
Efficient Privacy-Preserving Federated Learning for Resource-Constrained Edge
Devices

Jindi Wu
Department of Computer Science

William & Mary

Qi Xia
Department of Computer Science

William & Mary

Qun Li
Department of Computer Science

William & Mary

Abstract—A large volume of data is generated by ubiquitous
Internet-of-Things (IoT) devices and utilized to train machine
learning models by IoT manufacturers to provide users with
better services. Many deep learning systems for IoT data are
required to perform all computation locally on small devices,
which is not suitable for these resource-constrained devices.
The devices can also send all the collected data to a server
for costly model training by ignoring privacy concerns. To
design an efficient and secure deep learning model training
system, in this paper, we propose a federated learning system
on the edge using the differential privacy mechanism to protect
sensitive information and offload computation work from edge
devices to edge servers, with consideration of communication
reduction. In our system, a large-scale deep learning model is
partitioned onto edge devices and edge servers, and trained
in a distributed manner, in which all untrusted components
are prevented from retrieving protected information from the
training and inference process. We evaluate the proposed
approach with respect to computation, communication, and
privacy protection. The experiment results show that the pro-
posed approach can preserve users’ privacy while significantly
reducing computation and communication costs.

Index Terms—Federated Learning, Privacy-Preserving Algo-
rithm, Communication Efficiency

1. Introduction

Federated Learning (FL) enables distributed devices to
collaboratively learn a shared machine learning model while
keeping all the training data locally on devices. It is proven
to be fitting for Internet-of-Things (IoT) devices or mobile
devices. End devices, however, have limited computation
and communication resources. Many times, it is not af-
fordable for these devices to train a model locally. One
solution is to offload the computation task to an edge
server [1]. There will be two problems with respect to this
approach. First, the large amount of training data needs to
be transmitted to an edge server [2]. Second, the training
data transmitted to the edge server will inevitably disclose
much private information [3, 4, 5].

In this paper, we aim to design an efficient privacy-
preserving federated learning (EPPFL) system for training

machine learning model with resource-constrained edge de-
vices. In our system, we deploy the first several layers for
data feature extraction of the deep neuron network (DNN)
on edge devices and the remaining layers on the edge server.
An edge device extracts basic features from private raw
data, then adds noise to the extracted features based on the
differential privacy (DP) scheme. The processed data has a
smaller size and preserves privacy compared with raw data.
The edge server will take as input the processed features
received from the edge device to perform the resource-
consuming training process on the remaining layers. For the
back-propagation process, the edge server will compute the
gradients of its input and send them back to the edge device
to continue the back-propagation on the feature extraction
layers. After several iterations of interactions between edge
server and edge device, an aggregation server will merge
the local models computed by multiple edge device/server
pairs into a global model. The global model will be further
transmitted back to each edge device/server pair.

During the process, we will judiciously reduce the com-
munication between the edge device and edge server by
selectively dropping data. In addition, for model merging,
local models will be transmitted to the aggregation server
securely through a simple cryptographic scheme so that
sensitive information will not be disclosed. To this end, our
system can reduce communication and computation on edge
devices, preserve edge devices’ privacy.

To the best of our knowledge, none of the prior research
has explored privacy-preserving, computation efficient, and
communication efficient model training for FL on resource-
constrained devices. Our model training architecture span-
ning over edge devices and edge servers are well-positioned
to train on the data collected through edge devices. Our
proposed techniques move most of the computation to edge
servers while making an effort in reducing communication
and preserving privacy. Our approach is adaptable for gen-
eral DNN models. Moreover, the model can be partitioned
based on the requirements of resource consumption and
privacy protection of the task.

The contributions of this paper are threefold:

1) We propose a novel FL approach for resource-
constrained devices, which reduces the communi-
cation & computation cost on edge devices.

Figure 1. EPPFL system architecture. Local model training is performed by secure and efficient communication between clients and edge servers. Random
number calculation server Sr is used to assist simple client-side model encryption and decryption. And the model aggregation server Sa merges the local
models and broadcasts the global model.

2) We propose a secure and efficient model training
framework, which reduces the response latency by
offloading the computation to nearby edge servers
and protects data on both data and model level.

