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ABSTRACT
Outlier detection has many important applications in sen-
sor networks, e.g., abnormal event detection, animal behav-
ior change, etc. It is a difficult problem since global infor-
mation about data distributions must be known to identify
outliers. In this paper, we use a histogram-based method
for outlier detection to reduce communication cost. Rather
than collecting all the data in one location for centralized
processing, we propose collecting hints (in the form of a his-
togram) about the data distribution, and using the hints to
filter out unnecessary data and identify potential outliers.
We show that this method can be used for detecting outliers
in terms of two different definitions. Our simulation results
show that the histogram method can dramatically reduce
the communication cost.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; C.2.4 [Computer-Communications Net-
works]: Distributed Systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Data Mining, Histogram, Outlier Detection, Wireless Sensor
Networks

1. INTRODUCTION
Sensor networks will be deployed in buildings, cars, and

the environment, for monitoring health, traffic, machine sta-
tus, weather, pollution, surveillance, and so on. It is likely
that they will be in use for a long time, generating a large
amount of data. Mining this large data repository for useful
information will be crucial.

In a simple solution, data collected by sensors can be
transmitted to the sink for data mining analysis. This method,
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however, consumes too much energy because the data vol-
ume can be extremely large. The batteries of the sensors
will be depleted very quickly leading to network partition
and dysfunction. A good method should require little data
transmission, but still achieve information extraction from
the large amount of data distributed over the network.

In this paper, we consider a very important data min-
ing problem: outlier detection, which defines a process to
identify data points that are very different from the rest of
the data based on a certain measure. Outlier detection in
a central database has been a hot topic in the data mining
community, but little work has been done in the context of
a sensor network in which data are distributed over thou-
sands or tens of thousands of sensors. Outlier detection in
sensor network is needed in many applications that monitor
abnormal behaviors, measurements, and events. For exam-
ple, a sensor network, embedded in a highway bridge around
beams or columns for detailed building structural monitor-
ing, can give early warning of any structural weakness or
deterioration, reducing the chance of unexpected failures.
Outlier detection helps pinpoint the accurate locations of the
weakening parts, especially in the early stage of the prob-
lem development. Chemical sensors deployed in the environ-
ment to monitor toxic spills and nuclear incidents gather the
chemical data periodically. Outlier detection can trigger the
alarm and locate the source when abnormal data are gener-
ated. Habitat monitoring for endangered species is another
application in which animals will be attached with small
non-intrusive sensors. Outlier detection indicating abnor-
mal behaviors suggests closer observation of an individual
animal and maybe more human interactions.

The outlier detection problem addressed in this paper is
different from the local outlier detection used in many event
detection applications, e.g., vehicle tracking, surveillance
monitoring, and so on. Local outlier detection concerns
about the abnormal sensor readings in local proximity, which
are easy to locate by aggregating data collected by nearby
sensors. In this paper, we mainly consider that data are
governed by parameters other than locality. More precisely,
we aim to find global outliers over the data collected by all
sensors, which demands global information about the whole
network. For example, in order to determine if a data point
on a sensor is an outlier, all sensors that may be distributed
remotely but have similar readings must be examined. This
requirement is extremely harsh for sensor networks since in-
formation aggregation over the entire network is costly due
to the network-wide transmission. The critical information
in this process is about the data distribution in the network.

219



In this paper, instead of accumulating all data to the sink
for analysis, we extract hints from the network with less
information transmitted. We use a histogram to abstract
the data distribution. Relevant methods appear in deviant
detection for time series database in [18] and [12]. In order to
obtain more precise information about the data distribution,
we refine the histogram by using a smaller bucket width. We
mathematically evaluate the benefit of reducing the bucket
width or dredging up the raw data from the network. We
consider two definitions of an outlier, which are both based
on the distance between a data point and its k-th nearest
neighbor. One is defined by a fixed threshold distance [13],
and the other is based on the rank among all data points [20].

We make the following contributions in this paper. (1) We
study outlier detection in the context of sensor networks. To
the best of our knowledge, we propose the first histogram-
based detection approach to identify distance-based out-
liers over sensor networks. (2) We use the histogram-based
method to approximate the sensor data distribution and re-
duce the communication cost under two different detection
schemes. We give theoretical analysis for the communication
cost incurred in the network. (3) We use a histogram refine-
ment technique for some critical portion of data distribution
to gain more information about outliers, and a probabilis-
tic method to estimate the benefit of reducing the bucket
width, thus further reducing the communication cost. (4)
Our simulation results based on real data collected by Intel
demonstrate that our approaches for outlier detection re-
duce the communication cost dramatically compared with
the centralized scheme.

Our schemes can also be extended to support online out-
lier detection, because histogram information can be accu-
mulated along time. After obtaining an initial histogram,
the sink can update the histogram periodically, while each
sensor only reports the necessary histogram changes due to
the newly generated data. In addition, we believe that the
techniques used in this paper will benefit many other data
mining problems in sensor networks, such as data clustering
and object classification.

2. RELATED WORK
Outlier detection has been well studied in the database

research community ([20, 13, 5, 15, 4, 7, 14, 3]) and there
are several different definitions of outliers in the literature.
This paper considers two popular distance-based definitions
proposed in [13] and [20], where outliers are identified by ex-
amining data points’ nearest neighbors. One major research
goal of this problem in the database community is to effi-
ciently detect outliers in a large-scale database ([13, 20, 14]
and [5]). In sensor networks, however, data are generated
by scattered nodes and transferred via wireless channels.
The proposed approaches in the previous work can not be
directly applied unless all data are gathered at one node,
which is very costly in transmission. Another hot spot for
database researchers is high dimensional outlier detection
([3, 4, 15] and [2]). This issue is not covered in this paper,
because sensor networks usually only generate low dimen-
sional data, and different attributes, such as temperature
and sound, may not be correlated to define outliers, thus
can be considered separately as one-dimensional data.

