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Abstract—The great potential of mobile crowdsourcing has
started to attract attention of both industries and the research
community. However, current commercial mobile crowdsourcing
marketplaces are unsatisfactory because of the limited worker
base and functionality. In this paper, we first revisit the foundation
of performing mobile crowdsourcing on location-based social
networks (LBSNs) through specially designed survey studies and
comparison experiments involving hundreds of users. Our results
reveal that active check-ins are good indicators of picking a right
user to perform tasks, and LBSN could be an ideal platform
for mobile crowdsourcing given proper services provided. We
then propose both the centralized and decentralized design of
MobiCrowd, a mobile crowdsourcing service built on LBSNs.
Our evaluation, through trace-driven simulation and real-world
experiments, demonstrates that the proposed schemes can effec-
tively find workers for mobile crowdsourcing tasks associated with
different venues by analyzing their location check-in histories.

I. INTRODUCTION

With the prosperity of smartphones, the mobile crowd-
sourcing has become increasingly popular and attracted much
attention. It is easy to participate since performing tasks
are just at users’ fingertips. More importantly, it enables
new useful task categories, such as photography, location-
aware surveys, service assessment, data collection, mobile
sensing, price checks, deliveries, and property evaluation. For
example, users can be rewarded to take photos of venues,
answer location-aware queries, review services provided by
businesses, participate in mobile sensing projects, check traffic
of a road segment, share rides, or deliver items to a target
location. Different from their web-based counterparts, these
mobile crowdsourcing tasks share a universal feature that they
are all centered on users’ spatial locations. As we can see,
mobile crowdsourcing extends web-based crowdsourcing from
the digital domain to the physical world, which truly unleashes
the enormous power of crowdsourcing.

Having sensed the great potential of mobile crowdsourcing,
several commercial instances of smartphone-based crowd-
sourcing marketplaces have emerged [15]. However, these
marketplaces are unsatisfactory in growth in both the size of
worker base and their functionality. As shown in [15], over 400
days of activity, only several thousand users have successfully
completed at least one task on a typical smartphone-based
crowdsourcing marketplace. Considering the vast number of
target locations the task requesters may potentially be in-
terested in, the small worker base is far from being able
to meet the demand for conducting mobile crowdsourcing
everywhere. Moreover, these smartphone-based crowdsourcing
marketplaces are constrained by their functionality, which are
inherently the mobile equivalent of the web-based crowd-
sourcing marketplaces with limited smartphone-enabled per-
missions. As a result, users’ contextual information (e.g.,
location, time, mobility) is not fully utilized to facilitate mobile
crowdsourcing.

A previously unnoticed platform that can benefit mobile

crowdsourcing is the location based social networks (LBSNs).
Compared with traditional online social networks, LBSNs take
a step further in that they provide the location-based features.
Users of LBSNs can check-in at different venues (e.g., airports,
restaurants), and these check-ins are broadcast to their friends.
In this way, users share information about the places they vis-
ited. The past few years have seen soaring growth in LBSNs.
For example, Foursquare, an LBSN founded in 2009, has over
50 million active users and 10 billion check-ins as of July
2017, with millions of new check-ins everyday [1]. The major
online social networks have also provided new location-based
features, such as Facebook Place and Twitter Place, which
allow users to check-in and share check-ins with friends. These
check-ins, combined with the online friendship connections
revealed through the social graphs, provide an unprecedented
opportunity to study human socio-spatial behaviors based on
large-scale voluntarily contributed data. As existing location-
sharing and social-networking platforms, LBSNs inherently
have the culture of sharing and participation. The tens of
millions of users on LBSNs further provide a tremendous
potential work force to solve mobile crowdsourcing tasks. In
addition, LBSNs maintain information about a vast number of
venues around the world, as well as the users having visited
these venues. This makes them the “encyclopedia” of places
in the world people may be interested in. Combining all these
unique features together makes LBSNs the ideal platform for
mobile crowdsourcing.

In this paper, we propose MobiCrowd, a mobile crowd-
sourcing service built over LBSNs. we first revisit the founda-
tion of performing mobile crowdsourcing on LBSNs through
specially designed survey studies and comparison experiments
conducted over Foursquare and MTurk involving hundreds of
users. We discover that mobile crowdsourcing tasks can be
performed significantly faster on LBSNs with much higher
output quality (Section II). Inspired by our study results, we
present both the centralized and decentralized design of Mobi-
Crowd, which leverages the clustering phenomenon exhibited
in users’ check-in activities (Section III). Our schemes find
suitable workers for mobile crowdsourcing tasks by taking
into account both spatial and temporal factors, and they are
not intrusive to LBSN users in that only users interested
in participating in MobiCrowd can receive those tasks. The
centralized scheme assumes full knowledge of user check-ins
on LBSN. When this is not the case, the decentralized scheme
can be activated to run in a fully distributed fashion. A two-
stage routing is introduced to speed up the task delivery. The
effectiveness of the proposed schemes is verified through both
trace-driven simulation and real-world experiments, compared
with other four approaches (Section IV). The simulation using
realistic user check-in traces shows that the test check-ins of
the workers chosen by our schemes are close to the pending
tasks both spatially and temporally, implying a high tendency
to work on the tasks. The 49-day long real-world experiment
demonstrates that our schemes can accurately find workers
who are more likely to perform mobile crowdsourcing tasks



in practice.

