
IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 1, FEBRUARY 2019 399

Ultrasound Proximity Networking on Smart
Mobile Devices for IoT Applications

Ed Novak , Zhuofan Tang, and Qun Li, Fellow, IEEE

Abstract—Sharing small pieces of information, such as URLs,
Internet of Things (IoT) commands, or encryption keys is an
extremely common use case in IoT applications. These are exam-
ples of transient, spontaneous proximity networking, in which
both the sender and receiver are physically co-located. In this
paper, we aim to provide a mechanism for proximity networking
based on very high-frequency sound waves emitted and captured
by the speaker and microphone found on commodity smart-
phones. Our approach has several benefits over existing solutions
including easy deployment, lower cost for manufacturers, and
intuitive security guarantees based on the physical characteris-
tics of ultrasound signals. We implement a software-based modem
called “Hush,” which we provide in an open source library for
use in Android applications. It is practically inaudible and fast,
achieving an effective transmission rate of 4900 bits per second
at an ideal distance of 5–20 cm.

Index Terms—Acoustics, device-to-device computing, filters,
Internet of Things (IoT), modems, smart devices, transceivers.

I. INTRODUCTION

SMART mobile devices have become ubiquitous in the
modern world and Internet of Things (IoT) devices are

steadily growing in popularity. Users now expect a simple and
easy way of exchanging small pieces of information between
these devices. A key application example is sharing a URL
with a friend or colleague, or turning on or off a smart
light bulb [1]. The information transmitted in these scenarios
may be considered sensitive; while one user may be will-
ing to tell another their phone number, they may not want
random third parties to overhear it. To support this, we pro-
pose the use of high-frequency sound (ultrasound) transmitted
and received using low quality speakers and microphones like
those commonly found on modern smartphones. A software-
based ultrasound modem is quick, easy, nonintrusive, does not
require special hardware, and is highly directional with rapid
attenuation in air, increasing security. All of which, make it
an apt solution for this use case.

Ultrasound-based proximity networking shines in the areas
that competing technologies falter. First, the necessary hard-
ware (speaker and microphone), and sample rate (44.1 kHz),

Manuscript received February 28, 2018; revised May 14, 2018; accepted
June 5, 2018. Date of publication June 15, 2018; date of current version
February 25, 2019. (Corresponding author: Ed Novak.)

E. Novak and Z. Tang are with the Computer Science Department, Franklin
and Marshall College, Lancaster, PA 17603 USA (e-mail: enovak@fandm.edu;
ztang@fandm.edu).

Q. Li is with the Department of Computer Science, College of William and
Mary, Williamsburg, VA, USA (e-mail: liqun@cs.wm.edu).

Digital Object Identifier 10.1109/JIOT.2018.2848099

is relatively cheap, does not require any licensing to use, and
are already ubiquitous on smart mobile devices. This means
that our solution is low cost and easy to deploy. It supports
the “bring your own device” paradigm; users only need to
install an app on the device they already own. From a secu-
rity viewpoint, ultrasound has inherently narrow propagation,
and an ideal range of 10’s of centimeters, which also allows for
intuitive aiming of the transmission to the intended receiver.
Even attackers with highly sensitive equipment will not be able
eavesdrop on transmissions from a distance, especially when
they are not the intended receiver, because the signal will be
lost in the background noise. To further strengthen the security
of our system we propose a fingerprinting technique, which
allows the receiver to identify the sender of a data packet. This
is possible because the sender will necessarily alter the ideal
signal due to imperfections in the speaker. These alterations
are consistent, and very difficult to imitate by an attacker with
a different device because they are introduced at the hardware
layer. Fingerprinting frees our system from requiring any pair-
ing protocol, or prior exchange of encryption keys. Without
better mechanisms for proximity networking users are forced
to use imperfect alternatives, which potentially exposes their
information to a variety of third parties including attackers.

We choose to implement our modem in the spectrum
between 17.5 and 21 kHz, which is extremely difficult to
hear [2], [3] but is achievable by smart mobile devices.
However, there are still audibility challenges, because sim-
ple carrier wave modulation manifests as audible sound. We
also face several other challenges related to sample-rate and
frequency response, which we detail in Section IV. We also
worked hard to find appropriate features in order to implement
our fingerprinting mechanism for the receiver to recognize
packets sent from a specific sender. This finger printing system
is novel and our system is the only, to the best of the authors’
knowledge, that aims to send data via inaudible sound waves
on commodity smartphone hardware for IoT applications.

The current state of the art in this domain is a system
titled “Dhwani” [4], which attempts to transmit data using
sound as a wireless communication medium as well. The
authors use quadrature phase-shift keying (QPSK) on a 6 kHz
carrier achieving 2.4 kb/s. Altering this system to operate
in the ultrasound spectrum directly fails for two reasons.
First, QPSK results in a very high error rate in our tar-
get spectrum, due to the limited sample rate on commodity
devices. Second, the sudden changes in phase caused from
the modulation manifest as audible sound. Our system is dif-
ferent in that it utilizes a mechanism known as orthogonal

2327-4662 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2204-1546

400 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 1, FEBRUARY 2019

frequency division multiplexing (OFDM), and it incorporates
a sender fingerprinting mechanism to protect against replay
and masquerade attacks. We go to great lengths to ensure
that our modem does not create any disruptive or irritating
noises.

There are a wide variety of existing solutions that attempt
to solve the proximity networking problem. The least techni-
cal (and unfortunately very common) is for users to simply
tell one another the information verbally. This is slow, tedious
(e.g., for URLs), and insecure due to eavesdroppers. Users
may also choose traditional networking approaches, such as a
cloud-based file sharing apps, e-mail, SMS messages, or sim-
ilar. These approaches assume that the users have exchanged
references (e.g., phone numbers) before hand, and they will
expose the information to the service provider. Additionally,
encryption is required to protect against eavesdroppers on the
network. Other existing proximity networking technologies
include near field communication (NFC) [5], Bluetooth (BT),
and WiFi (ad-hoc mode/WiFi direct). WiFi direct and BT are
relatively long range compared with ultrasound because they
penetrate solid walls (including the floor and ceiling) and can
propagate over 100 ft. As such, these technologies usually
require cumbersome client selection, pairing, special hardware,
and encryption protocols to remain secure, which often require
user involvement. Regarding WiFi, the spectrum 2.4 GHz,
is becoming increasingly crowded and WiFi networks in the
home typically rely on a single consumer-grade network appli-
ance that acts as a switch, router, WiFi access point, NAT
device, and firewall. When all traffic must move through this
device it becomes an obvious single point of failure making it
an attractive target for malicious actors. For NFC, the range is
impractically short (< 2 cm apart [6], [7]) and some security
problems have been explored recently [8], [9].

We present an alternative proximity networking solution
called “Hush,” which operates in the ultrasound spectrum to
remain inaudible. The modem operates on commodity smart
mobile devices, but is intended to work on a wide variety of
ubiquitous computers. Our contributions in this paper are as
follows.

