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Abstract—By combining the advantages of both quantum
computing and deep learning, quantum neural networks have
become popular in recent research. In order to collaborate
multiple quantum machines with local training data to train a
global model, quantum federated learning is proposed. However,
similar to classic federated learning, when communicating with
multiple machines, quantum federated learning also faces the
threats of Byzantine attacks. The byzantine attack is a kind
of attack in a distributed system when some machines upload
malicious information instead of the honest computational results
to the server. In this article, we compare the differences of
Byzantine problems between classic distributed learning and
quantum federated learning, and modify the previously proposed
four kinds of Byzantine tolerant algorithms to the quantum
version. We conduct simulated experiments to show a similar
performance of the quantum version with the classic version.

Index Terms—quantum neural networks, federated learning,
byzantine problems

I. INTRODUCTION

Both quantum computing [25] and deep neural network [20]
have been greatly developed since the last several decades. In
the early 1980s, Paul Benioff first proposed the novel idea
of building a Turing machine using quantum computing [4].
The explorations on quantum computing based Turing ma-
chine then were conducted by Richard Feynman [14], David
Deutsch [11], etc. In 1994, Shor’s algorithm was proposed to
use a quantum machine to factor a large integer in polynomial
time and its time complexity is exponentially faster than
the fastest algorithm on classic computer [24]. This makes
people start to believe in the capability of better performance
in the quantum machine than the classic machine. More
recently, research teams from Google AI [2] and USTC [36]
respectively claimed quantum supremacy for tasks that are in-
feasible on any classic computer. In the meantime, deep neural
network [20] has been found efficient in many practical tasks
such as computer vision [16], [19], [21], [27], natural language
processing [7], [9], [12], [26], etc. It uses a hierarchical neural
architecture to learn from the training data and nowadays is
used everywhere in our daily life from online shopping to
work and entertainment.

In order to reduce the huge computational cost in larger and
deeper classic neural networks, in recent years, scientists start
to explore the combination of quantum computing and deep

learning, and thus quantum neural network was proposed [17].
A quantum neural network uses the idea of a classical neural
network in a quantum way to learn from the training data.
By utilizing the main property of qubit superposition and
entanglement in quantum mechanics, it tries to improve the
computational efficiency and reduce the long training time and
heavy computational resources in deep learning [3], [15], [22],
[23], [28]. However, in the training process of quantum deep
learning, sometimes it is necessary to train a model through
multiple quantum machines in a distributed manner. When
there are multiple quantum machines with local quantum data,
in order to collaboratively train the global model, Xia et al.
proposed the quantum federated learning framework [30].

Because quantum federated learning is also a special kind
of distributed learning, it also suffers the threat of Byzantine
attacks. When working with distributed learning, the Byzantine
problem happens naturally in an environment of multiple
nodes. Byzantine faults were first investigated by Lamport et
al. in 1982 [18]. Byzantine faults [6], [13] describe a general
problem in distributed computing systems that one or more
computing nodes may fail and provide adversarial or empty
computational results where there is imperfect information
from the server side on the failure information. There are
several existing Byzantine-resilient algorithms in the classic
distributed machine learning area. Basically, there are four
directions to defend against Byzantine attacks: score-based,
median-based, and distance-based, reference dataset-based al-
gorithms. Krum is the first Byzantine-resilient algorithm in
distributed deep learning area [5]. It is proposed by Blanchard
et al. to measure the scores for each uploaded gradient in the
PS (Parameter Server) and chose the gradient with the highest
score as the aggregated gradient. Later they also extend their
work to asynchronous distributed learning [10]. There is much
following work focus on using geometric median or its variant
to defend against Byzantine attacks. For example, Xie et al.
proposed geometric median, marginal median, and median-
around-median [32], Yin et al. proposed coordinate-wised me-
dian [35], Lili et al. proposed a batch normalized median [8],
Alistarh et al. proposed a more complicated modification of
median-based methods called ByzantineSGD [1]. For distance-
based direction, Xia et al. proposed an alternative method
called FABA [31]. Instead of using median-based methods,



they used Euclidean distance to remove outlier gradients.
They adaptively remove outliers based on the center current
remaining gradients. They later provided another Byzantine-
resilient algorithm for large-scale distributed machine learn-
ing [29]. As for the reference dataset-based method, Xie et al.
proposed methods based on a reference dataset to give scores
for each node to solve fault-tolerance problems in distributed
machine learning [33], [34]. Xia et al. proposed a self-adaptive
reference dataset-based two-filter algorithm ToFi to defend
against Byzantine problems in federated learning.