II. SURVEY STUDY ON MOBILE CROWDSOURCING

To investigate the feasibility of performing mobile crowd-
sourcing on LBSNs, we have conducted two surveys. The first
survey was conducted on Foursquare, the most popular LBSN.
In comparison, the second survey was launched on MTurk, the
largest online crowdsourcing marketplace. Comparing results
of the two surveys reveals two important findings: first, mobile
crowdsourcing tasks are done much faster on LBSNs; second,
task outputs have significantly higher quality on LBSNs.

A. Method

In this paper workers refer to the individuals who accept
and perform crowdsourcing tasks. Requesters are the indi-
viduals or companies who post tasks on the crowdsourcing
marketplaces. Based on the temporal requirement on when the
workers should visit the target venue, mobile crowdsourcing
tasks can be classified into two categories. Tasks falling into
the first category only require that the workers have been to the
target venue before, which we refer to as past-presence tasks.
Examples of such tasks include location-aware queries/surveys,
venue/service/product reviews, and recommendations. On the
other hand, to perform tasks of the second category, workers
need to visit the target venue in the future. We refer to these
as future-presence tasks. As shown in a previous study [15],
typical examples of this kind of tasks include mobile sensing,
data collection (such as photography), and deliveries/rides. In
our surveys, we use location-aware queries as instances of mo-
bile crowdsourcing tasks to study the potential of performing
mobile crowdsourcing on LBSNs. To eliminate bias incurred
by self-composed queries, the queries used in the surveys are
randomly sampled from Yahoo! Answers [2]. Each query is
associated with a target venue. Participants of the first survey
are all Foursquare users who have visited the target venues
according to their tips left on Foursquare. Participants of the
second survey are recruited on MTurk. The detailed design of
the two surveys is presented below.

Design of the first survey. Foursquare does not allow
unauthorized access to users’ check-in information. However,
besides check-ins, Foursquare also enables social recommen-
dations through tips, which are a small snippet of text asso-
ciated with a venue. Unlike check-ins are only accessible to
friends, these tips are published on the pages of associated
venues. Therefore, given the target venue of a location-aware
query, to find Foursquare users who have visited that location,
we can simply browse the venue page and sample users who
have left tips there.

Foursquare does not provide direct communication mech-
anisms that we can use to send queries to the sampled users.
However, we found that the majority of Foursquare users
have their accounts linked with their Facebook accounts, and
Facebook allows sending messages to strangers (by charging
a small amount of money). Therefore, we sampled Foursquare
users who have a linked Facebook account. In our survey we
used 5 location-aware queries, and for each query we sampled
60 users, so in total we sent queries to 300 Foursquare users.
The survey ran for five days and one query was sent out at
noon each day.
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Fig. 1. CCDF of task completion latency

Design of the second survey. We also conducted a compar-
ison survey on MTurk, which is a general crowdsourcing mar-
ketplace where requesters can post Human Intelligence Tasks
(HITs) to be completed by workers. Each task normally pays
workers a small amount of compensation. Previous research
shows that 90% of the HITs pay less than $0.10 [11], and the
majority of workers on MTurk come from the US and India
[21].

We created 5 HITs on MTurk for the 5 location-aware
queries used in the first survey. Each HIT asks workers to
answer one query. To study the influence of compensation on
tasks’ completion speed, we posted each HIT twice. Once with
a compensation of $0.10 and once with a compensation of
$0.20, so the survey consists of two rounds. We first posted
HITs with lower compensation. One week later we ended
these HITs and posted HITs with higher compensation. In
this way we prevent the high-payment HITs from interfering
the completion of low-payment HITs. In order to be able to
compare the completion speed with the first survey, we posted
the HITs also at noon.

B. Results

Our first survey received 214 responses from the 300
queried Foursquare users, meaning that 71.3% of the queried
users responded to the survey. The first round of our second
survey ($0.10 reward) involved 411 responses, and the second
round ($0.20 reward) involved 532 responses. The average
working time for MTurk workers to finish the survey is 114
seconds, which yields an hourly wage of $3.16 and $6.32
respectively. Both are higher than the $2.00 average hourly
wage of MTurk workers [15]. To investigate the performance
of mobile crowdsourcing in these two scenarios, we focus on
two metrics: task completion latency and response accuracy.

Task completion latency. Task completion latency is de-
fined as the temporal interval between the time when a task
is sent out (the first survey) or posted (the second survey) and
when a response is received. Since the number of responses
of the two surveys are not equal, to fairly compare completion
latency of the two surveys, we only consider the completion
latency of the first 214 responses received in each round of
the second survey, because 214 responses were received in the
first survey.

Figure 1 compares the CCDF (complementary cumulative
distribution function) of completion latency of responses re-
ceived in the first survey with those received in the second
survey. The median task completion latency is 93 mins for the
Foursquare survey, 1249 mins (20.8 hours) for the first 214
responses of the MTurk survey with a $0.2 reward, and 2137
mins (35.6 hours) for the first 214 responses of the MTurk
survey with a $0.1 reward, demonstrating that the queries are
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responded significantly faster on LBSNs. The cause of this
difference is that as MTurk style markets grow rapidly in size,
due to the lack of an effective task search/recommendation
mechanism, workers on MTurk are overwhelmed by the vast
number of open tasks, and it is extremely time-consuming
for a worker to select a task he/she is suitable for [5]. As
a result, workers spend a large amount of time searching for
tasks and they still tend to make sub-optimal decisions to work
on tasks they are actually not good at. In contrast, as we did in
the first survey, mobile crowdsourcing tasks can be forwarded
to the right LBSN users based on their visit histories. This
push mechanism in the form of a recommendation engine
helps eliminate task searching time, and also reduce the time
spent on performing tasks. It is interesting to notice that the
CCDF of task completion latency is approximately a straight
line for both rounds of the MTurk survey, which implies that
our tasks are completed at a constant rate on MTurk. This
indicates that given a fixed reward for a task, there is a constant
background probability that workers find and complete the
task. This probability is probably related to workers’ behavior
on MTurk, e.g., searching for tasks by key words.

