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I. Introduction

Sensor networks are used for a wide range of object
tracking applications, such as vehicle tracking in mil-
itary surveillance and wild animal tracking in habitat
monitoring [1]. These applications, by their nature,
enforce certain tracking quality and lifetime require-
ments. These two requirements, however, are two
conflicting optimization goals due to the stringent en-
ergy constraints of sensor nodes.

Full sensing coverage [2] is mandatory for sen-
sor monitoring applications that require either imme-
diate response to detected events or information of
all points in the sensing field. Full sensing cover-
age, however, is too restricted and expensive to sup-
port long-time monitoring applications. It gives lit-
tle leverage to tune object-tracking quality and battery
power consumption. A relaxed sensing coverage—
probabilistic coverage where any point in a sensing
field is sensed with a certain probability at any time—
is a more appropriate approach to balancing object-
tracking quality and battery power consumption.

Probabilistic coverage scheme allows sensor nodes
to periodically wake up and go back to sleep. A node
in sleep mode cannot sense events; its sensing capa-
bility is resumed after it wakes up. Therefore, the sen-
sor network provides only a fraction of the maximal
coverage of all the sensors. Battery power, however,
is conserved for the nodes in sleep mode. Our study
aims to characterize the interplay among the sensor
scheduling, tracking quality and power saving.

In this short paper, under probabilistic coverage,
we present a mathematical model to analyze object-
tracking quality with respect to various network con-
ditions and sensing scheduling schemes. We define
two metrics to assess object-tracking quality: the sen-
sor detection probability (DP), and the stealth distance
(SD), i.e., the distance that an object can traverse be-
fore being detected. Based on our model, we design a
set of power efficient sensing protocols. We validate
the correctness of our model and the effectiveness of
sensing scheduling protocols through extensive simu-
lations.

The contributions of our analytical model are three-

System Parameter Definition�
density of sensors�

sensing radius of a sensor� constant velocity of a motion object�
sensing period of sensors�

active ratio of sensors in
�

� 	
observation interval

Table 1: System modeling parameters

fold. (1) This analytical model gives solid and thor-
ough understanding about various protocols and pro-
vides insights into the pros and cons of each protocol.
Even if some protocols are not amenable to easy anal-
ysis, we can approximate them and incorporate many
of them into the model. (2) The analytical model helps
to plan a sensor network with certain object-tracking
quality requirements and power budget. It can pro-
vide accurate guidelines for optimal sensor network
deployment, and can also derive the necessary speed
of an object wanting to evade sensor detection. (3)
Aside from determining the parameters for sensing
scheduling protocols, the analytical model can direct
new sensing scheduling protocol design.

II. Object Tracking Metrics and As-
sumptions

We define the Detection Probability 
 � � � as the ex-
pected probability that an object is detected in a given
observation interval, and the Stealth Distance 
 � � �
as the average distance an object travels before it
is detected. Taking energy constraints into account,
we further define the Lifetime as the elapsed work-
ing time from system startup to the time when the
object-tracking quality requirement cannot be met if
live nodes continue sensing with their current periods,
and define the Maximum Working Time as the longest
possible working time of the system that satisfies the
object-tracking quality requirement.

We assume that sensors are randomly and indepen-
dently deployed in a field. A motion object passes
through with a negligible size considering the vast-
ness of the field. The parameters of a sensor network
are summarized in Table 1.
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III. Tracking Quality Analysis under
Different Schedules

In this section, we study random sensing schedules
and synchronized sensing schedules. In a random
sensing schedule, a node independently and randomly
chooses the starting time of its active interval � � in
a sensing period � ; while in a synchronized sensing
schedule, all nodes start their active interval � � si-
multaneously in every sensing period � .

III.A. Random Sensing Analysis

A random sensing schedule is a simple but usually ef-
ficient schedule due to its distributed nature. It can
serve as a baseline for analysis of and comparison to
other schedules.

(1) Detection probability:
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Figure 1: Three sensors in the active area of an object.

Consider a motion object that travels a distance of� � � 	 
� 
 � 	 
� � on � -axis during an interval � � . Define the
active area � � of this object as the oblong area in
Figure 1, including the rectangle area with a length of� � � and a width of � � , and the two half disks with
radius � attached to the rectangle. It can be seen that

� � � � � � � � � " $ � �
.
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Figure 2: The distance an object moves in one period.

Let � ' ( � * 
 , * . denote the detection probability of a
sensor located at ( � * 
 , * . in the active area within � � ,
and let / ( � * 
 , * . denote the intersecting length that the
object trajectory intersects the node’s sensing range.
According to Figure 2, we have � ' ( � * 
 , * . � � " 	3
when / ( � * 
 , * . 7 ( 9 : � . � � , and � ' ( � * 
 , * . � 9
when / ( � * 
 , * . ? ( 9 : � . � � , where � � C E G I J K I L� ,

/ ( � * 
 , * . � N P R ( � 	 
� 
 � U . : N Y � ( � � 	 
� 
 � � . , � � �
� * : ] � � : , * �

, and � U � � * " ] � � : , * �
.

