sizes (i.e.,
512KB

14KB
) is only 0.4second

0.07second
= 5.7. Fortunately, modern mobile

data networks can support a very high transmission rate. The

4G LTE network has a peak download speed approaching 100

Mb/s [26], and on a typical day 4G download speeds can range

from 2.8 Mb/s to 9.1 Mb/s, with an average value of 6.2 Mb/s

[27]. With the average 4G download speed (6.2 Mb/s), the app

response time of our prototype system for a screenshot of 512

KB is only about one second.

C. Performance of the hypervisor on the local device

Our system exploits the ARM hardware virtualization tech-

nology to achieve user/sensor input isolation from the mobile

device OS. Specifically, when an app is running in the cloud,

our hypervisor intercepts all the inputs from the user (e.g.,

touch screen, keyboard) and sensors, performs an encryption on

them, and sends them to the cloud. We design an experiment

to evaluate the overhead introduced by our hypervisor. In this

experiment, we use keyboard input to evaluate the hypervisor

overhead. We test three cases. In the first case, we use the

keyboard to provide inputs for a user program running on the

native OS of the mobile device. In the second case, we test

the same scenario, except that the user program is running in

the guest OS of the mobile device. In this case, the unmodified

hypervisor will introduce some overhead to the keyboard input

operation. The third test case shares the same setup as the

second one, except that the hypervisor is the one used in our

prototype system, which performs encryption on the intercepted

keyboard inputs. Because we want to test the overhead caused

by our hypervisor, we direct the encrypted input up to the

user program in the guest OS, instead of redirecting it to

the cloud. In all the three cases, we measure the time delay

between the keyboard input interrupt and the time when the

user program receives the input. We perform each test ten times,

and report the average value here. Table I shows the results of

the experiment. The results suggest that by running the user

program in the guest OS, the time delay increases by one

order of magnitude, compared to that when the user program

is running in the guest OS. This is normal because the guest

OS involves many switches between many entities including

the guest OS, the hypervisor, the host OS, and the QEMU

hardware emulator (required by KVM). It is worth noting that

when comparing to the case with the unmodified hypervisor,

our hypervisor only incurs a very small amount of additional

delay (about 3%).



TABLE II: Performance of the distributed file system

64 KB 256 KB 512 KB 1 MB 5 MB 10 MB

Open 36 ms 85 ms 115 ms 225 ms 827 ms 1324 ms

Read 1 ms 1 ms 5 ms 11 ms 20 ms 38 ms

Write 1 ms 3 ms 6 ms 13 ms 68 ms 128 ms

Close 39 ms 68 ms 116 ms 219 ms 680 ms 1337 ms

TABLE III: Performance of the native file system

64 KB 256 KB 512 KB 1 MB 5 MB 10 MB

Open 1 ms 1 ms 2 ms 5 ms 14 ms 24 ms

Read 1 ms 1 ms 6 ms 11 ms 21 ms 40 ms

Write 1 ms 3 ms 6 ms 13 ms 67 ms 126 ms

Close 1 ms 1 ms 2 ms 3 ms 14 ms 27 ms

D. Performance of the distributed file system

The purpose of our distributed file system is to allow users

to run apps locally on their mobile device. In this experiment,

we evaluate the performance of file open, read, write, and

close operations of our distributed file system. Each test is

performed ten times. Table II shows the performance results of

our distributed file system. As a comparison, Table III shows

the results of the native file system. From these results we can

see that our file system incurs a time overhead for the open and

close operations. This is because when an app running in the

mobile device tries to open a certain file that is not available in

the local device, our file system transparently caches the file of

interest from the cloud to the mobile device to allow the app to

proceed. When the app finishes accessing and closes the file,

our file system automatically writes the file back to the cloud.

Therefore opening files is costly. But writing and reading them

is much less so. Since we are using whole file caching in our

current implementation, file size and network bandwidth have

major impacts on the open/close delay. For file read/write, since

our file system allows local access to the cached copy, it has

the same performance as the read/write operations in a native

file system.

