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• We prove that vector scheduling is a special case of generalized load balancing.
• We give the first non-trivial online algorithm for vector scheduling based on the proof.
• We show that generalized load balancing does not admit constant approximation algorithms unless P = NP .
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a b s t r a c t

We give a polynomial time reduction from the vector scheduling problem (VS) to the generalized load
balancing problem (GLB). This reduction gives the first non-trivial online algorithm for VS where vectors
come in an online fashion. The online algorithm is very simple in that each vector only needs to minimize
the Lln(md) norm of the resulting load when it comes, where m is the number of partitions and d is
the dimension of vectors. It has an approximation bound of e log(md), which is in O(ln(md)), so it also
improves the O(ln2 d) bound of the existing polynomial time algorithm for VS. Additionally, the reduction
shows that GLB does not have constant approximation algorithms that run in polynomial time unless
P = NP .

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Scheduling with costs is a very well studied problem in combi-
natorial optimization. The traditional paradigm assumes a single-
cost scenario: each job incurs a single cost to the machine that it
is assigned to. The load of a machine is the total cost incurred by
the jobs it serves. The objective is to minimize the makespan, the
maximum machine load. Vector scheduling and generalized load
balancing extend the scenario in different directions.

Vector scheduling assumes that each job incurs a vector cost to
the machine that it is assigned to. The load of a machine is defined
as the maximum cost among all dimensions. The objective is to
minimize the makespan. Vector scheduling is a multi-dimensional
generalization of the traditional paradigm. It finds application in
multi-dimensional resource scheduling in parallel query optimiza-
tion [2]. For example, a taskmay have requirements for CPU,mem-
ory and network at the same time, and this requirement is best
described by a vector of CPU, memory and network, instead of an
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aggregate measure. In this scenario, the load of a server is also
described by a vector. To solve vector scheduling, there are three
approximation solutions [2]. Two of them are deterministic algo-
rithms based on derandomization of a randomized algorithm, with
one providing an O(ln2 d) approximation,1 where d is the dimen-
sion of vectors, and the other providing an O(ln d) approximation
with running time polynomial in nd, where n is the number of vec-
tors. The third algorithm is a randomized algorithm, which assigns
each vector to a uniformly and randomly chosen partition. It gives
an O(ln dm/ ln ln dm) approximation with high probability, where
m is the number of partitions (servers). For fixed d, there exists
a polynomial time approximation scheme (PTAS) [2]. A PTAS has
also been proposed for a wide class of cost functions (rather than
max) [3].

Generalized load balancing was recently introduced to model
the effect of wireless interference [5,6]. Each job incurs costs to
all machines, no matter which machine it is assigned to. The
exact cost incurred by a job to a specific machine is dependent
on which machine the job is assigned to. The load of a machine

1 In this paper, e denotes the natural number, ln(·) denotes the natural logarithm,
and log(·) denotes the logarithm base 2.
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is the total cost incurred by all the jobs, instead of just the jobs
it serves. This model is well suited for wireless transmission,
since, in a wireless network, a user may influence all APs in its
transmission range due to the broadcast nature of the wireless
signal. To solve the generalized loadbalancingproblem, the current
solution is an online algorithm, adapted from recent progress in
online scheduling on traditional models [1]. The solution, though
it provides a good approximation, is rather simple: each job selects
the machine to minimize the Lτ norm of the resulting loads at
all machines, where τ is a constant parameter to be optimized.
To avoid confusion, we keep the two terms job and machine
unchanged for generalized load balancing, while we refer to job
andmachine in the vector schedulingmodel as vector and partition
respectively.

We make two contributions. First, we present an approach
to encode any vector scheduling instance by an instance of the
generalized load balancing problem (Section 2). This encoding
method directly shows that the generalized load balancing
problemdoes not admit constant approximation algorithms unless
P = NP. Second, we design the first non-trivial online algorithm
for vector scheduling based on the encoding method (Section 3).
Directly applying the encoding method does not necessarily lead
to a polynomial time algorithm, because it needs to compute
the Lln l norm function (l is the number of machines), and it is
unclear whether this norm can be computed in polynomial time.
We eliminate this uncertainty by rounding ln l to the next integer,
guaranteeing polynomial running time. In addition, we prove that
the approximation loss due to rounding is small. We conclude this
section by giving the following two definitions.

