
A Survey of Virtual Machine
Management in Edge
Computing
This article provides an overview of the industrial and research projects on virtual
machine (VM) management in edge computing, focusing on the virtualization
frameworks and virtualization techniques, the serverless management, and the security
advantages and issues that virtualization brings to edge computing.

By ZEYI TAO , QI XIA, ZIJIANG HAO, CHENG LI , LELE MA , SHANHE YI, AND QUN LI

ABSTRACT | Many edge computing systems rely on virtual

machines (VMs) to deliver their services. It is challenging,

however, to deploy the virtualization mechanisms on edge

computing hardware infrastructures. In this paper, we intro-

duce the engineering and research trends of achieving effi-

cient VM management in edge computing. We elaborate on:

1) the virtualization frameworks for edge computing developed

in both the industry and the academia; 2) the virtualization

techniques tailored for edge computing; 3) the placement

and scheduling algorithms optimized for edge computing; and

4) the research problems in security related to virtualization of

edge computing.

KEYWORDS | Algorithms; management; virtual machining.

I. I N T R O D U C T I O N

Since Amazon released its elastic compute cloud (EC2) [1]
product in 2006, cloud computing has become increasingly
important in people’s daily life. By providing elastic hard-
ware resources, including processing resources, storage
resources, and networking resources, at the data centers
residing at the core of the Internet, cloud computing
enables a spectrum of applications that have profoundly

Manuscript received February 9, 2019; revised April 13, 2019 and June 20, 2019;
accepted June 20, 2019. Date of publication July 25, 2019; date of current
version August 5, 2019. This work was supported in part by the U.S. National
Science Foundation under Grant CNS-1816399. (Corresponding author:
Zeyi Tao.)

Z. Tao, Q. Xia, Z. Hao, C. Li, L. Ma, and Q. Li are with the College of William
and Mary, Williamsburg, VA 23185 USA (e-mail: ztao@cs.wm.edu;
qxia@cs.wm.edu; hebo@cs.wm.edu; cli04@cs.wm.edu; lelema@cs.wm.edu;
liqun@cs.wm.edu).

S. Yi is with VMware, Palo Alto, CA 94304 USA (e-mail: yshanhe@vmware.com).

Digital Object Identifier 10.1109/JPROC.2019.2927919

impacted the contemporary computational patterns for
both industrial and individual uses. Companies can benefit
from cloud computing by executing large batch-oriented
tasks on cloud servers, and individual users can rely
on remote clouds to perform resource-intensive compu-
tations for their client devices. Because cloud computing
has brought so many applications into reality, commer-
cial cloud platforms, such as Amazon AWS [2], Microsoft
Azure [3], and Google Cloud [4], have been successively
put into operation in recent years.

Nevertheless, cloud computing suffers from a severe
problem when serving client devices at the edge of the
Internet. Since cloud data centers usually reside at the core
of the Internet, it is always the case that client devices
have a long network distance to the remote clouds, which
leads to significant network delay perceived by the end
users. This is unacceptable for many application scenarios,
especially for latency-sensitive mobile-cloud and IoT-cloud
applications, where the client devices are mobile devices
such as smartphones and Internet-of-Things (IoT) devices,
respectively.

In light of this situation, edge computing [5]–[7] (also
known as fog computing [8], [9] and cloudlets [10], [11])
was proposed as an extension of cloud computing. By pro-
viding hardware sources at the edge of the Internet, edge
computing serves client devices with much lower network
latency than cloud computing, thereby greatly improving
the user experience for delay-sensitive client-remote appli-
cations. More importantly, edge computing has recently
become a concept beyond merely an extension of cloud
computing [8]. Indeed, edge computing is now frequently
mentioned as an enabling technology of IoT [12], [13]
and is widely adopted by a range of rapidly develop-

1482 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

0018-9219 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7925-0891
https://orcid.org/0000-0003-3200-1369
https://orcid.org/0000-0001-7558-9479


Tao et al.: Survey of Virtual Machine Management in Edge Computing

Fig. 1. Example architecture of edge computing.

ing applications, such as big data analytics [14], video
surveillance [15]–[17], virtual reality [18]–[20], and aug-
mented reality (AR) [21]–[23].

Fig. 1 shows an example architecture of edge com-
puting. As shown in Fig. 1, client devices are wire-
lessly connected to the level 1 edge nodes, which are
Wi-Fi access points (APs) and cellular towers. Behind the
level 1 edge nodes are the level 2 edge nodes, which have
a longer network distance to the client devices than the
level 1 edge nodes. There is also a backend cloud behind
the level 2 edge nodes that resides at the core of the
Internet. The client devices perceive lower delay when the
computations are done at the level 1 edge than at the
level 2 edge. On the other hand, the level 2 edge nodes
possess more powerful hardware than the level 1 edge
nodes and can thus execute more computational tasks
simultaneously. Note that Fig. 1 merely shows a possible
architecture of edge computing. In other edge computing
architectures, it is possible that there are only one level or
more than two levels of edge nodes and that there is no
backend cloud in the system.

Generally, cloud computing is built on several funda-
mental technologies, including virtualization, distributed
mass storage, and parallel programming models [24].
Among these technologies, virtualization plays an impor-
tant role in resource provisioning, task scheduling, and
computation sandboxing in cloud computing environ-
ments. Although built on less powerful hardware, edge
computing faces similar challenges as cloud computing
in effectively managing the hardware resources. There-
fore, edge computing also employs virtualization as one
of its fundamental technologies. At a high level, the vir-
tualization technology, no matter in the form of virtual
machines (VMs) or containers, provides the following fea-
tures that are critical in delivering flexible and reliable
edge computing services.

1) Platform Independence: The hardware infrastructure
of edge computing can be highly heterogeneous,
given that the edge nodes are possibly provided by
multiple third parties and/or individuals. Virtualiza-

tion is the most widely adopted solution to this prob-
lem. VMs and containers in the same specifications
always produce the identical execution environ-
ment regardless of the heterogeneity of the underly-
ing hardware infrastructure. Therefore, applications
developed for a particular set of VM specifications can
be surely executed in an edge computing environment
that provisions VM instances in those specifications.

2) Resource Abstraction: VMs and containers are not
executed on bare metal; they are executed on
hypervisors. Hypervisors manage the underlying
hardware resources and provide emulated hardware
devices for the VMs and containers running atop.
By doing so, hypervisors effectively hide the hetero-
geneity of the underlying hardware infrastructure,
which greatly simplifies the development of cloud
applications as well as the management of the hard-
ware resources.

3) Isolation: VMs achieve hardware-level isolation; the
abnormal status of a VM such as a software failure
will not affect the correctness (sometimes even the
performance) of the programs running in other VMs
running on the same host [25]. This feature is highly
desirable in edge computing because edge nodes
are supposed to serve a number of end users and
execute many tasks simultaneously. In comparison,
containers only achieve operating system (OS)-level
isolation; in normal cases, a program running inside
a container can only access the resources assigned to
that container. However, in abnormal cases, such as
when a container crashes or has been compromised,
the containers in problem may affect the entire host
machine [26], [27]. The primary advantage of con-
tainers is that they are more lightweight than VMs,
and the OS-level isolation that they achieve is usually
sufficient for edge computing.

Despite the advantages of adopting the virtualization
technology, edge computing has several characteristics that
distinguish itself from cloud computing, which pose new
challenges to the management of VMs. We summarize such
characteristics and the challenges they pose as follows.

1) Sparse Distribution: Edge nodes are distributed more
sparsely in a region than the cloud servers locating at
the same data center. Therefore, it takes a longer time
to migrate VMs and containers in an edge computing
environment than in a cloud computing environment,
which poses severe challenges in providing seamless
services for edge computing users.

2) Limited Resources: Unlike cloud servers that possess
conceptually infinite hardware resources, edge nodes
usually possess limited hardware resources. There-
fore, each edge node can only support a limited
number of VMs and containers, which makes it quite
challenging to schedule the VMs/containers in an
edge computing environment.

3) Limited Service Range: Each edge node only covers a
limited service range via wireless media. Due to the

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1483



Tao et al.: Survey of Virtual Machine Management in Edge Computing

mobility of end devices, VMs and containers may need
to be frequently migrated between the adjacent edge
nodes, which places high demands on the efficiency
of VM/container migration in edge computing.

4) Mobility of Edge Nodes: Edge nodes can be mobile
devices/servers in some scenarios; they can be smart-
phones, wearables, drones, vehicles, and so on. The
mobility of edge nodes offers opportunities for achiev-
ing flexible resource provisioning and poses severe
challenges to VM/container scheduling and migration
in edge computing.

5) Poor Reliability: Edge nodes are not as reliable as
cloud servers; they may frequently experience failures
and network partitions. Therefore, an edge comput-
ing system must provide effective failover mecha-
nisms for the VMs/containers running inside in order
to deliver reliable services.

6) Vulnerability to Attacks: Most edge nodes are vulnera-
ble to attacks because they are operated by third par-
ties or individuals with far weaker technical strengths
than the technical companies operating large cloud
data centers. Therefore, the VMs and containers run-
ning in an edge computing system usually face severe
challenges in achieving secure computations.

There are currently a number of efforts toward solv-
ing the aforementioned problems. Some engineers and
researchers have tried to provide a full-fledged solution.
They build general edge computing systems or frame-
works to efficiently manage the life cycle of the hosted
VMs/containers. Others focus on a particular set of the
problems in edge computing virtualization. One body
of work investigates how to improve the state-of-the-
art virtualization techniques for edge computing envi-
ronments, e.g., by reducing the size of VMs/containers
and devising more efficient methods for VM/container
migration. Other work strives to design VM/container
placement/scheduling algorithms that are tailored for edge
computing infrastructures and scenarios. In addition, secu-
rity problems are studied in executing VMs/containers on
vulnerable edge nodes.

The rest of this paper is organized as follows. Section II
introduces the virtualization frameworks for edge comput-
ing from both the industry and the academia. Section III
discusses several virtualization techniques tailored for
edge computing. Section IV elaborates on the placement
and scheduling algorithms optimized for edge computing
scenarios. Section VI discusses the security advantages and
issues that virtualization brings to edge computing. Finally,
Section VII concludes this paper.

II. V I R T U A L I Z AT I O N-B A S E D
F R A M E W O R K S

Since its inception, edge computing has quickly gained
popularity from both the industry and the academia. To
address the new challenges in edge computing, engineers
and researchers have proposed their virtualization-based
frameworks as solutions. In this section, we first highlight

the challenges in designing such frameworks and the key
solutions to them and then shed light on the state of the art
of building edge computing frameworks for both business
and research purposes.

A. Challenges

Designing virtualization-based frameworks for edge
computing faces several key challenges. In the follow-
ing, we summarize the challenges as well as the related
techniques that can be utilized to build solutions to the
challenges. Most of the techniques have been adopted in
the design of edge computing frameworks.

1) Large Resource Footprint of VMs: Edge nodes are com-
modity personal computers that possess much less
powerful hardware than clustered cloud servers. On
the other hand, VMs consume considerable hard-
ware resources for execution [28]–[30]. Therefore,
although a cluster of cloud servers can host many
active VMs simultaneously, it is likely that an edge
node can only support a limited number of active
VMs at one time. This poses a severe challenge to the
design of edge computing frameworks in practice.
To address this challenge, more lightweight vir-
tualization techniques other than VMs, such as
Linux Containers (LXCs) [31] and Docker [32], can
be employed in the design of edge computing
frameworks. Additionally, techniques that reduce the
resource footprint of VMs, such as unikernels [33],
are also effective in addressing the aforementioned
challenge.

