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Abstract—Federated learning, in contrast to traditional learn-
ing paradigms, has demonstrated its unique advantages in provid-
ing intelligence at the edge. However, existing federated learning
approaches focus on the end-to-end classification tasks requiring
a simple collaboration procedure where each participant can per-
form its local training independently. Unfortunately, there are still
many tasks relying on learning the distinguishable feature metrics
with respect to all the data, which is a different collaboration
procedure across training participants. For example, the model
for people identification has to ensure the feature representing
a person is dissimilar to those representing others. To enable
such federated learning for deep metrics (a.k.a federated deep
metric learning) is challenging due to the data privacy and
procedure robustness issues. With the consideration of these two
challenges, this work proposes a novel computing framework for
federated deep metric learning. This framework leverages the
system-algorithm co-design to address privacy concerns via the
Trusted Execution Environment (SGX enclave) and Differential
Privacy mechanism. It also introduces a large-scale federated
protocol which can robustly and efficiently deal with practical
factors like the network fluctuation. We implement and evaluate
our computing framework with two settings. One is a real-
world implementation with a large number of mobile devices,
while the other one is in our controllable environment for
conducting experiments in various tasks. Our evaluation results
show that our computing framework is able to train federated
deep metric learning models with excellent scalability, data
privacy preserving, and considerable accuracy even in exception
conditions.

I. INTRODUCTION

Federated learning (FL) is a powerful collaborative learning
framework of deep learning (DL) models for distributed data
sources like end devices [1], [2]. The key feature of FL is
to keep original learning data on the device possessing them
during the whole training procedure. Upon this paradigm,
many privacy computing techniques [3]–[5] have been pro-
posed to further strengthen the protection of data on participant
devices. FL is naturally suitable to the deep learning in mobile
scenarios and enables many popular applications [6]–[9].

Existing FL frameworks mainly focus on one collaborative
learning paradigm. This paradigm enforces each device to only
receive aggregated model information, horizontally isolating
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these participants. It is fine when FL frameworks are used
to train traditional DL classification models. However, along
with the rapid development of the deep learning technology,
newly emerged model categories are not supported in existing
frameworks due to different collaborative learning paradigm.

One representative model category of such newly emerged
ones is the deep metric learning (DML) [10]–[12]. DML
leverages deep neural networks to extract high-quality end-
to-end feature embeddings from input data. The extracted
embeddings from the same data class have smaller distances,
while those from different data classes have larger distances.
This property makes DML increasingly popular as the data
representation foundation for many other DL tasks like the
user authentication, clustering, and so on [10], [13]–[17].
Given that usually the data of these DL tasks are distributed
among many sources, supporting DML in FL frameworks
(FDML) is important to comply with privacy regulations like
GDPR [18] and applications of both DML and FL.

Unfortunately, existing FL frameworks cannot well guar-
antee the privacy and robustness of the new collaborative
learning paradigm in FDML. This is because, in FL sce-
narios, the DML model training requires extra information
exchanges across collaboration participants at the individual
sample level. For example, when a group of smartphones
conduct a FDML training for a model to distinguish phone
owners, each smartphone needs “contrastive” user behavior
samples from others to improve the distinguishability. Such
extra interactions among participants break down the horizon-
tal isolation leveraged by existing FL frameworks, i.e. only
aggregated model updates are exchanged, leading to potential
privacy leaking and communication difficulty.

In this work, we therefore propose an architecture design
for the federated deep metric learning at scale. Our FDML
addresses design challenges of the data privacy and com-
munication robustness in massive training collaboration of
DML models. It can preserve in a system-algorithm co-design
manner the privacy of exchanged data for both similarity
measure and weight update. It also can handle unexpected
participant offline or long interaction responses in a large
participant setting. Our FDML extends current collaborative
learning paradigms with practical considerations and theoret-978-1-6654-6824-4/22/$31.00 © 2022 IEEE



ical guarantee.
With our FDML, a DML model is split into two parts, the

embedding network and the loss component. The former part
is deployed on each participant, while the latter part is placed
on the central server used in the FL scenario. Participants are
directly connected to the central server in the same way as
in existing FL frameworks, but the communication protocol
is different. In the model forward computation, participants
send embeddings (data features) to the server; in the model
backward propagation, partial derivatives of the network loss
w.r.t. the embeddings are sent to participants. Moreover, to
protect the data privacy for participants, our FDML migrates
sensitive server-side computations into the Trust Execution
Environment (TEE) in case the server controller is malicious.
It also introduces a differential privacy algorithm to protect
participants’ sensitive information from the participants who
may be malicious. Additionally, we also analyze the factors
that influence the robustness of our FDML and propose
countermeasures with theoretical convergence analysis.

Our design has been evaluated on commercial deep metric
learning tasks inside Alipay1, with a large scale number of vol-
unteer employees’ smartphones as participants. We also build
a research emulation platform and test FDML applications on
different datasets, including a real-world screen-touch dataset
collected from 1517 volunteer employees from Alipay. The
experimental results show that our design is practical and can
be robust in extreme conditions.

To summarize, our main contributions are:

• To the best of our knowledge, we are the first to investi-
gate FDML and provide a practical, privacy-preserving,
and robust system design for large-scale participants.

• We propose a system-algorithm co-design to protect
participants’ privacy. We design TEE based isolation and
differentially private partial derivative releasing mecha-
nism to deal with the privacy leakage from participants
to cloud and cloud to participants, respectively.

• We consider practical factors like network fluctuation
and propose designs for ensuring training procedure ro-
bustness. We study the impact of possible exceptions in
FDML, propose a robust training design that works even
when lots of participants are offline, and also provide
theoretical convergence proof.

The rest of this paper is organized as follows. We first
introduce some background knowledge and the related work
in Section II. Then we state our problem in Section III
and present the architecture design overview in Section IV.
We present the privacy protection design in Section V and
study the system robustness in Section VI. Furthermore, we
describe the experiment platforms & applications and results
of experiments in Section VII and Section VIII, respectively.
Finally, we conclude this paper (Section IX).