Note that / ( � * 
 , * . � ` and � ' ( � * 
 , * . � ` when
( � * 
 , * . is outside the active area. The probability
that a single sensor detects this object within � � isab d e fg g j lm l o p I j r s uv w lm r s uv m l

b d y z I { p I | o z I } Denote ~ �

� � � � . The probability that there are � sensors in
the active area is � ' ( � . � � m � � � �� � 
 � � ` 
 9 
 � � � 
 � ,
while the probability that there exists � sensors in
the active area and at least one of them can detect
this object is � ' ( � � � � . � � m � � �� � � 9 : ( 9 : �� ' . � � .
Then we get � ' ( Y / / 
 ' Y R � . � � ��   ¢ � ' ( � � � � . �

� ��   ¢ � m � � � �� � � 9 : ( 9 : �� ' . � � � 9 : £ � � ¤3 ¥
. There-

fore, the expected probability that at least one sensor
detects this object is � ' ( Y / / 
 ' Y R � . � 9 : £ � � ¤3 ¥

.
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Figure 3: The integral area to calculate § � .

We consider an object moves with a high speed� that satisfies � � � ¨ � � and ( 9 : � . � � ¨
� � . For this object, the �� ' can be simplified asab d e ª « f¬ g g ­ ® ° j r s uv w lm r s uv m l o z I j lm l ² y z I { p I | o p I } Con-
sider a sensor ³ located at ( � * 
 , * . . Denote ´ ¢ �µ µ ¶ f / ( � * 
 , * . · � * · , * , and ´ � � µ µ ¶ ¸ / ( � * 
 , * . · � * · , * ,
where � ¢ is the circle on the left and � � is the area in
the middle of Figure 3. Due to the symmetry of the
integral area, we have j r s uv w lm r s uv m l o z I j lm l ² y z I { p I | o p I e

¹ º f « º ¸
} Solve the integrals, then we have � ´ ¢ " ´ � �

$ � � � � � . We can get �� ' � � " ¢
E

¶ ¶
L � 3 ( � ´ ¢ " ´ � . �

� " ½ ¾
¸ 	 


E � 	 
 � � ¾ ¿ ½ ¾
¸

L 3 , which is the expected detection
probability of a single sensor for this fast moving ob-
ject.

(2) Stealth distance: The � ' ( Y / / 
 ' Y R � . is a À � �
function that can be written in the form of � ' ( � Â � � . ,
where � is the point that the object is detected for the
first time, and � � can be viewed as a variable. Thus,

( 9 : À � � . ( � � . � � ' ( � ¨ � � . � £ � � ¤3 ¥
. Because

À � � ( � � . È 9 and ( 9 : À � � . ( � � . È ` exponentially
when � � È � , we have the expected detecting timeÊ ( � . � µ �Ë Í � � ( � � . � � � · � � � µ �Ë ( 9 : À � � . ( � � . · � � .
Therefore,

Ê ( � � . � µ �Ë £ � � ¤3 ¥ · � � . The stealth dis-
tance under a random sensing scheme is Î § �µ �Ë £ � � ¤3 ¥ · � , where � � � � � in �� ' .

(3) Sequential schedule and � -set schedule: Here
we assume � � 7 ( 9 : � . � � , and � � is constant. Let

� be a schedule with sensing period � � and ~ , where
� is a non-negative value. We randomly divide the
nodes into � equally-sized sets, and nodes in each set
are randomly distributed on the field. Consider a se-
quential schedule Ó , where nodes in P th set are active
only in the duration of

� ( P : 9 . � " R � � 
 P � " R � � . for
9 Â P Â � . In the P th set Î × , the detection probability
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is � � � � � � 	 � 
 � � � � � � �� � 
 � � � � ��  . Therefore,
� � � " $ $ � & � 
 � � � " $ $ � 	 � .

Consider a set-based schedule, in which we ran-
domly divide the nodes into ) sets � * � � + � , , , � � . . For
any set � � with density / � 1 , we assign a sensing pe-
riod 2 � � to it. Let � � � � � � denote the 4 � for the
nodes in set � � , we know that � � � � � � 
 � � � � 8 : ; < �= :  

.
Let � � � � � � be the probability that no node in � � de-
tects this object. If 8 @A @ B 8

C
A C B , , , B 8 �A � 
 � , then

� � � � � � 
 � � � � � � � � 
 � � 8 : ; < �= :  
. Thus, we have

� � � " $ $ � � " N O � 
 � � � S � � .

III.B. Synchronized Sensing Analysis

We introduce the synchronized sensing schedule that
has small standard variances on 4 � and � 4 .
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Figure 4: The active area in the synchronized sched-
ule.

(1) Detection probability: Denote V W 
 � � �
Z � [ � . According to Figure 4, during the interval

\ ] , the active area is & & � \ ] � 
 a c + � e & � � � Bh i k l
m � n� B o c [ Z \ ] , where e & � � � 
 V W q c + � s t

C
u B

o c + v w y z | ~ s t+ � when c � s t+ , and e & � � � 
 a c +
when c � s t+ . The expected detection probabil-
ity that at least one sensor detects this object under
the synchronized sensing scheme is � � � " $ $ � � � N � 


� � � � ; � , where 1 � 
 O , & & � \ ] � .
(2) Stealth distance: Under a synchronized sched-

ule, � 4 
 � �� < m k l
m � n � + � � � � n � � � m � �

C � k l
m � n n . When

Z 
 � � � � , nodes remain awake all the time and never

sleep, then � 4 
 � S � � �
C

+ � � .