2) Large Data Size of VMs: Due to the mobility of end
devices and sometimes even the edge nodes, many
edge computing frameworks are expected to support
frequent VM migrations in a timely manner. However,
the large data size of VMs, both in memory and on
disk [34], poses severe challenges to VM migrations
in edge computing.
Similar to the previous challenge, the performance
problem imposed by this challenge can also be miti-
gated by using more lightweight virtualization tech-
niques or by reducing the memory and disk foot-
print of VMs. Moreover, techniques that reduce the
transmitted data size during VM migrations, such as
data deduplication [35] and VM synthesis [10], can
also be utilized to further mitigate the performance
problem.

3) Security Issues: Even though cloud data centers
are operated by companies with strong technical
strengths and good reputations, they are not trust-
worthy in many cases [36], not to mention the edge
nodes provided by individuals and small third parties.
Therefore, edge computing frameworks always face
significant security challenges to VM management.
To address these challenges, techniques that guar-
antee the accountability of VMs/containers, such
as computational auditing [37] and Intel Software
Guard Extensions (SGX) [38], can be utilized in the

1484 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019



Tao et al.: Survey of Virtual Machine Management in Edge Computing

Table 1 Core Components of OpenStack

design of edge computing frameworks. Moreover,
techniques, such as homomorphic encryption [39],
can also be employed to protect the user privacy in
edge computing environments.

B. Industrial Software Architectures

To date, there are several pioneer projects proposed by
the industry that aims at building general-purpose edge
computing frameworks. In this section, we elaborate on
three important ones of such industrial projects: Open-
Stack, KubeEdge, and OpenEdge.

1) OpenStack: OpenStack [40] is an open-source plat-
form developed by Rackspace Inc. and NASA. By deploy-
ing OpenStack as infrastructure-as-a-service (IaaS), virtual
servers are made available to end users. Although the
original design goal of OpenStack is to support cloud com-
puting in data centers, the OpenStack community recently
claimed that OpenStack can naturally support cloud-edge
computing (CEC) thanks to its flexible and modular
design [41]. OpenStack currently (Version 2018.06.01)
contains 31 components in total, where 9 of them are
designed for core functionalities. Table 1 demonstrates
these core components of OpenStack.

In essence, the Nova compute component is designed
for managing VMs and containers. It works along with the
glance image management component, the neutron net-
working component, the cinder block storage component,
and possibly other components to manage the lifecycle of
the VM/container instances. For example, the Zun compo-
nent provides an API to launch and manage the container
services backed by third-party container technologies as
OpenStack-managed resource, and the Magnum compo-
nent is designed to support third-party container orches-
tration engines, such as Docker Swarm, Kubernetes, and
Apache Mesos in OpenStack environments.

OpenStack supports various virtualization technolo-
gies by incorporating their hypervisor drivers. At the
time of writing this survey, OpenStack supports more
than ten kinds of hypervisors, including KVM, QEMU,
UML, XenServer (and other XAPI-based Xen variants),
Xen (via libvert), VMware vSphere, Hyper-V, Virtuozzo,
PowerVM, LXC, and Docker.

2) KubeEdge: Kubernetes [42], [43] is an open-source
container orchestration system for cloud computing. It was
designed by Google and then donated to the Cloud
Native Computing Foundation, a community belonging
to the Linux Foundation. The design goal of Kubernetes
is to automatically deploy and manage large-scale cloud
applications using container runtimes such as Docker. Tar-
geting at cloud computing scenarios, however, Kubernetes
lacks proper system support for edge computing.

In order to take advantage of Kubernetes in edge
computing environments, Huawei has open-sourced a
cloud-edge platform called KubeEdge [44]. KubeEdge is
based on Kubernetes while providing functionalities for
achieving fast communication between the cloud and the
edge as well as supporting resource-constrained devices at
the edge. With KubeEdge, edge computing applications can
be implemented using the conventional Kubernetes API
and can work with Kubernetes clusters residing at remote
data centers.

Fig. 2 shows the high-level design of KubeEdge and
shows how KubeEdge is incorporated into a remote

Fig. 2. High-level design of KubeEdge.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1485



Tao et al.: Survey of Virtual Machine Management in Edge Computing

Fig. 3. High-level design of OpenEdge.

Kubernetes system. Blocks in orange are components of
Kubernetes, and blocks in gray are those of KubeEdge.
Specifically, KubeEdge communicates with the cloud via
the EdgeHub component, which fetches the containers
and serverless functions from the remote repository and
stores them locally. Information about the containers and
serverless functions is synchronized by the EdgeSync com-
ponent among the edge nodes through the etcd distributed
key-value store [45]. Events from end devices are collected
by the EventHub component and retrieved by KubeEdge,
which will in turn launch containers and serverless func-
tions on the edge node to perform the corresponding
computations.

3) OpenEdge: OpenEdge [46] is an open-source project
led by Baidu. The goal of OpenEdge is to build a flexible
edge computing platform that extends cloud computing
seamlessly to edge devices. To that end, OpenEdge is
designed to work with the Cloud Management Suite of
Baidu IntelliEdge (BIE) for achieving high performance in
various cloud-edge computing scenarios.

OpenEdge adopts a modular and containerized design.
An OpenEdge platform essentially contains two parts run-
ning at the edge: a master process working as an overall
controller and a set of loadable modules working as plu-
gins. In addition, OpenEdge can work in two modes at
present: the Docker container mode and the native process
mode. In the former mode, applications are executed in
Docker containers, while in the latter mode, applications
are executed as native Linux processes. Fig. 3 shows the
key components of OpenEdge when working in the Docker
container mode.

The gray blocks shown in Fig. 3 are components of
OpenEdge, while the orange block is for cloud. To begin
with, the engine component running on the master edge
node fetches IoT events from the IoTHub component
via the Message Queuing Telemetry Transport (MQTT)
message queue [47]. In order to handle these events,
the Engine component communicates with the EdgeHub
component as well as the Docker Repo component to per-

form the corresponding computations in Docker contain-
ers. The Engine component may also communicate with
the Cloud Management Suite component for synchronizing
the master edge node with the cloud, fetching uncached
Docker images, and so on.

C. Research Projects
A considerable effort has also been put into the research

on building edge computing frameworks. In this section,
we introduce several representative research projects from
the academia.

1) Paradrop: Paradrop is a specific edge computing
platform proposed by Liu et al. [48]. In essence, Paradrop
aims at establishing an edge computing environment on
Wi-Fi APs, because Wi-Fi APs locate at the first network
hop to the end devices and are hence a splendid location
to deploy edge computing.

Paradrop contains three key components: 1) a virtu-
alization substrate running on Wi-Fi APs that performs
computations for end users in Docker containers; 2) a
backend cloud working as the control node to manage the
lifecycle of the Docker containers on the Wi-Fi APs; and
3) a developer API through which developers can manage
the resources of the Wi-Fi APs and monitor the status of
the Docker containers. In particular, developers can build
applications that access the IoT devices co-locating with
the Wi-Fi APs, such as wireless cameras and tempera-
ture/humidity sensors, for end users. Such computations
will be automatically loaded into Docker containers when
executed in order to achieve isolation and reproducibility.

2) AirBox: AirBox [49] is a so-called edge function
(EF) platform proposed by Bhardwaj et al. [49], where an
EF is essentially a service provided by edge computing.
AirBox was designed to achieve: 1) fast and scalable
EF provisioning and 2) strong guarantees for the
integrity of the EFs.

For the first design goal, Howell et al. [50] chose
Docker containers to encapsulate EFs after conducting
a comprehensive measurement study on a range of
candidate technologies, including VM synthesis used
by cloudlets, OS-level containers such as Docker, and
user-level sandboxes such as Embassies. For the second
design goal, Intel [38] employed the Intel SGX technology.
SGX is a hardware feature of Intel processors introduced
in 2015, which guarantees the integrity of computations
with low overhead. Every AirBox EF contains two parts,
a trusted part and an untrusted part, and the trusted
part is protected by an SGX enclave. When an EF is
executed, both the trusted part and the untrusted part
will be loaded into a Docker container to simplify the
management of computations.

3) Middleware for IoT Clouds: Nastic et al. [51] have
studied the provisioning problem of IoT clouds, i.e., how
to bring an IoT cloud to a state where it is usable
for end users. The authors claimed that the contempo-
rary provisioning solutions are insufficient for IoT clouds

1486 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019



Tao et al.: Survey of Virtual Machine Management in Edge Computing

because they do not fully consider the vast heterogeneity,
the geographical distribution, and the large scale of IoT
clouds. To this end, the authors proposed a middleware
that relies on the software-defined gateways (SDGs) as
their solution.

An SDG is essentially a software-defined, lightweight
VM. SDGs virtualize edge resources for IoT clouds to
provide isolated and managed execution environments for
edge applications. Each SDG contains a provisioning agent
that interacts with the outside control plane for handling
requests from end users and loading the necessary libraries
for the edge application running inside. In addition, each
SDG contains an SDG Monitor that works along with the
outside control plane and the provisioning agent to man-
age the lifecycle of the SDG. The communication between
the SDGs and the control plane is done via the system API,
while that between the SDGs and the end devices is done
through an MQTT message queue.

Noteworthy is the mobile-edge computing framework
proposed by Jararweh et al. [52], which also embraces a
software-defined design for VM management.

4) FocusStack: FocusStack is a cloud-edge orchestration
platform proposed by Amento et al. [53]. The main prob-
lem that FocusStack tries to solve is that the traditional
method of building the control plane for cloud comput-
ing is not suitable for cloud-edge computing due to the
large scale of the cloud-edge systems and the mobility
of the edge nodes. To address this problem, FocusStack
adopts a location-based situation-aware design. To be more
specific, FocusStack assumes that end devices are also
edge nodes. When an end device generates a computa-
tional request, it will seek for an end device (including
itself) nearby that meets the criteria of performing the
computation.

FocusStack is built atop OpenStack and Docker con-
tainers. When a request is generated by an end device,
the device will contact a local conductor, which will in turn
contact the OpenStack server residing at the cloud via the
geocast primitives [54]. After deciding which end device
will perform the computation for the request, the con-
ductor will encapsulate the computation into a Docker
container and then deploy the Docker container to the
target device for execution.

5) Amino: Amino is a cloud-edge runtime system
designed by Xiong et al. [55]. The authors figured out
that building cloud-edge applications is difficult because
developers must implement complex distributed mech-
anisms, such as concurrence, consistency, and replica-
tion across the entire system. This is a challenging and
time-consuming task.

In order to tackle this problem, the authors employed
Sapphire [56] as the substrate of Amino. Sapphire
embraces a modular design, allowing distributed appli-
cations to be easily customized and orchestrated using
system libraries that implement the distributed mech-
anisms mentioned earlier. By incorporating Sapphire,

Amino solves the aforementioned problem in cloud-edge
computing. Furthermore, Amino utilizes GraalVM [57],
a lightweight VM that supports interoperability between
different programming languages, to execute and manage
multilanguage Sapphire objects with low overhead.

6) Lightweight Service Replication for Mobile-Edge Com-
puting: Farris et al. [58] have studied the challenges in
implementing mobile-edge computing in practice. They
figured out that the most significant challenges are: 1) the
limited hardware resources at the edge and 2) the mobility
of the end users.

To address these challenges, the authors: 1) utilized
Docker containers to encapsulate computations, because
Docker containers provide similar features to VMs such as
isolation and resource abstraction but with a remarkably
lower overhead and 2) proposed a lightweight service
replication method based on the live migration and
checkpoint/restore features provided by LXC (upon which
Docker is built). By proactively migrating the Docker
containers for end users while they are passing across
the boundary of adjacent edge nodes and executing
redundant Docker containers during the migration,
performance downgrade stemmed from user mobility can
be largely mitigated.

7) SOUL: SOUL is a cloud-edge framework for mobile
applications proposed by Jang et al. [59]. The primary goal
of SOUL is to build an edge environment for mobile devices
such as Android phones, sharing the sensors on the mobile
devices to support innovative use cases in edge computing
scenarios.