1https://www.alipay.com/

II. BACKGROUND AND RELATED WORK

In this section, we first introduce some background knowl-
edge and related works for DML and FL in Section II-A
and Section II-B, respectively. Then, we present some popu-
lar general-purpose privacy protection methods and describes
existing privacy-preserving FL designs in Section II-C.

A. Deep Metric Learning (DML)

DML leverages deep neural networks to learn the similarity
between objects. DML usually consists of a neural network for
embedding extraction (we refer to it as embedding network)
and a loss component for model training. The embedding net-
work can be any neural network (like CNN, RNN, and so on)
and generates embeddings for inputs. The loss component is
the core part of DML. It encourages the embeddings of inputs
that belong to different categories to have larger distances, but
that belong to the same category to have smaller distances. The
distances here are usually the euclidean distances or the cosine
similarity. We take the triplet loss [10] which is a popular
DML loss as an example. First, we need to build embedding
triplets in the form of < A,P,N >, where A is the anchor
embedding, P means positive and is in the same category as
A, and N means negative and is in a category other than A.
Then, we can calculate the loss using

loss =
1

k

∑
max (||A− P || − ||A−N ||+m, 0), (1)

where k is the number of triplets, ||A − P || is the distance
between the two embedding of the same category (intra-class
distance), ||A−N || is the distance between the two embedding
of different categories (inter-class distance), and m is a hyper-
parameter. The loss means the inter-class distances should be
larger than the intra-class distances at least by m.

Since DML models can extract high-quality embeddings
even for the data categories that are not in the training dataset,
they are widely used in many real-world critical scenarios [10],
[13]–[17].

B. Federated Learning (FL)

FL shows a new training paradigm where end devices and a
central cloud train deep learning models in a privacy-friendly
manner [1], [19]–[21]. In a traditional FL training round, end
devices first download a global model from the cloud. Then
each participant uses its training data to perform local training
using the downloaded model as the starting point. Next, the
participants send the updated model to the cloud. Finally, the
cloud aggregates the received local models and replaces the
global model with the newly aggregated one. It is worth noting
that the participants in traditional FL should be able to conduct
the local training independently. For DML, this assumption is
not practical because the loss of DML may need to use data
from different participants (details in Section III), so we need
to design new federated training methods for DML.

FL has shown its success in many applications like next
word prediction for smartphone keyboard [19], input query
suggestion for mobile phone [20], product recommendation



[21], healthcare [7], and so on. Apart from training classical
neural networks for classification, FL also has been used for
other learning tasks. Liu et al. [22] introduce the design of
federated transfer learning. Zhuo et al. [23] propose federated
reinforcement learning. Cheng et al. [24] show a federated
boosting algorithm.

There are some variants of traditional FL. Vepakomma et
al. [7] introduce distributed split learning for classification
tasks. In their design, the cloud will take part in the model for-
ward computing and back propagation, but not just aggregates
the uploaded local models as the traditional FL does. Vertical
FL [25] is also different from traditional FL. In vertical FL,
the features of a single training sample are held by different
participants, thus the cloud also needs to be deeply involved in
the training details. In this paper, the cloud will also undertake
more computing tasks in our design.

C. Privacy Protection Methods

1) Differential Privacy: Differential Privacy [26] provides
a theoretical metric for evaluating the privacy protection level.
Definition II.1 shows the formal definition of differential
privacy.

Definition II.1. Differential Privacy [26]. A randomized
mechanism M is ϵ-differential private, if for all S ⊆
Range(M) and all adjacent inputs D and D̂, Pr[M(D) ∈
S] ≤ exp(ϵ)Pr[M(D̂) ∈ S] holds (ϵ > 0).

The adjacent D and D̂ only differ by one item. ϵ is the
privacy budget. The smaller the ϵ, the better the privacy
protection level. Laplace mechanism is one of the mechanisms
that satisfy definition II.1 and is shown in Definition II.2. It
satisfies ϵ-differential privacy following Lemma II.1.

Definition II.2. The Laplace Mechanism [26]. Given any
bounded function f , the Laplace mechanism is defined as M =

f(D) + (Yi, .., Yk), where D ∈ Domain(f) and Yi are i.i.d.
variables sampled from Lap(b).

Lemma II.1. Let ∆f = max
||D−D̂||1=1

(||f(D) − f(D̂||) be the

sensitivity of f on any adjacent inputs, the Laplace mechanism
is differentially private, ϵ = ∆f/b [26].

2) Trusted Execution Environment (TEE): TEE is a
hardware-enabled secure area in the central processor. It
preserves the confidentiality and integrity of the data and code
inside it. A process can securely run in the TEE without
being peeked at or tampered with by the adversary outside.
Attestation mechanisms are usually also provided by the TEE
for users to verify whether their programs are running in a
secure TEE. Intel SGX Enclave [27] is a kind of TEE and is
integrated into the commercial CPU produced by Intel.

3) Privacy Protection Methods for Traditional FL: To solve
the data privacy issues in FL, researchers propose many
approaches. Hao et al. [28] combine additively homomorphic
encryption with differential privacy to protect participants’
data privacy. For the same purpose, Bonawitz et al. [29]
propose secure aggregation preventing the cloud from seeing

the uploaded data, and Passerat et al. [30] describe a design
of placing the cloud aggregator in the TEE. In addition,
frameworks like PySyft [31] and tf-encrypted [32] provide
easy-to-use APIs for implementing FL with privacy protection
methods.

III. PROBLEM STATEMENT

We consider the scenario of cloud-aided collaborative learn-
ing of numerous participants. The participants, who use mobile
devices like smartphones, belong to different parties and want
to train DML models while keeping their training data private.
We focus on the scenario where a single participant cannot
train a satisfactory model without referring to the data of oth-
ers. This scenario is common because the training data of one
participant is usually either too little or from too few categories
to train a DML model. For example, in the scenario of user
authentication for smartphones, one smartphone usually only
has the data of its owner.