1) We propose the use of ultrasound as a means of data
transmission for proximity networking on commodity,
consumer hardware. We are the first to closely exam-
ine different modulation/demodulation schemes that are
inaudible to humans and achieve a high data transfer
rate.

2) We implement and publish our ultrasound modem Hush
as a Java library for easy use in Android applications.
Our library is designed to run well on low-powered
devices, and provides a socket-like interface for easy
deployment by developers.

3) We propose a fingerprinting mechanism that can learn
and later verify the sender of data packets based on
characteristics of the data signal. This helps protect
users from various attacks improving the security of our
system.

4) We evaluate several aspects of our system including bit
error rate (BER), audible noise, and the accuracy of
our fingerprinting scheme. Although Hush is sensitive

to sender/receiver orientation, our effective transmission
rate is 4.9 kb/s in ideal settings, and we achieve near
perfect fingerprinting accuracy.

II. APPLICATION SCENARIOS

Our ultrasound modem, Hush, has been implemented and
tested on commodity smart phones. However, we intend for
our approach to be implemented on other IoT devices in a
wide variety of scenarios. For example, when giving a presen-
tation; connecting the presenter’s laptop to the projector in the
room is often error-prone and generally frustrating requiring
special physical connectors and specific configurations of both
the display/projector and the user’s computer. An alternative is
a smart display equipped with an ultrasound microphone and
a very simple operating system running our Hush modem.
The user can then install the Hush app on their smartphone
or portable computer and transmit the relatively small PDF
file of their slides to the smart display via ultrasound. The
slides can be projected, and the smartphone can then double
as a presentation “clicker” to advance the slides using the same
ultrasound technology. This sort of approach is ill-advised over
WiFi, because the smart display would necessarily run a net-
work service on an open port and is therefore vulnerable to
anybody on the network (at best) or the Internet (at worst). For
a large enterprise this might be an attacker in another room,
or even in another building. Hush requires physical proximity,
because it uses sound waves in air to transmit data.

A second application scenario is the increasingly common
consumer-oriented smart light-bulb. Typically these devices
are “always-on” WiFi enabled, requiring the user to have
access to a properly configured WiFi network. A much better
alternative is to use the Hush ultrasound modem between the
user’s smartphone and the smart light-bulb fitted with a micro-
phone. This allows the light-bulb to be controlled in cases,
where there is no WiFi network or when the user does not
have authorization to configure the WiFi network; such as in an
office building, school, or other large enterprise. Furthermore,
Hush is more intuitive in that communicates with devices only
in the same room in an ad-hoc manner. Our fingerprinting
system can also be used by the light-bulb to ignore transmis-
sions from those other than the true owner protecting against
potential attackers.

In both of these scenarios, our ultrasound modem affords
the user better security and convenience. Hush does not require
the setup, configuration, and maintenance of a WiFi network.
NFC is completely infeasible in these scenarios, because the
practical transmission range is limited to about 1 cm. And,
BT requires configuration (pairing) and may be overheard, or
interfered with, by eavesdroppers in adjacent rooms. With the
Hush modem, the user can simply walk into the room and start
making use of IoT devices immediately from a comfortable
distance. At the same time, some basic security is provided by
the physical proximity requirement. Furthermore, with some
zero explicit prior configuration our fingerprinting mechanism
can allow a user to become recognizable by the device in order
to differentiate them from other potential attackers. For more
details please see Section VI.

NOVAK et al.: ULTRASOUND PROXIMITY NETWORKING ON SMART MOBILE DEVICES FOR IoT APPLICATIONS 401

III. RELATED WORK

Audio communication has been proposed in the past and
many legacy systems propose audible signals [10]–[13]. A few
works [14]–[16] propose ultrasound as a full competitor with
radio frequency and infra-red technologies. However, they use
transducers specifically designed for ultrasound, which is fun-
damentally different from our attempt to build an ultrasound
modem on commodity smart mobile devices. These works
explore modulation of ultrasound, but this paper is the first
to explore modulation that is both: 1) intended for typical
smartphone hardware and 2) aims to be as inaudible as pos-
sible. Additionally, this paper is the first to fingerprint sender
devices using the raw ultrasound signal, which is useful for a
wide range of applications [17].

There has been a recent proliferation in attempts to achieve
a variety of proximity networking applications on smart-
phones using ultrasound by commercial projects [18]–[23].
Unfortunately, none of these projects published technical
details, so we cannot compare them to our system with much
granularity. However, two of them advertise concrete bit rates;
Zoosh by Narette advertises 300 bps [21], and SSCConnect
advertises 2.2 kb/s [22], both of which are much slower than
our system.

There are several relevant academic works in which ultra-
sonic audio in air is used to transmit data.

1) Iannucci et al. [24] proposed a concept called “room-
area networks” in which they develop a network stack
and implement ultrasound at the physical layer as a
proof of concept. They simply adapt the existing 802.11a
modulation scheme to achieve high throughput on com-
modity laptops.

2) In [11], one section of their work implements an ultra-
sound modem, but it achieves only 8 bps.

3) Hanspach and Goetz [25] repurposed two existing audio
modems by changing the carrier frequency to 18.6 kHz.
They incorporate these modems in malware designed to
bridge traditional “air-gap” systems. They can achieve
at best 20 bps at a range of 19.7 m using two Lenovo
brand laptops.

4) Matsuoka et al. [26] applied a similar OFDM-based
modulation scheme to our own, but are only able to
achieve approximately 1 kb/s.

5) Roy et al. [27] generated sounds much higher than
human hearing (40 kHz) which can be detected by
commodity smartphone microphones thanks to nonlin-
ear combination which occurs in the microphone. They
require special hardware to generate the tones at the
sender side.

6) Nittala et al. [28] proposed the use of ultrasound to send
signals to smartphones via existing infrastructure, such
as television programs and in-store audio systems. Their
modulation scheme is a very simple implementation of
frequency shift keying achieving 8 bps.

7) Lee et al. [29] implement a long range, low throughput
ultrasound modem for smartphones as well. They face
some similar challenges and achieve a rate of 16 bps.

8) “PriWhisper” [30] implemented acoustic transmission
for key exchange only achieving approximately 1 kb/s.

Our system is faster than nearly all of these, it is inaudible,
designed specifically to operate on commodity smart mobile
devices, and implements a sender fingerprinting defense.

In the recent past, work in audio-based networking was
focused on making the audio tones audible but melodic and
more pleasant for the user [11], [12]. However, even melodic
tones are not desirable in all situations. They are also sub-
ject to background noise, which is typically more prevalent
for audio in the audible spectrum. Previous work, Dhwani [4],
emits audible noise in all of their modulation implementations
(OFDM BASK, QPSK, and 8-PSK) because they operate on
1 kHz of spectrum centered on 6.5 kHz. Their system achieves
at best 2.4 kb/s with 80% packet success using 8-PSK. Because
our system uses near-ultrasound, it is practically silent, and
faces a substantially greater technical challenge.