However, all the current proposed algorithm is designed for
classic distributed learning or federated learning framework.
In quantum federated learning framework such as Quan-
tumFed [30], the update unitaries instead of computed gradi-
ents or weights in classic distributed learning are transmitted.
Because they are in different spaces, the attack and defense
algorithms need to be modified in a quantum environment. In
this paper, we focus on the Byzantine problems in the quantum
federated learning scenario. In summary, our contributions are:
• We compare the difference of Byzantine problems be-

tween classic distributed learning and quantum federated
learning, extend the Byzantine problems in the Quan-
tumFed framework and theoretically define this problem.

• We modify the previous proposed Byzantine tolerant
algorithms Krum, FABA, and ToFi to the quantum en-
vironment and discuss the reasons that median-based
algorithm is not able to use in the quantum scenario.

• We conduct several simulation experiments to compare
the modified Byzantine-resilient algorithms in the Quan-
tumFed framework with Byzantine attacks.

II. PRELIMINARIES

A. Quantum Computing Basis

In quantum computing, the qubit is the basic unit to repre-
sent the information. A qubit has two basis states |0〉 and |1〉
like the classic bit in a traditional computer, but it can also be
in a superposition, which is a combination of the two basis
states |ψ〉 = α|0〉 + β|1〉 where α2 + β2 = 1. Therefore, a
qubit is capable to express more information than a classic
bit. When observing the qubit, it will collapse to one of the
basis states with corresponding probability, and thus we can
get a statistically accurate estimation after sufficient times of
observations. Besides, the entanglement of qubits allows more
qubits to have correlations with each other and n qubits, in this
scenario, will have 2n basis states and can be in a superposition
among them, which carries an exponentially increasing amount
of information.

In order to perform computations on the qubits, there
are several common quantum logic gates: Pauli-X, Pauli-Y,
Pauli-Z, Hadamard, Controlled Not. Unlike the AND and OR
gate from classic computer, quantum operators are always
reversible and will obtain an output with the same dimension,
and thus can be represented as a unitary. If we represent the
input qubits state as a column vector, for example, |ψ〉 =
1√
6
|00〉+ 1√

6
|01〉+ 1√

3
|10〉+ 1√

3
|11〉 → [ 1√

6
, 1√

6
, 1√

3
, 1√

3
]T , the

output of the quantum operators are unitaries left multiplying
states. We list the unitary representation of some common
quantum logic gates in Table I.

Gate Unitary

Pauli-X
[
0 1
1 0

]
Pauli-Y

[
0 −i
i 0

]
Pauli-Z

[
1 0
0 −1

]
Hadamard 1√

2

[
1 1
1 −1

]

Controlled Not

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


TABLE I

UNITARY REPRESENTATION OF COMMON QUANTUM LOGIC GATES.

B. Quantum Neural Network
There are lots of explorations of implementing deep neural

networks in a quantum way, that is, using a quantum per-
ceptron in order to get similar generality as classic neural
networks. In this article, we adopt a widely used quantum
deep neural network architecture as Figure 1. Assume in layer
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Fig. 1. An architecture example of the quantum neural network.

l, the input is a state ρl−1 of ml−1 qubits and this layer will
give an output of ml qubits, then the l-th layer transition map
E l is given by:

E l(ρl−1) = trl−1(U l(ρl−1 ⊗ |0 · · · 0〉l〈0 · · · 0|)U l
†
) (1)

U l is the 2ml−1+ml × 2ml−1+ml dimensional perceptron uni-
tary of layer l. A partial trace operation is performed to get
the output state of layer l. For simplicity, we apply U l by se-
quentially applying ml independent perceptron unitaries U l,j

that act on ml−1 input qubits and j-th qubit in layer l, that is,
U l =

∏1
j=ml

U l,j . Note that U l,j here are acting on the current
layer, which means U l,j is actually U l,j ⊗ Il1,···j−1,j+1,···ml