VII. CONCLUSION

The mobile-cloud computing model will be the dominating

trend in the future. However, existing solutions do not fully

exploit the potential of this model. To this end, we aim at

designing a solution that goes beyond the current state of the

art. In this paper, we propose a novel mobile-cloud platform

with two fundamental contributions. First, our platform allows

users to freely choose to run their applications either in the

cloud or on their local devices. We feel that this is a very

useful and practical feature for users, and believe we are the

first to consider this situation in a mobile-cloud platform of this

kind. Second, our platform provides security guarantees against

untrusted applications and an untrusted local device’s operating

system, by leveraging hardware virtualization technology. To

the best of our knowledge, we are the first to utilize hardware

virtualization to strengthen the security on mobile devices.

Based on these design concepts, we build a prototype system

on a Chromebook acting as the user’s local mobile device, and

a commodity x86 laptop PC, which acts as a cloud server. Our

evaluation on the prototype system proves that our platform is

useful and pragmatic.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for their

helpful comments. This project was supported in part by US

National Science Foundation grants CNS-1320453 and CNS-

1117412.

REFERENCES

[1] X. Ni, Z. Yang, X. Bai, A. C. Champion, and D. Xuan, “Diffuser:
Differentiated user access control on smartphones,” in IEEE MASS, 2009.

[2] J. Teng, B. Zhang, X. Li, X. Bai, and D. Xuan, “E-shadow: Lubricating
social interaction using mobile phones,” in IEEE ICDCS, 2011.

[3] Y. Cui, H. Wang, X. Cheng, and B. Chen, “Wireless data center network-
ing,” IEEE Wireless Communications, 2011.

[4] Wikipedia, “Chrome OS,” http://en.wikipedia.org/wiki/Chrome OS.
[5] B. Chun and P. Maniatis, “Augmented smartphone applications through

clone cloud execution,” in USENIX HotOS, 2009.
[6] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: Elastic

execution between mobile device and cloud,” in ACM EuroSys, 2011.
[7] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chan-

dra, and P. Bahl, “Maui: Making smartphones last longer with code
offload,” in ACM MobiSys, 2010.

[8] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“Comet: Code offload by migrating execution transparently,” in USENIX

OSDI, 2012.
[9] R. A. Baratto, S. Potter, G. Su, and J. Nieh, “Mobidesk: Mobile virtual

desktop computing,” in ACM MobiCom, 2004.
[10] C. Tsao, S. Kakumanu, and R. Sivakumar, “Smartvnc: An effective remote

computing solution for smartphones,” in ACM MobiCom, 2011.
[11] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients

in cloud computing,” in USENIX HotCloud, 2010.
[12] Y. Lin and M. D. Francesco, “Energy consumption of remote desktop

access on mobile devices: An experimental study,” in IEEE CloudNet,
2012.

[13] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
virtualization technology,” IEEE Computer, 2005.

[14] AMD, “AMD Virtualization,” http://www.amd.com/en-us/solutions/
servers/virtualization.

[15] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity oses,” in ACM

SOSP, 2007.
[16] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,

“Trustvisor: Efficient tcb reduction and attestation,” in IEEE SP, 2010.
[17] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An architecture

for secure active monitoring using virtualization,” in IEEE SP, 2008.
[18] R. Mijat and A. Nightingale, “White paper: Virtualization is coming to a

platform near you,” 2011.
[19] C. Dall and J. Nieh, “Kvm/arm: The design and implementation of the

linux arm hypervisor,” in ACM ASPLOS, 2014.
[20] P. Varanasi and G. Heiser, “Hardware-supported virtualization on arm,”

in ACM APSys, 2011.
[21] H. Han, Y. Liu, G. Shen, Y. Zhang, and Q. Li, “Dozyap: Power-efficient

wi-fi tethering,” in ACM MobiSys, 2012.
[22] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang, and Q. Li,

“Optimizing background email sync on smartphones,” in ACM MobiSys,
2013.

[23] F. Xu, Y. Liu, Q. Li, and Y. Zhang, “V-edge: Fast self-constructive power
modeling of smartphones based on battery voltage dynamics,” in USENIX

NSDI, 2013.
[24] “Virtual Open Systems,” http://www.virtualopensystems.com/.
[25] “Android-x86 Project,” http://www.android-x86.org/.
[26] Wikipedia, “4G,” http://en.wikipedia.org/wiki/4G.
[27] Y. Zhang, C. Tan, and Q. Li, “Cachekeeper: A system-wide web caching

service for smartphones,” in ACM UbiComp, 2013.