There has also been some recent literature on proto-
cols that enable secure, authenticated proximity networking.
EnCore [31], Smokescreen [32], BlueID [33], and secure
device discovery and recognition [34] are all protocols for
neighbor discovery. They rely on existing network mediums;
BT, WiFi (ad-hoc/Direct). Our fingerprinting technique com-
plements these systems, making masquerade and replay attacks
more difficult for attackers. It is similar in premise, and under-
lying concept to recent work “S2M” from Chen et al. [35]. In
their work, devices are fingerprinted based on the frequency
response, which is characteristic of the specific hardware used
for transmission. Our system uses frequency response, but also
some other key characteristics of the signal introduced by the
hardware. The key difference is that S2M requires a sepa-
rate, predetermined signal to be sent, which is then checked
by the verifier. Our system performs fingerprinting on the
data signal itself. Which means that it is impossible for the
attacker to inject packets (a key weakness of S2M) without
being recognized. Several other works have selected to finger-
print devices-based similarly on idiosyncrasies, such as clock
skew [36], and driver/firmware quirks introduced near or at
the physical layer [37]–[39].

IV. CHALLENGES

In this section, we detail several technical challenges in
implementing our system. First, we aim to transmit data while
remaining inaudible. Second, we face poor frequency response
in the ultrasonic spectrum. Third, the sample rate is limited and
not always consistent, causing various accuracy and audibility
problems. Finally, we face synchronization issues between the
sender and receiver.

A. Inaudibility

Commonly, to transfer data, the sender will produce a sine
wave with frequency f and phase θ . The sine wave’s frequency,
amplitude, and phase can each be altered over time to encode
information (modulation). This sine wave is sampled, digitally
as S = s1, s2, . . . , si using (1), where the time t is derived from
the sample rate Fs and index i, (t = (i/Fs))

si = sin(2 ∗ π ∗ f ∗ t + θ). (1)

402 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 1, FEBRUARY 2019

Fig. 1. Example sine wave modulated in amplitude (left), frequency (middle), and phase (right). In this example, “low” corresponds to 0 and “high”
corresponds to 1 except for phase which encodes 0 as 0 and π as 1.

Fig. 2. Imaginary wave (black) generated from ASK.

The fundamental modulation schemes modify amplitude,
frequency, or phase independently and are referred to as
amplitude, frequency, or phase shift keying; ASK, FSK, and
PSK, respectively. Binary (two symbol) versions of these mod-
ulations are illustrated in Fig. 1. We quickly discovered that
these modulation schemes produce audible noise, even if the
carrier sine wave is above the audible frequency threshold
(e.g., higher than 20 kHz), due to the modulation pattern.

This can be most easily visualized in the case of ASK. In
Fig. 2, we plot a BASK signal which encodes a repeating
bit pattern (0, 1, 0, 1, 0, . . .). The periodic amplitude changes
generate an audible “artifact” wave, shown in bold, which cor-
responds to the bit pattern. If the bit pattern is regular, as is
the case in our example, the artifact wave will be a specific
frequency, corresponding to the length of the symbols. When
the bit pattern is random, which is the case for our intended
application, the artifact wave is similar to white noise with
many random frequencies.

Audible artifacts are also caused by any instantaneous
changes in the waveform (near sample number 41 in the
plots of Fig. 1). The speaker’s diaphragm physically moves
synchronously with the path of the sine wave, and any dis-
continuity causes the speaker to produce an audible “click”
noise. To achieve practically inaudible transmission, instead of
encoding bits in the time domain, we focus instead on encod-
ing information in the frequency domain, using OFDM, which
we detail later in Section V.

B. Poor Frequency Response

The frequency response of cell phone speakers and
microphones is highly volatile. The physical size and price
of cell phones limits their speaker and microphone quality
and as a result, audio signals are heavily distorted. This is
compounded by the nonlinear interaction between frequencies
when many are present simultaneously. To demonstrate this
problem, we generated frequencies, 50 Hz apart in the range
[18–22 kHz] and [5–8 kHz], one at a time and recorded the
sound using two representative Android smartphones. We
plotted the recording, in the frequency domain, in Fig. 3.

Fig. 3. Frequency response of typical cell phones.

Fig. 4. 18 kHz sine wave sampled at 44.1 kHz.

These experiments show that smartphones produce lower
frequency sounds with greater energy and more uniformly,
compared with high frequency sounds.

C. Sample Rate Limitations

Our target devices ubiquitously have a limited sample rate
for audio hardware of 44.1 kHz limiting the spectrum we can
use to 22.050 kHz according to the Nyquist rate. Also, as
previously mentioned, the hardware has difficulty reproduc-
ing tones at the top of the spectrum. While it is common
knowledge that most humans can hear between 20 Hz and
20 kHz, research shows that the threshold of perception
sharply increases above 16 kHz [2], [3], and that background
noise in this spectrum is minimal [4], [40]. This leaves us
a narrow spectrum to operate in from 16 to 22 kHz. In this
spectrum there are less than three samples per period (e.g.,
44 100 Hz/18 000 Hz = 2.45 samples/period). This means that
when recovering the phase, if there is even a single sample
error in determining the starting point of the signal, there will
be a large error in recovered phase. As shown in Fig. 4; a
large phase discrepancy is apparent between samples zero and
one, indicated by the ←’s in the figure.

This problem is exacerbated if the sender and receiver are
not synchronized (their samples do not a-line in time) or if
their sample rates are not constant. In our experiments, we
find that both of these situations arise, with the sender and
receiver sometimes having a relative difference of as much
as 300 Hz or a one sample misalignment after 150 samples.
We discuss how to recover the phase despite this challenge in
Section V-D.

NOVAK et al.: ULTRASOUND PROXIMITY NETWORKING ON SMART MOBILE DEVICES FOR IoT APPLICATIONS 403

Fig. 5. Context free system diagram of the Hush software. We envision our
system running on a wide variety of devices, such as smart light-bulbs, smart
locks, and other IoT devices.

D. MultiPath

Ultrasound is more directional than low frequency sounds,
and it reflects off of surfaces more easily. Because of this,
signal collisions caused by multipath may occur. Fortunately,
ultrasound attenuates quickly, and the signals we send are rel-
atively weak. Because of this, multipath is not a significant
issue.

V. SYSTEM DESIGN

Our ultrasound modem can be implemented on any device
that has a speaker (for sending) or a microphone (for receiving)
and supports a sample rate of 44.1 kHz. Devices then commu-
nicate using ultrasound signals in an ad-hoc manner. Our target
hardware platform is smartphones, in which these hardware
requirements are ubiquitous. However, our modem can also
be implemented on mobile payment stations, smart watches,
IoT devices, smart home appliances, etc. The system diagram
in Fig. 5 gives the components of Hush. The user inputs some
information, the Hush software converts that information to
an audio signal, and transmits it using the device speaker.
A second device receives the signal and the Hush software
decodes it. The information is then displayed to the user in
the appropriate way.