III.C. System Lifetime and Maximum
Working Time

Let   be the continuous working time of a single
node, and all nodes have the same   . Under the ran-
dom schedule and the synchronized schedule, the sys-
tem lifetime is ¡   
 £ � .

Consider a simple random sensing schedule, where
all nodes have identical sensing periods and only wake
up once in one sensing period. In this schedule, the
total energy consumption rate that meets the required
tracking quality is N Z , where N is the total number of
nodes. For the N -set schedule, consider the ¥ th node

in all N nodes, where � ¦ ¥ ¦ N , its energy consump-
tion rate is � � � 
 � �� : . The total energy consump-

tion rate is ¨ �� © * �
� � � :� � 
 N Z . In a summary, with

the same 4 � requirement, the two schedules have the
same energy consumption rate, and hence, have the
same maximum working time.

III.D. Analytical Results and Simulation
Validations

metric
« � ¬ � ­ � ® i � ¯ � ° �

� ¯ � � � � � �
� � � � � � �

Table 2: 	 � and � 	 change when parameters increase.

In our simulation experiments, we generated a large
square field. We plot both analytical curves and sim-
ulation results under different combinations of six pa-
rameters as shown in Figures 5, 6, and 7, respec-
tively. Our observations are summarized as follows.
(1) The simulation results match the analytical curves
well, which validates the correctness of our deriva-
tions. (2) 4 � monotonously increases, and � 4
monotonously decreases with the increase of the pa-
rameters, as shown in Table 2. (3) The random sched-
ule outperforms the synchronized schedule on both

4 � and � 4 , as shown in Figure 7. (4) The stealth
distance distributions have long tails: most stealth dis-
tances are short, while a few are long. The worst case
of � 4 in the random schedule is longer than that of
the synchronized schedule.

IV. Design, Analysis, and Evaluation
of Power Efficient Algorithms

In this section, we design three practical sensing pro-
tocols given a fixed Z � .

(1) Global Random Schedule (GRS): The global
density

O
is known to all sensors. Each node calcu-

lates the maximum sensing period � � ] 8 that satisfies
the DP requirement, then senses the field with � � ] 8 .

(2) Localized Asynchronous Schedule (LAS): Every
node computes its local node density

O
² individually,

and uses
O

² to compute the maximum period � � ] 8that meets the object-tracking quality requirement as
its sensing period.

(3) Power-Aware Asynchronous Schedule (PAAS):
Given the sum of the power capacities

³ 
 ¨ � � © * ³ � ,
we can schedule a node that has a capacity

³ � with a
sensing period

�
�

� : � .
We denote   � as the time when the ¥ th node runs out

of its power. In GRS, all nodes have the same sens-
ing period � . Denote � � 
 � �� , then   * � � c � � 
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Figure 5: � � changes under the
random schedule when varying
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Figure 10: � � decreases when time
passes.
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, there-
fore 5 = 3 � � � 8 D 5 = 3 � @ @ � 8 . In other words, PAAS
has a larger first failure time than GRS.

We evaluate these protocols through simulations
with the same setup as that in Section III.D. The re-
sults are shown in Figures 8, 9, and 10, respectively.
Every data point in the figures is obtained by aver-
aging hundreds of trajectory runs. In Figure 9, each
node’s energy is � 
 
 &

� 
 ( F H , where H follows a uni-
form distribution in

I J � 
 � &
� 
 ( � � 
 � &

� 
 ( M . Note that
" is the radio communication range of a node.

Based on our simulation results, we observe that:
(1) GRS, LAS and PAAS can achieve the same DP at
the beginning. (2) The first failure time and the last
failure time of PAAS are the same; by contrast, GRS
and LAS have smaller first failure times and larger last
failure times. (3) PAAS has a longer system lifetime
than GRS and LAS. (4) The DP degradation curves
of GRS and LAS are exponential. The reason is that
for a sensor whose energy is uniformly distributed inI � � &

� 
 ( M , the DP at time 	 is � � 3 	 8 � � J H R S T U V WX Y
,

where Z 3 	 8 � Z \ J � 	 , � is the death rate, and Z \ is
the initial sensor density. Thus, � � 3 	 8 � � J H S _ WX Y `

H �
U WX Y

.

V. Conclusion

Balancing object-tracking quality and network life-
time is a challenging task in sensor networks. Under
probabilistic coverage, we present an analytical model
to investigate object-tracking quality with respect to
various network conditions and sensing scheduling
protocols. The analytical model gives us solid and
thorough understanding on how to maintain object-
tracking quality, and on how to provide optimal sensor
deployment and conserve power consumption. Based
on the model, we design three power efficient sensing
protocols. The correctness of our model and the ef-
fectiveness of the proposed scheduling protocols are
justified through extensive simulation experiments.
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