1.1. Vector scheduling

We are given positive integers n, d,m. There are a set V of n
rational and d-dimensional vectors p1, p2, . . . , pn from [0,∞)d.
Denote vector pi = (pi1, . . . , pid). We need to partition the vectors
in V into m sets A1, . . . , Am. The problem is to find a partition
to minimize max1≤i≤m ∥Ai∥∞, where Ai =


j∈Ai

pj is the sum of
the vectors in Ai, and ∥Ai∥∞ is the infinity norm defined as the
maximum element in the vector Ai. For the case m ≥ n, there is
a trivial optimal solution that assigns vectors to distinct partitions.
Therefore, we consider only the casem < n.

For ease of presentation, we give an equivalent integer program
formulation. Let xij be the indicator variable such that xij = 1 if and
only if vector pi is assigned to partition Aj. Then

∥Aj∥∞ = max
1≤k≤d


i

xijpik. (1)

The vector scheduling problem can be rewritten as

min
x

max
j,k


i

xijpik

subject to 
j

xij = 1, ∀i

xij ∈ {0, 1}, ∀i, j.

(VS)

1.2. Generalized load balancing

This formulation first appears in [6]. We reformulate it with
slightly different notations. There are a set M of independent
machines, and a set J of jobs. If job i is assigned to machine j,
there is non-negative cost cijk to machine k. The load of a machine
is defined as its total cost. The problem is to find an assignment (or
schedule) to minimize the makespan, the maximum load of all the
machines. This problem can be formally defined as follows.
min
x

max
k


i,j

xijcijk

subject to 
j

xij = 1, ∀i ∈ J

xij ∈ {0, 1}, ∀i ∈ J, j ∈M

(GLB)

where x ∈ {0, 1}|J|×|M| is the assignment matrix with elements
xij = 1 if and only if job i is assigned to machine j. The two
constraints require each job to be assigned to one machine.

2. Encoding vector scheduling by generalized load balancing

We first create a GLB instance for any VS instance, then prove
their equivalence. At last, we discuss the hardness of GLB and
extend the VS model.

2.1. Creating GLB instances

Comparing VS to GLB, we can find that they mainly differ in
the subscripts of max and


. Our construction is inspired by this

observation.
Given as input to VS the vector set V and m partitions, we

construct the GLB instance as follows. We set the jobs J = V . For
each partition Aj and its k-th dimension, we construct a machine
with a label of (j, k). Thus, the constructed machine set M is
{(j, k) | j = 1, 2, . . . ,m and k = 1, 2, . . . , d}. Here we refer to a
machine as a pair of indices so that we can map the machine back
to its corresponding partition and dimension easily. For a machine
t = (j, k), where t ∈ M, we refer to the partition j as t1, and
the dimension k as t2, i.e., t = (t1, t2). We can see that there are
totally dmachines (t included) corresponding to the samepartition
as the machine t . We denote [t] as the set of these machines,
i.e., [t] = {(j, 1), (j, 2), . . . , (j, d)}, where j = t1. Among these
d machines, we select the first one (j, 1) as the anchor machine,
denoted by t , such that a vector chooses partition Aj in VS if and
only if the corresponding job chooses t in the new GLB problem.

The incurred cost cist of job i to machine t if i chooses machine
s is defined as

cist =

pit2 if s = t (a)
∞ if s ∈ [t] ∧ s ≠ t (b)
0 if s ∉ [t] (c)

(2)

where (2)(a), (2)(b) are for the situation where s and t correspond
to the same partition. They force a job to select only the anchor
machines. (2)(c) is for the situation where s and t correspond to
different partitions. In this case, there is no load increase.

The resulting GLB instance is defined as VS–GLB:

min
x′

max
t


i,s

x′iscist

subject to 
s

x′is = 1, ∀i ∈ J

x′is ∈ {0, 1}, ∀i ∈ J, s ∈M.