To ease implementation, we make our modem available as
a Java library for Android, which exports a HushSocket class
that can be used to both send and receive data. The HushSocket
sends audio signal “packets” which we detail in the rest of this
section. A logical diagram of a packet can be seen in Fig. 7.

A. Signal Generation

To send data we must encode it as a sound signal. Keeping
in mind the challenges mentioned previously, we design the
sender to generate a linear combination of 78 “subcarrier” fre-
quencies from 17528.03–20930.27 Hz as specified in Table I.
Each subcarrier/row in the table corresponds to a digitally sam-
pled sine wave [see (1)] of that frequency. We modulate the
amplitude and phase of each wave according to the data to be
transmitted. All of the subcarriers are combined into a single
signal according to (2). Here, Si is a single sample at index
number i, α is the amplitude, f is the subcarrier frequency,
Fs is the sample rate (44.1 kHz), and θ is the phase. At the

TABLE I
SUBCARRIER DATA FRAME MODULATION TABLE

receiver side, Fourier analysis is used to recover the ampli-
tude and phase of each subcarrier. The values of amplitude
and phase are direct encodings of the data so, at the receiver
side, high amplitude indicates a “1” in the data stream, and
low amplitude encodes “0” (likewise is true for phase)

Si =
20930.2 kHz∑

f=17528.03 kHz

α ∗ sin

(
2 ∗ π ∗ i ∗ f

Fs
+ θ

)
. (2)

As shown in Table I, the first five subcarriers encode a
ten-bit “size” field, which is used to indicate to the receiver
how many data bits are in the message. The next 21 sub-
carriers encode 42 bits. Subcarriers 18647.76 and 19810.55
are pilot or “calibration” frequencies which are always set to
constant amplitude (100%) and phase (π). Details for how
these are used at the receiver side are given in Section V-C.
The blocks of 26 subcarriers after the first pilot, and sec-
ond pilot are used to encode 52 bits each. The entire signal
(S = [S0, S1, S2, . . . , S1023]) comprises a “data frame.” The
sender generates up to three data frames in a single packet
depending on the length of the message (the size field indicates
the number of bits in one packet, across all three frames).

In order to help the receiver locate the packet in time, the
sender precedes each packet with a 300 sample “hail” signal.
The hail signal is simply a linear chirp from 18 to 19 kHz.
Because the hail signal is known, the receiver can scan over
the microphone data as it comes in, calculating the cross cor-
relation between that and the known hail signal. When the
correlation is very high, the receiver knows it has found the
packet. We use a linear chirp (i.e., a sweep), because it cor-
relates with it self best when it is perfectly aligned, and very
poorly otherwise. Additionally, it is unlikely to occur in ran-
dom background noise and it is nearly silent. Inevitably we
will have some errors in transmission due to corruption of the
signal. To combat this we implement hamming forward error
correction coding (ECC) to correct single bit errors and detect
multiple bit errors in each block [41]. Hamming codes allow
for blocks of n = 2r − 1 bits, which contain a message of
k = 2r − r − 1 bits, and r detection bits. Choosing r intelli-
gently depends on the error rate, which we investigate in our
evaluation and select r = 8.

404 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 1, FEBRUARY 2019

Fig. 6. Top: default noisy hail signal. Bottom: windowing technique applied
to minimize instantaneous changes and reduce audible noise.

B. Signal Quieting

We intentionally designed our modem to use an OFDM
scheme, which minimizes noise because the signal remains
constant for a longer period of time (1024 samples). However,
there are still audible artifacts caused by a few sudden changes,
which act like discontinuities. They cause the speaker to fail in
its attempt to follow the signal, and therefore create an audi-
ble click sound. These discontinuities occur in four places per
packet according to our design; when the hail signal starts, at
the transition between the hail signal and the first frame, at the
transitions between the subsequent second and third frames,
and when the final frame ends. To help minimize these sudden
changes, and therefore audible noise, we develop a technique
based on a modification of windowing.

Windowing is a technique, where a vector of coefficients
between 0–1 (the window) are multiplied with a section of a
target signal. The samples outside the window are discarded.
Windows are typically used for analysis of a transient or
impulse signal, found in a longer signal. Usually they have a
bell-curve shape, based on a cosine waveform, which reduces
the amplitude of the signal significantly at the end points.
When applied to an audio signal this bell shape has the for-
tunate side effect of reducing the amplitude of artifact noises
to a negligible level.

We apply a triangle window to the beginning and end
of the hail signal as shown in Fig. 6. Thanks to this windowing,
the transition from background noise at the start and end of the
hail signal is far less dramatic, and the audible noise generated
is minimal. However, windowing has a dramatic impact on the
output of the Fourier transform, which disrupts the decoding
of the signal at the receiver side. To combat this, we devise
our own custom window for the frames. A Hann window of 20
samples is broken into two halves and the frame is extended
by 20 samples, from 1024 to 1044. The Hann window coeffi-
cients are applied to the first and last 10 samples of the frame,
and the middle 1024 samples of the frame are left unaltered.
This allows for the quieting effect, and the receiver can simply
apply the Fourier analysis to the middle 1024 samples, which
remain unchanged. This is illustrated in Fig. 7.

It is important to note that 1024 samples are necessary only
as an implementation detail. Using more samples would result
in finer subcarrier granularity, and we could encode more data.
However, the bit-rate is not improved because of the direct
correlation between number of samples (signal length in time)

Fig. 7. Packet map consisting of the maximum three frames, and a hail
signal. The theoretical throughput of our packet design (assuming no time
between packets and perfect transmission) is 5.95 kb/s.

and subcarrier granularity. Our FFT implementation assumes
that the input will be a power of two, so we selected 1024,
which means we have (44 100 Hz/1024) ≈ 43.07 Hz between
each subcarrier as shown in Table I. Additionally, frames and
the transitions between them also occur at a rate of 43.07 Hz,
which is very near the minimum human audible frequency.

C. Signal Decoding

At the receiver side, the microphone accepts sound signal
samples continuously. Before attempting to decode a packet,
the receiver must determine if a packet is present in the signal
at all. To determine this we take a 100 sample window, filtering
it using a custom designed high-pass FIR filter, and com-
pute the root-mean-squared (RMS) value of the window. If the
RMS is above an empirically chosen threshold, an attempt is
made to decode the packet, otherwise, the window is advanced
50 samples. This method is fast enough to run on smart mobile
devices (it does not compute a cross-correlation, or Fourier
transform), and it processes samples 100 at a time. Yet, it is
effective in detecting the presence of a packet with few false
positives or negatives.