3) We conduct a thorough experimental evaluation and
analysis of the proposed approach.

2. The Proposed Framework

This section describes the proposed framework for the
DNN training across multiple resource-constrained edge
devices and edge servers with privacy protection and compu-
tation & communication cost reduction. The details of each
component in the framework are provided in the following.
And the important notations used in this paper are listed in
Table 1.

2.1. Overview

The EPPFL system is composed of multiple resource-
constrained client devices (edge devices) C = c1, c2, ..., ck
, multiple edge servers Se, a model aggregation server Sa,
and a third-party random number calculation server Sr (see
Fig. 1). Each client has a private dataset di, i ∈ {1, 2, ..., k},
known as local dataset. These local datasets are disjoint with
each other. Initially, given a large DNN M that needs to be
trained, we partition it from a certain layer into two parts
Mc and Ms, and maintain k copies of the neural network
by deploying Mc on each client device and deploying the
Ms that corresponds to each Mc on edge server Se.

We assume all components and communication chan-
nels in the system are honest-but-curious, which means

TABLE 1. NOTATION LIST

Notation Description

C The set of clients
Mci The client-side model deployed on the i-th client device

Ci

Msi The server-side model deployed on the edge server Se

and pairs to Mci on i-th client device
W t

ci
The weights of Mci in t-th global round

W t
si

The weights of Msi in t-th global round
Sa The model aggregation server
Se The set of edge servers
Sr The random number calculation server
fc The process of model forward-propagation on client-side

model
fs The process of model forward-propagation on server-side

model
fr The random number generation function
Ai The output of fc on i-th client device Ci

r̄t The average of random numbers generated by fr in t-th
global round

θc The proportion of clients selected in each global round
θa The proportion of activations selected to send from client

to server in each local iteration
θg The proportion of gradients selected to send from server

to client in each local iteration

every component will honestly perform the assigned task
but attempt to learn more information about others from
received data. Hence, one of the aims of our method is to
ensure that the private information of the client will not be
leaked during the transmission and on any components in
the system during model training and use.

Each client in the system first trains a model with its
private dataset, known as local model. Then FL aggregates
n local models into a global model according to the weight
η of the local model Mlocal by

Mglobal =

n∑
i=1

ηiMlocali (1)

We define the process between two model aggregations Eq.
(1) as a global round, a local model update on a batch of
private data as a local iteration of a client, and a learning
process on the entire local dataset as a local epoch.

We describe our system by following the data flow in
Fig. 1. The federated model training starts from the first
global round: ¬ To initialize the random number generation
function for clients, the third-party random number calcula-
tion server Sr sends clients a function fr that generates a
random number using a given random seed, client id, and
global round id. The random number generated by fr will
be used in step ¯ to encrypt model weights.

 Then a fraction of clients are randomly selected to
make contributions to the current global round training. In
a local iteration, each selected client trains a local model
by using a batch of data from its private dataset to per-
form forward-propagation on Mc on the local device. An
activation selection strategy is used to reduce the size of
activations obtained from Mc and the (ε, δ)-DP mechanism
is used to protect sensitive information contained in the
activations. Then truth labels and the processed activations
of the batch of data are transmitted to edge server Se.
® The edge server Se continues the remaining forward-
propagation on Ms and back-propagates Ms according to
the training loss calculated from the objective function, then
updates Ms using Stochastic Gradient Descent (SGD). We
use the gradient selection strategy to reduce the size of the
partial derivative of the Ms inputs that are also the outputs
of Mc. Then the selected gradients are passed back to the
client device to finish the optimization on Mc. And a local
iteration is finished.

After finishing several epochs of local training, ¯ the
client adds a random number generated by fr to Wc, the
weights of Mc, to obscure the sensitive information in model
weights, then transmits obscured client-side model to the
aggregation server Sa. ° And the edge server Se sends Ms

with trained weights Ws to the aggregation server Sa. The
aggregation server Sa aggregates received local models into
a global model by Eq. (1) and broadcasts the global model
to ± each client and ² edge server Se. ³ The third-party
random number calculation server Sr computes r̄, the aver-
age of the random numbers generated by presented clients
in the current global round, and broadcasts to all clients. ´
Every presented client subtracts r̄ from the received global
client-side model weights and uses the result to replace its
local Mc. Then the system is ready for the following global
training rounds by repeating step to ´. The complete
pseudo-code is given in Algorithm 1.