(VS–GLB)

To avoid confusionwith the general GLB problem, we intentionally
use different notations x′, s and t . The notation i is kept since it is
in 1–1 correspondence with the vectors in VS.

As an example, consider the case when d = 1. All vectors in
VS have only one element, and there is only one machine in
VS–GLB representing a partition in VS. The objective of VS becomes
maxj


i xijpi1. On the other hand, the objective of VS–GLB is

maxt


i x
′

itcitt = maxt


i x
′

itpi1. Since any machine t corresponds
to a distinct partition Aj, simply changing subscripts shows that the
two problems are equivalent. For the case when d > 1, the proof
is much involved, which we delay to Section 2.2.
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Theorem 1. The construction of VS–GLB can be done in polynomial
time.

Proof. An instance of VS needs Ω(nd) bits. The constructed
VS–GLB instance has n jobs, md machines and n(md)2 costs. Since
m < n, all three terms are polynomials in n and d. The theorem
follows immediately. �

The following theorem shows that the constructed VS–GLB
problem is equivalent to its corresponding VS problem. Let T be
a positive constant.

Theorem 2. There is a feasible solution x to VS with objective value
T if and only if there is a feasible solution x′ to VS–GLB with the same
objective value T .

This theorem shows that VS and its corresponding VS–GLB have
the same optimal value. In addition, any c-approximation solution
to VS–GLB, after transformation, is also a c-approximation solution
to VS, and vice versa.

2.2. Proof of equivalence

We first study the properties of feasible solutions to VS–GLB in
Lemmas 1 and 2, and then prove Theorem 2.

Lemma 1. Given a feasible solution x′ to VS–GLB yielding objective
value T , for any i ∈ J, we have

1. ∀s ≠ s, x′is = 0;
2. ∃j such that for s = (j, 1), x′is = 1.

Proof. For (1), suppose x′is = 1 for some s with s ≠ s. Then
x′isciss = ∞ > T , contradicting with maxt


i,s xiscist = T . For (2),

since


s x
′

is = 1, there exists some s such that x′is = 1. Due to (1),
we must have s = s. �

Lemma 2. Given a machine t, a job i, and a feasible solution x′ to
VS–GLB yielding objective value T , we have


s x
′

iscist = x′itpit2 .

Proof. Recall that [t] = {(t1, 1), (t1, 2), . . . , (t1, d)}. We have
s

x′iscist =

s∈[t]

x′iscist +

s∉[t]

x′iscist

=


s∈[t]

x′iscist = x′itcitt = x′itpit2 (3)

where the second equality is due to (2)(c), the third is due to
Lemma 1, and the fourth is due to (2)(a). �

With the two lemmas, we can now prove the equivalence.

Proof of Theorem 2. ‘‘H⇒’’ Given a feasible solution x to VS,
construct a feasible solution x′ to VS–GLB as follows. Set x′is = xis1
and all others to be 0. We first show that x′ is a feasible solution to
VS–GLB. Obviously, x′ is an integer assignment. We will check that

s x
′

is = 1. Observe that x′is = 0 if s ≠ s. We only need to consider
mmachines (1, 1), (2, 1), . . . , (m, 1). Since x is a feasible solution
to VS, then for any i ∈ V , there exists one and only one partition Aj
such that xij = 1. Our transformation sets x′is = 1, where s = (j, 1).
So


s x
′

is = 1.
Second, the objective values of the two feasible solutions are

equal.

max
t


i,s

x′iscist = max
t


i

s∈[t]

x′iscist = max
t


i

x′itcitt

= max
t


i

xit1pit2 = max
j,k


i

xijpik (4)
where the first equality is due to cist being equal to 0 if s ∉ [t], and
the second is due to our assignment of x′ that x′is = 0 if s ≠ s.

‘‘⇐H’’ Given x′ for VS–GLB, construct x for VS as follows. Set
xij = x′is where s1 = j. We show that x is a feasible solution to VS.
Due to Lemma 1, for any i, there exists one s such that x′is = 1 and
s = s. Therefore, there exists one j such that xij = 1. On the other
hand, there cannot be two js both with xij = 1, otherwise x′ is not
a feasible solution to VS–GLB.