If a packet is detected, instead of advancing the window, the
audio is instead treated as packet data and decoded. The first
step of this process is to determine the actual starting point of
the packet in the data. This previous filter and RMS approach
only locates a packet with 100 samples of accuracy. The cross
correlation is computed between the known hail signal and
the first 1024 samples of the audio stream. This locates the
hail signal in the audio to approximately one sample of accu-
racy. However, there may be subsample differences caused by
syncopation between the sender and receiver. Or, in the case
that the sender or receiver (or both) are not truly sampling at
exactly 44.1 kHz. In either case, there will be subsample dif-
ferences between the received and ground truth signal. We use
a Hilbert transform to locate the starting point of the signal,
with subsample accuracy.

After the hail signal is found, the receiver can locate the
subsequent frames at 1044 sample offsets. Each frame is
windowed and a Fourier analysis is run in order to recover
the amplitude; abs(FFTout) and phase; arctan(FFTout) values
of each subcarrier. FFTout indicates the output of the faster
Fourier transform algorithm, which is an array of complex
values.

1) Decoding Amplitude: As mentioned previously, and
is shown in Fig. 8, the amplitude of each subcarrier is
nonuniform, despite the uniformity at the sender side, due

NOVAK et al.: ULTRASOUND PROXIMITY NETWORKING ON SMART MOBILE DEVICES FOR IoT APPLICATIONS 405

Fig. 8. Amplitude readings from the first data frame. Values are computing
as the absolute value of the (complex valued) output of the Fourier transform
of the first frame of audio data.

to distortion of the signal. Because of this, a simple thresh-
old value is insufficient to decode the values accurately. To
overcome this challenge, we design a technique called adap-
tive amplitude recovery which attempts to follow the trend
of amplitudes. It first creates two first in first out queues, up
and down, which contain the values of the previous α “up”
amplitudes and “down” amplitudes, respectively.

The first pilot frequency, ≈18.6 kHz, is statically held at
100% amplitude. We use this reading to bootstrap our demodu-
lator, placing the value in up and placing a zero in down. Then,
each data-encoded subcarrier amplitude is read and decoded.
A reading above the threshold is decoded as 1 and placed in
up, readings below the threshold are decoded conversely as 0
and placed in down. thresh is defined as:

thresh = [(
up− down

) ∗ γ
]+ down. (3)

Here, X is the average of the values in X. γ (where
0 ≤ γ ≤ 1) is a parameter that determines where, between the
two averages, the threshold is placed. At the half-way point,
the second pilot is inserted to better calibrate to higher fre-
quencies, which tend to be weaker overall. As the subcarriers
are processed, the queues are emptied to guarantee they always
contain only the most recent α readings. In our implementa-
tion we empirically choose α = 2, and γ = 0.35. Choosing
optimal values, and exchanging them automatically, is left for
future work.

D. Decoding Phase

Decoding the phase values is nearly identical to decoding
amplitude values, except that the values are computed from the
arctan of the Fourier transform output. However, to decode
the phase accurately, we must find the starting point with
subsample accuracy at each frame. Due to the sample rate
challenges outlined previously in Section IV, we cannot find
the frames at exactly 1044 sample offsets. To solve this prob-
lem we use a novel technique we call analytic phase recovery.
The sender sets the phase of the two pilot subcarriers equal.
The decoder reads these phase values (θ18.6 and θ19.8) from the
frame directly, assuming the starting point is correct. It then
calculates the phase at 100 subsample points before and after

that point. At each subsample point, we use the sine wave for-
mula, (1) to approximate the phase. The subcarrier frequency
f is known, so we substitute in the relative time t and solve for
θ . Each time abs(θ18.6 − θ19.8) is calculated. When the differ-
ence between the two phase readings is minimized, we have
found the optimal t. Similarly, the phase values of the data-
encoded subcarriers is read using the appropriate frequency
and the now known t.

Similarly to the amplitude values, the phase values are not
uniform at the receiver side. Again, a simple threshold is insuf-
ficient for decoding. To account for this, we calculate the
diff = θp − θf , where θp is the phase of the nearest pilot
subcarrier and θf is the phase of the target subcarrier. We then
decode each value as follows:

if abs(diff) >
1

2
∗ π → 0

if abs(diff) <= 1

2
∗ π → 1.

Phase readings are always between ±π , but diff may be
greater than π . If this occurs we simply set diff = (2∗π)−diff.

VI. FINGERPRINTING

In order to raise the bar for the security of Hush, we design
and implement a prototype fingerprinting algorithm, which is
inspired by the Naive-Bayes algorithm. Our algorithm allows
the receiver of a packet to learn, and later verify the sender of
that packet based on idiosyncracies introduced by the sender’s
hardware.

The fingerprinting algorithm will learn from a training
dataset of several packets, and verify later incoming packets
based on five features.

1) RMS of the Raw Signal: A measure of the strength or
power of the signal. For audio, the RMS of the signal
intuitively maps to the average “volume” of the sound
over a period of time. We included this feature because
we noted that some device models were able to produce
a stronger ultrasound signal.

2) Symmetry of the Raw Signal: A measure of the symme-
try about the x-axis. Despite the sender always sending a
perfectly symmetrical signal (like that shown in Fig. 6),
the sender may recover a signal that drifts away from the
x-axis over time becoming more positive or more neg-
ative. For ultrasound signals near the Nyquist rate the
sample points will alternate above and below the x-axis
as is shown in Fig. 4. Symmetry is calculated by com-
puting the average value of each pair of points such that
one of the pair is positive and the other is negative. We
then compute the standard deviation of these values. A
small value (near 0) indicates high symmetry.

3) Correlation of Frequency Response: As mentioned pre-
viously, mobile devices have poor frequency response in
the near-ultrasound spectrum. This feature is computed
as the cross-correlation between the received signal and
a reconstruction of the ideal signal. Because the ground
truth signal is not necessarily known at the receiver side,
this feature is computed over the hail signal, sent at
the beginning of every packet, which is constant and

406 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 1, FEBRUARY 2019

known. The cross-correlation is computed on the sig-
nals in the frequency domain, i.e., the output from the
Fourier transform.

4) Beginning Largest Value of the Raw Signal: The largest
signal sample in the first 100 samples of the signal. The
reasoning behind including this feature is empirical. We
noticed that some devices produce a distinctive, early
peak in the waveform.

5) Strength of Calibration Subcarriers: As mentioned pre-
viously, the signal contains two subcarrier frequencies
that are always transmitted at 100% power with 0 phase.
In practice, we note that the receiver measures these two
at different strengths due to the poor frequency response
as shown in Fig. 3. This is calculated as the average
value of the two.

The values of each of these five features will be measured in
each packet and our system will rank and weight each feature
in terms of which best predicts the sender. In practice, the
learning phase can occur when the user explicitly initiates it,
or during normal operation in the background by assuming the
first few packets are from the same (not malicious) user. In
either case, several model packets are transmitted, and used to
gather feature values. These values are used to create a range
of plausible values, and are stored with the ID of the now
authenticated user. Optionally, the user can train the system to
include multiple authenticated users, assuming devices from
different manufacturers.