.
In this way, we can feedforward the input state layer by layer
to get an output state:

ρout = Eout(EL(· · · E2(E1(ρin)) · · · )) (2)



The hyperparameters of the quantum deep neural network are
the unitaries, so as long as we have the network structure and
unitaries, we can describe a model. The method to derive the
unitaries is very similar to backpropagation, which is discussed
in [3]. In order to update the model in each iteration, we apply
an update unitary to the current unitaries. So, the training
process is actually to use the training data to derive the update
unitary.

In order to represent the input and output data in a quantum
way, for data that is stored by classic bits, we need to first
transform the data to qubit representation. One way to do
this is that we can use a d-qubits state |ψ〉d to represent a
superposition of 2d basis states in Hilbert space H2d , that is,
|ψ〉d =

∑2d

i=1 αi|zi〉 where αi is the complex amplitude and zi
is a basis state inH2d . In this way, we can transform the classic
data to quantum data, and then we can use the quantum data to
train the quantum neural network and perform the inference.

C. Quantum Federated Learning

Quantum federated learning is a collaborative way to train
a global model using multiple quantum machines where each
machine keeps its own quantum data. QuantumFed framework
was first proposed by Xia et al. in [30]. Similar to federated
learning in classic deep learning, each node keeps their private
data and does not share it with each other or the central server.
Therefore, the training data in QuantumFed is non-i.i.d.

Basically, the QuantumFed framework includes two major
components: QuanFedNode, which is the local update running
on the node side; and QuanFedServer, which is the global
update running on the server side. QuanFedNode is an analog
of local training in classic federated learning. It fetches the
current global model from the central server, derives the update
unitary using local training data and hyperparameters such as
learning rate, local and global data volume. After deriving
the update unitary, the node sends it to the central server as
the update information. QuanFedServer algorithm takes the
update unitaries derived by each node as the input and using
them to update the global model. We will keep updating the
global model until converging to a feasible model. In addition,
like classic federated learning, in each training round, it is not
necessary that all nodes will perform the local update. Assume
there are total N nodes in the quantum federate learning
system, we randomly select Np (Np ≤ N ) nodes to perform
the computation.

III. BYZANTINE PROBLEMS IN QUANTUMFED

A. Problem Definition

Like classic federated learning, when the central server
communicates with multiple quantum devices, the quantum
federated learning also faces the threats of Byzantine attacks.
In QuantumFed, byzantine problems happen when some of
the quantum nodes perform the computation maliciously. We
use Figure 2 as an example, when transmitting the update
information with the central server, instead of uploading the
real update unitaries, the byzantine nodes (Node 4) send a

U1 U2

U3Ua≠U4

Node 1 Node 2

Node 4 Node 3

Server

Fig. 2. An example of Byzantine problem in a four-node quantum federated
learning environment.

randomly generated or malicious unitary to the server. The-
oretically, we define the byzantine model in QuantumFed as
follows. Assume that Ui is the correct update unitary computed
by node i with local training data, URi is the actual update
unitary received by the central server from node i, and Ua is
an attack unitary which is the same shape as Ui, we have:

Definition 1 (Byzantine Model in QuantumFed):

URi =

{
Ui if node i is honest
Ua 6= Ui otherwise

(3)

Because the QuanFedServer updates the global model by
successively applying the update unitaries received by each
participating node, the Byzantine attacks may significantly
harm the training process or even make the whole global model
converge to a totally wrong model. Therefore, it is necessary
to check if the previously proposed algorithms are still capable
of defending against Byzantine attacks in quantum federated
learning.

In order to transform classic Byzantine-resilient algorithms
into the quantum scenario, some modifications are needed
because of the gap between classic federated learning and
quantum federated learning. The gap comes from the update
information between the central server and each node. In clas-
sic federated learning, the update information is the gradient
or weight computed by each node and it can be represented as
a tensor. However, in quantum federated learning, the update
information can only be represented as a unitary matrix, which
is in a different space and the distance and norm are totally
different from the tensor space. Therefore, in the following
sections, we discuss the quantum versions of distance-based
algorithm FABA, score-based algorithm Krum, and reference
dataset-based algorithm ToFi. In the end, we also discuss the
reason why meidan-based algorithms are difficult to transform
to quantum versions.