For the objective value, we have

max
j,k


i

xijpik = max
t=(j,k)


i

xit1pit2 = max
t


i

x′itpit2

= max
t


i,s

x′iscist (5)

where the last equality is due to Lemma 2. This completes our
proof. �

2.3. Inapproximability result for GLB

The encoding method implies the following hardness result for
GLB.

Theorem 3. For any constant c > 1, there does not exist a polyno-
mial time c-approximation algorithm for GLB, unless P = NP.

Proof. It has been proved that no polynomial time algorithm can
give a c-approximation solution to VS for any c > 1 unless NP =
ZPP [2]. The result also holds if we replace ‘‘NP = ZPP’’ by ‘‘P =
NP’’. Because, the inapproximability proof in Ref. [2] relies on the
result that no polynomial time algorithm can approximate the
chromatic number problem to within n1−ϵ for any ϵ > 0 if NP ≠
ZPP, but recently, this assumption of NP ≠ ZPP has been relaxed
to P ≠ NP [7].

In addition, by Theorem 2, any c-approximation algorithm for
GLB can be transformed to a c-approximation algorithm for VS.
Combining the two results proves the theorem. �

2.4. Extending to generalized VS

Our construction of VS–GLB and its proof can be easily extended
to a general version of vector scheduling. In the current VS
definition, all machines (partitions) are identical, so that any
job (vector) incurs the same vector cost to all machines. The
machines can be generalized to be heterogeneous, so that each job
incurs a different vector cost to different machines. Formally, job
i incurs vector cost p(j)

i to machine j if i is assigned to machine
j. The formulation and transformation can be slightly changed
as follows. In the integer program formulation of VS, change the
objective to maxj,k


i xijp

(j)
ik . Change pit2 in Eq. (2)(a) to be p(t1)

it2
. For

Lemma 2, change x′itpit2 to x′itp
(t1)
it2

. It can be verified that the proof
of Theorem 2 is still valid with minor modifications. The online
algorithm adopted later is also valid for this general version of
vector scheduling. For simplicity, we mainly focus on the original
VS model.

3. Online algorithm for VS

Based on Theorem 2, we can solve VS by its corresponding
VS–GLB. We review the approximation algorithm [5] for GLB, and
then modify it to solve VS.

Given a GLB instance and a positive number τ , the algorithm [5]
considers jobs one by one (in an arbitrary order) and assigns the
current job to a machine to minimize the Lτ norm2 of the resulting

2 The Lτ norm of a vector x = (x1, x2, . . . , xt ) is defined as (


i x
τ
i )

1/τ .
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load of all machines. Specifically, suppose jobs are numbered as
1, 2, . . . , n, the same as the considered order. Suppose the load of
machine k after jobs 1, 2, . . . , i − 1 are assigned is li−1k . Then job i
is assigned to the machine

argmin
j


k

(li−1k + cijk)τ
1/τ

. (6)

The above optimization problem can be solved by trying each
possible machine. During the optimization, the computation of
the last step of the Lτ norm, (·)1/τ , can be omitted. In addition,
because the algorithm does not require the order of jobs and
each job is assigned once, it can be implemented in an online
fashion. This algorithm was originally proposed for the traditional
load balancing problem [1], and recently extended to the GLB
problem [5]. The parameter τ controls the approximation ratio of
the algorithm, as shown in the following lemma.

Lemma 3 ([1,5]). Minimizing the Lτ norm gives a τ
ln(2) l

1/τ approxi-
mation ratio to solve GLB, where l is the number of machines.

Setting τ = ln l yields the best approximation ratio e log l.
However, it is unclear whether the computation of Lln l can be done
in polynomial time. We consider this issue later.

3.1. Adapting to VS

To apply the above algorithm to VS, we can first solve VS–GLB
and transform the solution to VS. This process can be simplified by
omitting the transformation between VS and VS–GLB.