In essence, SOUL virtualizes the sensors on the mobile
devices that are connected to the edge. By doing so,
SOUL unifies all the sensors as a sensor pool. When a
mobile application is launched on a mobile device while
the mobile device lacks (some of) the necessary sensors,
SOUL will utilize the virtualized sensors on the mobile
device to enable the execution of the application. From
a lower level point of view, this is achieved by the edge
that redirects the input/output of the sensors between the
mobile device running the application and those providing
the sensors. The authors also designed SOUL to virtualize
most of the conventional sensors on mobile devices, such
that off-the-shelf mobile applications can be executed via
the edge without modification.

8) LAVEA: LAVEA is an edge computing platform for
real-time video analytics proposed by Yi et al. [60]. As their
primary concern is the user-perceived latency, the authors
designed LAVEA in a way that it schedules tasks in a
fine-grained and highly flexible manner.

More specifically, LAVEA analyzes video streams by
using the OpenALPR tool [61]. The authors studied Ope-
nALPR and statically divided it into small computational
pieces, which are the unit of scheduling and migration.
End devices opportunistically offload computations to the
edge and execute the remaining part by themselves. They

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1487



Tao et al.: Survey of Virtual Machine Management in Edge Computing

Table 2 Virtualization Techniques in Edge Computing

selectively offload the computational pieces to achieve as
low task latency as possible. Several scheduling schemes
on the edge were also designed to make LAVEA efficient
under different working conditions.

9) Cloudlet-Based Frameworks: The research team led
by Dr. Satyanarayanan at Carnegie Mellon University has
been conducting research projects on cloudlets [10] since
2009. In this section, we introduce two cloudlet-based
edge computing frameworks proposed by his research
team.

A cloudlet-based VM provisioning system was proposed
by Echeverría et al. [62]. Similar to other cloudlet-based
systems, their system constructs VMs at the edge via
VM synthesis, i.e., by applying an overlay received from the
end devices to a base VM image to restore a VM instance.
However, the system distinguishes itself by opportunis-
tically leveraging the provisioning tools that are usually
found in enterprise environments to automate the con-
struction of VMs, thereby improving the performance of
VM synthesis and achieving better flexibility.

OpenStack++ was proposed by Ha and Satyanarayanan
[63]. It is a cloudlets’ deployment system based on
OpenStack [40]. To be more specific, OpenStack++

exploits the extension mechanism of OpenStack to
implement the VM synthesis scheme of cloudlets. In
this way, OpenStack++ can automatically construct the
VM instance after receiving the corresponding VM overlay
from the end device and launch it on the underlying
OpenStack platform. Additionally, other functionalities for
VM synthesis, such as the generation, compression, and
transmission of the VM overlay between the end device
and the edge, were also fully considered and implemented
in OpenStack++.

10) IoT Camera Virtualization: Edge computing has
been viewed as the enabling technology for IoT since its
early years [12]. Recently, there is a research trend that
virtualizes IoT cameras with edge computing to support
innovative applications. Jang et al. [64] proposed an edge
platform for video analytics via an IoT camera. This plat-
form has two key features: 1) the IoT camera is virtualized
by the edge to support multiple edge applications simul-
taneously and 2) the edge can quickly re-configure the
IoT camera to adapt to the environmental changes such as
a brightness decline, thereby guaranteeing the quality of
service (QoS) of video analytics. Notably, each virtual IoT

camera was implemented by a camera driver encapsulated
in a Docker container, and a hypervisor was implemented
to manage all the Docker containers (i.e., the virtual IoT
cameras).

III. V I R T U A L I Z AT I O N T E C H N I Q U E S

Virtualization is the fundamental technique that drives the
fast development of cloud computing. As an extension of
cloud computing, the emerging of edge computing has not
only mitigated the drawbacks of cloud computing but also
carried on a large amount of features of cloud, especially in
the underlying system paradigms and their techniques. For
example, the system-level virtualization (SLV) techniques
are widely used in most edge computing projects. SLV tech-
niques provide the platforms that allow multiple users to
share the same physic computing resources (CPUs, GPUs,
and so on), as if those users occupy the resources individ-
ually. In fact, SLV techniques are still in the dominating
position and are also effective in most of the current edge
computing models where edge nodes are designed to be
general-purpose machines for public access.

However, in edge computing, the execution environ-
ment is significantly different from that in cloud com-
puting. Therefore, traditional VM techniques in the cloud
domain do not fully meet the requirements of the edge
domain. For this reason, many pioneer research projects
have been conducted in terms of tailoring the traditional
virtualization techniques for edge computing, including
SLV, kernel-level virtualization, generalized geographical
virtualization for service mobility, and software-defined
networking (SDN). Table 2 lists the virtualization tech-
niques, which we will discuss in detail in the sequel.

A. Virtual Machines—System Virtualization

VMs, as a hypervisor-based virtualization technique,
is one of the popular options for the existing edge plat-
forms where each VM hosts a full-fledged OS and therefore
provides an isolated application running environment. Pio-
neers who work on edge computing have been embracing
VMs as their fundamental infrastructure. Cyber foraging,
first introduced by Satyanarayanan et al. [65], described
the technique of offloading resource-intensive tasks from
end devices to nearby cloudlets, where the surrogate VMs
are one-hop away from the end devices. A reference archi-
tecture for cyber-foraging is shown in Fig. 4. By offloading
the tasks to the nearby VMs, a mobile device prolongs its

1488 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019



Tao et al.: Survey of Virtual Machine Management in Edge Computing

Fig. 4. Reference architecture for cyber foraging. The cloudlet

client determines the appropriate cloudlet for offloading and

connects to the cloudlet according to the application metadata.

Once a cloudlet is identified for offloading, the cloudlet client sends

the application code and the application metadata to the cloudlet

server. The cloudlet server then deploys the application code inside

a guest VM under the control of the VM Manager.

battery life and benefits from resource-intensive services.
In addition, placing the edge server one-hop away from
the end users will reduce the network latency perceived by
the users and greatly improve the user experience.

VM-based cloudlets offer the computation offloading
services in one-hop away to the end users. By placing
the servers nearby, it achieves significantly lower latency
and higher bandwidth than the cloud services. Cloudlets
allow an end user to exploit VM technology to rapidly
instantiate a customized service on a nearby server and
then use that service over LAN for crisp responsive-
ness of resource-intensive computing tasks. In this par-
adigm, cloudlet servers are discoverable, generic, and
resource-rich workstations that could provide seamless
augmentation of computation-intensive real-time applica-
tions such as human cognition. This approach is tran-
sient customization of cloudlet infrastructure using the
VM technology [65].

Two kinds of the existing VM techniques can deliver the
VM states to cloudlet infrastructure: VM migration and VM
synthesis. The VM migration has been considered as a basic
functionality in cloudlet infrastructure. We will discuss
VM migration in Section III-C. The dynamic VM synthesis is
more appealing because of the fast synthesis speed. Proof-
of-concept experiments [65] yielded 60–90-s provisioning
time by using this approach without optimization.

VM synthesis divides a VM image into two layers, a base
VM image and its VM overlay layer. Base VM image

is a base system image that contains the common OS
kernels and libraries for supporting different applications.
Therefore, we can install and execute different applications
via a launch VM image. In contrast, the VM overlay is
stored on the device of the end user. When offloading is
needed, the end user will transfer the VM overlay to a
nearby cloudlet where the corresponding base VM image
has already been deployed. By combining those two layers,
the original launch VM image is created and ready to offer
the service. Fig. 5 shows a typical VM-based cloudlets’
synthesis process. In order to binding the VM synthesis
technique to cloudlet infrastructure, the original prototype
called Kimberley [65] requires an extra management con-
troller residing in both mobile device and cloudlet. Another
major issue reported by Simanta et al. [66] indicated that
the large size of the overlays always involved in VM syn-
thesis at runtime could downgrade the performance.

Ha et al. [67] later pointed out that the process
of VM synthesis contains three time-consuming and
serialized steps, including VM overlay transmission,
VM overlay decompression, and decompressed VM overlay
deployment. They tried to accelerate VM synthesis
by reducing the size of VM overlay via aggressive
deduplication and bridging the semantic gap between
the VM and the guest OS. Moreover, they tried to modify
the synthesis pipeline to accelerate the launch of the
VM image. Messinger and Lewis [68] raised the idea of
application virtualization to meet the requirements in
resource-constrained cyber foraging environments. Then,
toward a more practical point of view, Lewis et al. [69]
further presented several strategies for cloudlet-based
cyber foraging. They regarded application virtualization
as a method to decrease payload size. At runtime, system
calls from an application are intercepted and redirected

Fig. 5. Dynamic VM synthesis in cloudlets.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1489



Tao et al.: Survey of Virtual Machine Management in Edge Computing

to the resources inside the virtualized application,
thereby reducing the transmission cost. A series of
alternative provisioning strategies was also proposed
by Lewis et al. [69], such as cached VMs, on-demand
VM provisioning, and cloudlet push.

Unikernels are the other type of virtualization tech-
niques that fit for edge computing. Compared with
VMs, which are running on large general-purpose OSs,
unikernels with smaller customized kernels draw much
research attention. Jitsu [70] used unikernels to achieve
secure multitenant isolation on embedded infrastructures.
Indeed, unikernels are promising for resource-constrained
edge computing environments because of their features of
low memory footprints, compact size, and memory-safe
VMs written in a high-level programming language. The
responsiveness and booting speed of unikernels can be
further improved by optimizations, such as using shared
memory channels. Furthermore, small memory footprints
allow unikernel-based system to be more power-efficient
than the traditional VMs. With the help of Type-I hyper-
visor, strong isolation can be achieved similar to other
OS-level virtualizations, such as LXCs.

B. Linux Containers—Kernel Virtualization

LXC is an OS-level virtualization technique. It does not
require full isolation of different OSs. Instead, it allows
all containers to share an OS kernel. Each container has
a virtualized kernel for itself, while the underlying system
has only one copy of the kernel. Since the kernel is vir-
tualized and shared among containers, the image size is
much smaller than those of VM images. By utilizing kernel
features such as cgroups and namespaces, a container can
provide an environment as similar as possible to that of
a VM without the overhead that comes with running a
separate kernel and simulating all the hardware [31].

Applying container techniques to the edge environ-
ment is a natural trend because of the facts of rapid
construction, instantiation, and initialization of virtual-
ized instances [71]. In addition, using the containers can
achieve high application/service densities via small dimen-
sions of the virtual images, which allows more instances
of containers to be deployed on the same host [29]. As a
mature technology, reasonably using containers on edge
is the key challenge. A series of evaluations has been
conducted to explore the feasibility and maximize the
performance. Ismail et al. [72] evaluated the containers as
an enabling technology for deploying an edge computing
platform. They provided four feature metrics covering the
entire container life cycle: deployment and termination
of services, resource and service management, fault toler-
ance, and caching capabilities. Later, Morabito [71] eval-
uated the performance of container-based virtualization
on IoT devices on the edge. They conducted more practi-
cal experiments on Advanced RISC machine (ARM)-based
IoT end devices (Raspberry Pi). Performance evaluation
on the CPU, memory, disk I/O, and network shows that

container-based virtualization can represent an efficient
and promising way to enhance the features of edge archi-
tectures.

C. Service Mobility—Geographical Virtualization

End users benefit from edge services by offloading their
computation-intensive tasks to nearby edge nodes. How-
ever, when the end user moves away from the nearby
edge server, the QoS of edge services will significantly
decline due to the interruption of the network. Keeping a
constant high QoS in the offloading stage is one of the key
challenges in edge computing. Ideally, when the end user
moves, the services on the edge server should also migrate
to a new nearby server. Therefore, efficient live migration
is vital to enable the mobility of edge services in edge
computing environments. There are several approaches
proposed for live migration. We classify these approaches
according to their underlying virtualization techniques,
such as VM-based migration, container-based migration,
and process-based migration.