Sensor networks are often treated as databases and SQL
queries are common ways to collect data ([17] and [9]). A
lot of research work ([16, 11, 8, 23, 22, 21, 10]) has been pro-

posed to handle different types of queries efficiently. How-
ever, the distance-based outlier detection has been seldom
discussed in this area. As close work, T. Palpanas et. al. [19]
study a model-based outlier detection in sensor networks.
Normal behaviors are first characterized by predictive mod-
els and outliers are detected as the deviations. In [6], J.
Branch et. al. propose an in-network scheme for detecting
outliers based on data exchanges among neighbors. How-
ever, their goal is to reveal outliers to every sensor and the
cost is very expensive for common parameter settings in the
database literature. In a recent paper [24], S. Subramaniam
et. al. present an online outlier detection scheme for sensor
networks. Every sensor keeps a sliding window of the his-
toric data and estimates the data distribution to detect the
outliers. This method, however, consumes a lot of memory
space and may not find all outliers.

In the first part of this paper, queries of detecting out-
liers have a similar form as general range queries. Previous
work in [16] and [11] has provided typical models, in which
users can easily specify a range query and obtain the result
in an efficient and reliable way. On the other hand, top-k
query ([22] and [25]) and order statistical query ([21] and
[10]) are similar to finding the rank-based outliers, which is
discussed in the latter part of this paper. However, none of
these approaches is applicable to our problem, because the
range parameter and the order of data in our problem do not
depend on the data value, but the distance to neighboring
data points. In addition, our problem requires outliers to be
exactly returned without approximation.

3. PROBLEM FORMULATION
An outlier represents a data point that is very different

from the others. It has been defined in different ways in the
database literature. In this paper, we consider two popular
definitions based on distance, which is defined as the the
absolute difference between two data points. For each data
point p, we can sort all the rest of the data points according
to their distances to p in an ascending order. Suppose the
sorted list is p1, p2, · · · , pk, · · · . We have |p1−p| ≤ |p2−p| ≤
· · · ≤ |pk − p| ≤ · · · . Let Dk(p) = |pk − p| represent the
distance between data point p and its k-th nearest neighbor
(KNN) (pk). We can define two types of outliers as follows:

Definition 1. A data point p is called an O(d, k) outlier
if Dk(p) ≥ d.

Definition 2. A data point p is called an O(n, k) outlier
if there are no more than n−1 other data points q, such that

Dk(q) > Dk(p).

We are particularly interested in outlier detection in a
sensor network composed of N sensors. The sensor network
monitors the environment or any object and periodically
generates data. Among all the data generated by the sen-
sors, we would like to find all the outliers. We assume that a
routing tree rooted at the sink has been constructed by us-
ing some simple routing algorithm, in which each sensor is
linked to an up-stream and a down-stream node. An outlier
detection algorithm will be built on this underlying commu-
nication tree. Depending on the choices of outliers, we aim
to design algorithms to respond to a query for outliers with
parameters d and k for Definition 1 or n and k for Definition
2.
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It is possible that the tree topology might be broken or
updated due to the wireless link failures. This paper con-
siders a common practice that, when building the tree, only
stable links are selected such that errors in transmission due
to poor link quality can be reduced and the tree topology
can be robust for a long time. We also assume that the
communication cost of sending a packet between two nodes
with a direct link is proportional to the packet size. For easy
exposition, we make an assumption that each data point is
represented as an integer with precision to the last digit. It
is easy to transform any real data to this format, e.g., 12.34
will be converted to 1234 for precision 0.01. Our algorithms
focus on the data points and return all the outliers, although
many applications may require the algorithm to return the
sensor ID or location of the outliers. An easy solution is,
after running our algorithm and obtaining all the outliers,
to let the sink diffuse the outlier data points to the sensor
network so that the sensors holding the outlier data points
will reply with their IDs or locations.

As mentioned earlier, in a naive solution, we may col-
lect data from all sensors to the sink for analysis. We call
this method the centralized scheme, which is not feasible
in practice because transferring a large amount of data is
very costly in sensor networks. In Sections 5 and 6, we will
introduce energy-efficient algorithms to identify outliers in
sensor networks. In Section 7, we will compare our solutions
with the centralized scheme and show the difference of the
performance.

4. HISTOGRAM QUERY
In this section, we introduce the motivation of using the

histogram information in finding outliers. We observe that
both definitions are based on the value of Dk(p), the distance
between p and its KNN. In the following, we show that the
histogram provides useful information to estimate Dk(p) for
each data point p, which helps identify outliers.

In this paper, we use the equi-width histogram, because
it is easy to aggregate equi-width histogram in sensor net-
works. We assume that the value range for all data points
is uniformly divided into buckets with width w, and each
bucket is assigned an ID, consecutively from 1 to the number
of buckets. We define bucket i by a value range [mini, maxi),
thus w = maxi−mini and mini = maxi−1. After collecting
the histogram, the sink will know the total number of data
points in each bucket i, indicated by fi. For any data point
p in bucket i, we can estimate the bounds on Dk(p) based
on the histogram information. The following theorems aim
to find a pair of values li and ui for any bucket i, such that
∀p in bucket i, Dk(p) ∈ (li, ui].

Theorem 1. If fi > k, then li = 0 and ui = w − 1 are

lower and upper bounds for Dk(p), where p is any data point

in bucket i.

D  (p)
k

D  (p)
k

p+w−1pp−w+1

Figure 1: Bounds on Dk(p) in Theorem 1

Proof. We prove it by contradiction. Referring to Fig. 1,
assume there exists a data point p in bucket i, such that

Dk(p) > w − 1. Let Q = {x|x ∈ (p − Dk(p), p + Dk(p))}.
On one hand, according to the definition of Dk(p), |Q| ≤ k.
On the other hand,

D
k(p) > w − 1

⇒ (p−D
k(p), p + D

k(p)) ⊇ [p− w + 1, p + w − 1],

which means Q must include all data points in bucket i.
Thus, |Q| ≥ fi > k. There is a contradiction of |Q|.