Response accuracy. All the location-aware queries used
in our surveys require the respondents provide an explanation
of their answer. A response is regarded as accurate as long
as it is factually correct and its explanation matches the target
venue. For example, one query in our surveys is “Which theme
park in Disney World Orlando do you think is the best for
adults to visit and why?”. An accurate answer should be one
of the four theme parks in Disney World with a reasonable
explanation. As shown in Figure 2, the accuracy rate of our
first survey is significantly higher than that of the second
survey. Doubling compensation in the second survey does
not effectively improve response accuracy, which is consistent
with a previous finding that increased financial incentives only
increase task completion speed, but not work quality [14].

We believe that this large gap of response accuracy is
caused by the internal mechanisms of the two platforms. Work-
ers on MTurk have an incentive to sacrifice accuracy in favor
of finishing tasks quickly, since they mainly work for financial
compensation. The faster they work, the more compensation
they can get. Also, all the MTurk workers can accept and
respond to our location-aware queries, no matter if they have
visited the target venues or not. Due to the anonymity of the
workers, requesters on MTurk have very little visibility into
characteristics of the workers. In addition, response accuracy
is further harmed by the fact that some workers have multiple
accounts on MTurk, as we have received exactly the same
responses to our queries. On the other hand, as existing social
media platforms, LBSNs inherently have the culture of sharing
and participation. Users participate LBSNs mainly for intrinsic
motivations such as fun and social appreciation [12], and
thus they lack the incentive to sacrifice response accuracy.
Moreover, LBSNs record all the users’ check-in information.

Mobile crowdsourcing tasks can be forwarded to users who are
most likely to work on them by analyzing the users’ previous
visits. In our case, we send location-aware queries to users
who have visited the target venues. This “targeting” of tasks is
apparently advantageous to improving work quality of mobile
crowdsourcing.

C. Discussion

Our survey results demonstrate that mobile crowdsourcing
conducted over LBSNs significantly outperforms that con-
ducted on traditional crowdsourcing marketplaces in both
task completion speed and output quality, even traditional
crowdsourcing marketplace have considerable incentives. The
low performance of the latter is attributed to the internal
limitations imposed by those platforms. By contrast, mobile
crowdsourcing can leverage features of LBSNs to achieve both
low completion latency and high work quality. This implies
that LBSNs have great potential to serve as the platform of
mobile crowdsourcing. In the next section, we will describe
how to build a mobile crowdsourcing service based on existing
LBSNs with both a centralized design and a decentralized
design.

III. MOBICROWD DESIGN

In this section we present the design of MobiCrowd, a
mobile crowdsourcing service built over LBSNs. MobiCrowd
consists of a centralized scheme and a decentralized scheme.
The former assumes full knowledge of user check-ins on
LBSNs, while the latter does not and all the operations are
with respect to individual LBSN users. The details of both
schemes are presented below.

A. Centralized Task Recommendation

1) Motivation: The intuitive way is to build a central
platform where all the LBSN users can post tasks and search
for tasks he/she is willing to work on. However, as shown
in our survey study and some previous work [5], [11], [28],
this approach is highly inefficient. Beyond a pull mechanism
similar to MTurk, a push mechanism in the form of a task
recommendation engine boasts several benefits. For instance,
workers will receive tasks they are more likely to work on,
which saves their efforts that would otherwise be spent on
searching the task marketplace.

The intuition behind our task recommendation algorithm
is that by extracting and analyzing the candidates’ active
regions, we are able to find workers suitable for the target
task both spatially and temporally. To achieve this our scheme
analyzes both spatial proximity and temporal activeness of the
candidates, whose details are presented below.

2) Scheme Design: Candidate selection. To find suitable
workers for a mobile crowdsourcing task, it is inefficient to
investigate all the registered workers on an LBSN, which usu-
ally has millions of users. Therefore, our task recommendation
scheme starts by selecting a subset of workers as candidate
workers, whose check-ins will be analyzed later. We leverage
an LBSN feature that for each venue, LBSNs maintain the list
of users that have checked-in there. The candidate selection
process first finds venues that are within a range δ from the
target venue (including the target venue itself). All the workers



Algorithm 1 Spectral Clustering
Require: The set of venues visited by a candidate, v1, ..., vm

1: for i = 1 to m − 1 do

2: for j = i + 1 to m do

3: distanceV ector.push back(d(vi, vj))
4: Sort all the values in distanceV ector in increasing order
5: σ = distanceV ector.get(10% ∗ distanceV ector.size)

6: Construct a m ∗ m similarity matrix W , where Wij = e
−

(d(vi,vj))
2

2σ2

7: Compute D as the diagonal degree matrix of W
8: Compute the normalized Laplacian Lrw = I −D−1W , where I is the identity

matrix
9: Compute the eigenvalues and eigenvectors of Lrw

10: Assume the difference between two eigenvalues λr, λr+1 is the largest among all
the pairs of consecutive eigenvalues

11: k = r
12: Let x1, ..., xk be the first k eigenvectors of Lrw , and F be an m ∗ k matrix

with xi as its columns
13: Let y1, ..., ym be the rows of F . Cluster y1, ..., ym into clusters C1, ..., Ck

with k-means algorithm
14: return C1, ..., Ck

that have checked-in at these venues before are treated as
candidates.