1) VM-Based Migration: Based on the work of
VM synthesis [65], Ha et al. [73] proposed VM handoff as
a technique for seamlessly transferring VM encapsulated
computations to an optimal offload site as users move.
Machen et al. [74] proposed to organize VM images
into two or three layers through pseudo-incremental
layering, and then, the layers were synchronized by
using the rsync incremental file synchronization feature.
Chaufournier et al. [75] and Teka et al. [76] used
multipath TCP to transfer VM images over different paths
in parallel. Bittencourt et al. [77] elaborated on the roles
of VMs in fog computing cloudlets. In particular, they
establish a fog architecture to support VM/container
migration. In recent, Machen et al. [78] presented
a layered framework for migrating active service
applications that are encapsulated either in VMs or
containers in mobile-edge cloud (MEC) settings.

2) Container-Based Migration: Qiu et al. [79] explored
the potentialities of LXCs to be applied to cloudlets and
adopted a container migration technique based on Check-
point/Restore in Userspace (CRIU) and the rsync com-
mand. Ma et al. [80] proposed an efficient migration
method by sharing most of the storage layers between
different edge nodes and incrementally transferring the
runtime memory to reduce the downtime of live migra-
tion. It was shown that the migration downtime could be
reduced by more than 56% compared to VM synthesis.
We notice that the container migration in edge computing
environments is still an under-explored area and has many
research potentials.

3) Process-Based Migration: Process-based migration is
one of the key techniques in distributed systems in
large data centers, especially important for task schedul-
ing. Early days, Milojicic et al. [81] generated a full
picture of process migration by summarizing the key

1490 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019



Tao et al.: Survey of Virtual Machine Management in Edge Computing

concepts and giving an overview of the most important
implementations. Now, many mature tools, such as
CRIU [82], have been widely used by both industry and
academia. However, current process migration paradigms
assume a shared or distributed networking storage [82],
where all the migration targets have an identical view of
the underlying file system. This is a valid assumption for
large data centers in the cloud, but no longer suitable for
edge computing environments. Therefore, we anticipate
that efficient storage sharing on edge computing environ-
ments is the key challenging obstacle for achieving feasible
process migration in edge computing.

D. VM-Based SDN—Networking Virtualization

Another domain of virtualization in edge computing
is networking virtualization. Emerging applications on
edge computing, such as cognitive assistance programs,
usually require high bandwidth, low latency, as well as
the dynamic networking configurations. Configurable net-
working becomes much more challenging on the edge that
is on the last mile of network and faces various kinds
of mobile applications. SDN provides highly customized
network policies that could meet the requirements of the
ever fast growing complexity of networking typologies
and routing schemes. SDN is an emerging architecture
that is dynamic, manageable, cost-effective, and adaptable,
making it perfect for the high-bandwidth, dynamic nature
of today’s applications. This architecture decouples the
network control and forwarding functions.

VM techniques also play an important role in the SDN
architecture. NetVM [83] retrofits the VM platform to vir-
tualize the network interface card (NIC), which achieves
far better performance than the traditional VM platforms
for single, nonvirtualized host. It drives the NIC, forwards
the packets inside a customized hypervisor, and allows
each VM to share the networking resources through a
huge page in the hypervisor, thus reducing the overhead of
copying packet data across different layers of the system.
The scheme allows zero-copy delivery of data from NIC
to VM, which significantly improves the throughput of the
data plane in the SDN architecture.

One limitation of SDN-based networking solutions is
that it requires hardware support. There are still network
devices that are not SDN-enabled at the edge of networks.
These SDN-based solutions cannot be deployed to these
devices. Updating network devices can solve this prob-
lem, but sometimes, it costs too much for updating those
devices.

E. Virtualization Challenges for Edge Computing

Virtualization techniques play an important role in edge
computing for its capability of providing high scalability,
easy-to-deploy frameworks, and the stable view of the
network and computing environment, while the end users
are rapidly changing locations. We notice that the tradi-
tional research and industry applications of virtualization
techniques on the cloud platforms are valuable experiences

as a starting point for the edge computing environment.
However, differences between the cloud and the edge,
such as the networking conditions, hardware resources,
and maintenance costs, impose new challenges for those
techniques to be useful on the edge.

With many of the assumptions for the cloud environ-
ment no longer being valid in the edge, more efficient
virtualization solutions need to be explored. For example,
efficient service migration in the edge computing environ-
ment is still an unexplored area and has many research
potentials, while networking virtualization, such as SDN,
needs to be revised for its compatibility with legacy devices
and easy deployment across the large geographical distri-
bution for the edge. Virtualization techniques need to be
more energy and performance efficient with relatively low
hardware requirements. When utilized in a wide area net-
work (WAN) environment, virtualization techniques also
need to be bandwidth efficient to resist the relatively poor
network conditions.

IV. P L A C E M E N T A N D S C H E D U L I N G

In a long period of time, cloud-based applications
have enriched user experiences by offering power-
ful, reliable, manageable, and cost-saving services. The
computing capacity of end devices no longer has the
confinement. The end devices can reduce their work-
load and prolong their battery life by offloading the
computation-intensive tasks to a remote cloud. However,
in recent years, the computation-intensive tasks, such
as machine learning-based applications and AR, always
require an amount of data supply. Offloading such tasks
to remote cloud, apparently, is undesirable due to the
long distance between the end devices and cloud, and
the service downgrading caused by unpredictable net-
work conditions. As a consequence, a lot of research has
been conducted to explore the optimization opportuni-
ties in edge computing paradigm. Interestingly, most of
VM placement and scheduling problems can be formulated
as nonlinear optimization problems. However, such opti-
mization problems have several nontrivial solutions and
their solution spaces are huge. We summarize the problems
in VM placement and scheduling in an edge computing
environment by their objective functions in Table 3 and
discuss in the following.

A. Optimizing Installation Expenditure

End devices frequently communicate with their assigned
edge node and continuously exchange various types of
data over the time. Therefore, installing the edge nodes to
the suitable locations becomes a primary research problem
for service providers (SPs). Although user experiences
could be improved by increasing the number of edge
nodes, in fact, it is impractical because the budget of SP
is limited. Moreover, edge node installation expenditures
not only include the edge server facilities but also the
fee of subsequent maintenance and management. To the

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1491



Tao et al.: Survey of Virtual Machine Management in Edge Computing

Table 3 Placement and Scheduling

best services, the budget of SP therefore should be taken
into consideration. Two common factors of edge node
installation expenditures are site rentals and area-specific
computation demands. The site rentals can significantly
impact on the deployment expense since they are vari-
ous in terms of different geographic locations from big
city to rural. We also notice that there exists a positive
correlation between the site rentals and potential com-
putation demands. For example, in the high population
density area, site rentals and computation demands are
both high. This untreated problem was first discussed
by Ceselli et al. [84], where they brought the original
insights on the planning of edge nodes without any user
level or VM mobility considerations. Their static planning
reveals a link-path mixed linear relation between edge
node installation cost and QoS. A more concrete edge node
deployment problem was discussed in [85]. In the context
of mobile-cloud computing (MCC) with a centralized data
center, end devices offload the tasks to a data center,
which causes the high end-to-end (E2E) delay. Although
cloudlet can potentially mitigate this problem, how to
place cloudlets to minimize the E2E delay as well as the
deployment cost has not been addressed. In fact, the E2E
delay is hard to be avoided in implementation because
the big data aggregation tries to gather data from the
numberless users. Mondal et al. [86] explored the edge
node deployment problem over optical access networks.
They proposed a hybrid cloudlets’ placement framework
CCOMPASSION over the existing TDMPON infrastructures
to prevent under- or over-utilization of the resources.
In essence, most of the edge node deployment optimization
problems can be formulated as a mixed-integer nonlinear
programming (MINLP) problem with the form of

min Etotal =
�

pi∈I
pisi + γ

�
C(λ, t) (1)

where Etotal is the total cost in CEC, I denotes as the set
of possible locations of edge node, and si is the fixed
cost of an edge server at pi. Here, C(λ, t) is a generalized
constraint function that usually uses time t and task arrival
rate λ as parameters with cost coefficient γ. For example,
in [85], the constraint function is defined as the user
requested E2E delay.

B. Optimizing Response Time
The emerging of cloudlet techniques fills the gap

between the remote cloud and end devices. Cloudlet refers

to a trusted, resource-rich computer or cluster located in
the area close to a variety of proximity devices. Hence, one
can offload a heavy computational task to nearby VM and
regale a low-latency access of the rich computing resource.
One of the mainstream research problem of VM scheduling
and placement in CEC paradigm is focusing on optimizing
access delay and minimizing response time. This kind of
studies is nontrivial and challenging due to: 1) the end
devices frequently communicate with the different VMs in
a nonstatic manner, and therefore, it is barely possible to
predict their movements; 2) the number of end devices is
in a big range over the time, and although it may have
some regularity in short period of time, their number is
unpredictable from long-term perspective; and 3) the tasks
have dynamic workload, and hence, it is not feasible for
scheduling simply by their execution time. In general, it is
impractical to think that the VM can provide as much com-
putation resource as the user expected in edge computing.
In fact, the VM is resource limited due to economic reasons
and physical constraints.

To keep the promise of the best QoS and reducing
the resource contention, Cardellini et al. [97] intuitively
mentioned that one could take advantage of the general
multiuser three-tier mobile CEC platforms via delivering
the tasks to both cloud and cloudlets. We could assume
that task offloading is a non-cooperative game among
selfish users, and as a result, the optimal solution can
be achieved by solving a generalized Nash equilibrium
problem (GNEP) from the game theory. Although their
work is almost methodology that targets at determining
which tasks should be properly delivered to which cloud
tier, it inspires researchers to explore using the shared
resource to improve the edge computing performance and
the user experiences. Verbelen et al. [98] presented a novel
edge computing architecture, where the applications were
managed in the component level. The application compo-
nents can be independently distributed among the VM and
executed in a parallel manner.

In recent years, cloudlets have been considered as the
best practically suited technique for wireless metropoli-
tan area networks (WMANs) [87]–[90]. This is due to
the fact that the WMAN is deployed to a high popula-
tion density area with adequate computation demands,
and hence, the economic benefits of using cost-efficient
edge VM can be amplified tremendously. Another signif-
icant fact is that the price of using this adorable tech-
nique could be low, since it has potentially large user
groups. Jia et al. [87] generalized a K Cloudlets Placement

1492 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019



Tao et al.: Survey of Virtual Machine Management in Edge Computing

Optimization Problem, that is, given the limited number
of edge nodes in WMAN, they are trying to find the
optimal VM placement strategy and the effective user-to-
cloudlet assignment in a WMAN, therefore reducing the
average wait time of offloaded tasks. They point out that
the traditional VM placement follows a classical principle
that the VM operators always assign tasks to the closest
edge VM, which causes the uneven distribution of tasks
and computing resource contention. The overloaded tasks
lead to a poor quality of experience (QoE). Jia et al. [87]
systematically analyzed the VM placement in WMAN and
introduced the M/M/c queue for balancing workload and
average response time. Moreover, Xu et al. [88] proved
the K Cloudlets Placement problem to be an NP-hard and
proposed a heuristic algorithm to ensure the minimized
average edge node access delay. To solve the problem
in WMAN-based VM (cloudlets) placement and offload-
ing, Jia et al. [90] presented an optimization algorithm
to reduce the average response time of offloading tasks
over the entire system. They noticed that the VM place-
ment problem followed the wooden barrel principle, that
is, the system performance depends on the longest task
response time. When an unexpected number of user
requests overwhelms a VM, the response time dramatically
increases, and as a result, the QoS is downgraded. To avoid
such situation happening in WMAN, they first formulated
a VM-based load balancing problem in a given network
graph. Then, they kept monitoring the task response time
and dynamically redirecting the task to achieve workload
balance of each VM, so that minimizing the maximum
response time of tasks in edge VM when offloading surge
occurred. Generally, the WMAN-based VM optimization
problems are planning to minimize the system response
time (SRT) by using the following model:

min t̄ =
1

n

n�

i=1

ti (2)

where t ∼ (G, A,W, D, Tc, f(λ), B, μ, c). Here, G is the
given network graph. A refers to workload. Tc is a prede-
fined time threshold. The delay between AP and end device
is D. The task queue time has the form of Erlang’s formula
f(λ) = ((M/M/c queue)/(cμ − λ)) with c VMs and task
arrival rate λ.