In the verification phase, when a packet arrives (i.e., a
sample), the algorithm will compute the signal’s five feature
values. Our algorithm is similar to Naive-Bays; the probability
of the sample belonging to the user is determined by calcu-
lating how many of the feature measurements fall into the
previously computed verification range. Each feature casts a
vote based on which class’s verification range the new sample
falls into (the authenticated user’s or “no match”). The votes
of each feature are weighted and the class with the most votes
is output as the prediction of the sender. The weights of each
feature are then adjusted to improve the influence of the fea-
tures that were part of the consensus. Finally, the system uses
this prediction to verify the proposed sender of the packet.

VII. LIMITATIONS

Our modem attempts to decode phase values despite the
sample rate challenges mentioned previously. In contrast,
Dhwani [4] is able to decode phase modulations (without find-
ing the precise starting point), because they are working at a
much lower carrier frequency (i.e., 6–7 kHz). At these fre-
quencies, there are three times as many samples per period so
the phase reading difference from adjacent samples is small
and subsample differences are negligible. While we are able to
recover the phase with reasonable accuracy, the rate of phase
errors is much higher than that of amplitude errors. To address
this, we implemented a second version of our modem that does
not attempt to modulate phase at all, thereby reducing the the-
oretical bit rate by one half. In our evaluation we present the
BER of both versions.

Fig. 9. Typical experimental setup. Pictured above are two Nexus 5X devices
spaced 20 cm apart with ideal orientation.

Our modem is very sensitive to orientation, distance, and
sender volume due to the directionality, and fast attenuation
of ultrasound waves. Because of this, without the proper ori-
entation (the speaker of the sender pointed directly at the
microphone of the receiver), the BER rises substantially. This
impacts usability, but also provides some intuitive security. In
order to receive a transmission with reasonable accuracy, an
attacker must have excellent positioning in an obvious loca-
tion, such as directly in front of the intended receiver, where
they are sure to be noticed. However, in the current implemen-
tation the orientation requirements are too strict. Some related
works propose systems that do not have this limitation, but
which have lower data transmission rates (e.g., [25] and [26]).

Our fingerprinting system identifies the sender of a packet
based on idiosyncrasies introduced from the sender’s hard-
ware. Therefore, an attacker is likely able to fool the system
(achieve a false positive) if they are able to obtain a device
that is the same make and model as the authenticated user’s
device. In this way, the system is not perfectly secure, but it
does increase the burden on the attacker.

VIII. EVALUATION

We evaluate the BER, audibility, and orientation require-
ments of our modem. We also measure the accuracy of our
fingerprinting algorithm. Throughout our evaluation we use
three smartphone models, each with different speakers and
microphones; the Samsung Galaxy S7, the Google Nexus 5X,
and the LG G4.

A. Transmission BER

To measure the BER achieved by our modem we sent pack-
ets containing random data between each pair of sender and
receiver, and measured the number of bits that were decoded
correctly (before ECC). In this experiment the sender power
(87.5%), distance (20 cm), and orientation are kept at the ideal
with minor alterations depending on the phones being used
(e.g., the G4 is placed slightly closer, because it is a weaker
sender). A typical setup for two Nexus 5X devices can be
seen in Fig. 9. We sent packets repeatedly until the margin of
error around the mean error rate is less than 1 bit, with a 95%
confidence interval. In Fig. 10, we present the results. We can

NOVAK et al.: ULTRASOUND PROXIMITY NETWORKING ON SMART MOBILE DEVICES FOR IoT APPLICATIONS 407

Fig. 10. BER sending random data between all nine pairs of three test devices.

TABLE II
MEAN BER VARYING SENDER AND RECEIVER. “FAST” TRIALS WERE

REPEATED UNTIL THE MARGIN OF ERROR IS SMALLER THAN ±1 bit
WITH A 95% CONFIDENCE INTERVAL. ONE TRIAL = 1

PACKET = 468 bits

TABLE III
ERROR RATE WITH VARYING ORIENTATION

see from this figure that the BER is below 3% in almost all
cases. This figure also reveals that the BER is most dependent
on the sender. The G4 is least capable reproducing ultrasound
signals, and our prototype code was written and tested using
the Nexus 5X, which performs best. The mean values (shown
as “+” in Fig. 10) are summarized in Table II.

If we implement ECC to correct all packets with 3% error or
lower, we require fourteen ECC blocks spanning 33 bits each.
This means six detection bits in each ECC block for a total
of 84 detection bits per packet. In this case we can achieve
an effective rate of 4.99 kb/s. Based on these results, we also
implemented a second version of our modem, which does not
utilize phase. This reduces the error substantially, as shown
in the rightmost column of Table II. But, it also reduces the
theoretical bit rate by one half. For our “no phase” version,
we can achieve an effective throughput 2.9 kb/s. However,
these analyses assume uniform error distribution, which in our
experiments is not the case. It may be possible to use “fire”
ECC, which is specifically design for bursty errors, which we
leave to future work.

To investigate the orientation requirements of our modem
we transmit a packet from one sender to three receivers
(all 5X). The first receiver has perfect orientation (shown in
Fig. 9), the second is placed a few cm to the side, with the

Fig. 11. Histogram of user audibility rating. Results of eight participants
shown together.

microphone pointed at the sender (≈ 30◦ angle), and the third
is placed behind the intended receiver. This is to mimic the
setup an attacker might attempt. The results of this experiment
are given in Table III.

B. Audibility

Using a third party Android app [42] we measured about
−19 dB of sound when using our modem, compared with the
background noise of −50 dB in a quiet office room. However,
this measurement is not very insightful, because it includes
ultrasound, which humans are much less sensitive to.

To evaluate how much sound from our modem is perceived
by the user, we asked eight participants (mean age: 27) to listen
to our modem while it transmitted random data. The sending
volume was set at 60% and the experiment is repeated five
times. The participants rated how much noise they heard on a
scale of 1 “silent” to 100 “fire alarm” each time. The results
are plotted as a histogram in Fig. 11. The highest rating (21%)
indicates that our modem is very difficult to hear. Several par-
ticipants made comments that they “cannot hear anything at
all,” and thought perhaps the modem was malfunctioning.

While it is possible that our modem is more perceivable
by young children, or animals, or that ultrasound might have
unforeseen effects on users in general. A truly robust analysis
of audibility must be left for future work, as these questions
are largely out of the scope of this paper.

