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Abstract—Due to the smaller size of mobile devices, on-screen
keyboards become inefficient for text entry. In this paper, we
present CamK, a camera-based text-entry method, which uses
an arbitrary panel (e.g., a piece of paper) with a keyboard
layout to input text into small devices. CamK captures the
images during the typing process and uses the image processing
technique to recognize the typing behavior. The principle of
CamK is to extract the keys, track the user’s fingertips, detect
and localize the keystroke. To achieve high accuracy of keystroke
localization and low false positive rate of keystroke detection,
CamK introduces the initial training and online calibration.
Additionally, CamK optimizes computation-intensive modules to
reduce the time latency. We implement CamK on a mobile device
running Android. Our experiment results show that CamK can
achieve above 95% accuracy of keystroke localization, with only
4.8% false positive keystrokes. When compared to on-screen
keyboards, CamK can achieve 1.25X typing speedup for regular
text input and 2.5X for random character input.

I. INTRODUCTION

Recently, mobile devices have converged to a relatively

small form factor (e.g., smartphones, Apple Watch), in order

to be carried everywhere easily, while avoiding carrying bulky

laptops all the time. Consequently, interacting with small

mobile devices involves many challenges, a typical example

is text input without a physical keyboard.

Currently, many visual keyboards are proposed. However,

wearable keyboards [1], [2] introduce additional equipments.

On-screen keyboards [3], [4] usually take up a large area

on the screen and only support single finger for text entry.

Projection keyboards [5]–[9] often need an infrared or visible

light projector to display the keyboard to the user. Audio signal

[10] or camera based visual keyboards [11]–[13] remove the

additional hardware. By leveraging the microphone to localize

the keystrokes, UbiK [10] requires the user to click keys with

their fingertips and nails to make an audible sound, which is

not typical of typing. For existing camera based keyboards,

they either slow the typing speed [12], or should be used in

controlled environments [13]. They can not provide a similar

user experience to using physical keyboards [11].

In this paper, we propose CamK, a more natural and

intuitive text-entry method, in order to provide a PC-like text-

entry experience. CamK works with the front-facing camera

of the mobile device and a paper keyboard, as shown in Fig. 1.

CamK takes pictures as the user types on the paper keyboard,

and uses image processing techniques to detect and localize

keystrokes. CamK can be used in a wide variety of scenarios,

e.g., the office, coffee shops, outdoors, etc.

Fig. 1. A typical use case of CamK.

There are three key technical challenges in CamK. (1) High

accuracy of keystroke localization: The inter-key distance in

the paper keyboard is only about two centimeters [10]. While

using image processing techniques, there may exist a position

deviation between the real fingertip and the detected fingertip.

To address this challenge, CamK introduces the initial training

to get the optimal parameters for image processing. Besides,

CamK uses an extended region to represent the detected

fingertip, aiming to tolerate the position deviation. In addition,

CamK utilizes the features (e.g., visually obstructed area

of the pressed key) of a keystroke to verify the validity

of a keystroke. (2) Low false positive rate of keystroke

detection: A false positive occurs when a non-keystroke (i.e.,

a period in which no fingertip is pressing any key) is treated

as a keystroke. To address this challenge, CamK combines

keystroke detection with keystroke localization. If there is

not a valid key pressed by the fingertip, CamK will remove

the possible non-keystroke. Besides, CamK introduces online

calibration to further remove the false positive keystrokes.

(3) Low latency: When the user presses a key on the

paper keyboard, CamK should output the character of the

key without any noticeable latency. Usually, the computation

in image processing is heavy, leading to large time latency

in keystroke localization. To address this challenge, CamK

changes the sizes of images, optimizes the image processing

process, adopts multiple threads, and removes the operations

of writing/reading images, in order to make CamK work on

the mobile device.

We make the following contributions in this paper.

• We propose a novel method CamK for text-entry. CamK

only uses the camera of the mobile device and a paper
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keyboard, which is easy to carry. CamK allows the user

to type with all the fingers and provides a similar user

experience to using physical keyboards.

• We design a practical framework for CamK, which can

detect and localize the keystroke with high accuracy,

and output the character of the pressed key without

any noticeable time latency. Based on image processing,

CamK can extract the keys, track the user’s fingertips,

detect and localize keystrokes. Besides, CamK introduces

the initial training to optimize the image processing

result and utilizes online calibration to reduce the false

positive keystrokes. Additionally, CamK optimizes the

computation-intensive modules to reduce the time latency,

in order to make CamK work on the mobile devices.