Algorithm 1: Efficient Privacy-preserving Feder-
ated Learning (EPPFL) Algorithm

Require: K clients {c1, c2, ..., ck}, Private dataset
di, i ∈ [i, k], Model aggregation server
Sa, Random number calculation server
Sr, Edge server Se

Ensure : Optimal global client-side and server-side
model

1 Initialization;
2 for global round t from 1 to G do
3 Ct ← RandomChoose(C, θc);
4 for client index i from 1 to |Ct| do
5 if t 6= 1 then
6 ci downloads random number average

r̄t from Sr;
7 ci downloads global client-side model

weights W ′
c
t from Sa;

8 ci decrypts W ′
c
t by W t

ci ←W ′
c
t − r̄t;

9 Se downloads global server-side model
weights W t

e from Sa;

10 for local epoch e from 1 to Eloc do
11 for batch (Xb, Yb) in di do
12 M t

ci forward propagation by Eq.(2);
13 ci applies activation selection to Ab;
14 ci applies (ε, δ)-DP to kept Ab;
15 M t

si forward propagation by Eq.(3);
16 Se calculates batch loss;
17 M t

si backward propagation and
update by Eq.(4);

18 Se applies gradient selection to dA′
b;

19 M t
ci backward propagation and

update by Eq.(5);

20 ci protects W t
ci by Eq. (8) to get W ′

ci
t ;

21 ci uploads W ′
ci

t to Sa;
22 Se uploads W t

si to Sa;

23 Sa aggregates local client-side models into
W ′

c
t+1 by (9);

24 Sa aggregates local server-side models into
W t+1

s by (10);

2.2. Computation Offloading

In this subsection, we will explain the process of of-
floading the training computation from resource-constrained
edge devices to edge servers. It is hard for edge devices
to support the training of a large DNN model locally due
to their limited computation resources, so we offload some
computation from the end devices to edge servers. We
partition a large DNN at a certain layer into two parts, each
of which is composed of layers in the DNN model. We
place the first part on the local device and another part on
the edge server. In our EPPFL system, each client and its
associated edge server train a DNN model cooperatively.

At the beginning of the training (Initialization in Alg. 1),

the local client device ci, i ∈ [1, k], initializes the client-
side model Mci with weights W 1

ci ; its associate edge server
Se initializes the server-side model Msi with weights W 1

si ;
and the random number calculation server Sr sends a secret
random seed seed and a random number generation function
fr to client devices.

In each global round, θc fraction of clients will be
randomly selected to participate in the current global round
training (RandomChoose in Alg. 1). We denote the active
client set as Ct. Assuming we are seeing t-th global round,
the active client ci in Ct will train Eloc local epochs on
his private dataset in mini-batch training style. In each local
iteration, client ci uses a batch of private training data (Xb,
Yb), where Xb is training instances and Yb is truth labels of
Xb, to perform forward propagation process fc on Mci on
local device by

Ab = fc(Xb,W
t
ci). (2)

where Ab is the activations of extracted features by Mci
from raw data Xb, and will be transmitted to the edge
server for following resource-consuming training. To further
reduce the communication cost and protect clients’ privacy,
we apply communication cost reduction methods and DP
mechanism to Ab and get A′

b (see Section 2.3 and 2.4).

The associated edge server Se of the client ci takes A′
b

as the input of the server-side model Msi , and performs the
forward propagation fs on Msi by

Ŷb = fs(A
′
b,W

t
si) (3)

where Ŷb is the predicted label of Xb. Then the edge server
Se uses the predicted label Ŷb and the ground truth Yb to
calculate the training loss Lb of the batch using the objective
function `.