C. Optimizing Energy Consumption

Energy consumption should never be neglected because
it is an essential metric in QoS evaluation. Especially in
the CEC paradigm, all connected live users are equip-
ping with a portable devices but having limited battery
supply. Although edge nodes provide a perfect breed-
ing ground where the end devices can offload the
energy-hunger tasks that always accompany with com-
plex data or require high-frequency communication with
edge node, those applications use approximately 50%
of the total energy consumption, while the proportion

of under-utilized service capacity is only from 5% to
25% [99]. Kumar and Lu [100] tried to answer the ques-
tion whether offloading computation can save energy. They
gave a positive answer to this question. The offloading on
CEC can potentially save energy for end devices. In the
early literature, Gelenbe et al. [101] addressed the energy
consumption problem from the pure technical aspect.
Task offloading could happen in either remote cloud or
in edge nodes according to average task response time,
task arrival rate, and average energy consumption. Later,
Wang and Xia [102] introduced the power consumption
model of physical machines (PMs) for analyzing the energy
consumption in the big data center.

Recently, researchers pay more attention to the energy
consumption of VM placement. VM placement can be
simply regarded as a process to find the optimal network
path to allocate VM, and therefore, the task can be quickly
executed and energy usage can be reduced. In such a
problem, the energy cost mainly depends on: 1) the CPU
or GPU intrinsic energy cost of processing each offloading
task; 2) the number of alive VMs of service; 3) the number
of idle servers; and 4) the transmission distance and the
frequency of VM consolidation. In this kind of literature,
researchers formulate a series of integer linear program-
ming (ILP) problems with the constraints of: 1) the limited
offloading capacity; 2) the limited number of edge nodes;
and 3) the upper bound of distance between the end device
and the edge node. Kaur and Bawa [103] figured out
that energy-aware VM placement was an NP-hard, and the
following literature then considered it to be a bin packing
problem with different dimensions. The first industry-level
VM placement problem with energy concerns is from
IBM [104] who built a collaborative manager system to
minimize the service-level agreement (SLA) violations and
total power consumption. Kaur and Kalra [105] focused
on the topic of energy cost when deploying the VM to
a PM occurred. By reducing the number of live servers
and redundant migration operations, their experiments
showed the superiority in comparing to the industry-level
standard algorithm, modified best fit decreasing (MBFD)
algorithm [106].

There is another trend that the energy-aware VM place-
ment optimization approaches can be solved via particle
swarm optimization (PSO), for example, in [91] and [92].
In order to fully utilize the PSO, they concluded that:
1) the CPU utilization and energy consumption were in
linear relation and 2) the idle servers consumed more than
60% total energy [107]. Li and Wang [92] additionally
proposed the method to find out a placement scheme
that could reduce the total energy consumption and keep
the access delay in a reasonable range. Moreover, WMAN
becomes a good study case since it has a plenty of wireless
APs and countless connected end devices. Ren et al. [108]
overcame the energy drain by solving an equivalent min-
imum dominating set problem in the graph theory and,
therefore, choosing the minimum number of edge nodes
and cutting down the energy cost.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1493



Tao et al.: Survey of Virtual Machine Management in Edge Computing

D. Optimizing Revenue of Service Provider

SPs play an important and irreplaceable role in the
CEC and MEC paradigm. The primary concerns of SP
include how to reduce the operational cost, boost the
market share, and enlarge the scale of its enterprise. Given
the above-mentioned facts, an effective admission control
scheme should be issued by SP to ensure the QoS under the
constraints of computing resource, network bandwidth,
and the budget of PS.

For a long time, admission control models from SP are
being underestimated. Admission control can be expressed
as many different models. Hoang et al. [96] proposed
a prototype of dual-class user-level admission model.
To optimize an admission control model, they used the
semi-Markov decision process (SMDP) to maximize the
revenue of SP. The nonlinear objective function tries to
allocate the resource such as network bandwidth and edge
VM to users with different priority levels (member or
nonmember) and ensure QoS requirements. By follow-
ing Hoang et al. pioneer work, a series of SLA-driven
VM placement approaches [109], [110] had been stud-
ied in the generalized cloud. Katsalis et al. [111] investi-
gated the problem of multiple MEC-IaaS providers with
a mixture of different time-sensitive tasks for scheduling.
They formulated a joint optimization problem based on
a decision process where the MEC-IaaS providers aimed
to maximize their revenue. It is also worth to mention
here that Katsalis et al. [111] derived a fast VM placement
method by taking the advantage of Lyapunov optimization;
therefore, there was no necessity to know the task arrival
rate in advance.

Another track of discovering the maximization SP rev-
enue problem is through employing an auction mecha-
nism. In essence, the auction-based profit maximization
approaches, such as [93]–[95], aimed to find an efficient
VM pricing model. Zhang et al. [93] suggested an auction
mechanism by formulating the pricing model of resource
allocation process on VMs. In addition, Zheng et al. [95]
developed an optimization model for the spot pricing sys-
tem. Furthermore, a three-hierarchical-cloudlet-tier (field,
shallow, and deep) design had been explored in [112].
This paper is inspired by the equilibrium pricing models
and users can bid for resource from edge VM according to
their demands.

E. Optimizing Others

The optimization problems in VM scheduling and
placement are not limited to the topics that we
highlighted earlier. Xia et al. [113] focused on maxi-
mizing the system-level throughput. They defined an
online request throughput maximization problem to deter-
mine the incoming task whether should be accepted
or rejected according to the admission cost threshold.
Sun and Ansari [114] and Sun et al. [115] proposed
the VM migration strategy to optimize the tradeoff
between the migration gain and the migration cost. They

quantitatively analyzed the process of VM migration and
generated the migration cost-gain models. A VM placement
problem in data centers with multiple deterministic and
stochastic resources was discussed in [116]. They found
an approximation solution of multidimensional stochastic
VM placement (MSVP) to reduce the number of required
servers.

V. S E RV E R L E S S M A N A G E M E N T I N
E D G E C O M P U T I N G

Serverless, also known as Function-as-a-Service (FaaS),
is an abstraction layer for applications built on the top
of services running in virtualized environments. FaaS is
hardly a success without the advancements in lightweight
virtualization techniques and wide adoption of cloud
computing.

Edge computing platforms are embracing serverless ser-
vices to provide a unified abstraction of applications that
can run anywhere at anytime. Most popular serverless
services, such as AWS Lamda, Azure Function, and Google
Cloud Functions, are provided as cloud services. However,
a wide variety of serverless services can be deployed both
in cloud and on-premise, such as Apache Openwhisk,
Knative, OpenFaaS, and Dispatch. There are also dedi-
cated edge computing platforms incorporating serverless
as the default or alternative computing paradigm, such as
KubeEdge and OpenEdge. As a newly emerging technique,
we discuss its management in this section. The serverless
management is, in essence, the virtualization instance
management, as all the serverless frameworks are built
based on at least one or two virtualization techniques.

1) Life Cycle Management: The common workload type
for FaaS is event driven. An event triggers the launch-
ing of a serverless instance (container or VM) to fulfill
certain types of task handling, report the results, and
terminate or recycle itself. When massive events hit
the same function on a serverless platform, the same
type of serverless instances will auto-scale to adapt
to the incoming workload. As a result, serverless ser-
vice usually has to limit the computational resource
and memory that a single instance can be allocated.
Therefore, life cycle management is crucially impor-
tant for serverless computing systems to lift the lim-
its in terms of improving resource utilization and
latency mitigation. Sprocket [117] is a video process-
ing system built on the AWS Lambda serverless cloud
infrastructure. The Sprocket relies on coordinator as
a control plane for life cycle management of Lambda
instance. Sprocket also combines speculative execu-
tion and proactively execution to make sure that
straggler is mitigated.

2) Cost-Oriented Management: Unlike traditional com-
puting service, serverless expense depends on the
requested functions’ executing time and the amount
of memory allocated to that function. Therefore,
an optimized pricing model of serverless computing

1494 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019



Tao et al.: Survey of Virtual Machine Management in Edge Computing

is needed. The two major categories of optimiza-
tion problems in serverless are function fusion
and function placement. Functions’ fusion is a
nontrivial research problem. Merging multiple func-
tions together can greatly reduce the transition cost
and provide the flexibility for function placement.
What happens underneath is the consolidation of
resources at the VM level, which brings down the total
cost. Costless [118] targeted at balancing between
price and execution time by proposing two tech-
niques, function fusion and placement, based on the
variance of the pricing models of AWS Lamda (cloud
side) and AWS Greengrass (edge side). Their solution
relies on a cost graph model to formulate the problem
as a constrained shortest path problem for finding
the best solution that can make a tradeoff between
latency and budget. For example, Feng et al. [119]
built a serverless computing system for neural net-
work training and also studied how to minimize mon-
etary cost and maximize the performance–cost ratio.

Although the FaaS finds its place in CEC, the research
study on FaaS optimization still remains unexplored. Now,
we illustrate some open serverless management challenges
at edge.

1) Function Deployment: In serverless edge computing,
function deployment that needs more attention as
resource at the edge is limited, which means that
we cannot even pull a huge size container image
or build such image at edge. There is also a strong
need to make function management at the edge side
agnostic to the cloud provider. For example, Aske and
Zhao [120] proposed an edge computing client that
supported multiple serverless SPs.

2) Function Invocation: In order to invoke a
function [121], the naive way is to instantiate
the container or VM with an image containing
the code of the function, which is known as cold
start. This approach is efficient on resource usage.
However, the latency or responsiveness is hard to
guarantee during the startup process. To address
this issue, the warm start is proposed in which
a pool of containers or VMs will be ready ahead
of invocation. In the cloud-edge environment,
pre-warming container or VM at edge pays a higher
cost than in the cloud. Because resources are limited
at the edge side, one may not be able to pre-warm
all kinds of runtime environments in container or
VM. However, an edge computing system has its
advantage to leverage collaborations between edge
node and cloud node or among nearby edge nodes.

3) Function Chaining: Function chaining is necessary as
it in nature captures the relationship of functions
among any complex applications. It is a feature that
will be requested more often since more complicated
applications run in a serverless manner. SAND [122]
was built to provide lower latency and better resource

efficiency for a serverless computing system. SAND
approaches the function chaining by a workflow sys-
tem supported by a hierarchical message bus system.
If a workflow will invoke function across the hosts,
the output of the previous step will be published into
the global message queue; otherwise, the output will
remain in the local message queue.

4) Function Composition and Decomposition: Function
composition means that we combine or fuse multi-
ple functions into a single function, while function
decomposition means that we separate a complex
function into smaller functions. Given the imbalance
of resources owned between edge and cloud, we fore-
see that function composition and decomposition will
play an important role in performance tuning for
serverless spanning on edge and cloud.

VI. V I R T U A L I Z AT I O N A N D S E C U R I T Y

Similar to cloud computing systems, security plays a big
role in edge computing systems. Because edge nodes store
users’ sensitive data (e.g., video streams and location data)
and offer critical services (e.g., security surveillance and
automation control in factories), security becomes even
more important in edge computing. Moreover, the appli-
cations of virtualization techniques in edge computing,
though bring lots of benefits for security, also introduce
potential security vulnerabilities. Therefore, security is
another hot topic in edge virtualization management.
In this section, we will cover challenges and works related
to security problems in the context of edge virtualization.
These works fall into two categories: 1) works that use vir-
tualization techniques to solve security and privacy prob-
lems and 2) works that address potential vulnerabilities
in the virtualization ecosystems in edge computing. For
the second group, we will first introduce the potential secu-
rity issues in virtualization under edge computing scenario.
In the end, some of the countermeasures to address these
security issues are introduced.