• We implement CamK on a smartphone running Google’s

Android operating system (version 4.4.4). We first mea-

sure the performance of each module in CamK. Then,

we invite nine users1 to evaluate CamK in a variety of

real-world environments. We compare the performance

of CamK with other methods, in terms of keystroke

localization accuracy and text-entry speed.

II. OBSERVATIONS OF A KEYSTROKE

In order to show the feasibility of localizing the keystroke

based on image processing techniques, we first show the

observations of a keystroke. Fig. 2 shows the frames/images

captured by the camera during two consecutive keystrokes.

The origin of coordinates is located in the top left corner of

the image, as shown in Fig. 2(a). We call the hand located

in the left area of the image the left hand, while the other

is called the right hand, as shown in Fig. 2(b). From left to

right, the fingers are called finger i in sequence, i ∈ [1, 10],
as shown in Fig. 2(c). The fingertip pressing the key is called

StrokeTip. The key pressed by StrokeTip is called StrokeKey.

• The StrokeTip has the largest vertical coordinate among

the fingers on the same hand. An example is finger 9 in

Fig. 2(a). However this feature may not work well for

thumbs, which should be identified separately.

• The StrokeTip stays on the StrokeKey for a certain dura-

tion, as shown in Fig. 2(c) - Fig. 2(d). If the positions of

the fingertip keep unchanged, a keystroke may happen.

• The StrokeTip is located in the StrokeKey, as shown in

Fig. 2(a), Fig. 2(d).

• The StrokeTip obstructs the StrokeKey from the view

of the camera, as shown in Fig. 2(d). The ratio of the

visually obstructed area to the whole area of the key can

be used to verify whether the key is pressed.

• The StrokeTip has the largest vertical distance between

the remaining fingertips of the corresponding hand. As

shown in Fig. 2(a), the vertical distance dr between the

StrokeTip (i.e., Finger 9) and remaining fingertips in right

hand is larger than that (dl) in left hand. Considering the

difference caused by the distance between the camera

and the fingertip, sometimes this feature may not be

1All data collection in this paper has gone through the IRB approval

satisfied. Thus this feature is used to assist in keystroke

localization, instead of directly determining a keystroke.

III. SYSTEM DESIGN

As shown in Fig. 1, CamK works with a mobile device (e.g.,

a smartphone) with the embedded camera, a paper keyboard.

The smartphone uses the front-facing camera to watch the

typing process. The paper keyboard is placed on a flat surface.

The objective is to let the keyboard layout be located in the

camera’s view, while making the keys in the camera’s view

look as large as possible. CamK does not require the keyboard

layout is fully located in the camera’s view, because sometimes

the user may only want to input letters or digits. Even if some

part of the keyboard is out of the camera’s view, CamK can

still work. CamK consists of the following four components:

key extraction, fingertip detection, keystroke detection and

localization, and text-entry determination.
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Fig. 3. Architecture of CamK.

A. System Overview

The architecture of CamK is shown in Fig. 3. The input is

the image taken by the camera and the output is the character

of the pressed key. Before a user begins typing, CamK uses

Key Extraction to detect the keyboard and extract each key

from the image. When the user types, CamK uses Fingertip

Detection to extract the user’s hands and detect the fingertip

based on the shape of a finger, in order to track the fingertips.

Based on the movements of fingertips, CamK uses Keystroke

Detection and Localization to detect a possible keystroke

and localize the keystroke. Finally, CamK uses Text-entry

Determination to output the character of the pressed key.

B. Key Extraction

Without loss of generality, CamK adopts the common

QWERTY keyboard layout, which is printed in black and

white on a piece of paper, as shown in Fig. 1. In order to

eliminate background effects, we first detect the boundary of

the keyboard. Then, we extract each key from the keyboard.

Therefore, key extraction contains three parts: keyboard de-

tection, key segmentation, and mapping the characters to the

keys, as shown in Fig. 3.
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Fig. 2. Frames during two consecutive keystrokes

1) Keyboard detection: We use Canny edge detection algo-

rithm [14] to obtain the edges of the keyboard. Fig. 4(b) shows

the edge detection result of Fig. 4(a). However, the interference

edges (e.g., the paper’s edge / longest edge in Fig. 4(b)) should

be removed. Based on Fig. 4(b), the edges of the keyboard

should be close to the edges of the keys. We use this feature

to remove pitfall edges, the result is shown in Fig. 4(c).