B. Quantum Version of FABA

FABA is a distance-based algorithm to defend against
Byzantine problems in classic distributed deep neural net-
works [31]. The input of FABA are the gradients computed by



each worker, which may include malicious update information
uploaded by the Byzantine worker. This algorithm is running
on the parameter server and outputs the updated global model
after aggregate the update information. The main idea of
FABA is based on the observation that in classic distributed
deep neural networks, the dataset in each worker is i.i.d., and
thus the computed gradients for the honest workers are close to
each other. Therefore, when the server receives all the update
information from each worker, the server can filter out those
abnormal gradients by conducting the distance information.
The main steps of the FABA algorithm are: (1) compute
the average gradient of the current gradients; (2) remove the
gradient that is farthest from the average gradient; (3) repeat
these two steps based on the estimated proportion of Byzantine
workers.

The major change of the distance-based algorithm FABA
in quantum computing is from the change of norm and
distance metric. Because here our operations are based on
unitaries, we cannot use the classic Euclidean distance in ten-
sor operation. Here we use an element-wise matrix Euclidean
distance instead. Assume U1, U2 are unitaries of size n × n
and ui,j1 , ui,j2 are corresponding entries in U1 and U2 where
i, j = 1, 2, · · · , n. The distance between U1 and U2 d(U1, U2)
is defined as:

d(U1, U2) =

√√√√ n∑
i=1

n∑
j=1

(ui,j1 − u
i,j
2 )2 (4)

Other than the distance metric, we also need to compute the
average of some unitaries when implementing FABA. Here
we use the similar element-wise average over unitaries. If we
assume U3, · · · , Um and ui,j3 , · · · , ui,jm similar as before, each
element ui,ja of the average matrix Ua is defined as:

ui,ja =
1

m

m∑
k=1

ui,jk (5)

Note that Ua is not necessarily a unitary.
Based on these changes we can implement FABA in our

QuantumFed framework. The algorithm is described in Algo-
rithm 1.

C. Quantum Version of Krum

Krum is a score-based algorithm that is the first proposed
algorithm to defend against Byzantine problems in in classic
distributed deep neural networks [5]. Krum is also based on
the idea to remove those gradients who have abnormal distance
information. However, in the design of Krum, it brings a
scoring system to this algorithm. This scoring system is used
to give each uploaded gradient a score to measure how close
it is to its neighbors. Because this algorithm also has the
assumption that dataset in each worker is i.i.d., the scoring
metric can use the distance information to decide how possible
the update information is uploaded from a Byzantine worker.
In the end, the server only chooses the one that is least possible
to be malicious as the aggregation result and only use this
gradient to update the global model. The main steps of the

Algorithm 1 Quantum Version of FABA
Input:

The number of selected nodes Np. Without loss of gener-
ality, assume they are node 1, node 2, · · · , node Np;
The received update unitaries computed from selected
nodes: GU = {UR1 , UR2 , · · · , URNp

};
The assumed proportion of Byzantine workers: α;
Initialize k = 1.

Output:
The updated global model.

1: If k < α ·Np, continue, else go to Step 5;
2: Compute mean of GU as U0 using (5);
3: For every URi in GU , compute the difference d(U0, U

R
i )

using (4). Delete the one that has the largest difference
from GU ;

4: k = k + 1 and go back to Step 1;
5: Use the rest update unitaries in GU to continue the

QuanFedServer algorithm in QuantumFed framework and
derive the updated global model.

Krum algorithm are: (1) for each gradient, find its several
closest neighbor gradients; (2) compute the score of each
gradient by the distance summation to its neighbor gradients;
(3) choose the one that has the lowest score for the model
update.