Theorem 2. We define a function

F (t, i) =

i+t
X

j=i−t

fj .

If fi ≤ k, we can find an integer s ≥ 0, such that F (s, i) ≤ k

and F (s+1, i) > k. Then, li = s ·w and ui = (s+2) ·w−1,

are the lower and upper bounds for Dk(p), where p is any

data point in bucket i.

The proof is similar to Theorem 1 and omitted due to the
page limit. As shown above, the histogram information
helps us derive lower and upper bounds on Dk(p) for any
data point p. We will utilize these theorems in our outlier
detection schemes.

5. OUTLIER DETECTION FOR O(d, k)

In this section, we propose a histogram-based protocol for
detecting outliers defined by Definition 1. Our approach in-
cludes two stages. In the first stage, we divide the data value
range into uniform buckets and collect equi-width histogram
information. The histogram provides us with useful informa-
tion to identify some data points as outliers or non-outliers.
However, the histogram information may not be sufficient to
identify every data point. We call those data points poten-

tial outliers if they cannot be identified by the histogram. In
the second stage, the sink gathers the potential outliers from
the sensor network and checks the distance to the KNN for
each of them. Eventually, the sink will identify all outliers.

In the following, we introduce a basic scheme which uses
a single-round histogram information collection and an en-
hanced scheme which refines the histogram through multiple-
round histogram collections.

5.1 Basic Scheme
In this section, we present a basic scheme for O(d, k) out-

lier detection with a single-round of histogram collection.

5.1.1 Obtain vmin and vmax

In the first step, the sink queries for the minimum and
maximum data values in the sensor network in order to cal-
culate the value range. Let vmin and vmax be the minimum
and maximum values received by the sink. In this step, every
sensor sends at most log(vmin · vmax) bits of information.

5.1.2 Collect Histogram
In the second step, the sink collects the histogram from

the sensor network. To obtain the histogram, every sensor
and the sink have to agree on the same bucket partition,
which can be specified by the bucket width w and the value
range [vmin, vmax + 1). For an easy exposition, we fix the
bucket width w to d. We will explain why we set this width
rather than other values in the next sub-section. In this step,
the sink diffuses a query including d, vmin and vmax as well
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as the other parameter k to the sensor network. Every non-
leaf node sends log(k · d · vmax · vmin) bits of information to
forward the query down to its children. Let l be the width of
[vmin, vmax+1) defined as l = vmax−vmin+1. Sensors divide
the value range [vmin, vmax + 1) into ⌈ l

d
⌉ uniform buckets

with width d after they receive the histogram query, i.e., the
ith bucket is defined by [vmin+(i−1)·d, vmin+i·d). Starting
from the leaf nodes, each sensor aggregates the number of
data points in each bucket from all its descendants. Let g

j
i be

the number of data points generated by sensor j in bucket i,
and f

j
i be the histogram summary of bucket i sent by sensor

j. For a leaf node j, f
j
i = g

j
i . For a non-leaf node j, assume

it receives summaries from its children c1, c2, · · · . All these
summaries are aggregated as well as its own summary,

f
j
i ⇐ g

j
i + f

c1
i + f

c2
i + · · · .

Finally, the aggregated number of data points in each bucket
is forwarded to j’s parent. In this step, we do not have
to maintain the exact histogram as long as we can apply
Theorems 1 and 2 later. Therefore, if f

j
i > k + 1, we will

reset it as k + 1 in order to reduce the communication cost.
In this way, every node transfers at most ⌈ l

d
⌉ · log(k+1) bits

of data back and the sink finally obtains the value of fi.

5.1.3 Collect Outliers and Potential Outliers
In the third step, the sink applies Theorem 1 and Theo-

rem 2 on every bucket i based on fi to assign li and ui. If ui

is set by Theorem 1, we will get ui = w−1 < d. On the other
hand, if li is set by Theorem 2 and greater than 0, we must
have li = sw ≥ d. Based on the definition of O(d, k), the
sink analyzes the received histogram information as follows:

• Case 1: If ui < d, all data points in bucket i are non-
outliers and bucket i is called a non-outlier bucket;

• Case 2: If li ≥ d, all data points in bucket i are outliers
and bucket i is called an outlier bucket;

• Case 3: Otherwise, bucket i is called a potential outlier

bucket and the data points in it are called potential

outliers.

As we mentioned earlier, w can be set to other values. If
w > d, however, Theorem 1 will not help us identify non-
outlier buckets, because there is no derivation from ui =
w− 1 to ui < d. If w < d, on the other hand, we will obtain
more detailed information and identify more outlier buckets.
However, as we will analyze later, smaller bucket incurs more
communication cost and we will probably miss some non-
outlier buckets. Therefore, without any prior knowledge of
the data, d is a conservative value for w to achieve good
performance.

The non-outliers identified in case 1 can be ignored, be-
cause they should not be returned in the result. For case 2,
the sink can send another query to indicate the outlier buck-
ets and collect all the identified outliers from every sensor.
To process the potential outliers in case 3, we use a simple
method to first obtain all potential outliers and then, in the
next step (explained in Section 5.1.4), find the distance to
their individual KNNs to determine whether each potential
outlier is actually an outlier or not.

Considering all three cases above, the sink diffuses a query,
which includes a vector of length ⌈ l

d
⌉, {q1q2 . . . q⌈ l

d
⌉}, where

qi is a one-bit flag satisfying

qi =



0 if bucket i is a non-outlier bucket;
1 otherwise.