A. Apply Virtualization for Security Reason

Because edge computing shares one edge node among
different services, it is necessary to isolate resources and
OS among services. Furthermore, because of the needs
to protect private user data, edge nodes need to isolate
service data between each other. Due to the nature of
isolation in VMs, virtualization becomes one of the most
straightforward approaches to guarantee security and pri-
vacy. There are three types of isolation in edge computing:
1) the isolation of user data; 2) the isolation of OSs; and
3) the isolation of resources. We introduce these three
isolations separately in detail.

1) User Data Isolation: Protecting users’ data from unau-
thorized access is one of the critical features in edge
platforms. Virtualization techniques offer easier ways to
edge administrators to manage the privacy of users’ data.
Because processes in one VM cannot directly access data

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1495



Tao et al.: Survey of Virtual Machine Management in Edge Computing

in other VMs, edge administrators just simply assign a
VM to each task in an edge node and run these tasks inside
their own VM environment. EdgeCourier [123] is one such
example using virtualization techniques to keep users’ pri-
vacies. EdgeCourier is an edge platform for documentation
synchronization. Each synchronization is assigned with an
edge-hosed personal service (EPS), which is implemented
as a unikernel. Because user tasks are wrapped in EPS,
EdgeCourier can schedule user services by simply manipu-
lating EPS.

2) OS Isolation: Virtualization techniques not only make
service management easier but also protect tasks running
from failures of other services. By isolating services into
different OSs, even if one service is crushed, it only ruins its
own virtual running environment. As long as the host is in
good status, other services will continue running without
any interference. LAVEA [60] is a video analysis applica-
tion in edge computing. It uses Docker to segregate dif-
ferent videos analyzing processes to different containers.
This design helps both easy management of video analyze
services and service protection from the unexpected errors
of other services.

3) Resource Isolation: Allocating resources among
services is a hot topic in edge computing. By assigning
resources to VMs, virtualization techniques transform ser-
vice resource allocation problem to VM resource allocation
problem. Allocating resources to VMs is more straight-
forward since edge administrators do not need to con-
sider privilege issues and race conditions between services.
ParaDrop [48] is a multitenant edge platform that uses vir-
tualization techniques to achieve the isolation of resource
allocations. Jang et al. [64] propose an IoT camera virtual-
ization architecture in edge computing to achieve camera
allocation isolations.

B. Security Issues in Edge VM

Although virtualization techniques bring benefits to
edge computing security, these techniques also introduce
security challenges to edge computing platforms. In this
section, we will introduce the security challenges in edge
computing virtualization.

The first security challenge of virtualization is the secu-
rity of the host machine, i.e., the edge node. Because the
host machine can configure every detail of the VMs, a com-
promised host machine is a disaster for all VMs. Unlike
cloud servers that are in the secured places, edge nodes
are not always physically secured. It is easier for advisories
to physically access edge nodes and compromise the edge
nodes by exploiting kernel vulnerabilities. Moreover, since
services may migrate among several edge nodes and these
edge nodes are heterogeneous in terms of the owner and
the platform, the attack surface for a service is larger than
the one in could computing. Another security threat inside
of the edge node comes from the residence of malicious
VMs. Adversaries can create a fake edge service in an

edge node and perform side-channel attacks inside the
edge node trying to infer sensitive data from other VMs.
Therefore, securing the host machine is the first challenge
of edge computing systems with virtualization enabled.

The next security threat of virtualization is from the net-
work. As we mentioned earlier, edge nodes usually migrate
VMs to other edge nodes. During the transformation of
these VMs, adversaries can perform attacks to interference
VM migrations. Moreover, these VMs may face the risks
of leaking their contents to adversaries. For example, if an
adversary successfully launches Man-in-the-Middle (MitM)
attacks on a communication channel between two edge
nodes, it can get the entire content or image of a VM.
Another attack example is the phishing attack, in which
adversary deploys a fake edge node and waits for other
edge nodes falsely migrate VMs to them. Edge nodes may
also face denial-of-service (DoS) attack from the network.
Because initializing a VM for one service costs many
resources and edge nodes have striker resource limitation
than cloud server, it is easier for adversaries performing
DoS attacks in edge computing.

C. Countermeasure

With the respect of the above-mentioned security chal-
lenges, researchers proposed approaches to secure the
VM-based edge computing platforms. In this section,
we will cover the existing and potential countermeasures
for these security threats. Specifically, we introduce coun-
termeasures from the following four security techniques:
1) identity and authentication mechanism; 2) intrusion
detection system (IDS); 3) trust management; and 4) fault-
tolerance mechanism.

1) Identity and Authentication Management: One of the
best ways to address MitM attacks and phishing attacks
is to use identity credentials from a trusted third party
to identify trusted edge nodes. Two edge nodes need to
get credential from the other side and verify its iden-
tity whenever they are going to establish a communi-
cation channel. In this case, adversaries cannot pretend
to be other genuine edge nodes. Echeverría et al. [124]
proposed a solution for building trusted identities in dis-
connected environments, which is suitable for edge com-
puting scenario. Besides verifying identities, using classical
encryption schemes can also help secure the message
from adversaries. Identity-based encryption (IBE) [125],
for example, is a great encryption scheme for edge nodes.
In IBE, a user’s public key can be directly generated
from users’ own identities. Therefore, there is no pub-
lic key exchange phase in IBE. This saves lots of time
and simplifies the key distribution protocol. Attribute-
based encryption [126], [127] is another useful encryption
scheme in which a user’s public key is computed accord-
ing to that user’s attributes. Both IBE and ABE can be
applied to VM-based edge computing platforms for estab-
lishing encrypted communication channels between edge
nodes.

1496 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019



Tao et al.: Survey of Virtual Machine Management in Edge Computing

2) Intrusion Detection System: An effective way to
protect edge nodes from attacks, such as DoS attack,
is deploying IDSs on edge nodes. An IDS is a system
that monitors active attacks and abnormal activities
in a network. It analyzes the signature of traffic or
abnormal events to decide whether there are any attacks
inside the network. Lin et al. [128] proposed an IDS for
edge computing. Because edge nodes may have limited
resources, resource allocation in IDS is not a trivial
problem, together with a system for efficient and fair
resource allocation within the IDS. Arshad et al. [129]
proposed COLIDE, a framework for intrusion detection
in machine-to-machine (M2M) networks with hosts and
edge nodes that have low energy and communication cost.
Because edge nodes are usually located in M2M networks,
COLIDE is very suitable for edge computing scenario.
Furthermore, IDSes in cloud computing [130]–[132] are
also good candidates for edge computing.

3) Trust Management: Before running services on an
edge node, the owner of the services needs to know
whether the edge node is trustworthy. Here, trustworthy
does not only mean the identity of the edge node, which
can be verified by authentication mechanisms introduced
earlier, but also means the reputation of the edge node,
that is, users need to be sure that edge nodes perform
as they claim before scheduling services. Airbox [49] is
a platform for onloading edge services. Airbox leverages
Intel SGX [38] to secure the integrity and privacy of
edge services, which can be wrapped by a VM, on edge
platforms. Hussain and Almourad [133] proposed a trust
management scheme for users to choose edge nodes with
high reputation. Some of the trust management works in
cloud computing [134]–[136] can also be introduced in
edge computing.

4) Fault-Tolerance System: Making edge nodes more
robust and resilient to errors is always a good direction

for defending edge nodes. Besides the security mech-
anisms applied to edge nodes, they themselves should
be fault tolerance and fast recovery from the fault sta-
tus. Satria et al. [137] proposed the recovery schemes
for overloaded edge nodes. The basic idea behind these
recovery schemes is offloading neighboring edge nodes.
Aral and Brandic [138] introduced a method for assessing
the probability of edge service interruption. The service
interruption probability is inferred from historical failure
logs of all the edge nodes.

VII. C O N C L U S I O N

In this paper, we shed light on the industrial and research
projects on VM management in edge computing. As an
extension of cloud computing, edge computing relies on
virtualization to deliver its services. Nevertheless, the dis-
tinguishing traits of edge computing make it a different
story from that of cloud computing in establishing vir-
tualization mechanisms for the entire system. We hence
introduce the engineering and research trends of achieving
efficient VM/container management in edge computing.
More specifically, we elaborate on: 1) the virtualization
frameworks for edge computing from both the industry
and the academia; 2) the virtualization techniques tailored
for edge computing; 3) the placement and scheduling
algorithms optimized for edge computing scenarios; and
4) the security advantages and issues that virtualization
brings to edge computing.

We envision that edge computing will keep evolving
in the future, bringing more opportunities, and impos-
ing more challenges on VM/container management. More
effort from both the industry and the academia should be
put into this promising research topic in the future.

A c k n o w l e d g m e n t s

The authors would like to thank all the reviewers for their
helpful comments.

R E F E R E N C E S
[1] Amazon. (2019). Elastic Compute Cloud. [Online].

Available: https://aws.amazon.com/ec2/
[2] (2019). Amazon Web Services (AWS)—Cloud

Computing Services. [Online]. Available:
https://aws.amazon.com/

[3] Microsoft. (2019). Microsoft Azure. [Online].
Available: https://azure.microsoft.com/

[4] Google. (2019). Google Cloud Including GCP & G
Suite| Google Cloud. [Online]. Available:
https://cloud.google.com/

[5] M. Satyanarayanan, “The emergence of edge
computing,” Computer, vol. 50, no. 1, pp. 30–39,
2017.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge
computing: Vision and challenges,” IEEE Internet
Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[7] W. Shi and S. Dustdar, “The promise of edge
computing,” Computer, vol. 49, no. 5, pp. 78–81,
2016.

[8] L. M. Vaquero and L. Rodero-Merino, “Finding
your way in the fog: Towards a comprehensive
definition of fog computing,” ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32,
Oct. 2014. doi: 10.1145/2677046.2677052.

[9] I. Stojmenovic and S. Wen, “The fog computing

paradigm: Scenarios and security issues,” in Proc.
Federated Conf. Comput. Sci. Inf. Syst. (FedCSIS),
2014, pp. 1–8.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies, “The case for VM-based cloudlets in
mobile computing,” IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14–23, Oct. 2009.

[11] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu,
W. Richter, and P. Pillai, “Cloudlets: At the leading
edge of mobile-cloud convergence,” in Proc. 6th
Int. Conf. Mobile Comput., Appl. Services
(MobiCASE), 2014, pp. 1–4.

[12] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli,
“Fog computing and its role in the Internet of
Things,” in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput. (MCC), New York, NY, USA, 2012,
pp. 13–16. doi: 10.1145/2342509.2342513.

[13] G. Premsankar, M. Di Francesco, and T. Taleb,
“Edge computing for the Internet of Things:
A case study,” IEEE Internet Things J., vol. 5, no. 2,
pp. 1275–1284, Apr. 2018.

[14] E. Zeydan et al., “Big data caching for networking:
Moving from cloud to edge,” IEEE Commun. Mag.,
vol. 54, no. 9, pp. 36–42, Sep. 2016.

[15] H. Sun, X. Liang, and W. Shi, “Vu: Video

usefulness and its application in large-scale video
surveillance systems: An early experience,” in
Proc. Workshop Smart Internet Things (SmartIoT),
New York, NY, USA, 2017, pp. 6:1–6:6. doi:
10.1145/3132479.3132485.

[16] J. Wang, J. Pan, and F. Esposito, “Elastic urban
video surveillance system using edge computing,”
in Proc. Workshop Smart Internet Things
(SmartIoT), New York, NY, USA, 2017,
pp. 7:1–7:6. doi: 10.1145/3132479.3132490.