Spectral clustering. The second step is to group the venues
visited by each candidate into clusters. Venues in the same
cluster are close to each other, while they are relatively far
away from venues in other clusters. For the sake of efficiency
and quality, we leverage the spectral clustering technique [22],
which is well studied and popular in practice due to its excel-
lence compared to other traditional algorithm such as K-means
[13]. As shown in Algorithm 1, assuming a candidate has
visited m venues v1, ..., vm, the input to spectral clustering is
a m∗m similarity matrix W , where Wij reflects the closeness
between vi and vj . We compute Wij using the Gaussian

similarity function defined as e−
(d(vi,vj))

2

2σ2 , where d(vi, vj) is
the great-circle distance between vi and vj . Previous work
have shown that spectral clustering results are sensitive to the
choice of σ, which controls decay rapidity of the similarity
measure [13], [22], [26]. In our case, since different candidates
have different activity patterns, rather than using a constant
σ for all the candidates, the choice of σ should depend on
each candidate’s own check-in history. To determine σ for
a candidate, we compute the distance between every pair
of venues checked-in by this candidate, and sort all these
distances in increasing order. σ is set to the 10th percentile
distance in this sorted list. Similar methods have been used
in previous work [22], and our evaluation shows that with
σ determined in this way, spectral clustering produces high
quality results. Another parameter used in spectral clustering
is k, the number of output clusters. To decide this parameter we
adopt the eigengap heuristic, which states that k should be set
equal to the rank of the eigenvalue where the largest difference
between two consecutive eigenvalues appears [13]. Spectral
clustering first performs a non-linear dimension reduction on
the input matrix, and then a k-means algorithm is applied to
the low-dimensional embedding. The output is the clusters of
venues visited by the candidate.

Candidate ranking. Given the spectral clustering results,
the third step is to assign each candidate a ranking score
by tasking into account both spatial proximity and temporal
activeness of the candidate. The top-N highest ranked candi-
dates are returned as chosen workers to whom we forward the
mobile crowdsourcing task. Inspired by our survey, we think

that workers who are more active recently and whose check-ins
are closer to the target venue are more likely to work on the
task. The way to compute the ranking score of a candidate
is discribed in Algorithm 2, which integrates the temporal
activeness and the spatial proximity. Assume the venues visited
by the candidate are grouped into k clusters. We first assign a
temporal weight to each cluster, which is the sum of temporal
weights of all the candidate’s check-ins associated with venues
in this cluster. The temporal weight of each check-in is decided

by an exponential decay function defined as e
−α

T−tj
T−t0 , where

tj is the timestamp of this check-in, t0 is the timestamp of
the candidate’s first check-in, T is the current timestamp, and
α is a scaling coefficient controlling the decay rate. With this
exponential time-decay function, the relevance of older check-
ins is reduced, and more recent ones promptly become more
prominent in computing temporal weight. Similar time-decay
functions have been adopted by previous work [7], [16].

We sort all the clusters by their temporal weights in
decreasing order. A cluster with a higher weight means it
is more temporally important. The reason may be that it
has more check-ins, or its check-ins occur more recently,
or both. Starting from the highest-weighted cluster, we first
compute the minimum bounding rectangle (MBR) that covers
all the venues in this cluster. If the target venue is within the
MBR, then the ranking score of the candidate is added by the
temporal weight of this cluster. Otherwise, we compute the
GPS coordinates of the temporally adjusted centroid of this
cluster, whose x coordinate is defined as
∑

ci∈C ci.xcoord
ci.weight
C.weight , where ci is a check-in associated

with a venue in this cluster. The y coordinate is defined
accordingly. It is easy to see that the geographic location of
this centroid is adjusted by the temporal weights of check-ins
falling into the cluster. More recent check-ins have a larger
impact on the location of the centroid. Assume d is the distance
between the temporally adjusted centroid and the target venue.
The probability that the candidate travels a distance larger
than d is approximated by the ratio of displacements between
consecutive check-ins made by the candidate that are larger
than d. The ranking score of the candidate is added by
the temporal weight of the current cluster multiplied by this
probability. As shown in Algorithm 2, this process is repeated
until the relative weight of the current cluster compared to
all the clusters is smaller than a threshold τ , which means
that we only consider the temporally significant clusters when
computing a candidate’s ranking score.

The top-N ranked candidates are returned as output of our
task recommendation scheme, to whom the mobile crowd-
sourcing task is forwarded. Once the task is finished by a
worker, the reply is sent back to the task requester. As a design
option, a check-in at the target venue can be associated with
the reply as a proof that the worker has visited target venue.

B. Decentralized Task Routing

1) Motivation: The centralized scheme leverages full
knowledge of LBSN users’ check-ins to choose workers for
mobile crowdsourcing tasks, and thus it assumes support from
LBSNs. Sometimes, however, such support is not available.
For example, suppose a third party or a group of LBSN
users would like to build the mobile crowdsourcing service.
It is unlikely that the LBSNs will sacrifice their commercial



Algorithm 2 Candidate Scoring
Require: Spectral clustering results of a candidate, C1, ..., Ck

1: Sort all the check-ins by their timestamps in increasing order. Assume t0 is the
timestamp of the candidate’s first check-in

2: for i = 1 to k do

3: Assume n of the candidate’s check-ins c1, ..., cn are associated with venues
in cluster Ci