The back-propagation phase follows the differentiation
chain rule. The edge server Se calculates the gradients of
W t

si and the partial of Lb with respect to A′
b, denote by

dA′
b. The server-side model is updated with learning rate η

and the gradients of W t
si by

W t
si = W t

si − η5 `(W t
si). (4)

dA′
b should be sent back to client device for the model

updating on Mci . To reduce the client receiving cost and
accelerate the training process, we apply the gradient re-
duction method to dA′

b (see Section 2.3). The client device
receives and uses the reduced dA′

b to continue the model
updating of client-side model M t

ci by

W t
ci = W t

ci − η5 fc(W
t
ci) (5)

With the help of the edge server, only a small amount
of computation is completed on client devices with limited
resources, while following the same process of conventional
local device training. So our approach can be applied to the
training of general DNN models.

2.3. Communication Cost Reduction

When the DNN model is complicated and needs lots of
iterations and epochs to train, or when the private training
dataset is large, the communication cost is non-trivial for
resource-constrained devices. To reduce the communication
cost for edge devices, we propose two strategies for the
forward-propagation and backward-propagation phases.

Activation selection policy is designed to reduce the
message transmission for client devices while retaining se-
lected features of training data in the forward-propagation
phase. θa is a predefined meta-parameter, which determines
what ratio of activations will be kept to transmit. We denote
the number of activations in each channel as Nc. For each
channel of activations, the activation selection policy ran-
domly keeps Ncθa activations to transmit to the edge server
as the input of the server-side model. We denote the selected
subset of activations as Asub.

For each channel of the partial derivative of training loss
with respect to activations, dA, Gradient selection policy
finds out the (Ncθg)-th largest number from the absolute
values of dA and drops the values whose absolute values
are smaller than the Ncθg-th largest number. Intuitively, a
gradient with a large absolute value means that the model
will update relatively drastically in the specific direction, so
the dA with large absolute values are selected to update the
model first. The neurons that have small gradients will be
updated in later iterations. This strategy not only contributes
to the rapid convergence of the model but also helps to
reduce the receiving cost of the devices.

During the training process without communication re-
duction methods, the client device needs to upload all the
activations of the partition layer to the edge server and
receives all the gradients of the activations with respect to
the batch loss from the edge server during each iteration.
Suppose a CNN model M is partitioned into Mc and Ms

that are deployed on the edge device and the edge server
respectively. Take a training image x as an example. In the
forward passing phase, the size of A, the activations of x on
Mc, is N = kNc, where k is the number of convolutional
kernels in the last layer of Mc and Nc is the size of the
output of a convolutional kernel.

In each global round, we assume the local model will be
trained Eloc local epochs, each local epoch contains Tloc it-
erations, and the client private dataset consists of D images.
We use 32 bits float numbers to represent activations, so the
size of the activations that need to be transmitted to the
server is 4DElocN bytes. In addition, the labels of training
data, which are set as 32 bits integer numbers, also need
to be sent to the edge server. Therefore, the data amount
transmitted from the client device to the edge server in
a global round is 4DEloc(N + 1) bytes. Similarly, in the
back-propagation phase, the data amount the client device
received from the edge server is 4TlocElocN bytes. With
the proposed communication cost strategies, however, the
communication cost of an individual client device could be
reduced to 4DEloc(θaN + 1) and 4θgTlocElocN bytes in
sending and receiving phases, respectively. In the evaluation

section, we show that the meta-parameters θa and θg can be
set to 0.5.

2.4. Differentially Private Communication

In our approach, a general DNN model M could be par-
titioned into Mc and Ms at a selected layer. The model de-
ployed on the client device Mc is composed of all the layers
before the partition layer and their activation functions, e.g.,
ReLU. The input of Mc is the client’s private training data
and the output is the activations of the activation function
on extracted features. The activations will be transmitted to
the associate edge server and fed to the server-side model
Ms for the remaining learning process. The privacy of the
clients’ training data, however, might be breached in the
communication channel or stolen by the curious edge server.
We apply the differential privacy scheme to the output of
the client-side model after applying the activation selection
policy.

We sample the activations according to the above-
mentioned activation reduction policy and use ãki,j(x) to
denote the selected activation of the input x in k-th channel
at position (i, j), which will be kept to transmit to the edge
server for the following processing.