In another word, qi = 1 indicates that all data points in
bucket i need to be returned, because they are either outliers
or potential outliers. After receiving this query, every sensor
will look up its own data set and return all data points in the
marked buckets along the routing tree. The query diffusion
cost for each non-leaf sensor is ⌈ l

d
⌉ bits. However, the cost of

collecting potential data depends on the histogram obtained
in the previous steps. Suppose No is the number of the
identified outliers and Npo is the number of the potential
outliers. Thus, the number of data points we need collect in
this step is No +Npo. We assume the communication cost is
proportional to the data size and the distance between the
sender and receiver. Therefore, the cost of collecting data
in this step is estimated as

(No + Npo) · log vmax · avgDist,

where avgDist is the average hop distance between the sink
and sensors.

5.1.4 Diffuse Potential Outliers and Count the Num-
ber of Neighbors within d

In the last step, the sink first combs through the col-
lected data points in the potential outlier buckets. Some
data points may be identified immediately as outliers or
non-outliers because the collected data points may give such
information. For example, data points in a potential out-
lier bucket will be identified if the data points in the two
neighboring buckets are also collected. Unfortunately, there
are still some data points that could not be identified as
either outliers or non-outliers. The sink sends those remain-
ing potential outliers to the sensor network in order to find
the actual outliers among them. The query is formed as
{p1, p2, . . . , }, which is the list of all the remaining potential
outliers. Every sensor will forward the query to its chil-
dren until the query reaches the leaf nodes. To answer such
a range query, starting from the leaf nodes, every sensor
sends a vector of summaries, one for each data point, to its
parent, {f ′

1, f
′
2, . . . , }, where f ′

i is the number of the data
points within [pi − d, pi + d], i.e., the number of pi’s neigh-
bors within distance d. A non-leaf sensor will sum up the
summaries from its children as well as the summary of its
own data set and forward the aggregated summaries to its
parent. Similar to the second step, if f ′

i > k + 1, we will
reset it to k + 1.

This step can be optimized by filtering out some unnec-
essary diffusion at each node based on the histogram ob-
tained previously. For example, consider a potential outlier
p, which belongs to bucket i = ⌈ p−vmin+1

d
⌉. If a sensor j

finds f
j
i−1 + f

j
i+1 = 0, according to the previous histogram,

there is no need to diffuse pi to its children, because all pos-
sible neighbors of pi in the subtree rooted at this sensor are
in bucket j, so we can immediately set the summary for p

to f
j
i .

Eventually, the sink receives a value for each potential
outlier, which represents the number of data points within
distance d of pi. We may simply scan the summary list and
determine whether the ith potential outlier is actually an
outlier by examining if f ′

i ≤ k.
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In this step, we first diffuse all the collected potential out-
liers to every sensor. The diffusion cost is at most Nnl ·Npo ·
log vmax, where Nnl is the number of non-leaf nodes. And
the cost of transferring the return summaries is bounded by
N ·Npo · log(k+1). To summarize, the total cost of the basic
scheme, denoted by Cbasic, is estimated as

Cbasic = N · log(vmin · vmax)

+Nnl · log(k · d · vmin · vmax) + N · ⌈
l

d
⌉ · log(k + 1)

+Nnl · ⌈
l

d
⌉+ (No + Npo) · log vmax · avgDist

+Nnl ·Npo · log vmax + N ·Npo · log(k + 1). (1)

5.2 Enhanced Scheme
A drawback of the basic scheme is that if there are many

potential outliers, i.e., Npo in Eq.(1) is very large, collecting
and diffusing them will incur a large communication cost.
In this section, we propose an enhanced scheme that refines
some of the histogram before we query for the potential out-
liers. We hope that more rounds of histogram queries can
help us prune out more data points, i.e., the number of po-
tential outliers can be further reduced. In the following, our
enhanced scheme only considers at most one extra round of
histogram collection. The algorithm and analysis, however,
can be used for more rounds of histogram collection in the
same manner.

The first two steps of the enhanced scheme are quite sim-
ilar to the basic scheme. After receiving the histogram in
step 2, however, the sink has two options. First, the sink
can follow step 3 in the basic scheme, collecting the poten-
tial outliers. In the other option, the sink can send a query
for another histogram with a new bucket width w = d′ < d

and then continue step 3 in the basic scheme. One more
histogram with a smaller bucket width leads to more accu-
rate information that helps to reduce ambiguous potential
outliers. However, collecting more detailed histogram incurs
extra communication cost. Thus, we need to determine if re-
fining histogram is worthwhile and if so what is the appro-
priate bucket width for the new query. According to Eq.(1),
if we do not query for more histogram, the estimated cost
of the remaining steps, denoted by Cost′, is

Cost
′ = Nnl · ⌈

l

d
⌉+ (No + Npo) · log vmax · avgDist

+Nnl ·Npo · log vmax + N ·Npo · log(k + 1). (2)

In the following, we analyze the cost of collecting more his-
togram and propose an algorithm to determine the optimal
value of the new width d′. The minimum cost will be com-
pared with Cost′ to determine which option is better.

In this enhanced scheme, we keep the first two steps of
the basic scheme with the following changes:

• In the first step, besides vmin and vmax, the sink also
queries for the total hop distance to the sink and the
number of non-leaf nodes. These two values can be
aggregated at each node and we use tolDist and Nnl to
represent the results received by the sink respectively.

• In the second step of collecting the histogram, the up-
per limit of data points count f

j
i is set to k · d, instead

of k + 1. We will explain it in the analysis later.

After step 2, we set avgDist = tolDist
N

and estimate Cost′

as defined in Eq.(2).