[17] R. Xu et al., “Real-time human objects tracking for
smart surveillance at the edge,” in Proc. IEEE Int.
Conf. Commun. (ICC), May 2018, pp. 1–6.

[18] W. Zhang, J. Chen, Y. Zhang, and
D. Raychaudhuri, “Towards efficient edge cloud
augmentation for virtual reality MMOGs,” in Proc.
2nd ACM/IEEE Symp. Edge Comput. (SEC),
New York, NY, USA, 2017, pp. 8:1–8:14. doi:
10.1145/3132211.3134463.

[19] Y. Li and W. Gao, “MUVR: Supporting multi-user
mobile virtual reality with resource constrained
edge cloud,” in Proc. IEEE/ACM Symp. Edge
Comput. (SEC), Oct. 2018, pp. 1–16.

[20] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser,
“Service Entity placement for social virtual reality

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1497

http://dx.doi.org/10.1145/2677046.2677052
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1145/3132479.3132485
http://dx.doi.org/10.1145/3132479.3132490
http://dx.doi.org/10.1145/3132211.3134463


Tao et al.: Survey of Virtual Machine Management in Edge Computing

applications in edge computing,” in Proc. IEEE
INFOCOM, Apr. 2018, pp. 468–476.

[21] Q. Liu, S. Huang, and T. Han, “Fast and accurate
object analysis at the edge for mobile augmented
reality: Demo,” in Proc. 2nd ACM/IEEE Symp. Edge
Comput. (SEC), New York, NY, USA, Oct. 2017,
pp. 33:1–33:2. doi: 10.1145/3132211.3132458.

[22] P. Ren, X. Qiao, J. Chen, and S. Dustdar, “Mobile
edge computing—A booster for the practical
provisioning approach of Web-based augmented
reality,” in Proc. IEEE/ACM Symp. Edge Comput.
(SEC), Oct. 2018, pp. 349–350.

[23] J. Ren, Y. He, G. Huang, G. Yu, Y. Cai, and Z.
Zhang, “An edge-computing based architecture for
mobile augmented reality,” IEEE Netw., pp. 12–19,
Jan. 2019. doi: 10.1109/MNET.2018.1800132.

[24] S. Zhang, H. Yan, and X. Chen, “Research on key
technologies of cloud computing,” Phys. Procedia,
vol. 33, pp. 1791–1797, Jan. 2012.

[25] J. E. Smith and R. Nair, “The architecture of
virtual machines,” Computer, vol. 38, no. 5,
pp. 32–38, May 2005.

[26] National Vulnerability Database. (2018).
CVE-2018-9862. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2018-9862

[27] (2019). CVE-2019-5736. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2019-5736

[28] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio,
“An updated performance comparison of virtual
machines and Linux containers,” in Proc. IEEE Int.
Symp. Perform. Anal. Syst. Softw., Philadelphia,
PA, USA, Mar. 2015, pp. 171–172.

[29] R. Morabito, J. Kjällman, and M. Komu,
“Hypervisors vs. lightweight virtualization:
A performance comparison,” in Proc. IEEE Int.
Conf. Cloud Eng., Tempe, AZ, USA, Mar. 2015,
pp. 386–393.

[30] A. M. Joy, “Performance comparison between
Linux containers and virtual machines,” in Proc.
Int. Conf. Adv. Comput. Eng. Appl., Mar. 2015,
pp. 342–346.

[31] R. Rosen, “Linux containers and the future cloud,”
Linux J., vol. 240, Jun. 2014, Art. no. 3.

[32] Docker Inc. (2019). Docker: Enterprise Application
Container Platform. [Online]. Available:
https://www.docker.com/

[33] A. Madhavapeddy et al., “Unikernels: Library
operating systems for the cloud,” in Proc. 18th Int.
Conf. Architectural Support Program. Lang.
Operating Syst. (ASPLOS), New York, NY, USA,
2013, pp. 461–472. doi:
10.1145/2451116.2451167.

[34] W. Voorsluys, J. Broberg, S. Venugopal, and
R. Buyya, “Cost of virtual machine live migration
in clouds: A performance evaluation,” in Proc. 1st
Int. Conf. Cloud Comput. (CloudCom). Berlin,
Germany: Springer-Verlag, 2009, pp. 254–265.
[Online]. Available: http://dx.doi.org/10.1007/
978-3-642-10665-1_23

[35] X. Zhang, Z. Huo, J. Ma, and D. Meng, “Exploiting
data deduplication to accelerate live virtual
machine migration,” in Proc. IEEE Int. Conf.
Cluster Comput., Sep. 2010, pp. 88–96.

[36] K. M. Khan and Q. Malluhi, “Establishing trust in
cloud computing,” IT Prof., vol. 12, no. 5,
pp. 20–27, 2010.

[37] A. Haeberlen, P. Aditya, R. Rodrigues, and
P. Druschel, “Accountable virtual machines,” in
Proc. 9th USENIX Conf. Operating Syst. Design
Implement. (OSDI), Berkeley, CA, USA, 2010,
pp. 119–134. [Online]. Available: http://
dl.acm.org/citation.cfm?id=1924943.1924952

[38] Software Guard Extensions Programming Reference,
Revision 2, Intel, Santa Clara, CA, USA, 2014.

[39] C. Gentry, “Fully homomorphic encryption using
ideal lattices,” in Proc. 41st Annu. ACM Symp.
Theory Comput. (STOC), New York, NY, USA,
2009, pp. 169–178. doi:
10.1145/1536414.1536440.

[40] OpenStack. (2019). Build the Future of Open
Infrastructure. [Online]. Available: https://www.
openstack.org/

[41] (2019). Openstack and Edge Computing: Uses Cases
and Community Collaboration. [Online]. Available:
https://www.openstack.org/edge-computing/

[42] Kubernetes. (2019). Production-Grade Container
Orchestration—Kubernetes. [Online]. Available:
https://kubernetes.io/

[43] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend
cloud to edge with kubeedge,” in Proc. IEEE/ACM
Symp. Edge Comput. (SEC), Oct. 2018,
pp. 373–377.

[44] (2019). KubeEdge. [Online]. Available:
https://kubeedge.io/

[45] CoreOS. (2019). Using ETCD. [Online]. Available:
https://coreos.com/etcd/

[46] (2019). OpenEdge. [Online]. Available: https://
openedge.tech/

[47] (2019). MQTT. [Online]. Available: http://mqtt.
org/

[48] P. Liu, D. Willis, and S. Banerjee, “ParaDrop:
Enabling lightweight multi-tenancy at the
network’s extreme edge,” in Proc. IEEE/ACM
Symp. Edge Comput. (SEC), Oct. 2016, pp. 1–13.

[49] K. Bhardwaj, M.-W. Shih, P. Agarwal,
A. Gavrilovska, T. Kim, and K. Schwan, “Fast,
scalable and secure onloading of edge functions
using airbox,” in Proc. IEEE/ACM Symp. Edge
Comput. (SEC), Oct. 2016, pp. 14–27.

[50] J. Howell, B. Parno, and J. R. Douceur,
“Embassies: Radically refactoring the Web,” in
Proc. 10th USENIX Conf. Netw. Syst. Design
Implement. (NSDI), Berkeley, CA, USA, 2013,
pp. 529–546. [Online]. Available: http://
dl.acm.org/citation.cfm?id=2482626.2482676

[51] S. Nastic, H. Truong, and S. Dustdar,
“A middleware infrastructure for utility-based
provisioning of IoT cloud systems,” in Proc.
IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2016,
pp. 28–40.

[52] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat,
M. Al-Ayyoub, and E. Benkhelifa, “SDMEC:
Software defined system for mobile edge
computing,” in Proc. IEEE Int. Conf. Cloud Eng.
Workshop (IC2EW), Apr. 2016, pp. 88–93.

[53] B. Amento, B. Balasubramanian, R. J. Hall,
K. Joshi, G. Jung, and K. H. Purdy, “FocusStack:
Orchestrating edge clouds using location-based
focus of attention,” in Proc. IEEE/ACM Symp. Edge
Comput. (SEC), Oct. 2016, pp. 179–191.

[54] R. J. Hall, J. Auzins, J. Chapin, and B. Fell,
“Scaling up a geographic addressing system,” in
Proc. IEEE Military Commun. Conf. (MILCOM),
Nov. 2013, pp. 143–149.

[55] Y. Xiong, D. Zhuo, S. Moon, M. Xie, I. Ackerman,
and Q. Hoole, “Amino—A distributed runtime for
applications running dynamically across device,
edge and cloud,” in Proc. IEEE/ACM Symp. Edge
Comput. (SEC), Oct. 2018, pp. 361–366.

[56] I. Zhang et al., “Customizable and extensible
deployment for mobile/cloud applications,” in
Proc. 11th USENIX Conf. Operating Syst. Design
Implement. (OSDI), Berkeley, CA, USA, 2014,
pp. 97–112. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2685048.2685057

[57] Oracle. (2019). GraaLVM. [Online]. Available:
https://www.graalvm.org/

[58] I. Farris, T. Taleb, A. Iera, and H. Flinck,
“Lightweight service replication for ultra-short
latency applications in mobile edge networks,” in
Proc. IEEE Int. Conf. Commun., May 2017,
pp. 1–6.

[59] M. Jang, H. Lee, K. Schwan, and K. Bhardwaj,
“SOUL: An edge-cloud system for mobile
applications in a sensor-rich world,” in Proc.
IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2016,
pp. 155–167.

[60] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and
Q. Li, “LAVEA: Latency-aware video analytics on
edge computing platform,” in Proc. 2nd ACM/IEEE
Symp. Edge Comput., Jun. 2017, p. 15.

[61] (2019). OpenALPR—Automatic License Plate
Recognition. [Online]. Available: https://
www.openalpr.com/

[62] S. Echeverría, J. Root, B. Bradshaw, and G. Lewis,
“On-demand VM provisioning for cloudlet-based
cyber-foraging in resource-constrained
environments,” in Proc. 6th Int. Conf. Mobile
Comput., Appl. Services (MobiCASE), Nov. 2014,
pp. 116–124.

[63] K. Ha and M. Satyanarayanan, “Openstack++ for
cloudlet deployment,” School Comput. Sci.,
Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech.
Rep. CMU-CS-15-123, 2015.

[64] S. Y. Jang, Y. Lee, B. Shin, and D. Lee,
“Application-aware IoT camera virtualization for
video analytics edge computing,” in Proc.
IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2018,
pp. 132–144.

[65] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies, “The case for VM-based cloudlets in
mobile computing,” IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14–23, Oct. 2009.

[66] S. Simanta, G. A. Lewis, E. Morris, K. Ha, and
M. Satyanarayanan, “A reference architecture for
mobile code offload in hostile environments,” in
Proc. Joint Work. IEEE/IFIP Conf. Softw. Archit. Eur.
Conf. Softw. Archit., Aug. 2012, pp. 282–286.

[67] K. Ha, P. Pillai, W. Richter, Y. Abe, and
M. Satyanarayanan, “Just-in-time provisioning for
cyber foraging,” in Proc. 11th Annu. Int. Conf.
Mobile Syst., Appl., Services, 2013, pp. 153–166.

[68] D. Messinger and G. Lewis, “Application
virtualization as a strategy for cyber foraging in
resource-constrained environments,” Softw. Eng.
Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Note CMU/SEI-2013-TN-007, 2013.

[69] G. A. Lewis, S. Echeverría, S. Simanta,
B. Bradshaw, and J. Root, “Cloudlet-based
cyber-foraging for mobile systems in
resource-constrained edge environments,” in Proc.
Companion 36th Int. Conf. Softw. Eng., 2014,
pp. 412–415.

[70] A. Madhavapeddy et al., “Jitsu: Just-in-time
summoning of unikernels,” in Proc. NSDI, 2015,
pp. 559–573.