4: for j = 1 to n do

5: Ci.weight = Ci.weight + e
−α

T−tj
T−t0 , where T is the current

timestamp, tj is the timestamp of cj
6: totalWeight = totalWeight + Ci.weight
7: Sort all the clusters by their temporal weights in decreasing order. Let the sorted

list be C′

1, ..., C
′

k

8: for i = 1 to k do

9: if C′

i.weight/totalWeight < τ then

10: break
11: if the target venue is within the MBR of C′

i then

12: rankingScore = rankingScore + C′

i.weight
13: else

14: Compute (xi, yi) as the temporally adjusted centroid of cluster C′

i

15: distance = d((xi, yi), (xt, yt)), where (xt, yt) is the coordinates of
the target venue

16: Compute p as the approximate probability that the candidate travels a
distance larger than distance

17: rankingScore = rankingScore + p ∗ C′

i.weight
18: return rankingScore
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Fig. 3. A task routing path with TTL = 5

interests and allow outsiders to access their central database.
In this scenario, a decentralized scheme that does not require
global knowledge of LBSNs is needed. This scheme should be
able to route mobile crowdsourcing tasks to suitable workers
based only on local knowledge available to individual users.

We assume a peer-to-peer architecture, in which each node
(a software agent running on mobile devices/computers) is
associated with a participant of the mobile crowdsourcing
service. Two nodes can communicate with each other if the
corresponding users are friends on the LBSN, in which case
we say the nodes are linked and they are neighbours on the
friendship graph. We also assume that a node can access the
full check-in histories of its neighbours. This is a rational
assumption as sharing check-ins between friends is a basic
function provided by LBSNs. Based on the type of pending
mobile crowdsourcing tasks, the problem of decentralized task
routing can be separated into two cases, past-presence task
routing and future-presence task routing. The latter is obvi-
ously more difficult to solve, since both spatial and temporal
factors need to be considered in order to route tasks to workers
who are most likely to work on them within a short time
period in the future. In this subsection we first present our
routing scheme for future-presence tasks. The routing scheme
for past-presence tasks is briefly discussed thereafter.

2) Scheme Design: Future-presence tasks. Our solution
for future-presence tasks is essentially a two-stage geographic
routing scheme. It shares the same intuition with our cen-
tralized scheme that workers who are spatially closer to the
target venue and who are more temporally active recently are
more likely to work on the task. At the first stage routing

Algorithm 3 Neighbour Scoring
Require: A node u holds a task with target venue vt

1: Assume u1, ..., un are the n neighbours of u that haven’t received the task before
2: for i = 1 to n do

3: Group the venues visited by ui into k clusters C1, ..., Ck with spectral
clustering (see Alg. 1)

4: Compute the temporal weight of each cluster. Assume totalWeight is the
sum of weight of all the clusters

5: Sort all the clusters by their temporal weight in decreasing order. Let the sorted
list be C′

1, ..., C
′

k

6: for j = 1 to k do

7: if C′

j .weight/totalWeight < τ then

8: break
9: majorWeight = majorWeight + C′

j .weight
10: for j = 1 to k do

11: if C′

j .weight/totalWeight < τ then

12: break
13: Compute (xj , yj) as the temporally adjusted centroid of cluster C′

j

14: distance = d((xj , yj), (xt, yt)), where (xt, yt) is the coordinates of
vt

15: ui.distance = ui.distance + distance
C′

j
.weight

majorWeight

16: if distance < γ then

17: if vt is within the MBR of cluster C′

j then

18: ui.score = ui.score + C′

j .weight
19: else

20: Compute p as the approximate probability that ui travels a distance
larger than distance

21: ui.score = ui.score + p ∗ C′

j .weight
22: return ui.distance and ui.score

Algorithm 4 Task Forwarding
Require: ui.distance and ui.score of the n neighbours u1, ..., un of u, where u

is the node holding the task, u1, ..., un haven’t received the task before
1: for i = 1 to n do

2: if ui.score 6= 0 then

3: U2 = U2 ∪ ui

4: U1 = U1 ∪ ui

5: if u.score 6= 0 then

6: if U2 6= ∅ then

7: Pick us as the node in U2 with the highest score
8: if us.score > u.score then

9: Forward the task to us

10: Forward the task back to the neighbour it was received from
11: else

12: Forward the task back to the neighbour it was received from
13: else

14: if U2 6= ∅ then

15: Forward the task to the node in U2 with the highest score
16: else

17: Pick u′

s as the node in U1 with the smallest distance
18: if u′

s.distance < u.distance then

19: Forward the task to u′

s

20: else

21: Forward the task back to the neighbour it was received from

decision is made solely based on geographic proximity, while
at the second stage both geographic proximity and temporal
activeness are considered when deciding the next hop. When
a task requester has a pending task, the node initiates a task
routing path on the social graph starting from each of its
neighbours. At each step of a path, the task is forwarded
following a greedy routing algorithm described below, and
back-tracking is used when no better neighbour can be found.
The maximum number of hops a task can be forwarded is
determined by a parameter TTL, which counts both advancing
and back-tracking steps. Figure 3 shows an example task
routing path with TTL = 5, where hop 3 is the back-tracking.
All the nodes traversed by the paths are candidate workers
who can work on the task. Once a result is obtained, it is sent
back along the same path to the task requester. Similar to the
centralized case, a check-in at the target venue can be provided
as a proof that the worker has visited the target venue.