For the score-based algorithm Krum, the gap between the
classic version and quantum version is roughly similar to the
gap in FABA. In the Krum algorithm, the core step is to get
the k-nearest neighbors of each uploaded gradients. In the
quantum scenario, the analog is to find the k-nearest neighbors
of each uploaded update unitaries. Therefore, we must have
a new distance metric between unitaries to transform Krum
into a quantum version. As we discussed in Section III-B, the
distance metric between two unitaries is defined as (4). Here
we can adopt the same element-wise matrix Euclidean distance
to the Krum algorithm. We describe the quantum version of
Krum in Algorithm 2.

D. Quantum Version of ToFi

ToFi is a reference dataset-based algorithm that is proposed
to defend against Byzantine problems in federated learning. It
is the first work to study Byzantine problems in the federated
learning area. In federated learning, the dataset of each worker
is stored locally and therefore, the distribution may be non-
i.i.d. As a result of that, it is very hard to distinguish the
Byzantine update information and honest update information
just based on the distance information. Here ToFi uses a small-
sized reference dataset to help distinguish the malicious infor-
mation. This reference dataset has the same distribution with
the whole dataset and can be used to examine the performance
of the update information uploaded by each worker. The main
steps of the ToFi algorithm are: (1) examine the loss based on
the reference dataset for each uploaded update weights; (2)



Algorithm 2 Quantum Version of Krum
Input:

The number of selected nodes Np. Without loss of gener-
ality, assume they are node 1, node 2, · · · , node Np;
The received update unitaries computed from selected
nodes: GU = {UR1 , UR2 , · · · , URNp

};
The assumed proportion of Byzantine workers: α;

Output:
The updated global model.

1: Compute the estimated Byzantine tolerant parameter f =
ceiling(Np · α);

2: For each URi in GU , find the Np − f − 2 closest update
unitaries. Denote the set of those Np − f − 2 update
unitaries of URi as Ci. Here we use the distance metric in
(4) to define the distance;

3: For each URi , compute the corresponding score si using:

si =
∑
j∈Ci

d(URi , U
R
j ) (6)

4: Derive the index i∗ with the smallest score:

i∗ = argimin si (7)

5: Use the rest update unitary URi∗ to continue the QuanFed-
Server algorithm in QuantumFed framework and derive
the updated global model.

normalize the examined loss; (3) filter out those weights who
result in too big loss.

Implementing the reference dataset-based algorithm ToFi in
classic federated learning and quantum federated learning is
roughly similar. However, there are some small differences
listed below.
• The update similarity-based filter is based on the update

unitaries rather than computing by the local updated
weight. The similarity is based on the element-wise
matrix Euclidean distance defined in (4).

• Because the optimal value of our cost function is 1, we
update the reference dataset-based loss filter by filter out
the update unitaries with small examined loss.

• Because there is no α-weight in our QuantumFed frame-
work, we skip the softmax function that assigns the α-
weight.

We also keep a small reference dataset in the central server
to examine the loss and filter out abnormal update unitaries.
According to the above changes, we can implement our
ToFi algorithm in the QuantumFed framework. The quantum
version of ToFi is described in Algorithm 3.

E. Discussion about Median-based Algorithms

There are many geometric median-based algorithm to de-
fend against Byzantine attacks in classic distributed deep neu-
ral networks such as [1], [8], [32], [35]. In classic distributed
machine learning, we usually use simple average to aggregate
the uploaded gradients or weights, but instead of taking the

Algorithm 3 Quantum Version of ToFi
Input:

The number of selected nodes Np. Without loss of gener-
ality, assume they are node 1, node 2, · · · , node Np;
The received update unitaries computed from selected
nodes: GU = {UR1 , UR2 , · · · , URNp

};
Reference dataset ξR;
Model parameter unitary U ;
Predefined loss filter parameter τ ;

Output:
The updated global model.