Additionally, we adopt the dilation operation [15] to join the

dispersed edge points which are close to each other, in order to

get better edges/boundaries of the keyboard. After that, we use

the Hough transform [12] to detect the lines in Fig. 4(c). Then,

we use the uppermost line and the bottom line to describe

the position range of the keyboard, as shown in Fig. 4(d).

Similarly, we can use the Hough transform [12] to detect the

left/right edge of the keyboard. If there are no suitable edges

detected by the Hough transform, it is usually because the

keyboard is not perfectly located in the camera’s view. In this

case, we simply use the left/right boundary of the image to

represent the left/right edge of the keyboard. As shown in

Fig. 4(e), we extend the four edges (lines) to get four inter-

sections P1(x1, y1), P2(x2, y2), P3(x3, y3), P4(x4, y4), which

are used to describe the boundary of the keyboard.
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Fig. 4. Keyboard detection and key extraction

2) Key segmentation: With the known location of the key-

board, we can extract the keys based on color segmentation.

In YCrCb space, the color coordinate (Y, Cr, Cb) of a white

pixel is (255, 128, 128), while that of a black pixel is (0,

128, 128). Thus, we can only use the difference of the Y
value between the pixels to distinguish the white keys from the

black background. If a pixel is located in the keyboard, while

satisfying 255 − εy ≤ Y ≤ 255, the pixel belongs to a key.

The offsets εy ∈ N of Y is mainly caused by light conditions.

εy can be estimated in the initial training (see section IV-A).

The initial/default value of εy is εy = 50.

When we obtain the white pixels, we need to get the

contours of the keys and separate the keys from one another.

While considering the pitfall areas such as small white areas

which do not belong to any key, we estimate the area of a key

at first. Based on Fig. 4(e), we use P1, P2, P3, P4 to calculate

the area Sb of the keyboard as Sb = 1

2
· (|

−−−→
P1P2 ×

−−−→
P1P4| +

|
−−−→
P3P4 ×

−−−→
P3P2|). Then, we calculate the area of each key.

We use N to represent the number of keys in the keyboard.

Considering the size difference between keys, we treat larger

keys (e.g., the space key) as multiple regular keys (e.g., A-Z,

0-9). For example, the space key is treated as five regular keys.

In this way, we will change N to Navg . Then, we can estimate

the average area of a regular key as Sb/Navg . In addition to

size difference between keys, different distances between the

camera and the keys can also affect the area of a key in the

image. Therefore, we introduce αl, αh to describe the range of

a valid area Sk of a key as Sk ∈ [αl ·
Sb

Navg
, αh ·

Sb

Navg
]. We set

αl = 0.15, αh = 5 in CamK, based on extensive experiments.

The key segmentation result of Fig. 4(e) is shown in Fig. 4(f).

Then, we use the location of the space key (biggest key) to

locate other keys, based on the relative locations between keys.

C. Fingertip Detection

In order to detect keystrokes, CamK needs to detect the

fingertips and track the movements of fingertips. Fingertip de-

tection consists of hand segmentation and fingertip discovery.

1) Hand segmentation: Skin segmentation [15] is a com-

mon method used for hand detection. In YCrCb color space, a

pixel (Y, Cr, Cb) is determined to be a skin pixel, if it satisfies

Cr ∈ [133, 173] and Cb ∈ [77, 127]. However, the threshold

values of Cr and Cb can be affected by the surroundings

such as lighting conditions. It is difficult to choose suitable

threshold values for Cr and Cb. Therefore, we combine Otsu’s

method [16] and the red channel in YCrCb color space for skin

segmentation.

In YCrCb color space, the red channel Cr is essential to

human skin coloration. Therefore, for a captured image, we

use the grayscale image that is split based on Cr channel

as an input for Otsu’s method. Otsu’s method [16] can

automatically perform clustering-based image thresholding,

i.e., it can calculate the optimal threshold to separate the

foreground and background. Therefore, this skin segmentation

approach can tolerate the effect caused by environments such

as lighting conditions. For the input image Fig. 5(a), the hand

segmentation result is shown in Fig. 5(b), where the white

regions represent the hand regions, while the black regions



represent the background. However, around the hands, there

exist some interference regions, which may change the con-

tours of fingers, resulting in detecting wrong fingertips. Thus,

CamK introduces the erosion and dilation operations [17].