At each hop of a task routing path, our scheme computes
two values for each neighbour that has not received the task
from the current node before, including a weighted average
distance to the target venue and a ranking score. The two-stage
routing decision will be made based on these values. Algorithm
3 describes how to derive the two values of each neighbour.
We only consider temporally significant clusters, which are the
clusters whose relative temporal weights compared to all the
clusters are larger than τ . The weighted average distance is the
average of distances from the temporally significant clusters
to the target venue, weighted by the temporal weight of each
cluster. The ranking score is derived in the same way as that in
the centralized scheme for those temporally significant clusters
within a distance of γ to the target venue. The reason why
the routing decision needs to be made based on these two
values of each neighbour is that at the beginning hops of a
task routing path, almost all the neighbours are far from the
target venue, which usually leads to a ranking score of zero,
as it is unlikely that their check-in histories contain any large
displacement. Therefore, it is infeasible to use ranking scores
as the single criterion for route selection. Our solution is, at the
early stage of task routing, only spatial proximity is considered
to choose the next hop. When the task routing path has reached
nodes with neighbours close to the target venue (determined
by γ), ranking scores that consider both spatial proximity and
temporal activeness are used to select a neighbour to forward
the task.

Algorithm 4 presents how to decide the next hop of the task
routing path based on the outputs of Algorithm 3. Let U1 be
the set of neighbours which have not received the task from the
current node u before, and U2 be the set of nodes in U1 whose
ranking scores are nonzero. Assume u.score is the ranking
score of u. If u.score is nonzero, the task is forwarded to the
highest-scored node in U2 whose ranking score is larger than
u.score, since this node is the “closest” to the target venue. If
no node in U2 has a ranking score larger than u.score, the task
is forwarded back to the neighbour from which it was received,
i.e., back-tracking when no closer neighbour can be found.
If u.score is zero, we regard any neighbour with a nonzero
ranking score as closer to the target venue. Thus, the task is
forwarded to the highest-scored node in U2 if U2 is not empty.
If U2 is empty, then task routing falls back to relying solely
on geographic proximity. In this case, the task is forwarded to
the node in U1 with the smallest weighted average distance to
the target venue, as long as this distance is smaller than u’s
weighted average distance to the target venue. If no node in
U1 is closer to the target venue compared with u, then back-
tracking is performed and the task is sent back to the neighbour
it was received from. And in addition, once a node receive a
task due to back-tracking, if the value of TTL doesn’t exceed
limitation, the current node will again perform Algorithm 4
(notice that the set U1 is different from the former time).

Past-presence tasks. The problem of past-presence task
routing is much simpler to solve, as the tasks only need to be
routed to workers who have visited the target venues before,
and there is no need to predict user movement in the future.
To save space we briefly introduce our solution. At each hop
of a task routing path, if multiple neighbours of the current
node have checked-in at the target venue previously, the task
is forwarded to the one with the most recent check-in at the
target venue. Otherwise, if no neighbour has been to the target

TABLE I. STATISTICS OF THE DATASETS

Dataset Users Edges Check-ins Duration

Foursquare1 18,107 115,574 1,622,526 15 months

Foursquare2 93,115 NA 7,956,679 4 months

Gowalla 196,591 950,327 3,674,591 20 months

Brightkite 58,228 214,078 2,920,919 30 months

venue before, the task is forwarded to the neighbour closest
to the target venue, as long as this neighbour is closer to the
target venue compared with the current node. Here, closeness
is defined as the minimum distance between the temporally
significant clusters of a node and the target venue. If compared
with the current node no closer neighbour can be found, the
task is forwarded back to the neighbour it was received from.

C. Incentive Mechanisms

In this subsection we discuss the incentive mechanisms
that can be designed for mobile-crowdsourcing services built
over LBSNs. To engage participants, mobile crowdsourcing
can leverage both intrinsic and extrinsic motivations. The
former includes game-based features and social psychological
incentives, and the later generally refers to financial incentives.

As shown in previous work, one of the major reasons
for which people join LBSNs is for fun [12]. Therefore, the
mobile crowdsourcing services can provide games like one-
day-mayorship to entertain users and engage them to con-
tinuously perform tasks. Previous research shows that social
incentives, such as altruism, feeling good being helpful to
others, and social reciprocity, indeed improve the work quality
of crowdsourcing [20]. LBSNs inherently have the culture
of sharing and participation, which makes social incentives
the ideal motivational approach that can be used by mobile
crowdsourcing built over LBSNs. The most straightforward
approach to motivating participation is through financial in-
centives. However, such extrinsic motivations should be used
with care. It has been shown in previous work that increased
financial incentives only increase work completion speed, but
not work quality [14], [20], which has also been verified by
our survey study. Therefore, instead of being used as the single
motivation, financial incentives should be used in conjunction
with intrinsic incentives.

IV. EVALUATION

We evaluate the effectiveness of our proposed schemes
through both trace-driven simulation and real-world experi-
ments. The four LBSNs datasets used in our evaluation include
Foursquare1 [9], Foursquare2 [4], Gowalla [6], and Brightkite
[6]. We consider the check-ins whose locations are within the
mainland of the US, where the four datasets have the majority
of check-ins. The statistics of the resulting datasets are shown
in Table I. To save space, we only present the evaluation
results obtained with the Foursquare1 dataset below, the results
obtained using other datasets are very similar.

A. Spectral Clustering Results

Both our centralized and decentralized schemes leverage
spectral clustering to group the venues visited by each user
into clusters, and thus their performance relies on the clus-
tering results. Our spectral clustering algorithm (Algorithm 1)
adjusts parameter σ in the Gaussian similarity function based
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Fig. 4. CCDF of MBR diagonal length of the most temporally significant
cluster, and CCDF of the distance between centroids of the two most
temporally significant clusters of each user

on each user’s own check-in history, and it determines the
optimal number of clusters using the eigengap heuristic [13].
Evaluation results show that our algorithm can derive fine-
grained clustering information form user check-ins. As an
example, we plot in Figure 4 the CCDF of the diagonal length
of the minimum bounding rectangle (MBR) of each user’s
most temporally significant cluster, as well as the CCDF of
the distance between the centroids of the two most temporally
significant clusters of each user. The figure illustrates that
venues in the same cluster are close to each, and they are
far away from venues in other clusters. This also serves as
a real-world evidence that user check-ins on LBSNs indeed
exhibit the clustering phenomenon.