C. Fingerprint Accuracy

To evaluate the fingerprinting scheme we proposed, we
gather 20 representative (low error rate) transmissions for each
pairing of our three test devices. We choose a device to act as
receiver, which will act as the leaner/authenticator. Then, we
select a random n of the 20 transmissions from a random target
sender device, which forms the training set. We test against
the remaining 20− n from the target device, as well as the 20
trails from each of the other two devices. The 20 − n trails

408 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 1, FEBRUARY 2019

Fig. 12. Accuracy of identifying target sender (TP rate) versus attacker (TN).

from the target device measures the “true positive” rate, i.e.,
the probability that the receiver can correctly identify the tar-
get sender. The 20 trails from the other devices measures the
“true negative” rate, i.e., the probability that the receiver can
correctly identify an attacker (any device other than the target
sender). The results of this experiment are shown in Fig. 12.

As we can see in this figure, the system’s ability to reject
attackers (devices other than the trained sender) is very good.
However, a larger training set is necessary to correctly iden-
tify the sender (the false negative rate is high). This means
the initial pairing phase must be long enough to accommo-
date sending fifteen training packets. Fortunately, this would
take less than one second. To improve the accuracy over time
correctly identified sender packets can be added to the training
set.

IX. CONCLUSION

In this paper, we present Hush a software modem, which
utilizes very high frequency sound to send data between com-
modity smart mobile devices. Hush modulates ultrasound in
a way that is fast, low error, and practically unnoticeable by
users. Hush incorporates a fingerprinting scheme that makes
it more difficult for attackers to masquerade by allowing the
receiver to learn and recognize packets sent from the intended
sender. We evaluate our system and show high accuracy in
fingerprinting, as well as an effective transmission rate of
4.99 kb/s.

REFERENCES

[1] C. Pereira et al., “IoT interoperability for actuating applications
through standardised M2M communications,” in Proc. IEEE 17th Int.
Symp. World Wireless Mobile Multimedia Netw. (WoWMoM), Coimbra,
Portugal, Jun. 2016, pp. 1–6.

[2] G. Elert. (Sep. 2014). Frequency Range of Human Hearing. [Online].
Available: http://hypertextbook.com/facts/2003/ChrisDAmbrose.html

[3] K. Ashihara, “Hearing thresholds for pure tones above 16kHz,”
J. Acoust. Soc. America, vol. 122, no. 3, pp. EL52–EL57, 2007,
doi: 10.1121/1.2761883.

[4] P. R. Nandakumar, K. K. Chintalapudi, V. Padmanabhan, and
R. Venkatesan, “Dhwani: Secure peer-to-peer acoustic NFC,” in
Proc. ACM SIGCOMM, 2013, pp. 63–74. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=192134

[5] Near Field Communication Interface and Protocol (NFCIP-1), ECMA
Int., Geneva, Switzerland, Jun. 2013, [Online]. Available: http://www.
ecma-international.org/publications/standards/Ecma-340.htm

[6] T. Baker. (May 2011). Up to What Distance Can Near
Field Communication (NFC) Operate? [Online]. Available: https://
www.quora.com/Up-to-what-distance-can-near-field-communication-
NFC-operate

[7] Wikipedia. (Aug. 2013). Wikipedia NFC Article. [Online]. Available:
http://en.wikipedia.org/wiki/Near_field_communication

[8] J. J. Gummeson, B. Priyantha, D. Ganesan, D. Thrasher, and P. Zhang,
“EnGarde: Protecting the mobile phone from malicious NFC inter-
actions,” in Proc. 11th Annu. Int. Conf. Mobile Syst. Appl. Services
(MobiSys), Taipei, Taiwan, 2013, pp. 445–458. [Online]. Available:
http://doi.acm.org/10.1145/2462456.2464455

[9] R. Zhou and G. Xing, “nShield: A noninvasive NFC security sys-
tem for mobiledevices,” in Proc. 12th Annu. Int. Conf. Mobile Syst.
Appl. Services (MobiSys), 2014, pp. 95–108. [Online]. Available:
http://doi.acm.org/10.1145/2594368.2594376

[10] V. Gerasimov and W. Bender, “Things that talk: Using sound for device-
to-device and device-to-human communication,” IBM Syst. J., vol. 39,
nos. 3–4, pp. 530–546, Jul. 2000, doi: 10.1147/sj.393.0530

[11] A. Madhavapeddy, D. Scott, and R. Sharp, “Context-aware comput-
ing with sound,” in UbiComp 2003: Ubiquitous Computing (Lecture
Notes in Computer Science), A. Dey, A. Schmidt, and J. McCarthy,
Eds., vol. 2864. Heidelberg, Germany: Springer, 2003, pp. 315–332,
doi: 10.1007/978-3-540-39653-6_25.

[12] A. Madhavapeddy, D. Scott, A. Tse, and R. Sharp, “Audio networking:
The forgotten wireless technology,” IEEE Pervasive Comput., vol. 4,
no. 3, pp. 55–60, Jul. 2005.

[13] M. Uddin and T. Nadeem, “A2PSM: Audio assisted Wi-Fi power sav-
ing mechanism for smart devices,” in Proc. 14th Workshop Mobile
Comput. Syst. Appl. (HotMobile), 2013, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/2444776.2444782

[14] W. Jiang and W. M. D. Wright, “Ultrasonic wireless communication
in air using OFDM-OOK modulation,” in Proc. IEEE Int. Ultrasonics
Symp., Chicago, IL, USA, Sep. 2014, pp. 1025–1028.

[15] W. Jiang and W. M. D. Wright, “Wireless communication using ultra-
sound in air with parallel OOK channels,” in Proc. 24th IET Irish Signals
Syst. Conf. (ISSC), Jun. 2013, pp. 1–6.

[16] C. Li, D. A. Hutchins, and R. J. Green, “Short-range ultrasonic dig-
ital communications in air,” IEEE Trans. Ultrason., Ferroelect., Freq.
Control, vol. 55, no. 4, pp. 908–918, Apr. 2008.

[17] D. Takahashi, Y. Xiao, Y. Zhang, P. Chatzimisios, and H.-H. Chen,
“IEEE 802.11 user fingerprinting and its applications for intrusion detec-
tion,” Comput. Math. Appl., vol. 60, no. 2, pp. 307–318, Jul. 2010,
doi: 10.1016/j.camwa.2010.01.002.