The DML training in such scenarios requires a suitable
data exchange mechanism to enable cross-participant feature
comparisons, which traditional FL cannot provide. Traditional
FL designs assume that participants can perform the local
training by only using their own data (Recall Section II-B) and
do not need data exchanges for loss calculation. However, the
DML loss requires data exchanges across different participants
to perform feature comparisons. Therefore, we need new en-
hanced FL designs that can provide the desired data exchanges
for DML.

The additional data exchanges in the new framework will
inevitably increase the risk of privacy leakage. For example, a
malicious participant might try to extract private information
from the content obtained in the data exchanges. And the cloud
that coordinates the training might also be able to exploit
those exchanges and obtain participants’ privacy. Thus, we
need to carefully examine possible privacy leakages and solve
the challenging problem that requires minimizing the leakage
while keeping the system efficient and usable. In this paper, we
assume the cloud controller and any participant could be the
attacker and assume that the hardware infrastructure including
the TEE is secure.

Other practical factors like procedure robustness also need
to be considered in the design of the new framework. In
such distributed systems, common exceptions like network
fluctuation and the instability of end devices will result in
unexpected participant offline. If the offline happens when
the data exchanges are not finished, the model training may
be affected. Thus, we need to analyze the impact of the
unexpected offline on the model accuracy and design practical
methods to make the training procedure robust.

IV. FDML FRAMEWORK OVERVIEW

As discussed in Section III, the end devices cannot handle
the loss calculation when following the existing FL design.
Hence, we plan to leverage the cloud server to undertake the
main work of the loss calculation.
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Fig. 1. The DML Model Split Scheme. In the model forward execution
and backward propagation, the end device is responsible for the computation
related to the embedding network, and the cloud processes the loss component.

As shown in Figure 1, inspired by the split learning [7]
(which is not designed for DML, we choose to split the
DML model into two parts (the embedding network and the
loss component) and place them in the cloud server and end
devices, respectively. The two parts share necessary informa-
tion by sending messages to each other during the model
training. In the model forward computation, the end devices
will extract embeddings from their training data leveraging the
embedding network, and send the extracted embeddings to the
cloud server. Then the cloud server will calculate the network
loss based on the received embeddings. As to the backward
propagation, we leverage the property of the chain rule and
design to send necessary partial derivatives from the cloud-
server to the end devices so that the end devices can calculate
the gradients. We design a protocol based on the above split
scheme. Figure 2 shows how the protocol works in a training
round.

The major differences between our FDML design and the
traditional FL design are: first, the loss calculation of FDML
requires the data from different devices and is conducted on the
cloud side, while the loss computing of traditional FL does not
involve different devices and is performed at the end-device
side; second, in traditional FL, the end devices only need to
upload the local model (local gradient), but in our FDML
design, extra data exchanges are needed for computing the
loss and the gradient.

Client registration (Step 1) and participation strategy.
The client registration can be asynchronous with the model
training, and end devices do not need to make registration at
each training round. A participant’s registration is considered
to be valid within a predefined time range.

As to the participation strategy, since the end devices can be
battery-based devices using wireless networks, the participants
could be sensitive to battery and data usage or system fluency.
For this case, we can reuse the strategy mentioned in [33]
that an end device could participate in the training only when
the end device is charging, connected to WIFI, and idle.
Participants will suspend their participation once their devices
are not in the condition mentioned above.

Gradient aggregation and model updating (Step 9). We
define the gradient aggregation of a training round as

G =

k∑
i

|di|
|D|

∂loss

∂parameters pi

, (2)

9 Gradient aggregation
and model updating

7 Gradient calculation
8 Gradient upload

3 Embedding calculation
4 Embedding upload

End device

1 Client registration
2 Global model distribution

5 Loss and partial derivative 
calculation

6 Derivative distribution
(add DP noise)

Cloud 
TEE

Fig. 2. The Communications between End Devices and the Cloud in One
Training Round. At first, the end devices who are able and willing to
participate in the training will make registrations (Step 1). Then, the cloud
distributes the global embedding network to some selected registered end
devices (Step 2). Next, the end devices use the received global embedding
network to extract embeddings from their training data (Step 3) and send
those embeddings to the cloud (Step 4). The cloud will use those uploaded
embeddings to calculate the loss and the partial derivatives w.r.t. those
embeddings { ∂loss

∂embi
} (Step 5). ∂loss

∂embi
will be sent back to the end device

that uploaded embi (Step 6). After that, each end device computes its local
gradients (Step 7) and uploads those gradients to the cloud (Step 8). Finally,
the cloud aggregates the gradients uploaded by the end devices as the global
gradients and then use the global gradients to update the global embedding
network (Step 9). The noise adding and the TEE part are privacy-preserving
designs, and they will be covered in Section V.

where k is the number of the participants in the training round,
|di| denotes the number of training sample of participant pi,
|D| =

∑
|di|, and ∂loss

∂parameters pi
represents the local gradient

of participant pi.

V. PRIVACY PROTECTION

The communications in the proposed protocol may leak
the participants’ private information if no privacy protection
measures are taken. Specifically, the cloud might recover pri-
vate information from the data embeddings and local gradients
uploaded by the participants [34], and a malicious participant
also has the chance to obtain the private information of other
participants by analyzing the global model and the partial
derivatives distributed by the cloud [35], [36]. Hence, we need
to design methods to reduce the possible private information
leakage from the communications. For the privacy leakage
from the participants to the cloud, we propose a TEE-based
method in Section V-A. And for the information leakage from
the cloud to participants, we will show our differential-privacy-
based method in Section V-B.

A. Protect the Content Uploaded by Participants with TEE

Since the cloud-side loss computation is complicated, pri-
vacy protection methods, like MPC and homomorphic en-
cryption, are ill-suitable. Moreover, TEE shows excellent
performance and is free from utility degradation, so we plan to
leverage TEE to protect the data uploaded by the participants.