We first use the erosion operation to isolate the hands from

keys and separate each finger. Then, we use the dilation

operation to smooth the edge of the fingers. Fig. 5(c) shows

the optimized result of hand segmentation. Intuitively, if the

color of the user’s clothes is close to his/her skin color, the

hand segmentation result will become worse. At this time, we

only focus on the hand region located in the keyboard area.

Due to the color difference between the keyboard and human

skin, CamK can still extract the hands efficiently.

(a) An input image (b) Hand segmentation (c) Optimization

(d) Fingers’contour
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(e) Fingertip discovery (f) Fingertips

Fig. 5. Fingertip detection

2) Fingertip discovery: After we extract the fingers, we

need to detect the fingertips. As shown in Fig. 6(a), the

fingertip is usually a convex vertex of the finger. For a point

Pi(xi, yi) located in the contour of a hand, by tracing the

contour, we can select the point Pi−q(xi−q, yi−q) before Pi

and the point Pi+q(xi+q, yi+q) after Pi. Here, i, q ∈ N. We

calculate the angle θi between the two vectors
−−−−→
PiPi−q ,

−−−−→
PiPi+q ,

according to Eq. (1). In order to simplify the calculation for θi,
we map θi in the range θi ∈ [0◦, 180◦]. If θi ∈ [θl, θh], θl < θh,

we call Pi a candidate vertex. Considering the relative lo-

cations of the points, Pi should also satisfy yi > yi−q and

yi > yi+q . Otherwise, Pi will not be a candidate vertex. If

there are multiple candidate vertexes, such as P
′

i in Fig. 6(a),

we choose the vertex which has the largest vertical coordinate,

as Pi shown in Fig. 6(a). Because this point has the largest

probability to be a fingertip. Based on extensive experiments,

we set θl = 60◦, θh = 150◦, q = 20 in this paper.

θi = arccos

−−−−→
PiPi−q ·

−−−−→
PiPi+q

|
−−−−→
PiPi−q| · |

−−−−→
PiPi+q|

(1)

Considering the specificity of thumbs, which may press the

key (e.g., space key) in a different way from other fingers,

the relative positions of Pi−q , Pi, Pi+q may change. Fig. 6(b)

shows the thumb in the left hand. Obviously, Pi−q , Pi, Pi+q

do not satisfy yi > yi−q and yi > yi+q . Therefore, we use

(xi−xi−q)·(xi−xi+q) > 0 to describe the relative locations of

Pi−q , Pi, Pi+q in thumbs. Then, we choose the vertex which

has the largest vertical coordinate as the fingertip.
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(b) A thumb

Fig. 6. Features of a fingertip

In fingertip detection, we only need to detect the points

located in the bottom edge (from the left most point to the

right most point) of the hand, such as the blue contour of

right hand in Fig. 5(d). The shape feature θi and the positions

in vertical coordinates yi along the bottom edge are shown

Fig. 5(e). If we can detect five fingertips in a hand with θi
and yi−q , yi, yi+q , we will not detect the thumb specially.

Otherwise, we detect the fingertip of the thumb in the right

most area of left hand or left most area of right hand according

to θi and xi−q , xi, xi+q . The detected fingertips of Fig. 5(a)

are marked in Fig. 5(f).

D. Keystroke Detection and Localization

When CamK detects the fingertips, it will track the fin-

gertips to detect a possible keystroke and localize it. The

keystroke localization result can be used to remove false pos-

itive keystrokes. We illustrate the whole process of keystroke

detection and localization together.

1) Candidate fingertip in each hand: CamK allows the

user to use all the fingers for text-entry, thus the keystroke

may be caused by the left or right hand. According to the

observations (see section II), the fingertip (i.e., StrokeTip)

pressing the key usually has the largest vertical coordinate in

that hand. Therefore, we first select the candidate fingertip with

the largest vertical coordinate in each hand. We respectively

use Cl and Cr to represent the points located in the contour

of left hand and right hand. For a point Pl(xl, yl) ∈ Cl, if

Pl satisfies yl ≥ yj(∀Pj(xj , yj) ∈ Cl, j 6= l), then Pl will be

selected as the candidate fingertip in the left hand. Similarly,

we can get the candidate fingertip Pr(xr, yr) in the right hand.

In this step, we only need to get Pl and Pr to know the moving

states of hands. It is unnecessary to detect other fingertips.