Next, we estimate the cost after step 2 if we send one
more histogram query. Essentially, the extra round of his-
togram query only targets at potential outlier buckets as
well as their related neighboring buckets. Assume the new
bucket width is set to d′ = d

B
for the next round of his-

togram query. To reuse the previously collected histogram
information, we choose B to be an integer. The query sent
by the sink includes B and a vector of bits which mark the
potential outlier buckets identified by Theorems 1 and 2,
{B, q1q2 . . . q⌈ l

d
⌉}, where qi = 1 if bucket i is a potential

outlier bucket. Thus, the cost of query diffusion is Nnl ·
(log B + ⌈ l

d
⌉). After receiving the query message, each sen-

sor will know the new bucket width d′ and the potential
outlier buckets. The sensors divide each of potential out-
lier buckets and their neighboring buckets into B uniform
sub-buckets. Similarly, every sensor generates a histogram
for the new sub-buckets. This information is aggregated
bottom-up along the routing tree and finally reaches the
sink. One optimization that each sensor can apply is to
transfer the first B − 1 summaries for each target bucket i

instead of B summaries, because its parent already knows
the total number of data points in bucket i, the last summary
can be derived from the available information. The number
of buckets involved in the reply can be easily counted as
follows:

for i = 1 to ⌈ l
d
⌉ do

if qi−1 + qi + qi+1 > 0 then Count← Count + 1.

In the return stage, each sensor transfers at most B ·
Count · log(k + 1) bits of information. Therefore, the to-
tal cost of querying and collecting the refined histogram is

Nnl · (log B + ⌈
l

d
⌉) + N · B · Count · log(k + 1). (3)

Assume after obtaining more histogram information, we
identify ENo outliers and ENpo potential outliers. Follow-
ing step 3 in the basic scheme, we need collect outlier data
and further check potential outliers. Similar to Eq.(2), the
estimated cost of the remaining steps is,

Nnl · ⌈
l

d
⌉+ (ENo + ENpo) · log vmax · avgDist

+ Nnl · ENpo · log vmax + N ·ENpo · log(k + 1). (4)

Therefore, the total cost incurred by refining histogram
and its consequence after step 2 is estimated as

Cost(d′) = Eq.(3)+Eq.(4).

In this problem, we aim to find the optimal d′ such that
Cost(d′) is minimized and compare it with Cost′ to decide
if refining histogram is worthwhile.

In order to calculate Cost(d′), we first estimate ENo and
ENno in Eq.(4) based on the histogram information col-
lected in step 2. We assume that data are randomly dis-
tributed in each bucket. Let us take a close look at a poten-
tial outlier bucket i. After the refined histogram query, we
will get B summaries for bucket i as well as bucket i−1 and
i + 1. Each new summary is responsible for a sub-bucket of
the original buckets. Let us label the jth sub-bucket of the
original bucket i as bucket b(i−1)B+j . Let f ′

j′ be the number
of data points in sub-bucket bj′ . In the following, we esti-
mate the probabilities that a sub-bucket j′ is a non-outlier
bucket or outlier bucket, indicated by Pno(j

′) and Po(j
′)

respectively. The probability of being a potential outlier
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bucket is 1−Pno(j
′)−Po(j

′). Thus, ENo and ENpo can be
derived as

ENo =
X

bj′

f
′
j′Po(j

′),

ENpo =
X

bj′

f
′
j′(1− Pno(j

′)− Po(j
′)).

To ensure b(i−1)B+j(1 ≤ j ≤ B) is a non-outlier bucket,
we must have

(i−1)B+j+B−1
X

q=(i−1)B+j−B+1

f
′
q > k.

As illustrated in Fig. 2, the left side can be derived as

iB+j−1
X

q=(i−2)B+j+1

f
′
q = fi +

(i−1)B
X

q=(i−2)B+j+1

f
′
q +

iB+j−1
X

q=iB+1

f
′
q .

Thus, a sub-bucket b(i−1)B+j is a non-outlier bucket if

(i−1)B
X

q=(i−2)B+j+1

f
′
q +

iB+j−1
X

q=iB+1

f
′
q > k − fi.

Let a be the first term (the number of the data points in the
rightmost B − j sub-buckets of bucket i − 1) and b be the
second term (the number of the data points in the leftmost
j − 1 sub-buckets of bucket i + 1). Thus, Pno((i− 1)B + j)
is the probability that a + b > k − fi. We define a func-
tion P (x, y, z) to be the probability that the number of data
points in the leftmost or rightmost y sub-buckets of bucket x

is z. Based on the assumption of random data distribution
in every bucket,

P (x, y, z) =

„

fx

z

«

(
y

B
)z(

B − y

B
)fx−z

.

Thus, Pno((i− 1)B + j) can be calculated as

fi−1
X

a=0

(P (i− 1, B − j, a) ·

fi+1
X

b=k−fi−a+1

P (i + 1, j − 1, b)).

��
��
��
��

B−j j j−1

d

Bucket i−1 Bucket i Bucket i+1

... ... ... ... ... ...

d

Figure 2: Data involved in identifying a non-outlier
sub-bucket

On the other hand, we can claim that b(i−1)B+j is an
outlier bucket if the following condition is satisfied:

(i−1)B+j+B
X

q=(i−1)B+j−B

f
′
q ≤ k.

By similar analysis as above, it becomes

(i−1)B
X

q=(i−2)B+j

f
′
q +

iB+j
X

q=iB+1

f
′
q ≤ k − fi,

as shown in Fig. 3. Let a be the first term and b be the

d

d

��
��
��
��

j

Bucket i−1 Bucket i Bucket i+1

... ... ... ... ... ...
jB−j+1

Figure 3: Data involved in identifying an outlier sub-
bucket

second term. Then, Po((i− 1)B + j) can be calculated as

fi−1
X

a=0

(P (i− 1, B − j + 1, a) ·

k−fi−a
X

b=0

P (i + 1, j, b)).