Although TEE shows many advantages compared to other
privacy protection methods, in our design, we do not plan to
perform the entire DML training inside TEE. This is because
that choice requires implementing a DL framework inside TEE
which would significantly increase the Trusted Computing



Base (TCB) of the TEE. Instead, we choose to only put the loss
computing & partial derivatives calculation (Step 5) and gradi-
ent aggregation (Step 9) of the proposed protocol inside TEE.
This design is lightweight and does not require implementing
complicated forward and backward model computing. And the
core part of the TEE-side implementation only requires less
than 300 lines of code in C++ language.

The participants will attest the integrity of the TEE at the
beginning and then directly send their embeddings and local
gradients into the TEE during the model training. And the
partial derivatives will be directly sent back to the participants
from the TEE. Using this design, the cloud controller cannot
access the participants’ embeddings and local gradients and
thus preventing the cloud controller from launching attacks.
In this paper, we choose the Intel SGX enclave as the TEE
because of its good availability and compatibility.

Since TEEs usually have limited computing resources and
do not support GPU, they could be a performance bottleneck.
To address this issue, we design optimized solutions for the
computationally intensive loss and partial derivative calcula-
tion which is conducted inside TEEs. Our basic idea is to
derive the mathematical expression of the partial derivatives
directly, instead of introducing automatic gradient calculation
tools. This method minimizes memory usage, avoids intro-
ducing automatic partial derivation, and reduces the amount
of code in TEE and the difficulty of the implementation. We
use triplet loss as an example to show the design in Algorithm
1.

Algorithm 1: Partial Derivatives Calculation inside
TEE

Inputs : Embeddings from different participants: Demb = {embi};
labels of the embeddings: {labeli}

Output: Partial derivatives: { ∂loss
∂embi

}

1 Calculate the Euclidean distances between any two embeddings in
Demb, and only save the upper triangle of the distance matrix;

2 Allocate memory for each ∂loss
∂embi

, and initialize them with 0;
3 counter ← 0;
4 while build up an embedding triplet < A,P,N > do
5 ∂loss

∂embA
← ∂loss

∂embA
+ embA−embP

||embA−embP || −
embA−embN

||embA−embN || ;

6 ∂loss
∂embP

← ∂loss
∂embP

+ embP−embA
||embA−embP || ;

7 ∂loss
∂embN

← ∂loss
∂embN

+ embA−embN
||embA−embN || ;

8 counter ← counter + 1;
9 foreach ∂loss

∂embi
do

10 ∂loss
∂embi

← ∂loss
∂embi

1
counter

B. Differentially Private Partial Derivative Releasing

We cannot simply put the participant-side calculation into
participant-side TEEs because there are many participants and
not every participant’s device supports TEE. Furthermore, par-
ticipants’ devices usually have limited computing resources,
thus using MPC or homomorphic encryption is also infeasible.
Hence, we choose to design a differentially private mechanism
to reduce the private information leakage from the cloud to the
(malicious) participants.

We clip the partial derivatives and add Laplace noise on
them before sending them to the participants. To further
protect privacy, we randomly drop some embeddings before
calculating the loss. Hence even when the attacker knows
that some embeddings are uploaded in one training round,
the advantage of this background knowledge will be reduced
because the attacker will never know which uploaded em-
beddings are actually used. Algorithm 2 shows our method,
which adjusts the Step 5 of the proposed protocol (Figure 2).
Inspired by [37], we prove that the algorithm is differentially
private and gives a privacy bound (ϵ = ln[(1− r)e2T/b + r])
in Theorem V.1.

Algorithm 2: Differentially Private Training – Cloud
side loss and partial derivatives calculation

Inputs : Embeddings from different participants:
Demb = {embi}; loss fuction: floss; embedding drop
rate: r; bound: T > 0; noise scale: b

Output: Processed partial derivatives: { ∂loss
∂embi

}

1 Randomly choose some embeddings with a rate of r, and remove
those embeddings from Demb;

2 Perform loss calculation based on the new Demb, and calculate
∂loss
∂emb

for each embedding;
3 Clip each ∂loss

∂emb
using −T as the lower bound and T as the upper

bound;
4 Update each ∂loss

∂emb
by adding Lap(b);

Theorem V.1. A FDML training round following Algorithm
2 is differentially private, i.e. ϵ = ln[(1− r)e2T/b + r].

Proof. (a) Let D = {datai} be the set of the training
samples from different participants in one training round
and Fderivate represent the computing logic of Algorithm 2.
For any two adjacent training dataset Da and Db, we have
||Fderivate

∣∣∣
Da

− Fderivate

∣∣∣
Db

|| ≤ 2T .

According to Lemma II.1, we have

P [Fderivate

∣∣∣
Da

= S] ≤ e2T/bP [Fderivate

∣∣∣
Db

= S]. (3)

(b) Let Femb be the embedding network. The embeddings
uploaded by the participants can be written as Emb =
{Femb(datai)}. Randomly dropping the embeddings in Emb
is the same as dropping the corresponding training sample in
D in the sense of probability.

Suppose there are two adjacent training dataset Dx and Dy

that differ by one training sample datak, there are two cases
for the random embedding drop:

(1) The embedding extracted from datak is dropped,
P [Fderivate

∣∣∣
Dx

= S] = P [Fderivate

∣∣∣
Dy

= S].

(2) The embedding extracted from datak is not dropped.
According to Equation 3, we have P [Fderivate

∣∣∣
Dx

= S] ≤

e2T/bP [Fderivate

∣∣∣
Dy

= S].



Combine above two cases:

P [Fderivate

∣∣∣
Dx

= S]

≤ rP [Fderivate

∣∣∣
Dy

= S] + (1− r)e2T/bP [Fderivate

∣∣∣
Dy

= S]

= eln([r+(1−r)e2T/b])P [Fderivate

∣∣∣
Dy

= S].

Thus, ϵ = ln[r + (1− r)e2T/b].

VI. TRAINING PROCEDURE ROBUSTNESS

In this section, we consider the unexpected situations in
such distributed systems. In Section VI-A, we give a design
that aims to make the training procedure robust to unexpected
participant dropping, and in Section VI-B, we provide the
convergence analysis for the proposed robustness design.