2) Moving or staying: As described in the observations,

when the user presses a key, the fingertip will stay at that

key for a certain duration. Therefore, we can use the loca-

tion variation of the candidate fingertip to detect a possible

keystroke. In Frame i, we use Pli(xli , yli) and Pri(xri , yri)
to represent the candidate fingertips in the left hand and right

hand, respectively. Based on Fig. 5, the interference regions

around a fingertip may affect the contour of the fingertip, there

may exist a position deviation between the real fingertip and

the detected fingertip. Therefore, if the candidate fingertips in

frame i− 1, i satisfy Eq. (2), the fingertips can be treated as

static, i.e., a keystroke probably happens. Based on extensive

experiments, we set ∆r = 5 empirically.
√

(xli − xli−1
)2 + (yli − yli−1

)2 ≤ ∆r,
√

(xri − xri−1
)2 + (yri − yri−1

)2 ≤ ∆r.
(2)

3) Discovering the pressed key: For a keystroke, the finger-

tip is located at the key and a part of the key will be visually





distance between the camera and hands may affect the value of

dl (dr). Therefore, for the unselected candidate fingertip (e.g.,

fingertip 8 in Fig. 8(d)), we do not discard it. We display its

associated key as the candidate key. The user can select the

candidate key for text input (see Fig. 1).

Algorithm 1: Keystroke localization

Input: Candidate fingertip set Ctip in frame i.
Remove fingertips out of the keyboard from Ctip .

for Pi ∈ Ctip do
Obtain candidate key set Ckey with four nearest keys

around Pi.

for Kj ∈ Ckey do

if Pi is located in Kj then
Calculate the coverage ratio ρkj

of Kj .

if ρkj
< ρl then

Remove Kj from Ckey .

else Remove Kj from Ckey;

if Ckey 6= ∅ then
Select Kj with largest ρkj

from Ckey .

Pi and Kj form a combination < Pi,Kj >.

else Remove Pi from Ctip ;

if Ctip = ∅ then No keystroke occurs, return ;

if |Ctip| = 1 then
Return the associated key of the only fingertip.

For each hand, select < Pi,Kj > with largest ratio ρkj
.

Use < Pl,Kl > (< Pr,Kr >) to represent the fingertip

and its associated key in left (right) hand.

Calculate dl (dr) between Pl (Pr) and remaining

fingertips in left (right) hand.

if dl > dr then Return Kl ;

else Return Kr;

Output: The pressed key.

IV. OPTIMIZATIONS FOR KEYSTROKE LOCALIZATION AND

IMAGE PROCESSING

A. Initial Training

Optimal parameters for image processing: For key seg-

mentation (see section III-B2), εy is used for tolerating the

change of Y caused by environments. Initially, εy = 50. CamK

updates εyi
= εyi−1

+ 1, when the number of extracted keys

decreases, it stops. Then, CamK sets εy to 50 and updates

εyi
= εyi−1

−1, when the number of extracted keys decreases,

it stops. In the process, when CamK gets maximum number

of keys, the corresponding value εyi
is selected as the optimal

value for εy .

In hand segmentation, CamK uses erosion and dilation

operations, which respectively use a kernel B [17] to process

images. In order to get the suitable size of B, the user first

puts his/her hands on the home row of the keyboard, as shown

in Fig. 5(a). For simplicity, we set the kernel sizes for erosion

and dilation to be equal. The initial kernel size is z0 = 0.

Then, CamK updates zi = zi−1+1. When CamK can localize

each fingertip in the correct key with zi, then CamK sets the

kernel size as z = zi.

Frame rate selection: CamK sets the initial/default frame

rate of the camera to be f0 = 30fps (frames per second),

which is usually the maximal frame rate of many smartphones.

For the ith keystroke, the number of frames containing the

keystroke is represented as n0i . When the user has pressed

u keys, we can get the average number of frames during

a keystroke as n̄0 = 1

u
·
∑i=u

i=1
n0i . In fact, n̄0 reflects the

duration of a keystroke. When the frame rate f changes, the

number of frames in a keystroke n̄f changes. Intuitively, a

smaller value of n̄f can reduce the image processing time,

while a larger value of n̄f can improve the accuracy of

keystroke localization. Based on extensive experiments (see

section V-C), we set n̄f = 3, thus f =
⌈

f0 ·
n̄f

n̄0

⌉

.

B. Online Calibration

Removing false positive keystrokes: Sometimes, the fin-

gers may keep still, even the user does not type any key.