With the Laplace (ε, δ)-DP mechanism for client device
selected output, the adversary should not tell if a specific
instance exists in the client’s private training dataset. Hence,
the noise should be generated according to the sensitivity of
the output of the fkc (x,Wc), where fkc is the composition
of k-th kernel in the last layer of Mc and the kernels in
previous layers.

The instances x and x′ from client’s private dataset D
and its neighboring dataset D′ that has only one different
instance from D, respectively. We have the sensitivity of the
output of client device at position (i, j) with kernel k

∆fkc = maxD,D′
∥∥ãki,j(x)− ãki,j(x′)

∥∥ (6)

So the final processed activations that are ready to be sent
is

outki,j(x) = ãki,j(x) + Lap

(
∆fkc
ε

)
(7)

We construct a (ε, δ)-DP mechanism for the client de-
vice output when partitioning a CNN model from the first
convolutional layer and considering to apply K kernels
of the convolutional layer on each pixel of image x. The
training loss calculated on the edge with the activations
that satisfy (ε, δ)-DP is ε1-DP, where ε1 = Ncε + c . The
model updating of Ms and Mc is (O(|b|

|d|ε2
√
T), δ0)-DP,

where ε2 = c′ + c [6]. The privacy budget for local model
updating increases as the number of iterations increases,
which raises the sensitive information leakage risk. Ms is
safe to be transmitted to the model aggregator for model
merging because it is complex for post-analysis. However,
Mc is vulnerable to model inversion attacks because its
structure is simpler, and it has learned many basic features
from raw private data. So, we propose an efficient secure
model protection method for Mc in Section 2.5.

2.5. Efficient Secure Model Aggregation

We present a novel efficient secure model aggregation
method. The third-party random number calculation server
Sr defines a secret random seed seed and constructs a
random number generation function fr, which generates a
unique random number for each client in every global round
by taking as input seed, the id of clients, and the current
global round id t. Then the function fr and the protected
random seed seed are send to every client.

After the local training in t-th global round, an active
client ci generates a random number rti using fr and protects
the trained client-side model weights W t

ci by

W ′t
ci = W t

ci + rti (8)

where W ′t
ci is the obfuscated weights of client-side model

Mci . The client ci sends W ′t
ci to the model aggregator Sa

for model merging. The edge server Se directly sends the
corresponding trained server-side model weights W t

si to Sa

for aggregation since the W t
si satisfies DP as we showed

before.
Assuming Ct is the set of clients who participate in

the t-th global round and they are the same weighted, Sa

aggregates their local models into global models by

W ′t+1
c =

1

|Ct|

|Ct|∑
i=1

W ′t
ci (9)

W t+1
s =

1

|Ct|

|Ct|∑
i=1

W t
si (10)

The edge servers Se can directly use the aggregated
weights W t+1

s to update the server-side model for next
global round training. Nevertheless, W ′t+1

c is not the ready
model weights for client-side model because it is protected
by adding random numbers. To clean the global client-side
model W ′t+1

c , the random number calculation server Sr

calculates the average value r̄t of the random numbers rti
generated by ci, ci ∈ Ct, and exposes r̄t to all clients. After
receiving global model weights W ′t+1

c , client ci performs a
model cleaning by W t+1

ci = W ′t+1
c − r̄t, and use the cleaned

W t+1
ci to replace its local model (line 6-8 in Alg. 1).

With this configuration, the aggregation server Sa and
the random number calculation server Sr cannot infer any
information about clients involved in the learning from their
accessible data. The value of Wc can only be obtained
by clients. In addition, Wc is protected by DP with a
large privacy budget since it is updated with DP-protected
activations. And a malicious client with limited observed
data and resources is hard to retrieve sensitive information
from the client-side model weights Wc by model inversion
attacks. Compared with another popular model encryption
method homomorphic encryption (HE), our secure aggrega-
tion method is faster and simpler in calculating resource-
constrained edge devices, while ensuring the security of
users’ privacy.