Besides the above analysis, we use a short-cut estima-
tion if a potential bucket i’s neighboring buckets reach the
histogram limit k · d. Assume fi+1 = k · d, expectedly, the
frequency of each value in bucket i+1 is k. Thus, every data
point in bucket i has a high probability to be a non-outlier.
For such a bucket i, we skip the probabilistic analysis and
directly increase ENo by fi.

Algorithm 1 determines the optimal bucket width d′ for
the second round of histogram query. Initially, we scan every
bucket and use an array M to mark the potential outlier
buckets,

M [i] =



1 if bucket i is a potential outlier bucket;
0 otherwise.

The algorithm is constructed by two embedded loops. In the
outer loop (lines 7–22), we try different bucket width d′ = d

B

by testing all possible B. For each B, we estimate the cost
incurred by this round of refined query and the subsequent
steps for raw data collection. The optimal width yields the
minimum value of Cost, which is tracked by the variables
optB and min in Algorithm 1. If the final value of min is no
less than Cost′, there is no need to conduct an extra round
of histogram query. Otherwise, we set d′ = d

optB
and do the

refined histogram query.
The inner loop of this algorithm (lines 9–17) checks every

bucket to estimate the cost. There will be B subbuckets for
each requested bucket and reporting a histogram of them
needs B log(k + 1) bits of data. A bucket i will be involved
only if it is a potential outlier bucket or one of its neighbor-
ing buckets is a potential outlier bucket. Additionally, ENo

and ENpo are accumulated in the inner loop when checking
potential outlier buckets.

The implementations of EstNO and EstO used in Algo-
rithm 1 have similar structures. Due to the page limit, we
only show EstNO(B, i) in Algorithm 2 as an instance for ex-
planation. Basically, for every sub-bucket, we calculate its
probability of being a non-outlier bucket. The loop variable
j set from 2 to B − 1 is the index of sub-buckets. The first
and last sub-buckets are special cases, which will be han-
dled later (lines 16–21). For each sub-bucket j, q1 is the
probability that a data point in bucket i − 1 resides in the
rightmost B − j sub-buckets of bucket i − 1 and q2 is the
probability that a data point in bucket i + 1 is within the
leftmost j−1 sub-buckets of bucket i+1. In this algorithm,
a represents the number of data points in the rightmost B−j

sub-buckets of bucket i−1 and b is the number of data points
in the rightmost j − 1 sub-buckets of bucket i + 1. We enu-
merate all possible combinations of a and b, which satisfy
a+b > k−fi, and calculate the probabilities for values a and
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Algorithm 1 Find the Optimal Bucket Width

1: for i = 1 to ⌈ l
d
⌉ do

2: if fi ≤ k and fi−1 + fi + fi+1 > k then
3: M [i] = 1, Npo = Npo + fi

4: end if
5: end for
6: min = Cost′ = Eq.(2)
7: for B = 2 to d do
8: Cost = N · (log B+⌈ l

d
)⌉

9: for i = 1 to ⌈ l
d
⌉ do

10: if M [i− 1] + M [i] + M [i + 1] > 0 then
11: Cost = Cost + N · (B − 1) log(k + 1)
12: end if
13: if M [i] = 1 then
14: e = EstO(B, i), ENo = ENo + e

15: ENpo = ENpo + fi − EstNO(B, i)− e

16: end if
17: end for
18: Cost = Cost + ENo · avgDist · log vmax + ENpo ·

(avgDist · log vmax + Nnl · log vmax + N · log(k + 1))
19: if Cost < min then
20: optB = B, min = Cost

21: end if
22: end for
23: if min = Cost′ then
24: there is no need for more histogram query
25: else
26: d′ = d

optB

27: end if

b, indicated by p1 and p2 respectively. The sum of p1p2 for
all possible cases becomes the probability that sub-bucket j

is a non-outlier bucket. This value is recorded in variable
p. On average, there are fi

B
data points in sub-bucket j, so

p
fi

B
is the expected number of non-outliers in sub-bucket j.

After checking every bucket, we store the total number of
non-outliers in r and return it as the result.

6. OUTLIER DETECTION FOR O(n, k)

In this section, we present a solution to detect the outliers
defined by Definition 2. Given k and n, we sort all data
points according to the distances to their KNNs. Let the
sorted points be p1, p2, . . . , where Dk(pi) ≥ Dk(pj) for i < j.
The first n data points, p1, . . . , pn, are all the O(n, k) outliers
we are looking for.

Our approach is still based on equi-width histogram. The
sink sends histogram queries for multiple iterations and tries
to find a suitable cut-off value c that separates Dk(pn) and
Dk(pn+1). The histogram collected in each iteration gives
us an estimation for the range of c and helps filter out the
buckets that are out of our interests. Then we use the next
query to obtain more detailed histogram of the buckets that
possibly hold outliers. This query process is repeated till we
find all outliers. Note this approach does not fetch and check
potential outliers as in the last step of finding the O(d, k)
outliers. Checking a potential outlier in this problem is very
costly when k is large, because every sensor has to send k

data values (k nearest neighbors of the potential outlier).
In the following, we first show that we can estimate bounds

for the cut-off value c based on the histogram information.
We try to find a pair of values Lc and Uc, such that c ∈

Algorithm 2 EstNO(B, i)

1: t = k − fi

2: for j = 2 to B − 1 do

3: q1 = B−j

B
, q2 = j−1

B
, p = 0

4: for a = 0 to fi−1 do

5: p1 =

„

fi−1

a

«

qa
1 (1− q1)

fi−1−a

6: if a > t then p2 = 1
7: else if t + 1− a > fi+1then p2 = 0
8: else
9: for b = t + 1− a to fi+1 do

10: p2 = p2 +

„

fi+1

b

«

qb
2(1− q2)

fi+1−b

11: end for
12: p = p + p1p2

13: end for

14: r = r + p
fi

B

15: end for
16: if fi−1 or fi+1 > t then
17: p = 0
18: for a = t + 1 to fi−1 or fi+1

19: p = p +

„

fi−1 or fi+1

a

«

(B−1
B

)a

20: end for

21: r = r + p
fi

B

22: return r

(Lc, Uc]. Suppose the sink sends a histogram query with
bucket width w. After receiving the histogram, we first ap-
ply Theorem 1 and Theorem 2 on every bucket i to calculate
li and ui. Then we calculate Lc and Uc according to the fol-
lowing theorems.