CamK may treat the non-keystroke as a keystroke by chance,

leading to an error. Thus we introduce a temporary character

to mitigate this problem.

In the process of pressing a key, the StrokeTip moves

towards the key, stays at that key, and then moves away. The

vertical coordinate of the StrokeTip first increases, then pauses,

then decreases. If CamK has detected a keystroke in the n̄f

consecutive frames, it will display the current character on

the screen as a temporary character. In the next frame(s), if

the position of the StrokeTip does not satisfy the features of

a keystroke, CamK will cancel the temporary character. This

does not have much impact on the user’s experience, because

of the very short time during two consecutive frames. Besides,

CamK also displays the candidate keys around the StrokeTip,

the user can choose them for text input.

Movement of smartphone or keyboard: CamK presumes

that the smartphone and the keyboard are kept at stable

positions during its usage life-cycle. For best results, we

recommend the user tape the paper keyboard on the panel.

However, to alleviate the effect caused by the movements of

the mobile device or the keyboard, we offer a simple solution.

If the user uses the Delete key on the screen multiple times

(e.g., larger than 3 times), it may indicate CamK can not output

the character correctly. The movements of the device/keyboard

may happen. Then, CamK informs the user to move his/her

hands away from the keyboard for relocation. After that, the

user can continue the typing process.

C. Real Time Image Processing

Because image processing is rather time-consuming, it is

difficult to make CamK work on the mobile device. Take

the Samsung GT-I9100 smartphone as an example, when the

image size is 640 ∗ 480 pixels, it needs 630ms to process this

image to localize the keystroke. When considering the time

cost for taking images, processing consecutive images to track

fingertips for keystroke detection, the time cost for localizing

a keystroke will increase to 1320ms, which will lead to a very

low input speed and a bad user experience. Therefore, we

introduce the following optimizations for CamK.



Adaptively changing image sizes: We use small images

(e.g., 120 ∗ 90 pixels) during two keystrokes to track the

fingertips, and use a large image (e.g., 480 ∗ 360 pixels)

for keystroke localization. Optimizing the large-size image

processing: When we detect a possible keystroke in (xc, yc) of

frame i−1, then we focus on a small area Sc = {Pi(xi, yi) ∈
Sc| |xi − xc| ≤ ∆x, |yi − yc| ≤ ∆y} of frame i to localize

the keystroke. We set ∆x = 40, ∆y = 20 by default. Multi-

thread Processing: CamK adopts three threads to detect and

localize the keystroke in parallel, i.e., capturing thread to take

images, tracking thread for keystroke detection, and locating

thread for keystroke localization. Processing without writing

and reading images: CamK directly stores the bytes of

the source data to the text file in binary mode, instead of

writing/reading images.

V. PERFORMANCE EVALUATION

We implement CamK on the Samsung GT-I9100 smart-

phone running Google’s Android operating system (version

4.4.4). Samsung GT-I9100 has a 2 million pixels front-facing

camera. We use the layout of AWK (Apple Wireless Keyboard)

as the default keyboard layout, which is printed on a piece of

US Letter sized paper. Unless otherwise specified, the frame

rate is 15fps, the image size is 480∗460 pixels. CamK works in

the office. We first evaluate each component of CamK. Then,

we invite 9 users to use CamK and compare the performance

of CamK with other text-entry methods.

A. Localization accuracy for known keystrokes

In order to verify whether CamK has obtained the optimal

parameters for image processing, we measure the accuracy

of keystroke localization, when CamK knows a keystroke is

happening. The user presses the 59 keys (excluding the PC

function keys: first row, five keys in last row) on the paper

keyboard sequentially. We press each key fifty times. The

localization result is shown in Fig. 9. the localization accuracy

is close to 100%. It means that CamK can adaptively select

suitable values of the parameters used in image processing.

B. Accuracy of keystroke localization and false positive rate

of keystroke detection

In order to verify whether CamK can utilize the features

of a keystroke and online calibration for keystroke detection

and localization. We conduct the experiments in three typical

scenarios; an office environment, a coffee shop, and outdoors.