Figure 2. Accuracy in Vanilla settings

3. Evaluation

We implement EPPFL with the Pytorch framework 1. We
will analyze the evaluation results obtained from VGG-19
on the benchmark CIFAR-10 [7]. CIFAR-10 includes 60,000
colored images of size 32 × 32 from 10 classes. 50,000 of
them are used for training and the remaining 10,000 images
are reserved for testing. We equally split CIFAR-10 training
images into 100 disjoint subsets of size 500, and assume 100
clients are available to participate in FL and each of them
has 500 private images. At the beginning of each global
round, θc = 1/10 clients are randomly selected to train
their local models with the same number of local epochs.
In general, the model can be partitioned from any layer
to satisfy different work offloading and privacy protection
requirements. In our implementation, we deploy the first
convolutional layer and ReLU function of VGG-19 on client
devices and the remaining layers on the edge server. We
will use the same hyperparameters in each setting. We set
the mini-batch size to 16, use SGD to optimize the model
with a learning rate of 0.01 and momentum of 0.5.

We will compare and analyze the impact of computation,
communication, and privacy of the system on the accuracy
of the VGG-19. The Baseline of our experiments is the
setting in which 50,000 training images are centralized to
train one-piece VGG-19 on a server.

3.1. Computation Cost

With the fixed size of the private dataset, hyperparame-
ters, and model partition from the input layer, the number of
local epochs a client trains directly impacts the computation
cost on the client and the quality of the global model. Less
local epochs require less computation power from resource-
constrained devices. To evaluate the impact of the number
of local epochs on model quality, we compare the model test
accuracy in different Vanilla settings that are the standard
FL settings in which the differential privacy scheme and
communication cost reduction strategies are not applied. The
only difference is the number of local epochs a client device
trains in a global round.

1. GitHub: https://github.com/Jindi0/EPPFL

Figure 3. Accuracy in Vanilla and Vanilla-alldata settings

Fig. 2 shows the model accuracy with the number of
local epochs of 2, 5, and 10 in each global round. The
result shows that the global model converges more rapidly
with more local epochs in a global round. However, the test
accuracy is degraded. That is caused by the small size of
the local dataset and the complexity of VGG-19. For each
client, only 500 private images are used to train a large-
scale VGG-19 model, which leads to model overfitting.
In a typical real-world scenario, the local training data is
always limited and does not match the scale of the target
model. Therefore, fewer local epochs are preferred to avoid
overfitting and improve model accuracy. For example, a
relatively high model test accuracy of 75.92% is achieved
in Vanilla2 setting where each client trains two local epochs
on the private dataset and submits its local model for model
aggregation. The setting Vanilla5 with 5 local epochs and
Vanilla10 with 10 local epochs achieve accuracy 72.34%
and 69.46%, respectively.

In addition, Vanilla2 requires 420 global rounds to make
VGG-19 get converge, which is more than the number of
global rounds needed by Vanilla5 and Vanilla10, but it will
not burden the individual clients because the clients are
randomly selected in each global round. So the required
time and the amount of computation for the participants are
acceptable for resource-constrained devices.

Note that the model accuracy in Vanilla settings is much
lower than Baseline, probably because less training data is
used during each global round. In order to confirm this
speculation, we split 50,000 training images into 10 clients,
then make all of 10 clients participant in every global round,
known as Vanilla-alldata setting. Fig. 3 illustrates that with
a larger private dataset on each client and all training data
are used in each global round, both Vanilla1-alldata and
Vanilla2-alldata have improved accuracy and require fewer
global rounds compared with Vanilla settings. However, they
have similar accuracy, which proves that the size of the
private dataset is an important factor in model accuracy.

3.2. Privacy

The privacy budget of DP is highly determined by the
balance between the privacy protection and model quality

https://github.com/Jindi0/EPPFL

Figure 4. Accuracy in DPFL settings

requirement of the application. To evaluate the impact of
privacy budget on model quality in model-partitioned FL
settings, we conduct four experiments in DPFL settings
where the DP scheme is applied to the output of the client-
side model. In these experiments, we make every client
runs two local epochs per global round and record the
test accuracy with privacy budget ε = 1, 3, 5, 10 in Fig. 4.
The experimental results show the model test accuracy gets
degraded from 72.53% to 54.59% along with the privacy
budget decreasing from 10 to 1. Compared with the model
accuracy of Vanilla2, only 3.57% of the accuracy drops in
DPFL10.