Recall that the algorithm is to assign vectors one by one.
Consider a vector pi in VS. To solve VS–GLB, this vector should
choose a machine to minimize the Lτ norm of the resulting
load. Due to the construction of VS–GLB, this vector can only
choose from the anchor machines, otherwise, the resulting Lτ norm
would be infinite (definitely not the optimal choice). Thus, this is
equivalent to picking from the corresponding partitions in VS. After
the assignment of any number of vectors that leads to partitions
A1, A2, . . . , Am, the Lτ norm of the load of machines in VS–GLB is,
in fact, equal to

f (τ )(A1, . . . , Am) =

∥A1∥

τ
τ + · · · + ∥Am∥

τ
τ

1/τ
(7)

where

∥Aj∥
τ
τ =


k


i∈Aj

pik

τ

. (8)

Suppose the assignment of vectors p1, p2, . . . , pi−1 leads to parti-
tions A1, A2, . . . , Am. Let f

(τ )
i,j be the Lτ norm of the resulting load if

vector pi chooses partition Aj, i.e.,

f (τ )
i,j = f (τ )(A1, . . . , Aj ∪ {pi}, . . . , Am). (9)

Then, according to the algorithm, vector pi should be assigned to
the partition

argmin
j

f (τ )
i,j . (10)

The procedure is described in Algorithm 1. For each incoming
vector, it only needs to execute Lines 5–9.

Algorithm 1 with τ = ln(md) is an e log(md) approximation
algorithm to solve the corresponding VS–GLB. Thus, we have the
following result due to Theorem 2.

Lemma 4. Algorithm 1with τ = ln(md) is an e log(md) approxima-
tion algorithm to solve VS.
Algorithm 1: Vector Scheduling
Input: m, the number of partitions; d, the dimension of each

vector; p1, p2, . . . , pn, the n vectors to be scheduled;
τ , the norm

Output: A1, . . . , Am, them partitions
begin1

for j from 1 to m do2
Aj ←− ∅;3

for i from 1 to n do4
if ∃Aj, Aj = ∅ then5

Aj ←− Aj

{pi};6

else7

find j to minimize f (τ )
i,j ;8

Aj ←− Aj

{pi};9

end10

However, it is unclear whether Algorithm 1 with τ = ln(md)
can terminate within polynomial time. The algorithm requires the
computation of xln(md) for some x. First, the number ln(md) is ir-
rational, thus cannot be represented by polynomial bits to achieve
arbitrary resolution. Second, even though we can approximate it
by a rational number with acceptable resolution, the number xτ̃

may still be irrational, where τ̃ is the rational approximation to
τ . For example, when τ̃ = 1.5, there are lots of values of x such
that x1.5 are irrational. Though we can still approximate it by a ra-
tional number, it is complicated to theoretically analyze whether
the approximation ratio still holds and how the running time in-
creases with respect to rational number approximation accuracy.
This problem has not been addressed in the literature.

Our solution is to round ln(md) to the next integer ⌈ln(md)⌉ and
compute the L⌈ln(md)⌉ norm. This guarantees polynomial running
time, but causes the loss of the approximation ratio. We show in
the following that the loss is very small.

3.2. Guaranteeing polynomial running time

Todealwith the irrational number issue,we round ln(md) to the
next integer ⌈ln(md)⌉. In the following, we analyze the resulting
approximation ratio.

Theorem 4. Let l be the number of machines. Minimizing the L⌈ln l⌉

norm gives an e log(l)+ e log(e)
ln l+1 approximation ratio to solve GLB.

Proof. This result is obtained from Lemma 3 by performing
calculus analysis. Let g(x) = x

ln(2) l
1/x. Consider the derivative of

g , i.e., g ′(x) = l1/x
ln 2


1− ln l

x


. For x ≥ ln l, it holds that g ′(x) ≥ 0

so that the function g(x) is monotonically increasing. Since ln(l) ≤
(⌈ln(l)⌉) ≤ ln(l)+ 1, we have

g(⌈ln(l)⌉)− g(ln l) ≤ g(ln l+ 1)− g(ln l). (11)

In addition, consider the two points (ln l, g(ln l)) and (ln l +
1, g(ln l + 1)). Due to Lagrange’s mean value theorem in calculus,
there exists ξ ∈ [ln l, ln l+ 1] such that

g(ln l+ 1)− g(ln l) = g ′(ξ). (12)