B. Evaluation of the Centralized Task Recommendation
Scheme

1) Simulation: We evaluate our centralized task recom-
mendation scheme through both simulation and real-world
experiments. Our evaluation focuses on future-presence tasks.
The simulation is conducted using realistic user check-in traces
in the LBSN dataset. In each run of the simulation, a random
timestamp within the temporal duration of the LBSN dataset
is chosen as the task initiating time, and a random venue is
selected as the target venue of the task. All the user check-ins
before this timestamp are treated as check-in histories available
to our task recommendation scheme and the baseline schemes.
We use each user’s check-in immediately after the timestamp
as the test data to measure his/her tendency to work on the task,
and we consider two measures, spatial closeness and temporal
closeness. The former is defined as the geographic distance
between the test check-in and the target venue, and the latter
is defined as the temporal interval between the timestamp of
the test check-in and the task initiating time. Our intuition
is that the smaller spatial closeness and temporal closeness
are, with higher tendency the user will work on the task, as
his/her test check-in matches the simulated task both spatially
and temporally. In the simulation we investigate the spatial
closeness and temporal closeness of the workers chosen by
our scheme and those chosen by the baseline schemes.

Spatial closeness. We compare our task recommendation
scheme with four baseline schemes listed bellow. Each baseline
scheme ranks the candidate workers with a non-trivial method,
and the top-N ranked candidates are returned. Notice that the
candidate workers are the users who have check-ins within a
range of δ from the target venue in their check-in histories.

Most Recent (MR): Each candidate is ranked by the dis-
tance from the latest check-in in her check-in history to the
target venue in increasing order.

Most Frequent (MF): Each candidate is ranked by the
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Fig. 5. DFO of different task recommendation schemes, normalized by
DFO(MobiCrowd) with N = 5

distance from her most frequently visited venue to the target
venue in increasing order.

Order-1 Markov Model (MM): The next check-in location
of each candidate is predicted using the Order-1 Markov Model
[23]. The candidates are ranked by the distance from the
predicted location to the target venue in increasing order.

Periodic & Social Mobility Model (PSMM): The next
check-in location of each candidate is predicted using the
PSMM model proposed by Cho et al. [6]. Since this model
requires the timestamp of the predicted check-in as input,
we feed it with the timestamp of the test check-in of each
candidate. Note this “future” information is unavailable in
practice. The candidates are ranked by the distance from the
predicted location to the target venue.

In order to compare the output quality of different schemes
in terms of spatial closeness to the target venue, we first
compute the optimal solution as the N candidates whose
test check-ins are the closest to the target venue, based on
the test check-in data not available to the recommendation
schemes. Assume d1, ..., dN are the geographic distances from
the test check-ins of these N candidates to the target venue,
which are sorted in increasing order, and s1, ..., sN are the
distances from the test check-ins of the N candidates chosen
by a recommendation scheme S to the target venue, which are
also sorted in increasing order. The Difference From Optimal

(DFO) metric is defined as DFO(S) =

√∑
N
i=1(di−si)2

N . DFO

measures the consistence between the solution returned by a
task recommendation scheme and the optimal solution: the
smaller DFO is, the more consistent the returned solution is
to the optimal.

The parameters used in our scheme are set as: α = 10, τ =
0.1, δ = 10 km. In each run of the simulation a simulated task
is generated randomly, and N , the number of chosen workers,
is set to 5, 10, 20, respectively. We analyze users who have at
least 30 check-ins before the task initiating time, and at least
1 check-in after, using the five task recommendation schemes,
and record the obtained DFO values. Figure 5 compares the
average DFO value of our scheme (MobiCrowd) with those of
the four baseline schemes over 5,000 runs of the simulation,
which shows that the solution returned by our scheme matches
the optimal solution significantly better than those returned by
the baseline schemes. This demonstrates that given a mobile
crowdsourcing task, our scheme is able to find more suitable
workers in terms of spatial closeness to the target venue.

Temporal closeness. Figure 6 compares the temporal close-
ness of solutions returned by our scheme with those returned
by the baseline schemes. The average temporal interval be-
tween the test check-ins of the candidates chosen by our
scheme and the task initiating time is less than 1 day over 5,000
runs of the simulation, while it is larger than 4 days for the
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Fig. 6. Average temporal interval between test check-ins of chosen candidates
and task initiating time
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Fig. 7. Accuracy of our task recommendation scheme

baseline schemes. This verifies our assumption that users’ past
activeness is a good indicator for their future activeness. Our
scheme ranks candidate workers by taking into consider both
spatial proximity and temporal activeness of their check-ins,
and thus the chosen workers are more active in the near future
compared with the workers chosen by the baseline schemes.

2) Real-world Experiments: The performance of our task
recommendation scheme is also evaluated through real-world
experiments. We implement a smartphone App for participants
of experiments to download and use. Participants can use this
App to check-in anytime, perform tasks when they are at a
target venue, download new tasks and upload their check-
ins and completed tasks to our server when Internet access
is available. During the experiment we post 5 new tasks on
the server at the midnight of each day. Each task is associated
with a target venue in the region participants live, and the
venue is randomly sampled from Foursquare. To complete a
task the participants need to go to the target venue and take
a picture there. When a participant downloads new tasks, our
application pulls the most recent 5 tasks from the server, and
it always shows the recently downloaded 5 tasks. When a
participant uploads completed tasks, the GPS coordinates of
where he/she performs the tasks are uploaded, with which we
can verify if the participants actually go to the target venues.