In addition, we notice that the accuracy difference be-
tween ε = 5 and 10 is 3.15%, which is much smaller than
that between ε = 1 and 5, 14.8%. Therefore, to guarantee
model accuracy, it is safe to choose a relatively large privacy
budget ε. Note that we will reduce the transmitted activa-
tions and gradients for reducing communication costs, which
further reduces the risks of sensitive information leakage.

3.3. Communication

In this subsection, we analyze the model accuracy of
the proposed method EPPFL (see Fig. 5). We first set the
local epoch to 2 and privacy budget ε = 5. Then we
set the proportion of kept activations θa = 0.5 and the
proportion of kept gradients θg = 0.5. By reducing 50%
of communication data between client and edge server with
activation selection polity and gradient selection policy, the
model accuracy of EPPFL drops to 60.78%, which is 8.6%
lower than DPFL5 and 15.14% lower than Vanilla2.

For the number of global rounds required to train VGG-
19 in the settings, we have EPPFL = DPFL5 < Vanilla2.
Our approach not only reduces the communication cost
between the client device and the edge server in each local
iteration, but also reduces the overall communication cost
of the FL system during the training process. Yet EPPFL
drops the model accuracy by about 15.14% due to the data
utility is impacted by the DP scheme and communication
reduction strategies. The edge-side models have to learn
from a fraction of perturbed image features and the client-
side models only use a fraction of gradients to update. The

Figure 5. Accuracy in EPPFL setting

learning is performed on data that is much less than the
original private dataset. So, the accuracy drop of 15.14% is
still acceptable.

In the future, we will conduct more experiments in
EPPFL settings to explore the impact of θa and θg on model
performance in communication cost and accuracy aspects.

4. Related Work

For DNN training in the federated learning scenario,
there has been a large body of literature on privacy &
security, and computation & computation efficiency.

To make a participant train a machine learning model
without sharing private data while benefiting from other
participants’ models, Shokri et al. [8] first bring privacy
in DNN joint learning in 2015. They proposed a secure
distributed learning technique, in which each participant
maintains a local model by uploading a fraction of model
updates and perturbs them with the DP mechanism then
updating his local model with a fraction of merged model
updates. Unlike other differentially private approaches that
aim at hiding a single instance of a participant’s private
dataset [9], Geyer et al. introduce client-level differential
privacy in federated optimization to hide a participant in
the training process [10].

Secure Multiparty Computation (SMC) framework has
been used to train ML models with two non-colluding
servers [11]. Three computing participants (3PC) models
[12] allow participants to share data secretly among non-
colluding servers. Truex et al. present a hybrid approach of
DP and SMC to guarantee the privacy and performance of
ML models trained with FL [13]. In addition to the privacy
budget and sensitivity of the randomization algorithm, the
approach takes the trust level into account when adding
noise to the secret so that it alleviates the vulnerability
of SMC and improves the model performance when using
DP. Then the perturbed secret will be encrypted with HE
and sent to the model aggregator, and the merged model is
broadcast back to clients. However, the method is expensive
in encrypting with HE. To solve this problem, BatchCrypt
reduces the communication and computation cost of HE in

FL by encoding a batch of quantized gradients into a long
integer and encrypt it in one go [14].

Moreover, in the distributed learning system, the attacker
may also be malicious clients who upload the poisonous
local updates to prevent the global model from converging.
Xia et al. propose a fast aggregation algorithm FABA to re-
move the outliers from local updates and maintain the model
performance [15], and VBOR to remove outliers with one-
pass iteration [16]. However, the works mentioned above
require edge devices to perform a great deal of computation
and transmit a large volume of data, such as the gradients
of each neuron of a DNN model, which is prohibitively
expensive.

To reduce the training cost of end devices, Mao et al.
split a DNN model into two parts and deploy them on edge
device and edge server and apply DP in the communication
channel. In this way, the clients offload the computing
pressure to a server without violating privacy and only need
to transmit the intermediate result and gradients of the cut
layer [6]. Later, the approach was extended to adjust parallel
training [17]. Our work further reduces the communication
cost between clients and servers and proposes an efficient
and simple encryption method to protect the privacy of data
and models.