Since ξ ≥ ln l, we have l1/ξ ≤ e. Additionally, ξ ≤ ln l + 1, so
1 − ln l

ξ
≤

1
ln l+1 . Therefore, g

′(ξ) ≤ e
ln(2)


1− ln l

ξ


≤

e log(e)
ln l+1 . We

have

g(⌈ln l⌉)− g(ln l) ≤ g(ln l+ 1)− g(ln l) ≤ e log(e)
ln l+1 . (13)

Note that g(ln l) = e log(l). This completes our proof. �
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Fig. 1. Approximation ratio loss due to rounding. Before rounding, the approxima-
tion ratio is y = e log(x) and it becomes y = e log(x)+ e log(e)

ln(x)+1 after rounding.

This theoremholds for the general GLB problem, such as the one
considered in [5,1,6]. Of course, it holds for VS–GLB aswell. To have
an intuition on the loss, we plot the two approximation ratios with
respect to the number of machines in Fig. 1. We can see that the
loss is small.

We have the following corollary due to Theorem 4.

Corollary 1. With τ = ⌈ln(md)⌉, Algorithm 1 is an e log(md) +
e log(e)

ln(md)+1 approximation algorithm to VS, and it runs in polynomial
time.

The polynomial running time can be shown by the following
analysis. We assume τ = ⌈ln(md)⌉ if not specified. The main time
consuming step is to minimize f (τ )

i,j over j for given i. We can omit
the computation of the outer 1/τ power since function xy is mono-
tonic for x ≥ 0 and y > 0. One basic operation is the computation
of the integer power of a number, i.e., aτ , where a is an element in
any vector Aj. This requires ⌊log(τ )⌋ + ν(τ) − 1 multiplications,
where ν(τ) is the number of 1s in the binary representation of
τ (Chapter 4.6.3 in [4]). For simplicity, we put an upper bound of
2 log τ to the number of multiplications needed to compute aτ .

To compute f (τ )
i,j for given i and j, it needs d + m − 1 additions

(adding pi to Aj, suppose Aj is maintained in each iteration) and
2md log(τ ) multiplications (md numbers, each needs to compute
its τ power). To find the optimal j for given i, we need to compute
f (τ )
i,j for all j, and select the optimal one by comparison. This proce-
dure needs m(d + m − 1) additions, 2d log(τ )m2 multiplications,
and m − 1 comparisons. In summary, it takes O(d log(τ )m2) time
for one vector. For the overall algorithm, it takes O(d log(τ )nm2)
time. The computations can be sped up by exploiting the problem
structure. The complexity can be reduced to O(d log(τ )mn), drop-
ping onem factor, as shown in the following.

3.3. Computation speedup

Towards VS–GLB, we have the following lemma. Note that this
lemma does not apply to the general GLB problem.

Lemma 5. For any j1, j2, it holds that f
(τ )
i,j1

> f (τ )
i,j2

if and only ifAj1 ∪ {pi}
τ

τ
−
Aj1

τ

τ
>
Aj2 ∪ {pi}

τ

τ
−
Aj2

τ

τ
. (14)

Proof. Adding ∥A1∥
τ
τ + · · · + ∥Am∥

τ
τ to both sides proves the

lemma. �

Algorithm 2 shows the final design. For each partition Aj, the al-
gorithmmaintains two variables, the vectorAj (µj in the algorithm)
and its norm ∥Aj∥
τ
τ (δj in the algorithm). If there is no empty parti-

tion, then each incoming vector searches over all partitions to find
the j to minimize

Aj ∪ {pi}
τ

τ
−
Aj
τ

τ
(Lines 12–24). As Lemma 5

shows, this is equivalent to minimizing f (τ )
i,j .

For the running time, consider a new vector that cannot find an
empty partition. There are md additions (Lines 13,16), 2md log(τ )
multiplications (Lines 14,17), 2(m − 1) subtractions and m − 1
comparisons (Line 18). The dominating factor is md log(τ ). This
is for one vector. For all n vectors, the running time is O(mnd
log(τ )), compared to O(m2nd log τ) before speedup. Substituting
τ = ⌈ln(md)⌉ into the formula yields O(nmd ln ln(md)) running
time, polynomial in the input length (note m < n). This analy-
sis, together with Corollary 1 and Lemma 5, gives the following
theorem.