1: Here we let f(U, ξR) be the loss function on the model
parameter unitary U and reference dataset ξR. Exam-
ine the loss for each node with reference dataset li =
f(URi U, ξR), i = 1, 2, · · · , Np;

2: Compute the mean µ = 1
Np

∑Np

i=0 li and standard devia-

tion σ =

√∑Np
i=0(li−µ)2
Np

for li;

3: Compute the normalized loss Li = li−µ
σ ;

4: Filter the uploaded update unitaries with the normalized
loss Gf = {URi |e−Li < τ};

5: Use the rest update unitaries in Gf to continue the
QuanFedServer algorithm in QuantumFed framework and
derive the updated global model.

average, all these algorithms follow a similar idea of using the
geometric median as the aggregation result. Geometric median
is an important location estimator in statistics. It is point in
Euclidean space that minimizes the sum of distances to the
sample points in a discrete set. Theoretically, it is defined as:

Definition 2 (Geometric Median): For a given set of m
points x1, x2, . . . , xm, with each xi ∈ Rn, the geometric
median is defined as

argmin
y∈Rn

m∑
i=1

‖xi − y‖2 (8)

From the definition, geometric median can express the ma-
jority information of the set of received update information,
which is with high possibility to be honest, and can also keep
the property of aggregating the update information.

However, for the Median-based algorithm, it is very hard to
be directly transformed to the quantum version. The reasons
are below:
• There is no quantum analog for a geometric median of

unitaries. The definition of geometric median in classic
Euclidean space is the point minimizing the sum of
distances to the sample points. Although we can still
define the similar geometric median in unitary space to
find the unitary that minimizes the sum of distances to
other unitaries and use the element-wise matrix Euclidean
distance, it is not feasible here because of two reasons.
First, it is very hard to get this unitary by simply
modifying the current algorithm to find the geometric
median in Euclidean space. A new algorithm needs to



be designed. Second, even if we can solve this geometric
median, it may not be suitable in a quantum scenario
because the geometric median in Euclidean space and
unitary space have different properties and meanings.

• In classic distributed learning, the aggregation method
is by taking the average of the uploaded gradients.
Geometric median also takes similar properties and it
can achieve a similar performance without Byzantine
attacks. However, in the QuantumFed framework, the
global update is performed by successively applying
the update unitaries. Simply changing it to apply by a
geometric median unitary may cause incorrect training.

Therefore, we choose not to derive a quantum version of
median-based algorithms. It needs more explorations for
median-based algorithms in the quantum scenario.

IV. EXPERIMENT RESULTS

A. Environment Setup

In the experiment, we conduct the same QuantumFed envi-
ronment as [30] to simulate the synthetic training data, quan-
tum neural network architecture, and heterogeneous federated
learning environment. Our experiment is simulated by QuTip
library 1 (Quantum Toolbox in Python).

First, in order to get the training data, we randomly generate
a global unitary Ug which is the unitary we would like to
approximate. Then we randomly generate the training data
input and apply the global unitary to the input to get the
corresponding output. We use the randomly generated input
and output pair as the clean training data. The same method
is applied to generate the test data. In this way, we can generate
clean training data (|φinn,x〉, Ug|φinn,x〉) on the node n side, and
test data (|φintest,x〉, Ug|φintest,x〉) on the central server side. In
order to show the robustness of the training, we also pollute a
proportion of training data with randomly generated input and
output to get noisy training data.

Second, as for the quantum neural network architecture,
because the experiments that we conduct are in a simulated
environment using a classic computer and the computational
complexity increases exponentially with the width of the
network increases, we choose to train small size quantum
neural networks with a width that are not greater than 3. In this
section, if not specified, we choose a network of size 2-3-2.

Third, in order to simulate the heterogeneous federated
learning environment, we put similar training data into the
same node. We first gather all the generated training data
from all nodes, sort them by their vector representation value,
and divide them to each node in order. In this way, we can
somehow guarantee that the data on each node is not i.i.d.

Fourth, we measure the experiment results using two met-
rics. First metric is the fidelity cost function that is defined
in [3], to show the probability that the output state will be
identified as the output label in a measurement. We also adopt
another metric mean square error (MSE) that are widely used

1QuTip: https://github.com/qutip/qutip

in classic machine learning as a comparison. The MSE is
defined below:

MSE =
1

N

N∑
x=1

‖ρoutx − |φoutx 〉〈φoutx |‖2 (9)

We examine our experiments using both metrics on the test
data to show the performance.

Fifth, to simulate the Byzantine environment, we use Gaus-
sian distribution to generate a random hermitian matrix and
transform it to a random unitary as the attack update unitary.
We choose 30% as the Byzantine ratio which means 30%
of the total quantum nodes are Byzantine nodes. We also
simulate a clean environment without Byzantine attacks as a
comparison.