The experiment recruited 14 participants. They were told to
act according to their own willing, interests and convenience.
They would be rewarded with a small amount of financial
incentive for each completion of a task. During 49 days of
running the experiment, 245 tasks were posted on the server,
among which 204 were completed. The unfinished tasks were
all far away from daily check-ins of the participants. In total we
received 1422 check-ins from the participants, which we use to
evaluate the performance of our task recommendation scheme.
We define the accuracy metric as the experiment probability
that the participant who first completes a task is among the N
workers chosen by our scheme. Figure 7 shows the accuracy
of our scheme with N = 1, 2, 3. The results demonstrate that
our scheme can effectively find workers who are more likely
to work on mobile crowdsourcing tasks in practice.

C. Evaluation of the Decentralized Task Routing Scheme

The performance of our decentralized task routing scheme
is evaluated through simulation. In each run of the simulation
a task is generated with a random timestamp and a random
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Fig. 8. DFO of different task routing schemes, normalized by
DFO(MobiCrowd) with TTL = 20
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Fig. 9. Average temporal interval between test check-ins of top-ranked
traversed nodes and task initiating time

target venue, and a node in the LBSN social graph is randomly
chosen as the task requester. The requester initiates a task
routing path from each of its neighbours with maximum length
TTL. At each hop of a task routing path, the next step is chosen
from the neighbours of the current node following our scheme
proposed in Section III-B. Therefore, assuming the requester
has n neighbours, at most nTTL nodes will be traversed by
the task routing paths. All the traversed nodes are candidate
workers who can work on the task. The parameters used in
our scheme are set as: α = 10, τ = 0.1, γ = 100 km. Notice
that this simulation is not a real-world experiment studying
human behaviors. Instead, it serves as an investigation of what
would be possible for such a routing scheme, i.e., whether
the task routing paths can reach nodes whose test check-ins
are close to the pending task both spatially and temporally. By
simulating task forwarding on a real-world LBSN social graph,
we can investigate the performance of routing schemes without
relying on the voluntary participation of users. In practice some
incentive mechanisms can be used to motivate task forwarding.
For example, one possible scheme is that all the users on the
path leading to the task accomplisher can share the reward
[19].

In the simulation, we compare our scheme with four
decentralized baseline schemes. The difference between our
scheme and the baseline schemes is that different routing
criterions are used when deciding the next step at each hop.
Our scheme ranks neighbours of the current node based on
their ranking scores derived by Algorithm 3, while the baseline
schemes sort the neighbours by the four algorithms MR, MF,
MM, and PSMM, respectively. To compare the strength of
these routing criterions. In each run of the simulation, for each
routing scheme, we pick the top-10 ranked candidates among
all the nodes traversed by the task routing paths based on the
routing criterion used by the scheme, which are the “best”
workers with respect to the scheme and tend to be at the end
of those task routing paths. Similar to the centralized case,
we study the spatial closeness (the DFO metric) and temporal
closeness from the test check-ins of the chosen workers to the
simulated task.

Figure 8 compares the average DFO value of our scheme
with those of baseline schemes over 5,000 runs of the simula-
tion, with the maximum routing path length TTL = 5, 10, 20.
The results demonstrate that the spatial closeness of top-ranked



workers chosen by our scheme matches the optimal solution
significantly better than the baseline schemes. This shows that
the routing criterion defined by our scheme can effectively
guide the task routing paths to workers who are geographically
close to the target venue. As for temporal closeness, Figure
9 shows our simulation results, which illustrates that our
scheme can route tasks to nodes whose test check-ins are
much temporally closer to the pending tasks, compared with
the baseline schemes that do not take into account neighbours’
temporal activeness when deciding the next hop.

V. RELATED WORK

Previous studies have investigated various aspects of the
web-based crowdsourcing platforms, including the demograph-
ics and usage behaviors of MTurk workers [11], [21], task
pricing strategies [8], task search [5] and task recommendation
[28] on MTurk, the relationship between financial incentives
and task performance [14], and the influence of intrinsic and
extrinsic motivation on task performance [20]. As the first view
into user behaviors in mobile crowdsourcing markets, Musthag
and Ganesan’s work reveals that a small core group of workers
account for a large proportion of activities generated in these
systems [15].

The application of crowdsourcing has also been extensively
studied by researchers. For crowdsourcing on smartphones,
incentive mechanisms has been designed for mobile phone
sensing [27], [10]. Crowdsourcing has also been used to
defend against sybil attacks [25]. Additionally, researchers
have designed algorithms for crowdsourcing to solve the
human-assisted graph search [17] and maximum retrieving [24]
problems.

The success of LBSNs has evoked great interest from
researchers. Previous studies have investigated different char-
acteristics of LBSNs. This includes the “Levy Flight” mobility
pattern of LBSN users [4], [6], socio-spatial properties of
LBSNs [18], location-focused communities in the social graph
of LBSNs [3], user behaviors [12] and geo-social correlations
among LBSN users [29].

VI. CONCLUSION

In this paper, inspired by our survey study conducted
on Foursquare and MTurk, we present the centralized and
decentralized design of MobiCrowd, a mobile crowdsourcing
service built over LBSNs. Evaluation results demonstrate that
MobiCrowd can effectively find workers who are more likely
to work on mobile crowdsourcing tasks associated with differ-
ent target venues by analyzing their check-in histories.
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