A. Strategy for Training Procedure Robustness

Since the cloud-server is more controllable than the end de-
vices, we focus on the exceptions related to mass participants’
devices and assume the cloud-server will always perform its
work as expected.

The participants’ devices may not perform their work on
schedule. The network fluctuation may affect the communi-
cation between the cloud-server and the end devices which
are probably using wireless networks. Furthermore, the end
devices could suspend the participation due to issues like
battery usage, data plan, or system load. These exceptions may
obstruct the expected communications: (Case A) participants
who have received the global embeddings network cannot up-
load their embeddings; (Case B) participants who have already
successfully committed their embeddings cannot provide their
local gradients to the cloud.

We design Algorithm 3 to cope with the above mentioned
cases. For Case A, when distributing the global embedding
network, the cloud-server can select more participants in case
some of them are offline. When Case B occurs, the gradient
collected by the cloud is not intact. The cloud-server has two
choices: (1) give up the current round and start a new round;
(2) continue the training with the local gradients collected from
the remaining participants. The second choice could be better.
For one thing, the local gradients of the remanent participants
still contain plenty of information for model training. The local
gradients of one participant contain not only its information
but also other participants’ information, which provides infor-
mation redundancy (see the equations in Algorithm 1). For
another, the strategy of continuing training also saves overall
training time, because waiting for an exception-free training
round is difficult when there are large-scale participants, even
the exception rate is low.

B. Convergence Analysis

In this section, we provide the convergence analysis of
FDML with incomplete gradient information in Algorithm 3.
We show that the FDML achieves O(1/T ) convergence rate
using the stochastic gradient descent (SGD) for training when
training iteration T is sufficiently large.

Algorithm 3: System Robustness Design – Cloud Side

Inputs: Participant number: numrequired; expected participant
response rate: ratep; multiplier: k ≥ 1

1 Init: nump1 ← 0, nump2 ← 0;
2 Distribute global embedding network to numrequired ∗ k

participants ; // Step 2
3 while nump1 < numrequired do
4 if waiting time is up then
5 Reset timer and go to line 2;
6 Collect participants’ embeddings and increase participant

counter nump1;
7 Calculate loss and partial derivatives ; // Step 5
8 Distribute partial derivatives ; // Step 6
9 while nump2 < numrequired ∗ ratep do

10 Collect local gradients and increase participant counter nump2;
11 if waiting time is up then
12 break;
13 Aggregate gradients and update the model ; // Step 9

The objective function can be defined as:

min
x∈F

f(x) := Eξ∼Di [F (x; ξ)] (4)

where F (·; ·) is the predefined loss function, x is model
parameters from some feasible parameter space F . The Di

is a dataset on the ith participant. ξ randomly samples from
Di for each training iteration.

We use the following assumptions for the non-convex
optimization problem.

Assumption VI.1. (Smoothness) We assume the Lipschitz con-
tinuous for all model copies ∇fi(x), i.e., ||∇fi(x)−∇fi(y)|| ≤
L||x− y|| for all x, y and i ∈ [n] .

Assumption VI.2. (Unbiasedness) The stochastic gradients
∇Fi(x) is unbiased estimator of objective function, i.e.,
Eξ∼Di [∇F(x; ξ)] = ∇fi(x) .

Lemma VI.1. (Lipschitz smoothness) Suppose model copy
fi(x) in Assumption. VI.1 holds is L-Lipschitz continuous
and suppose the model fi(x) is strongly-convex. For any
x, y ∈ Rk, the objective function f(x) satisfies f(x)− f(y)−
∇f(y)⊤(x− y) ≤ L

2
||x− y||2.

The proof of Lemma VI.1 can be found in the previous
work [38]. These assumptions have been widely used in the
ML community for analyzing the ML model convergence,
particularly for large-scaled distributed machine learning. In
addition, we provide the following auxiliary inequality, which
are used in our proof.

Inequality 1: ||
n∑

i=1

(xi − yi)||22 ≤ n
n∑

i=1

||xi − yi||22 (5)

We also define the collection matrix Ct ∈ Rn×n as diagonal
matrix where only k(k ≤ n) diagonal entries are 1 and the
rest entries are 0. We assume that the diagonal entry ci,t (the
ith collected participant at iteration t) has probability p(ci,t =
1|Exceptionst) = ρt for all participants in t round. Now, we
have the following convergence guarantee for FDML.



Theorem VI.2. (FDML Convergence Analysis) We assume
that the optimal feasible set F of our objective function f(x)
is nonempty and bounded. And f(xt) has bounded gradients
E ∥∇f(x)∥ ≤ G and E ∥∇f(x)∥22 ≤ σ2. Let the sequence of

learning rate {γt} is
∞∑
t=1

γ2
t < ∞ and

∞∑
t=1

γt = ∞. Under the

assumptions above, Federated deep metric learning converges
to a stationary point in expectation as:

1

T

( T−1∑
t=0

E ∥∇f(xt)∥22

)
≤ 2(f(x0)− f(x∗))

γT

+
(γ + γ2L)σ2

2

T−1∑
t=0

(1− ρt)

Proof. According to the Federated deep metric learning
present in Equation 5, the gradient descent updating can be
expressed as

xt+1 = xt − γt(Ct∂F(xt; ξt))
⊤ 1n

n
(6)

Here, xt ∈ Rd are the model parameters on each
clients, Ct ∈ Rn×n is the collection matrix representing
collected gradients as defined in the Federated
deep metric learning algorithm, and ∂F(xt, ξj) =
[∇F1(xt,1; ξt,1),∇F2(xt,2; ξt,2), · · · ,∇Fn(xt,n; ξt,n)]

⊤

are gradients. According to Equation 6, we know

E[f(xt+1)|Ct,Dt] = E[f(xt − γt(Ct∂F(xt; ξt))
⊤ 1n

n
)] (7)