Theorem 3. Consider the histogram collected with bucket

width w. We have

Lc = max {x|
X

li≥x

fi > n, x is multiple of w} < c.

Proof. In the above equation, the condition,
P

li≥x
fi >

n, means that there are more than n data points (p) satisfy-
ing Dk(p) ≥ x. Based on the definition of the cut-off value
c, x < c. Thus, any x satisfying the condition can be an
exclusive lower bound of c.

Theorem 4. Consider the histogram collected with bucket

width w. We have

Uc = min {x|
X

ui≥x

fi ≤ n, x + 1 is multiple of w} ≥ c.

Proof. The condition,
P

ui≥x
fi ≤ n, means that the

number of all possible data points (p) satisfying Dk(p) ≥ x

is less than or equal to n. According to the definition of
c, x ≥ c. Thus, any x satisfying the condition can be an
inclusive upper bound of c.

Our solution is shown in Algorithm 3. We start a his-
togram query with an initial bucket width winit. Based on
the received histogram, we obtain li and ui for each bucket
i and calculate Lc and Uc (lines 4–6). Then, we categorize
buckets as follows:

• Case 1: If ui ≤ Ld, bucket i is a non-outlier bucket;
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Algorithm 3 Find O(n, k) Outliers

1: w = winit, hasPO = true, q1 = q2 = · · · = 1
2: while w > 1 and hasPO do
3: Send a query with < w, q1q2 · · · > and collect the

histogram with bucket width w

4: Calculate li and ui for each bucket i

5: Ld = max {x|
P

li≥x
fi > n}

6: Ud = min {x|
P

ui≥x
fi ≤ n}

7: for i = 1 to ⌈ l
w
⌉ do

8: qi = (li ≥ Ud)
9: end for

10: Send a query with {qi} and collect the outliers
11: hasPO = false

12: for i = 1 to ⌈ l
w
⌉ do

13: if li < Ud and ui > Ld then
14: qi = 1, hasPO = true

15: else qi = 0
16: end for
17: w = w

2
18: end while

• Case 2: If li ≥ Ud, bucket i is an outlier bucket;

• Case 3: Otherwise, bucket i is a potential outlier bucket.

Similar to the O(d, k) outlier detection, we ignore the non-
outliers in case 1 and send another query to collect the data
values in the outlier buckets (lines 7–10). For case 3, we
query for more histogram information of potential outlier
buckets, which are marked by the variable qi (lines 12–16).
The bucket width of the new query is set to the half of
the current bucket width. Upon receiving the query, sensor
nodes calculate the histogram of the marked buckets (by
qi) with new bucket width, and send it back to the sink in a
bottom-up direction. We repeat this process until all outliers
are found. In the worst case, we need log winit iterations.

7. PERFORMANCE EVALUATION

7.1 Network Settings and Datasets
In this simulation, we use real datasets collected from In-

tel Lab [1]. The data were collected from 54 sensors during
a one-month period. The details of the dataset can be found
at Intel Lab’s web site [1]. We consider a 100× 100 network
field, where the sink is placed in the center. We deploy 54
sensor nodes randomly in the field and assume sensors com-
municate in a multi-hop fashion. The communication range
is set to 18 for good connectivity in a random topology. Two
important parameters used in our algorithms, the number
of non-leaf nodes and the average hop distance, are shown
in Table 1. The values are average measurements of 1000
connected random topologies.

In our simulation, we select the entire temperature records
on two dates (03/01 and 03/20) as two datasets. The dataset
for 03/01 represents a regular temperature distribution with
mean value around 24 degrees. The dataset for 03/20, how-
ever, displays a large deviation from the average value. In
the latter dataset, for some reason, 50 degrees is reported
for many times, and a lot of data are sparsely scattered be-
tween 35 degrees and 50 degrees. In this simulation, we use
precision 0.01 to round temperature values and scale them

by 100 times in order to obtain integer values. The relevant
parameters are also listed in Table 1 and Table 2.

Table 1: Network Setup
Number of Sensors(N) 54
Number of Non-leaf Nodes(Nnl) 25.7
Radio Range 18
Avg. Hop Distance(avgDist) 4.26

Table 2: Data Characteristics
03/01 Dataset 03/20 Dataset

Number of Data Points 91468 76871
Maximum Value 3424 5008
Minimum Value 1499 363
Value Range 1926 4646

7.2 Performance Results
In this subsection, we show the performance of our algo-

rithms in terms of the total communication cost for finding
all the outliers, which is the sum of all sensors’ communica-
tion costs. We assume that the cost of transferring a message
is proportional to the payload size, which includes the actual
data size and necessary control information, e.g., the mes-
sage type. Thus, in the following, the total communication
cost is measured by the total size of the messages transferred
in the whole network. We first measure the communication
costs for the centralized scheme through 1000 independent
simulation runs and use the average value as the baseline.
In the centralized scheme, the whole network transfers 575K
bytes data for the 03/01 dataset on average and 514K bytes
for the 03/20 dataset. The deviations for two datasets are
119K bytes and 113K bytes respectively. In addition, to
evaluate our algorithms, we conduct 100 independent simu-
lations for each parameter setting. We normalize the average
communication costs in our algorithms against the baselines
of the centralized scheme and show them as percentage val-
ues in the rest of this section. In our simulation, the ratio
of standard deviation over average value is always less than
0.14. Since the deviation is small as a percentage value as
shown later, the average communication cost is representa-
tive for the performance.