Usually, in the office, the color of the light is close to white. In

the coffee shop, the red part of light is similar to that of human

skin. In outdoors, the sunlight is basic/pure light. In each test,

a user randomly makes Nk = 500 keystrokes. Suppose CamK

localizes Na keystrokes correctly and treats Nf non-keystrokes

as keystrokes wrongly. We define the accuracy as pa = Na

Nk
,

and the false positive rate as pf = min(
Nf

Nk
, 1). We show

the results of these experiments in Fig. 10, which shows that

CamK can achieve high accuracy (larger than 90%) with low

false positive rate (about 5%). In the office, the localization

accuracy can achieve 95%.

C. Frame rate

As described in section IV-A, the frame rate affects the

number of images n̄f during a keystroke. Obviously, with the

larger value of n̄f , CamK can easily detect the keystroke and

localize it. On the contrary, CamK may miss the keystrokes.

Based on Fig. 11, when n̄f ≥ 3, CamK has good performance.

When n̄f > 3, there is no obvious performance improvement.

However, increasing n̄f means introducing more images for

processing. It may increase the time latency. While considering

the accuracy, false positive, and time latency, we set n̄f = 3.

Besides, we invite 5 users to test the duration ∆t of a

keystroke. ∆t represents the time when the StrokeTip is located

in the StrokeKey from the view of the camera. Based on

Fig. 12, ∆t is usually larger than 150ms. When n̄f = 3, the

frame rate is less than the maximum frame rate (30fps). CamK

can work under the frame rate limitation of the smartphone.

Therefore, n̄f = 3 is a suitable choice.

D. Impact of image size

We first measure the performance of CamK by adopting a

same size for each image. Based on Fig. 13, as the size of

image increases, the performance of CamK becomes better.

When the size is smaller than 480 ∗ 360 pixels, CamK can

not extract the keys correctly, the performance is rather bad.

When the size of image is 480 ∗ 360 pixels, the performance

is good. Keeping increasing the size does not cause obvious

improvement. However, increasing the image size will increase

the image processing time and power consumption ( measured

by a Monsoon power monitor [18]) for processing an image,

as shown in Fig. 14. Based on section IV-C, CamK adaptively

change the sizes of the images. In order to guarantee high

accuracy and low false positive rate, and reduce the time

latency and power consumption, the size of the large image is

set to 480 ∗ 380 pixels.

In Fig. 15, the size of small image decreases from 480∗360
to 120 ∗ 90 pixels, CamK has high accuracy and low false

positive rate. When the size of small images continuously

decreases, the accuracy decreases a lot, and the false pos-

itive rate increases a lot. As the image size decreases, the

time cost/power consumption for locating a keystroke keeps

decreasing, as shown in Fig. 16. Combining Fig. 15 and Fig.

16, the size of small image is set to 120 ∗ 90 pixels.

E. Time latency and power consumption

Based on Fig. 16, the time cost for locating a keystroke

is about 200ms, which is comparable to the duration of a

keystroke, as shown in Fig. 12. It means when the user

stays in the pressed key, CamK can output the text without

noticeable time latency. The time latency is within 50ms, or

even smaller, which is well below human response time [10].

In addition, we measure the power consumption of Samsung

GT-I9100 smartphone in the following states: (1) idle with

the screen on; (2) writing an email; (3) keeping the camera

on the preview mode (frame rate is 15fps); (4) running CamK

(frame rate is 15fps) for text-entry. The power consumption

in each state is 516mW, 1189mW, 1872mW, 2245mW. The

power consumption of CamK is a little high. Yet as a new
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Fig. 11. Accuracy/false positive
vs. frames in a keystroke
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Fig. 16. Locating a keystroke by
changing sizes of small images
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8� 8� 8� 8� 8� 8� 8� 8� 8�
�

�

�

��

��

8VHUV

(
UU
R
U�
UD
WH
��
��
�

�

�
3&

2Q�VFUHHQ

6Z\SH

&DP.

Fig. 18. Error rate with regular text
input

8� 8� 8� 8� 8� 8� 8� 8� 8�
�

�

�

�

�

�

8VHUV

,Q
S
X
W�
V
S
H
H
G
��
�F
K
D
UV
�V
�

�

�
3&

2Q�VFUHHQ

6Z\SH

&DP.

Fig. 19. Input speed with random
character input
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Fig. 20. Error rate with random
character input

technique, the power consumption is acceptable. In future, we

will try to reduce the energy cost.

F. User study

In order to evaluate the usability of CamK in practice, we

invite 9 users to test CamK in different environments. We

use the input speed and the error rate pe = (1− pa) + pf as

metrics. Each user tests CamK by typing regular text sentences

and random characters. We compare CamK with the following

three input methods: typing with an IBM style PC keyboard,

typing on Google’s Android on-screen keyboard, and typing

on Swype keyboard [19], which allows the user to slide a

finger across the keys and use the language mode to guess

the word. For each input method, the user has ten minutes to

familiarize with the keyboard before using it.