Then, we apply the above equation to the Lipschizan gradient
assumption and obtain

E[f(xt+1)] ≤ E[f(xt)]− E[⟨∇f(xt), γt(Ct∂F(xt; ξt))
⊤ 1n

n
⟩]︸ ︷︷ ︸

T1

+
L

2
E
∥∥∥∥γt(Ct∂F(xt; ξt))

⊤ 1n

n

∥∥∥∥2

2︸ ︷︷ ︸
T2

(8)

For T1, we have:

T1 = E[⟨∇f(xt), γt(Ct∂F(xt; ξt))
⊤ 1n

n
⟩]

= γtE[⟨∇f(xt), (Ct∂f(xt))
⊤ 1n

n
⟩] (Assumption VI.2)

=
γt
2
E ∥∇f(xt)∥22 +

γt
2
E
∥∥∥∥(Ct∂f(xt))

⊤ 1n

n

∥∥∥∥2

2

− γt
2

E
∥∥∥∥∇f(xt)− (Ct∂f(xt))

⊤ 1n

n

∥∥∥∥2

2︸ ︷︷ ︸
T3

And for T3,

T3 = E
∥∥∥∥∇f(xt)− Ct∂f(xt)

1n

n

∥∥∥∥2

2

= E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(xt)−
1

n

n∑
i=1

Ici∇fi(xt)

∥∥∥∥∥
2

2

≤ 1

n

n∑
i=1

E ∥∇fi(xt)− Ici∇fi(xt)∥22

=
σ2

n

n∑
i=1

E[(I− Ici)
2]

where Ici = 1 if entry ci,t = 1 for i ∈ [k]. Now we have:

E[(I− Ici)
2] = (1− ρi,t) · 12 = (1− ρt)

Then T3 ≤ σ2(1−ρt). Similarly we have (the proof is omitted
due to the page limit)

T2 ≤ γ2
t σ

2

b

b∑
s=1

(1− ρt) + γ2
t E

∥∥∥∥∂f(xt)
1n

n

∥∥∥∥2

2

After applying two inequalities T1 and T2 to Equation 8, we
have

E[f(xt+1)] ≤ E[f(xt)]−
γt
2
E ∥∇f(xt)∥22

− γt
2
E
∥∥∥∥(Ct∂f(xt))

⊤ 1n

n

∥∥∥∥2

2

+
γtσ

2

2
(1− ρt)

+
γ2
t σ

2L

2b

b∑
s=1

(1− ρt) +
γ2
tL

2
E
∥∥∥∥∂f(xt)

1n

n

∥∥∥∥2

2

Suppose γt

2 ≤ γ2
t L
2 , we then have,

E[f(xt+1)]

≤ E[f(xt)]−
γt
2
E ∥∇f(xt)∥22 +

1

2
(γt + γ2

tL)σ
2(1− ρt).

Summing up from t = 0 to t = T , we obtain

E[f(xT )] ≤ E[f(x0)]−
1

2

T−1∑
t=0

γtE ∥∇f(xt)∥22

+
1

2

T−1∑
t=0

(γt + γ2
tL)σ

2(1− ρt)

If we let γt = γ for all t ∈ T , we have

1

T

( T−1∑
t=0

E ∥∇f(xt)∥22

)
≤ 2(f(x0)− f(x∗))

γT

+
(γ + γ2L)σ2

2

T−1∑
t=0

(1− ρt)

We see, Algorithm 3 can guarantee the convergence of
FDML and it achieves the O(1/T ) convergence rate when
T is large enough.



VII. PLATFORMS AND APPLICATIONS

A. Evaluation Platforms

We have two evaluation platforms for our FDML design.
The first one is a real-world implementation inside Alipay,
while the other one is a research platform described below.
FDML models can be well trained on both two platforms.
However, due to business interest concerns, in this paper,
the details of the first platform are omitted. We will only
show the results of the experiments conducted on the second
platform. And the applications and the results of the research
platform described in this paper do not represent those of the
commercial implementation inside Alipay.

Research platform. We build an emulation platform ac-
cording to our architecture design to perform FDML training.
The platform uses PyTorch as the deep learning engine and
supports a large scale number of virtual participants. Triplet
metric learning loss is used as the loss function of all the
FDML training experiments, and we use the semi-hard triplet
loss implementation in [39]. The platform is deployed on a
server equipped with an i7-6850K CPU, 128GB memory, and
4 NVIDIA TitanXp GPU cards. In this paper, our FDML
training experiments are all conducted on this platform.

The research platform also contains an implementation of
the TEE-part partial derivative calculation (Algorithm 1). The
implementation is on a T-470P Laptop that runs Ubuntu 18.04
and is equipped with an i7-7700HQ CPU, 16 GB memory,
and 256 GB SSD storage. We will use this implementation to
study TEE-part performance.

B. FDML Applications

We design two applications. The first application is the user
authentication based on user touch patterns on smartphone
screens. We refer to it as TouchAuth. While the second
one is the user authentication based on photos captured by
cameras. We refer to it as CameraAuth. The training data of
TouchAuth are the series of smartphone screen touch events,
while CameraAuth uses human photos as the training data.

To perform training, the end device will capture the data
(touch patterns or photos) of its owner and label them with its
ID. Note that the cloud does not need to perform additional
labeling. The captured data will be used as the training data.
When the DML model is trained, to use the model, a smart
device with the model deployed will first use its sensors
to collect data of its current user. Then, embeddings will
be extracted from the collected data by the trained DML
model. At last, the smart device computes the distance between
the embeddings and its owner’s embedding template. If the
distance is less than a given threshold, the model predicts that
the legitimate user is using that smart device, otherwise not.