7.2.1 O(d, k) Outlier Detection
To compare the basic scheme and enhanced scheme with

different parameters, we vary d and k separately. First, we
fix k = 100 and vary d from 20 to 70 for the 03/01 dataset
and from 50 to 450 for the 03/20 dataset. Fig. 4 shows
the numbers of outliers with various d. We find the two
datasets differ dramatically. For the 03/01 dataset, when
we set d = 70 (i.e., 0.7 degree in original data), no outlier
exists in the entire set. For the 03/20 dataset, however,
when we use a large distance with d = 100 (1 degree in the
original data), 126 outliers appear. We keep increasing d to
400 (4 degree), we still find one outlier. This figure indicates
that the 03/20 dataset contains more scattered data points
and yields more outliers for a certain (d, k) setting.

The performance of basic and enhanced schemes is illus-
trated in Fig. 5. First, as shown, the enhanced scheme is al-
ways superior to the basic scheme. Secondly, both schemes
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Figure 4: Number of outliers for varying d (k = 100)

greatly reduce communication costs. In the worst case in
Fig. 5, the basic scheme consumes less than 5.5% of the cost
of the centralized scheme.
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Figure 5: Communication costs for varying d (k =
100)

In the following, we will analyze and compare the per-
formance of the basic and enhanced schemes. The com-
munication cost in both schemes is comprised of histogram
collection and raw data transfer (collection and diffusion).
For a fixed value range, larger bucket width yields smaller
number of buckets and less cost in histogram collection. On
the other hand, larger bucket width provides less detailed
histogram information, which may increase the number of
potential outliers and the cost in transferring raw data.

In the 03/01 dataset, when we query for outliers, most
non-outliers are identified after the first round of histogram
collection, and the number of potential outliers is limited.
Thus, the cost of histogram collection is the dominant factor
compared with the raw data transfer. As shown in Fig. 5,
the performance keeps decreasing along the increasing d.
In the 03/20 dataset, a lot of data are sparsely distributed
over an abnormal range and the number of outliers is dra-
matically larger than that in the 03/01 dataset. Since we
set larger bucket width for the 03/20 dataset, the cost of
histogram collection is less than that in the 03/01 dataset.
On the other hand, as we mentioned above, larger bucket
width may increase the cost of raw data transfer due to
insufficient histogram information. Therefore, the cost of
histogram collection is no longer dominant as the difference
with the cost of raw data transfer is alleviated. Sometimes,
raw data transfer is even more significant than histogram
collection. These two types of cost interact with each other
and show unstable curves for the 03/20 dataset in Fig. 5.
The enhanced scheme outperforms the basic scheme in both
datasets by filtering out more potential outliers.

In our simulation, we also fix d and study the performance
on variable k. Fig. 6 shows the change of the number of out-
liers and Fig. 7 is the performance comparisons. Similarly,
we find that the enhanced scheme is better than the basic
scheme and both schemes are very efficient. In this case,
the cost of histogram collection is fixed for basic scheme and
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Figure 6: Number of outliers for varying k (d = 40 for
the 03/01 dataset and d = 200 for the 03/20 dataset)

the communication cost only depends on the number of po-
tential outliers. For a given k, the data points, which have
roughly k neighbors within distance d, have a high probabil-
ity to be potential outliers, because it is hard to distinguish
these data points by coarse histogram information. Thus,
the trend of the curves in Fig. 6, which indicate the number
of nearby potential outliers, has an impact on the communi-
cation cost. As we can see, for the 03/01 dataset, there is a
sharp increase of outliers when k ∈ [150, 250], which means
many potential outliers will be transferred as raw data when
we search for outliers. Correspondingly, we see an increase of
communication cost around that range in Fig. 7. Addition-
ally, in the 03/20 dataset, the number of outliers has a jump
from k = 100 to k = 150. It also yields an increased cost
of basic scheme in Fig. 7. For both datasets, the enhanced
scheme smooths the impact of the increased potential out-
liers and significantly improves the performance.
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Figure 7: Communication costs for varying k (d =
40 for the 03/01 dataset and d = 200 for the 03/20
dataset)

As a summary, the proposed histogram approach is very
efficient for the O(d, k) outlier detection. The enhanced
scheme consumes less than 4% of the cost of the central-
ized scheme in most cases.

7.2.2 O(n, k) Outlier Detection
In this simulation, we set k = 100, and vary n from 10

to 80 for both datasets. The initial bucket width is set to
a large value of 1500, i.e., winit = 1500. Fig. 8 shows the
values for Dk(pn) and the communication cost is presented
in Fig. 9.

The simulation results show that our approach is cost-
efficient for the O(n, k) outlier detection. Compared with
the centralized solution, our approach significantly reduces
the communication cost. For the abnormal 03/20 dataset, it
takes less than 1% of the cost to find all top-80 outliers. For
the normal 03/01 dataset, our scheme consumes less than
1.5% of the cost in all the cases.

Due to the page limit, we omit the detailed analysis of
the performance. Basically, larger value of Dk(pn) requires
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Figure 9: Communication costs for varying n (k =
100)

fewer number of iterations to find the cut-off value, and
sharper change of Dk(pn) indicates that it is easier to dis-
tinguish the data points around the cut-off value. Both help
reduce the communication cost.

8. CONCLUSION
In this paper, we consider the problem of finding two types

of distance-based outliers in sensor networks. We propose
to use a histogram method to extract hints about the data
distribution from the sensor network. The histogram infor-
mation can help us filter out the non-outliers and identify
the potential outliers within a certain range. Those potential
data ranges can be further refined with more histogram in-
formation or identified by individual check. The simulation
shows that the histogram method reduces the communica-
tion cost dramatically relative to the centralized scheme.
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