We use no operation as a comparison to see the performance
if we take no operation for the Byzantine attack. We use [2,
3, 2] quantum neural network, fidelity and MSE loss metrics,
and set η = 1.0, ε = 0.1.

B. All-Node Participating Quantum Federated Learning

In this experiment, we set N = 10, Np = 10, which means
there are a total 10 nodes and in each epoch, and all nodes
are selected to perform computations in each synchronization.
We compare FABA, ToFi, Krum, no operation, and ideal cases
when there are no Byzantine attacks in Byzantine environment
and clean environment. The experiment results are presented
in Figure 3.
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Fig. 3. Experiment results of a [2, 3, 2] quantum network with FABA, Krum,
ToFi, No Operation and No Byzantine in all-participating quantum federated
learning Byzantine and clean environment.

As we can see in Figure 3, both FABA and ToFi are capable
of defending against Byzantine attacks in all participating
quantum federated learning. FABA is a little bit faster than
ToFi, but the performance is very similar. Krum seems to
have the trend to defend against Byzantine attacks, but the
speed is very slow and thus is not practical. In a clean
environment without Byzantine attack, we can see that FABA



achieves better convergence speed than ToFi. It is because,
in a clean environment, the loss performance of each node is
similar. After the normalization, some useful information may
be filtered out. Therefore, the training speed is slower than
FABA. Krum still has the worst performance.

C. Selected-Node Participating Quantum Federated Learning

We set N = 100, Np = 10 to simulate the selected-
node participating quantum federated learning environment.
We totally set 100 quantum nodes, among which 30 of them
are Byzantine nodes. In each iteration, 10 nodes are randomly
selected to perform computations. The experiment results are
shown in Figure 4.
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Fig. 4. Experiment results of a [2, 3, 2] quantum network with FABA, Krum,
ToFi, No Operation and No Byzantine in selected-participating quantum
federated learning Byzantine and clean environment.

From Figure 4, it is obvious that only ToFi can defend
against Byzantine attacks in the selected-node participating
quantum federated learning environment. FABA can somehow
defend this attack, but the performance is worse and very
unstable. Krum has the worst performance and the perfor-
mance is even similar to the no operation case. As for the
clean environment, the performance is similar to the all-node
participating scenario.

D. Discussions

Our simulated experiments show that the previously pro-
posed algorithm FABA and ToFi are still capable of defending
against Byzantine attacks in quantum federate learning. The
convergence speed of Krum is very slow and thus is not
feasible in practice. Similar to classic federated learning,
only ToFi is Byzantine resilient in selected-node participating
federated learning. However, the exploration of Byzantine
problems in quantum federated learning is still at an early
stage. We only use Gaussian distribution to generate Byzantine
attacks. It still needs further research about how to defend and
attack quantum federate learning systems.

V. CONCLUSION

In this paper, we investigate the Byzantine problems in
quantum federated learning. We compare the update differ-
ences between the quantum distributed system and the clas-
sic distributed system. Moreover, we modify the previously
proposed three kinds of Byzantine-resilient algorithms into
quantum version and discuss why median-based algorithm
does not work in the quantum scenario. Several simulated
experiments are conducted to compare the performance of dif-
ferent quantum version algorithms. Currently, the exploration
of Byzantine problems in quantum federated learning is still
at an early stage. We need more efforts in this direction.
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Sweden: PMLR, 10–15 Jul 2018, pp. 1145–1154. [Online]. Available:
http://proceedings.mlr.press/v80/damaskinos18a.html



[11] D. Deutsch, “Quantum theory, the Church-Turing principle and the
universal quantum computer,” Proceedings of the Royal Society of
London Series A, vol. 400, pp. 97–117, Jul. 1985.

[12] J. Devlin et al., “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Stroudsburg, PA, USA: Association for
Computational Linguistics, 2019, pp. 4171–4186. [Online]. Available:
http://aclweb.org/anthology/N19-1423

[13] K. Driscoll et al., “The real byzantine generals,” in The 23rd Digital
Avionics Systems Conference (IEEE Cat. No.04CH37576), vol. 2, 2004,
pp. 6.D.4–61.