TouchAuth Emulation. We use the real-world screen touch
data of the volunteer employees of Alipay. We collected screen
touch events of the mobile payment app of that company
from the volunteers’ Android phones. Each touch event is
represented by a 10-dimensional vector (details in the Ap-
pendix), and 30 consecutive touch events of one user that

occur within 30 minutes constitute a training/test sample. The
screen touch data about password typing are not collected.
The data collection lasted a month, and during the process,
the volunteers were asked to use the mobile payment app as
usual. This data collection passed Alipay’s internal review, and
we comply with the volunteer data usage policy2

We select active app users from the volunteers and save the
data from 4 phone models with the most users. There are 1397
users in the training set, and the number of users of the four
smartphone models is 507, 333, 287, and 270, respectively.
120 users are in the test set, and each phone model has 30
users. The users in the training set and test set have no overlap.

For each training round, the cloud selects a phone model
with equal probability and randomly chooses a predefined
number of users who use this phone model as the participants
of this round. Each chosen participant extracts training samples
from its touch events using a data augmentation method which
introduces randomness in deciding the first touch event of a
sample. (In most cases, each participant has more than 25 sam-
ples.) The participant then randomly select a predetermined
number of samples from the extracted samples as its training
data for this round. For accuracy testing, for each user in the
test set, we extract 40 samples from the touch data of that
user to form a fixed test dataset. The embedding network used
for this application contains four convolutional layers and one
fully connected layer (Details are in the Appendix).

CameraAuth Emulation. We randomly select the photos
of 400 people from the VGGFace2 dataset [40] to start the
study. We use 300 of those people as the participants of the
FDML training, and the rest 100 are used for testing. Each
person in the training dataset has 70 different pictures of its
own, while in the testing dataset, that number is 40. ResNet-34
[41] is used as the embedding network with the output size
set as 64.

C. Evaluation Metrics

DML Model Accuracy. Given a trained DML model, for
one user (or person) in the test set, we compute the embed-
dings of the samples of that user and divide the (40) embed-
dings into three parts: 20 for embedding template calculation
({emb}A), 10 for distance threshold selection ({emb}B), and
10 for accuracy evaluation ({emb}C). The embedding tem-
plate of one user is calculated by averaging all the embeddings
in its {emb}A. The threshold for authenticating one user is
found by using Algorithm 4 with parameter {emb}self set
as that user’s {emb}B and with parameter {emb}other set
as other ten users’ {emb}B . Algorithm 4 works by choosing
the Equal Error Rate (EER) point as the threshold, and similar
methods are widely used in biometric authentication [42], [43].
As to computing the accuracy of the authentication, for one
user, we use the threshold found by Algorithm 4 to distinguish
its {emb}C from the {emb}C of another ten users (those users

2Volunteer Data Usage Policy. First, volunteers in the research study fully
understand the purpose and how their data are collected. Second, collected
data are processed to make them anonymous and protected during the whole
study. Last, they also will be deleted afterwards.



have no overlap with the users used in threshold selection). We
use the averaged accuracy of all the users in the test set as the
model accuracy.

Algorithm 4: Threshold Selection
Inputs : Embeddings of the target participant : {emb}self ;

embedding template: template; embeddings for
reference: {emb}other

Output: threshold

1 Compute the distances between template and all the
embeddings in {emb}self as {dist}self , and label them as
the positive class;

2 Compute the distances between template and all the
embeddings in {emb}other as {dist}other , and label them
as the negative class;

3 Use a series of thresholds to predict the label of the items
in {dist}self and {dist}other , and return the threshold
that makes FPR ≊ FNR.

Privacy protection. We will use the privacy budget ϵ of
differential privacy to show the privacy protection level.

System Performance. Since the TEE-part could be a per-
formance bottleneck, we will report the TEE-part processing
time of calculating the partial derivatives.

VIII. EXPERIMENTS AND RESULTS

A. Experiment Settings

We have these default settings for the FDML experiments:
(1) The participant number (numrequired in Algorithm 3)

and the training sample number of each participant at each
round are 64 and 8, respectively.

(2) The learning rate of FDML is 1e-4, and Adam optimizer
is used on the cloud side.

(3) We set the maximum number of training rounds as 15K
and 1.6K for experiments of TouchAuth and CameraAuth,
respectively.

B. Experiment Results

1) FDML VS traditional FL: We conduct experiments to
compare the accuracy gap between FDML and traditional FL
when training user authentication models. We use the FL de-
sign with FederatedAveraging proposed in [44] to implement
an FL training emulation platform. We refer to this platform as
FL-traditional in this paper. Since existing FL does not support
DML loss functions, to conduct training on FL-traditional, we
replace the DML loss with the cross-entropy loss, and the last
layer of the original embedding network is connected with a
fully connected layer whose output has as many dimensions as
the number of participants. The participant of FL-traditional
will only perform one training iteration in each training round.
The other settings of FL-traditional are the same as our
FDML research platform. We train authentication models with
TouchAuth and CameraAuth on the two platforms, and test
the accuracy with the method mentioned in Section VII-C.
To make fair comparisons, we disable the privacy-preserving
design and robustness design and assume there will be no
exceptions in the model training. The maximum numbers of

training rounds for FL-traditional are 45K and 4.5K. We try
different learning rates (lr = 0.1, 0.01) for the experiments on
FL-traditional and report the results in Table I). The results
show that FDML-based training achieves the highest accuracy
and outperforms traditional FL training by a clear margin on
both the two applications.

TABLE I
USER AUTHENTICATION ACCURACY OF FDML AND FL

Training method FDML FL (lr=0.1) FL (lr=0.01)
TouchAuth-I 80.88 71.4 63.24
CameraAuth 79.98 76.55 72.27

2) Roubstness design: To continue or to drop: As dis-
cussed in Section VI, when some participants cannot upload
their local gradients as expected, the cloud can choose a
strategy from abandoning the current round or continuing the
training. We now conduct experiments to show continuing the
training is better. We compare two strategies: (1) Abandon
the current round and Start a new round (Strategy-AS). The
cloud will abandon the current round if exceptions happen.
(2) Unconditionally Continue (Strategy-UC). The cloud will
always continue the current round if more than 2 participants
are on schedule.