1) Regular text input: Fig. 17 shows the input speed of each

user when they input the regular text. Each user achieves the

highest input speed when he/she uses the PC keyboard. This

is because the user can locate the keys on a physical keyboard

by touch, while the user tends to look at the paper keyboard

to find a key. CamK can achieve 1.25X typing speedup, when

compared to the on-screen keyboard. In CamK, the user can

type 1.5-2.5 characters per second. When compared with UbiK

[10], which requires the user to type with the finger nail

(which is not typical), CamK improves the input speed about

20%. Fig. 18 shows the error rate of each method. Although

CamK is relatively more erroneous than other methods, as

a new technique, the error rate is comparable and tolerable.

Usually, the error rate of CamK is between 5%− 9%, which

is comparable to that of UbiK (about 4%− 8%).

2) Random character input: Fig. 19 shows the input speed

of each user when they input the random characters, which

contain a lot of digits and punctuations. The input speed

of CamK is comparable to that of a PC keyboard. CamK

can achieve 2.5X typing speedup, when compared to the on-

screen keyboard and Swype. Because the latter two keyboards

need to switch between different screens to find letters, digits

and punctuations. For random character input, UbiK [10]

achieves about 2X typing speedup, compared to that of on-

screen keyboards. Our solution can improve more input speed

compared to UbiK. Fig. 20 shows the error rate of each

method. Due to the randomness of the characters, the error rate

increases, especially for typing with the on-screen keyboard

and Swype. The error rate of CamK does not increase much,

because the user can input the characters just like he/she uses

the PC keyboard. The error rate in CamK (6% − 10%) is

comparable to that of UbiK [10] (about 4%− 10%).



VI. RELATED WORK

Due to small sizes of mobile devices, existing research work

has focused on redesigning visual keyboards for text entry,

such as wearable keyboards, modified on-screen keyboards,

projection keyboards, camera based keyboard, and so on.

Wearable keyboards: Among the wearable keyboards,

FingerRing [1] puts a ring on each finger to detect the finger’s

movement to produce a character based on the accelerom-

eter. Similarly, Samsung’s Scurry [20] works with the tiny

gyroscopes. Thumbcode method [21], finger-Joint keypad [22]

work with a glove equipped with the pressure sensors for each

finger. The Senseboard [2] consists of two rubber pads which

slip onto the user’s hands. It senses the movements in the palm

to get keystrokes.

Modified on-screen keyboards: Among the modified on-

screen keyboards, BigKey [3] and ZoomBoard [4] adaptively

change the size of keys. ContextType [23] leverages the infor-

mation about a user’s hand posture to improve mobile touch

screen text entry. While considering using multiple fingers,

Sandwich keyboard [24] affords ten-finger touch typing by

utilizing a touch sensor on the back side of a device.

Projection keyboards: Considering the advantages of the

current QWERTY keyboard layout, projection keyboards are

proposed. However, they either need a visible light projector

to cast a keyboard [5], [6], [7], or use the infrared projector to

produce a keyboard [8] [9]. They use optical ranging or image

recognition methods to identify the keystroke.

Camera based keyboards: Camera based visual keyboards

do not need additional hardware. In [11], the system gets the

input by recognizing the gestures of user’s fingers. It needs

users to remember the mapping between the keys and the

fingers. In [12], the visual keyboard is printed on a piece of

paper. The user can only use one finger and needs to wait for

one second before each keystroke. Similarly, the iPhone app

paper keyboard [25] only allows the user to use one finger

in a hand. In [13], the system detects the keystroke based on

shadow analysis, which is easy affected by light conditions.

In addition, Wang et al. [10] propose UbiK, which leverages

the microphone on a mobile device to localize the keystrokes.

However, it requires the user to click the key with fingertip

and nail margin, which is not typical.

VII. CONCLUSION

In this paper, we propose CamK for inputting text into small

mobile devices. By using image processing techniques, CamK

can achieve above 95% accuracy for keystroke localization,

with only 4.8% false positive keystrokes. Based on our exper-

iment results, CamK can achieve 1.25X typing speedup for

regular text input and 2.5X for random character input, when

compared to on-screen keyboards.
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