5. Conclusion

An efficient privacy-preserving federated deep learning
system run on resource-constrained devices is proposed in
this paper. Locally an edge device and an edge server
collaborate to learn a local model. The local model training
is partitioned on the local edge devices and the edge servers.
This way, our system can learn users’ private data without
collecting them and offload the computation from the edge
devices to the edge servers. The private features extracted
from private data are protected with the differential privacy
mechanism and transmitted from edge devices to the edge
servers, and the untrusted components in the system will
not learn about the protected information from differentially
private features. Communication cost reduction strategies
are also applied to save transmission bandwidth and further
protect user privacy from leakage. In addition, to protect the
local model from model inversion attacks, instead of using
expensive homomorphic encryption, we use a simple and
secure method with the help of a third-party random number
calculation server. We evaluate our efficient and secure FL
system with VGG-19 on CIFAR-10. The results show that
our approach can preserve users’ privacy with much-reduced
communication and computation costs.

Acknowledgment

This project was supported in part by US National Sci-
ence Foundation grant CNS-1816399. This work was also
supported in part by the Commonwealth Cyber Initiative, an
investment in the advancement of cyber R&D, innovation
and workforce development. For more information about
CCI, visit cyberinitiative.org.

References
[1] Z. Tao, Q. Xia, Z. Hao, C. Li, L. Ma, S. Yi, and Q. Li, “A

survey of virtual machine management in edge computing,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1482–1499,
2019.

[2] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen,
“In-edge ai: Intelligentizing mobile edge computing, caching
and communication by federated learning,” IEEE Network,
vol. 33, no. 5, pp. 156–165, 2019.

[3] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang, “Towards
efficient and privacy-preserving federated deep learning,” in
ICC 2019-2019 IEEE International Conference on Commu-
nications (ICC). IEEE, 2019, pp. 1–6.

[4] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine
learning: Concept and applications,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 10, no. 2,
pp. 1–19, 2019.

[5] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated
learning: Challenges, methods, and future directions,” IEEE
Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[6] Y. Mao, S. Yi, Q. Li, J. Feng, F. Xu, and S. Zhong, “Learning
from differentially private neural activations with edge com-
puting,” in 2018 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE, 2018, pp. 90–102.

[7] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[8] R. Shokri and V. Shmatikov, “Privacy-preserving deep learn-
ing,” in Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security, 2015, pp. 1310–
1321.

[9] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang, “Deep learning with dif-
ferential privacy,” in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016,
pp. 308–318.

[10] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private
federated learning: A client level perspective,” arXiv preprint
arXiv:1712.07557, 2017.

[11] P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in 2017 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2017, pp. 19–38.

[12] P. Mohassel and P. Rindal, “Aby3: A mixed protocol frame-
work for machine learning,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 35–52.

[13] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig,
R. Zhang, and Y. Zhou, “A hybrid approach to privacy-
preserving federated learning,” in Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, 2019,
pp. 1–11.

[14] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu,
“Batchcrypt: Efficient homomorphic encryption for cross-silo
federated learning,” in 2020 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 20), 2020, pp. 493–506.

[15] Q. Xia, Z. Tao, Z. Hao, and Q. Li, “Faba: an algorithm for
fast aggregation against byzantine attacks in distributed neural
networks,” in IJCAI, 2019.

[16] Q. Xia, Z. Tao, and Q. Li, “Defenses against byzantine attacks
in distributed deep neural networks,” IEEE Transactions on
Network Science and Engineering, 2020.

[17] Y. Mao, W. Hong, H. Wang, Q. Li, and S. Zhong, “Privacy-
preserving computation offloading for parallel deep neural
networks training,” IEEE Transactions on Parallel and Dis-
tributed Systems, 2020.

	Introduction
	The Proposed Framework
	Overview
	Computation Offloading
	Communication Cost Reduction
	Differentially Private Communication
	Efficient Secure Model Aggregation

	Evaluation
	Computation Cost
	Privacy
	Communication

	Related Work
	Conclusion