[14] R. P. Feynman, “Simulating physics with computers,” International
Journal of Theoretical Physics, vol. 21, pp. 467–488, Jun 1982. [Online].
Available: https://doi.org/10.1007/BF02650179

[15] S. Gupta and R. Zia, “Quantum neural networks,” Journal of Computer
and System Sciences, vol. 63, pp. 355–383, 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022000001917696

[16] K. He et al., “Deep residual learning for image recognition,” arXiv
preprint arXiv:1512.03385, 2015.

[17] S. Kak, “On quantum neural computing,” Information Sciences, vol. 83,
pp. 143–160, 1995. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/002002559400095S

[18] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, pp. 382–401, Jul. 1982.
[Online]. Available: http://doi.acm.org/10.1145/357172.357176

[19] Y. Lecun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, 1998.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015. [Online]. Available: https://doi.org/10.1038/
nature14539

[21] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 3431–3440.

[22] B. Ricks and D. Ventura, “Training a quantum neural network,”
in Advances in Neural Information Processing Systems, S. Thrun,
L. Saul, and B. Schölkopf, Eds., vol. 16. MIT Press,
2004. [Online]. Available: https://proceedings.neurips.cc/paper/2003/
file/505259756244493872b7709a8a01b536-Paper.pdf

[23] M. Schuld, I. Sinayskiy, and F. Petruccione, “The quest for a quantum
neural network,” Quantum Information Processing, vol. 13, pp. 2567–
2586, Nov 2014. [Online]. Available: https://doi.org/10.1007/s11128-
014-0809-8

[24] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM Review,
vol. 41, pp. 303–332, 1999. [Online]. Available: https://doi.org/10.1137/
S0036144598347011

[25] A. Steane, “Quantum computing,” Reports on Progress in Physics,
vol. 61, p. 117, 1998.

[26] A. Vaswani et al., “Attention is all you need,” in Advances in Neural In-
formation Processing Systems, I. Guyon et al., Eds., vol. 30. Curran As-
sociates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[27] A. Voulodimos et al., “Deep learning for computer vision: A brief
review,” Computational Intelligence and Neuroscience, vol. 2018, p.
7068349, Feb 2018. [Online]. Available: https://doi.org/10.1155/2018/
7068349

[28] K. H. Wan et al., “Quantum generalisation of feedforward neural
networks,” npj Quantum Information, vol. 3, p. 36, Sep 2017. [Online].
Available: https://doi.org/10.1038/s41534-017-0032-4

[29] Q. Xia, Z. Tao, and Q. Li, “Defenses against byzantine attacks in dis-
tributed deep neural networks,” IEEE Transactions on Network Science
and Engineering, pp. 1–1, 2020.

[30] Q. Xia and Q. Li, “Quantumfed: A federated learning framework for
collaborative quantum training,” 2021.

[31] Q. Xia et al., “Faba: An algorithm for fast aggregation against byzantine
attacks in distributed neural networks,” in Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-
19. International Joint Conferences on Artificial Intelligence Orga-
nization, 7 2019, pp. 4824–4830. [Online]. Available: https://doi.org/
10.24963/ijcai.2019/670

[32] C. Xie, O. Koyejo, and I. Gupta, “Generalized byzantine-tolerant SGD,”
CoRR, vol. abs/1802.10116, 2018. [Online]. Available: http://arxiv.org/
abs/1802.10116

[33] ——, “Zeno++: Robust fully asynchronous {sgd},” 2020. [Online].
Available: https://openreview.net/forum?id=rygHe64FDS

[34] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient
descent with suspicion-based fault-tolerance,” in Proceedings of the
36th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov,
Eds., vol. 97. Long Beach, California, USA: PMLR, 09–15 Jun 2019,
pp. 6893–6901. [Online]. Available: http://proceedings.mlr.press/v97/
xie19b.html

[35] D. Yin et al., “Byzantine-robust distributed learning: Towards optimal
statistical rates,” in Proceedings of the 35th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
J. Dy and A. Krause, Eds., vol. 80. Stockholmsmässan, Stockholm
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