Theorem 5. Algorithm 2 is an e log(md) + e log(e)
ln(md)+1 approximation

algorithm to VS. It runs in O(nmd ln ln(md)) time.

Algorithm 2: Sped-up Vector Scheduling with τ = ⌈ln(md)⌉
Input: m, the number of partitions; d, the dimension of each

vector; p1, p2, . . . , pn, the n vectors to be scheduled
Output: A1, . . . , Am, the m partitions
begin1

for j from 1 to m do2
Aj ←− ∅;3

µj ←− 0; // vector Aj4

δj ←− 0 ; // scalar ∥Aj∥
τ
τ5

for i from 1 to n do6
if ∃Aj, Aj = ∅ then7

Aj ←− Aj

{pi};8

µj ←− pi;9
δj ←− ∥pi∥ττ ;10

else11
jmin ←− 1; // partition index12
µmin ←− µ1 + p1;13
δmin ←− ∥µmin∥

τ
τ ;14

for j from 2 to m do15
µ̃←− µj + pi; // vector addition16

δ̃←− ∥µ̃∥ττ ;17

if δmin − δjmin > δ̃ − δj then18
jmin ←− j;19
µmin ←− µ̃;20

δmin ←− δ̃;21

µjmin ←− µmin;22
δjmin ←− δmin;23
Ajmin ←− Ajmin


{pi};24

end25

3.4. Simulations

We implement three approaches for comparison: Algorithm 1
with τ = ln(md), Algorithm 2 with τ = ⌈ln(md)⌉, and a list
scheduling algorithm mentioned in [2]. The list scheduling algo-
rithm is a (d + 1) approximation algorithm for vector scheduling.
It ignores the multi-dimension property of vectors, and treats vec-
tors as scalars equal to the summation of elements. We did not
implement the O(ln2(d)) approximation algorithm in [2] due to
complicated implementation.

We consider two scenarios. In the first scenario, we study the
approximation ratio of each algorithm. This requires the computa-
tion of the optimal solution, which is done by enumerating all so-
lutions and is time consuming, so we only consider small problem
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Fig. 2. Approximation ratio of three vector scheduling approaches. One hundred
problem instances are generated to plot this figure.

Fig. 3. Compare three vector scheduling approaches in terms of makespan. Each
point in the figure is averaged over 100 problem instances.

instances. Specifically, we consider problem instances with 3 ma-
chines (m = 3), 10 jobs (n = 10) and a dimension of 20 (d = 20).
For each job, its elements are drawn independently from the uni-
form distribution in the range of [0, 1]. Under such settings, the
theoretical worst-case approximation ratios for Algorithm 1, Al-
gorithm 2 and the list scheduling algorithm are 16.0566, 16.8264
and 21 respectively. We generate 100 problem instances and Fig. 2
shows the box plot of the approximation ratio of each algorithm.
We can see that the empirical performance of every algorithm is
much better than that suggested by the worst-case analysis, and
Algorithms 1 and 2 outperform the list scheduling algorithm.

In the second scenario, we compare the three algorithms on
larger problem instances. There are 10machines and 100 jobs. The
elements of a job are drawn from a uniform distribution as before.
We vary the dimension d from 10 to 40 with increments of 5. For
each dimension, we generate 100 problem instances and compute
the average makespan of the three approaches. Fig. 3 shows that
Algorithms 1 and 2 perform similarly, and both of them greatly
outperform the list scheduling algorithm. Note that with the
increase of dimension, the makespan of all approaches increases.
This is because the probability of an imbalanced dimension
increases in this case.

4. Conclusion

In this work, we connect the vector scheduling problem with
the generalized load balancing problem, and obtain new results
by applying existing results to each other. Besides showing that
generalized load balancing does not admit constant approximation
algorithms unless P = NP, we give the first non-trivial online al-
gorithm for vector scheduling. This online algorithm also provides
a better approximation bound to solve VS than the existing offline
polynomial time algorithm.
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