TABLE II
ACCURACY OF FDML TRAINING WITH DIFFERENT EXCEPTION

HANDLING STRATEGIES

Application TouchAuth CameraAuth
Exception probability 0.2 0.4 0.6 0.2 0.4 0.6

Strategy-AS 57.86 58.61 58.61 55.92 55.38 54.45
Strategy-UC 81.11 80.94 80.94 77.46 80.54 79.53

We conduct experiments on TouchAuth and CameraAuth
to evaluate the two strategies under different exception prob-
abilities. Under each setting, the participants have the same
probability of failing to upload their local gradients. Table II
shows the results. We can find that strategy-AS achieves
very low accuracy on both two applications (< 59%), which
indicates strategy-AS cannot work at all. Strategy-UC always
has better accuracy (> 77%) and can work well. In addition,
the results under Strategy-UC across different exception prob-
ability are similar, having a difference smaller than 3.5%, and
this indicates FDML can withstand high user dropout rates
when Strategy-UC is chosen.

TABLE III
ACCURACY OF TOUCHAUTH WITH PRIVACY AND ROBUSTNESS DESIGNS

ENABLED

ratep (for robustness) 1 0.8 0.6
w/o DP 80.88 80.75 80.16
ϵ = 8 80.55 80.57 71.40
ϵ = 4 74.56 73.93 73.97

3) Impact of privacy protection and system robustness de-
sign on FDML training accuracy: We now show the training
results with privacy and system robustness designs enabled.
We conduct experiments for TouchAuth and CameraAuth. We
set the bound T in Algorithm 2 as 2e-5 for all the experiments.



TABLE IV
ACCURACY OF CAMERAAUTH WITH PRIVACY AND ROBUSTNESS

DESIGNS ENABLED

ratep 1 0.8 0.6
w/o DP 79.98 79.86 79.1
ϵ = 1 79.94 78.88 78.87
ϵ = 0.5 78.3 77.7 75.51
ϵ = 0.25 73.52 73.93 71.39

For TouchAuth, we set the embedding drop rate r of Algorithm
2 as 0.2, and for CameraAuth, we set that value as 0. Note that
the embedding drop is conducted in an active manner and can
be compensated by increasing the number of the participants
and the number of each participant’s training sample in a
training round, so the choices on the embedding drop rate will
not affect the model accuracy too much in practice. We set
k and numrequired in Algorithm 3 as 1 and 64, respectively.
And since it is difficult to simulate the timeout in Algorithm 3
in a meaningful way without leaking confidential business
information, we assume that Line 12 of Algorithm 3 will
not be executed. We then vary the ϵ (the privacy budget) and
the ratep (the expected participant response rate) to conduct
experiments.

Table III and Table IV shows the experimental results of
TouchAuth and CameraAuth, respectively. The results show
that the model accuracy decreases as the privacy protection
level increases (the budget ϵ decreases). This shows a clear
trade-off between the privacy protection and the model accu-
racy, and we can find the ϵ that achieves a reasonable balance
point for most settings in Table III and Table IV (ϵ set as 8 for
TouchAuth and set as 0.5 for CameraAuth). The results also
suggest that, when preparing the training, the model trainer
needs to carefully set the ϵ to find a balance point, and
this process can be performed based on domain knowledge
or based on the results of the training conducted on similar
datasets.

From Table III and Table IV, we can also find that, under
the same privacy protection level, the experiments with ratep
set as 1 and 0.8 have similar accuracy. It indicates that when
20% of participants cannot (or don’t need to upload) their local
gradients, our design still works well. Also, we can see that
even when ratep is 0.6, the accuracy is still considerable.

4) Performance of TEE: Since the TEE part could be a
performance bottleneck, to test the TEE-side processing time
of Algorithm 1, we choose the triplet loss with the “batch all”
strategy [45] which has the highest computational cost among
all well-known strategies. We vary the participant number in
each round and report the results in Table V. We can find that it
just takes about 2 s and 11 s to calculate the partial derivatives
when there are 128 and 256 participants in one training round
respectively. The results indicate that the performance of our
design is satisfactory for reasonable choices on the number
of required participants for each training round (e.g., < 256),
and the TEE part will not be a bottleneck.

TABLE V
PERFORMANCE TEST ON TEE

Participant number (numrequired) 64 128 256 512
Processing time (s) 0.48 2.19 11.07 63.65

IX. CONCLUSION

In this paper, we first introduce the concept of FDML,
propose a practical, privacy-preserving, and robust FDML
framework design that can support large scale participants.
We also gives theoretical bounds of training convergence and
privacy protection level of the differentially private mecha-
nism. The proposed framework is shown to be practical with
both privacy and robustness considerations throughout our
experiments.
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APPENDIX

More details of the TouchAuth application.
For each touch event collect from the volunteers,
we use a 10-dimensional vector to represent it, i.e,
< xs, ys, xe, ye, xd, yd, dur, p, s, t >. In this
vector, xs, ys and xe, ye are the coordinates of the start
and end points of one touch which are normalized by the
screen size. xd and yd represent the touch direction, e.g. if
xe − xs > 0, xd = 1, otherwise xd = 0. dur is the touch
duration which is firstly clipped by an upper bound (1600
ms) and then normalized by the bound. p and s are the touch
pressure and touch size, respectively. Their ranges are already
between 0 and 1. t is the touch type, 0 for swipe, and 1 for
tap. One sample for training or testing contains 30 touch
events, and the size of the input of the embedding network is
(1, 1, 30, 10).

The network structure of the DML model (embedding
network) for this application is shown in the form of PyTorch
code:

Conv2d ( 1 , 64 , ( 1 , 1 0 ) , 1 ) )
Conv2d ( 6 4 , 128 , ( 1 , 1 ) , 1 )
MaxPool2d ( ( 3 , 1 ) , ( 2 , 1 ) )
Conv2d ( 1 2 8 , 256 , ( 1 , 1 ) , 1 )
Conv2d ( 2 5 6 , 256 , ( 1 , 1 ) , 1 )
L i n e a r ( 6 4 )

Each convoluntional layer is followed by a rectified linear
unit.