[18] A. Kauffmann and S. Boris. (May 2015). Tone: An Experimental
Chrome Extension for Instant Sharing Over Audio. [Online].
Available: https://research.googleblog.com/2015/05/tone-experimental-
chrome-extension-for.html

[19] Y. Eonnet and H. Manceron. (Apr. 2011). Tagattitude. Online. Available:
http://www.tagattitude.fr/en/products/technology

[20] M. K. E. Hemo and R. Lehman. (2012). Wimbeep. [Online]. Available:
https://sites.google.com/site/wimbeep/

[21] B. Paulson. (2011). Zoosh. [Online]. Available: http://www.naratte.com/
[22] B. Ray. (Nov. 2012). Crafy App Lets Phones Send Data

by Ultrasound With Speakers, MICS. [Online]. Available:
http://www.theregister.co.uk/2012/11/08/ultrasonic_bonking/

[23] V. Sokolovsky. (Jul. 2013). Illiri. [Online]. Available:
http://www.illiri.com/

[24] P. A. Iannucci, R. Netravali, A. K. Goyal, and H. Balakrishnan,
“Room-area networks,” in Proc. 14th ACM Workshop Hot
Topics Netw. (HotNets-XIV), 2015, pp. 1–7. [Online]. Available:
http://doi.acm.org/10.1145/2834050.2834113

[25] M. Hanspach and M. Goetz, “On covert acoustical mesh networks in air,”
J. Commun., vol. 8, no. 11, pp. 758–767, Nov. 2013. [Online]. Available:
http://www.jocm.us/index.php?m=content&c=index&a=show&
#38;catid=124&id=600

[26] H. Matsuoka, Y. Nakashima, and T. Yoshimura, “Acoustic communica-
tion system using mobile terminal microphones,” NTT DoCoMo Tech.
J., vol. 8, no. 2, pp. 4–12, 2006.

[27] N. Roy, H. Hassanieh, and R. R. Choudhury, “BackDoor: Making micro-
phones hear inaudible sounds,” in Proc. 15th Annu. Int. Conf. Mobile
Syst. Appl. Services (MobiSys), 2017, pp. 2–14. [Online]. Available:
http://doi.acm.org/10.1145/3081333.3081366

http://dx.doi.org/10.1121/1.2761883
http://dx.doi.org/10.1147/sj.393.0530
http://dx.doi.org/10.1007/978-3-540-39653-6_25
http://dx.doi.org/10.1016/j.camwa.2010.01.002

NOVAK et al.: ULTRASOUND PROXIMITY NETWORKING ON SMART MOBILE DEVICES FOR IoT APPLICATIONS 409

[28] A. S. Nittala, X.-D. Yang, S. Bateman, E. Sharlin, and S. Greenberg,
“PhoneEar: Interactions for mobile devices that hear high-frequency
sound-encoded data,” in Proc. 7th ACM SIGCHI Symp. Eng. Interact.
Comput. Syst. (EICS), Duisburg, Germany, 2015, pp. 174–179. [Online].
Available: http://doi.acm.org/10.1145/2774225.2775082

[29] H. Lee, T. H. Kim, J. W. Choi, and S. Choi, “Chirp signal-based
aerial acoustic communication for smart devices,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2015, pp. 2407–2415.

[30] B. Zhang et al., “PriWhisper: Enabling keyless secure acoustic com-
munication for smartphones,” IEEE Internet Things J., vol. 1, no. 1,
pp. 33–45, Feb. 2014.

[31] P. Aditya et al., “EnCore: Private, context-based communication for
mobile social apps,” in Proc. 12th Annu. Int. Conf. Mobile Syst.
Appl. Services (MobiSys), 2014, pp. 135–148. [Online]. Available:
http://doi.acm.org/10.1145/2594368.2594374

[32] L. P. Cox, A. Dalton, and V. Marupadi, “SmokeScreen: Flexible pri-
vacy controls for presence-sharing,” in Proc. 5th Int. Conf. Mobile
Syst. Appl. Services (MobiSys), 2007, pp. 233–245. [Online]. Available:
http://doi.acm.org/10.1145/1247660.1247688

[33] J. Huang, W. Albazrqaoe, and G. Xing, “BlueID: A practical system
for Bluetooth device identification,” in Proc. INFOCOM, Toronto, ON,
Canada, 2014, pp. 2849–2857.

[34] M. Lentz et al., “SDDR: Light-weight, secure mobile encounters,” in
Proc. 23rd USENIX Security Symp. (USENIX Security), San Diego,
CA, USA, Aug. 2014, pp. 925–940. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity14/technical-sessions/presentation/
lentz

[35] D. Chen et al., “S2M: A lightweight acoustic fingerprints-based wireless
device authentication protocol,” IEEE Internet Things J., vol. 4, no. 1,
pp. 88–100, Feb. 2017.

[36] S. Jana and S. K. Kasera, “On fast and accurate detection of unauthorized
wireless access points using clock skews,” IEEE Trans. Mobile Comput.,
vol. 9, no. 3, pp. 449–462, Mar. 2010.

[37] T. Kohno, A. Broido, and K. Claffy, “Remote physical device finger-
printing,” in Proc. IEEE Symp. Security Privacy (S P), Oakland, CA,
USA, May 2005, pp. 211–225.

[38] J. Franklin et al., “Passive data link layer 802.11 wireless device driver
fingerprinting,” in Proc. 15th Conf. USENIX Security Symp. (USENIX-
SS), vol. 15. Berkeley, CA, USA, 2006, p. 12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267336.1267348

[39] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device
identification with radiometric signatures,” in Proc. 14th ACM
Int. Conf. Mobile Comput. Netw. (MobiCom), San Francisco, CA,
USA, 2008, pp. 116–127. [Online]. Available: http://doi.acm.org/
10.1145/1409944.1409959

[40] P. G. Kannan, S. P. Venkatagiri, M. C. Chan, A. L. Ananda, and L. Peh,
“Low cost crowd counting using audio tones,” in Proc. 10th ACM Conf.
Embedded Netw. Sensor Syst. (SenSys), 2012, pp. 155–168. [Online].
Available: http://doi.acm.org/10.1145/2426656.2426673

[41] Wikipedia. (Nov. 2013). Wikipedia Hamming Code Article. [Online].
Available: http://en.wikipedia.org/wiki/Hamming_code

[42] BM Solutions. Decibel Application. Accessed Sep. 2013. [Online].
Available: https://play.google.com/store/apps/details?id=bz.bsb.decibel&
hl=en

Ed Novak received the undergraduation degree from Monmouth College,
Monmouth, IL, USA, in 2010, and the M.S. and Ph.D. degrees in computer
science from the College of William and Mary, Williamsburg, VA, USA, in
2016. His thesis “Security and Privacy for Ubiquitous Mobile Devices” was
advised by Dr. Q. Li.

He is currently an Assistant Professor of computer science with Franklin
and Marshall College, Lancaster, PA, USA. His current research interests
include security and privacy, smart mobile devices, software engineering, and
the emerging Internet of Things.

Zhuofan Tang received the undergraduation degree from Franklin and
Marshall College, Lancaster, PA, USA, in 2018.

He performed research with Dr. Novak while earning his doctoral degree.
His current research interests include machine learning, security and privacy
of IoT devices, and computer vision.

Qun Li (M’05–SM’12–F’18) received the Ph.D. degree in computer science
from Dartmouth College, Hanover, NH, USA.

He is a Professor with the Department of Computer Science, College
of William and Mary, Williamsburg, VA, USA. His current research inter-
ests include edge computing, wireless networks, sensor networks, pervasive
computing, and security and privacy.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