[71] R. Morabito, “Virtualization on Internet of Things
edge devices with container technologies:
A performance evaluation,” IEEE Access, vol. 5,
pp. 8835–8850, 2017.

[72] B. I. Ismail et al., “Evaluation of docker as edge
computing platform,” in Proc. IEEE Conf. Open
Syst., Aug. 2015, pp. 130–135.

[73] K. Ha et al., “Adaptive VM handoff across
cloudlets,” School Comput. Sci., Carnegie Mellon
Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU-CS-15-113, 2015.

[74] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and
T. Salonidis, “Live service migration in mobile
edge clouds,” IEEE Wireless Commun., vol. 25,
no. 1, pp. 140–147, Feb. 2017.

[75] L. Chaufournier, P. Sharma, F. Le, E. Nahum,
P. Shenoy, and D. Towsley, “Fast transparent
virtual machine migration in distributed edge
clouds,” in Proc. 2nd ACM/IEEE Symp. Edge
Comput., Oct. 2017, p. 10.

[76] F. Teka, C.-H. Lung, and S. Ajila, “Seamless live
virtual machine migration with cloudlets and
multipath TCP,” in Proc. Int. Comput. Softw. Appl.
Conf., vol. 2, Jul. 2015, pp. 607–616.

[77] L. F. Bittencourt, M. M. Lopes, I. Petri, and
O. F. Rana, “Towards virtual machine migration in
fog computing,” in Proc. 10th Int. Conf. P2P,
Parallel, Grid, Cloud Internet Comput. (3PGCIC),
Krakow, Poland, Nov. 2015, pp. 1–8.

[78] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and
T. Salonidis, “Live service migration in mobile
edge clouds,” IEEE Wireless Commun., vol. 25,
no. 1, pp. 140–147, Feb. 2018.

[79] Y. Qiu, C. H. Lung, S. Ajila, and P. Srivastava, “LXC
container migration in cloudlets under multipath
TCP,” in Proc. Int. Comput. Softw. Appl. Conf.,
vol. 2, Jul. 2017, pp. 31–36.

[80] L. Ma, S. Yi, and Q. Li, “Efficient service handoff
across edge servers via docker container
migration,” in Proc. 2nd ACM/IEEE Symp. Edge
Comput., Oct. 2017, p. 11.

[81] D. S. Milojicic, F. Douglis, Y. Paindaveine,
R. Wheeler, and S. Zhou, “Process migration,”
ACM Comput. Surv., vol. 32, no. 3, pp. 241–299,
Sep. 2000. doi: 10.1145/367701.367728.

[82] Checkpoint/Restore in Userspace (CRIU). Accessed:
Feb. 20, 2019. [Online]. Available:
https://www.criu.org/Main_Page

[83] J. Hwang, K. K. Ramakrishnan, and T. Wood,

1498 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

http://dx.doi.org/10.1145/3132211.3132458
http://dx.doi.org/10.1109/MNET.2018.1800132
http://dx.doi.org/10.1145/2451116.2451167
http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1145/367701.367728


Tao et al.: Survey of Virtual Machine Management in Edge Computing

“NetVM: High performance and flexible
networking using virtualization on commodity
platforms,” IEEE Trans. Netw. Service Manage.,
vol. 12, no. 1, pp. 34–47, Mar. 2015.

[84] A. Ceselli, M. Premoli, and S. Secci, “Cloudlet
network design optimization,” in Proc. IFIP Netw.
Conf. (IFIP Netw.), May 2015, pp. 1–9.

[85] Q. Fan and N. Ansari, “Cost aware cloudlet
placement for big data processing at the edge,” in
Proc. IEEE Int. Conf. Commun. (ICC), May 2017,
pp. 1–6.

[86] S. Mondal, G. Das, and E. Wong, “CCOMPASSION:
A hybrid cloudlet placement framework over
passive optical access networks,” in Proc. IEEE
INFOCOM IEEE Conf. Comput. Commun.,
Apr. 2018, pp. 216–224.

[87] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet
placement and user to cloudlet allocation in
wireless metropolitan area networks,” IEEE Trans.
Cloud Comput., vol. 5, no. 4, pp. 725–737,
Oct. 2017.

[88] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo,
“Capacitated cloudlet placements in wireless
metropolitan area networks,” in Proc. IEEE 40th
Conf. Local Comput. Netw. (LCN), Oct. 2015,
pp. 570–578.

[89] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo,
“Efficient algorithms for capacitated cloudlet
placements,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 10, pp. 2866–2880, Oct. 2016.

[90] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet
load balancing in wireless metropolitan area
networks,” in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun., San Francisco, CA, USA,
Apr. 2016, pp. 1–9.

[91] S. Wang, Z. Liu, Z. Zheng, Q. Sun, and F. Yang,
“Particle swarm optimization for energy-aware
virtual machine placement optimization in
virtualized data centers,” in Proc. Int. Conf. Parallel
Distrib. Syst. (ICPADS), Dec. 2013, pp. 102–109.

[92] Y. Li and S. Wang, “An energy-aware edge server
placement algorithm in mobile edge computing,”
in Proc. IEEE Int. Conf. Edge Comput. (EDGE),
Jul. 2018, pp. 66–73.

[93] Y. Zhang, D. Niyato, and P. Wang, “An auction
mechanism for resource allocation in mobile cloud
computing systems,” in Wireless Algorithms,
Systems, and Applications, K. Ren, X. Liu, W. Liang,
M. Xu, X. Jia, and K. Xing, Eds. Berlin, Germany:
Springer, 2013, pp. 76–87.

[94] U. Lampe, M. Siebenhaar, A. Papageorgiou,
D. Schuller, and R. Steinmetz, “Maximizing cloud
provider profit from equilibrium price auctions,”
in Proc. IEEE 5th Int. Conf. Cloud Comput.
(CLOUD), Jun. 2012, pp. 83–90.

[95] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and
X. Wang, “How to bid the cloud,” in Proc. ACM
Conf. Special Interest Group Data Commun.
(SIGCOMM), New York, NY, USA, 2015,
pp. 71–84. doi: 10.1145/2785956.2787473.

[96] D. T. Hoang, D. Niyato, and P. Wang, “Optimal
admission control policy for mobile cloud
computing hotspot with cloudlet,” in Proc. IEEE
WCNC, Apr. 2012, pp. 3145–3149.

[97] V. Cardellini et al., “A game-theoretic approach to
computation offloading in mobile cloud
computing,” Math. Program., vol. 157, no. 2,
pp. 421–449, Jun. 2016.

[98] T. Verbelen, P. Simoens, F. De Turck, and
B. Dhoedt, “Cloudlets: Bringing the cloud to the
mobile user,” in Proc. 3rd ACM Workshop Mobile
Cloud Comput. Services (MCS), New York, NY,
USA, 2012, pp. 29–36. doi:
10.1145/2307849.2307858.

[99] A. Carrega, S. Singh, R. Bruschi, and R. Bolla,
“Traffic merging for energy-efficient datacenter
networks,” in Proc. Int. Symp. Perform. Eval.
Comput. Telecommun. Syst. (SPECTS), Jul. 2012,
pp. 1–5.

[100] K. Kumar and Y.-H. Lu, “Cloud computing for
mobile users: Can offloading computation save
energy?” Computer, vol. 43, no. 4, pp. 51–56,
Apr. 2010.

[101] E. Gelenbe, R. Lent, and M. Douratsos, “Choosing
a local or remote cloud,” in Proc. 2nd Symp. Netw.
Cloud Comput. Appl. (NCCA), London, U.K.,

Dec. 2012, pp. 25–30.
[102] Y. Wang and Y. Xia, “Energy optimal VM

placement in the cloud,” in Proc. IEEE 9th Int.
Conf. Cloud Comput. (CLOUD), Jun. 2016,
pp. 84–91.

[103] S. Kaur and S. Bawa, “A review on energy aware
VM placement and consolidation techniques,” in
Proc. Int. Conf. Inventive Comput. Technol. (ICICT),
vol. 3, Aug. 2016, pp. 1–7.

[104] A. Verma, P. Ahuja, and A. Neogi, “pmapper:
Power and migration cost aware application
placement in virtualized systems,” in Middleware
2008, V. Issarny and R. Schantz, Eds. Berlin,
Germany: Springer, 2008, pp. 243–264.

[105] A. Kaur and M. Kalra, “Energy optimized VM
placement in cloud environment,” in Proc. 6th Int.
Conf. Cloud Syst. Big Data Eng. (Confluence), 2016,
pp. 141–145.

[106] A. Beloglazov, J. Abawajy, and R. Buyya,
“Energy-aware resource allocation heuristics for
efficient management of data centers for cloud
computing,” Future Generat. Comput. Syst.,
vol. 28, no. 5, pp. 755–768, 2012. [Online].
Available: http://www.sciencedirect.com/science/
article/pii/S0167739X11000689

[107] G. Chen et al., “Energy-aware server provisioning
and load dispatching for connection-intensive
Internet services,” in Proc. 5th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), Berkeley,
CA, USA, 2008, pp. 337–350. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1387589.
1387613

[108] Y. Ren, F. Zeng, W. Li, and L. Meng, “A low-cost edge
server placement strategy in wireless metropolitan
area networks,” in Proc. 27th Int. Conf. Comput.
Commun. Netw. (ICCCN), Jul. 2018, pp. 1–6.

[109] Z. Shen, S. Subbiah, X. Gu, and
J. Wilkes, “CloudScale: Elastic resource scaling
for multi-tenant cloud systems,” in Proc. 2nd
ACM Symp. Cloud Comput. (SOCC), New York, NY,
USA, 2011, pp. 5:1–5:14. doi: 10.1145/2038916.
2038921.

[110] S. K. Garg, A. N. Toosi, S. K. Gopalaiyengar,
and R. Buyya, “SLA-based virtual machine
management for heterogeneous workloads in a
cloud datacenter,” J. Netw. Comput. Appl., vol. 45,
pp. 108–120, Oct. 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/
pii/S1084804514001787

[111] K. Katsalis, T. G. Papaioannou, N. Nikaein,
and L. Tassiulas, “SLA-driven VM scheduling
in mobile edge computing,” in Proc. IEEE 9th Int.
Conf. Cloud (CLOUD), Jun. 2016, pp. 750–757.

[112] A. Kiani and N. Ansari, “Toward hierarchical
mobile edge computing: An auction-based
profit maximization approach,” IEEE Internet
Things J., vol. 4, no. 6, pp. 2082–2091, Dec. 2017.

[113] Q. Xia, W. Liang, and W. Xu, “Throughput
maximization for online request admissions
in mobile cloudlets,” in Proc. IEEE 38th Conf. Local
Comput. Netw. (LCN), Oct. 2013, pp. 589–596.

[114] X. Sun and N. Ansari, “PRIMAL: Profit maximiza-
tion avatar placement for mobile edge computing,”
in Proc. IEEE Int. Conf. Commun. (ICC), May 2016,
pp. 1–6. doi: 10.1109/ICC.2016.7511131.

[115] X. Sun, N. Ansari, and Q. Fan, “Green energy
aware avatar migration strategy in green cloudlet
networks,” in Proc. IEEE 7th Int. Conf. Cloud
Comput. Technol. Sci. (CloudCom), Nov. 2015,
pp. 139–146. doi: 10.1109/CloudCom.2015.23.

[116] H. Jin, D. Pan, J.
Xu, and N. Pissinou, “Efficient VM placement with
multiple deterministic and stochastic resources
in data centers,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2012, pp. 2505–2510.

[117] L. Ao, L. Izhikevich,
G. M. Voelker, and G. Porter, “Sprocket:
A serverless video processing framework,” in Proc.
ACM Symp. Cloud Comput., 2018, pp. 263–274.

[118] T. Elgamal, “Costless: Optimizing
cost of serverless computing through function
fusion and placement,” in Proc. IEEE/ACM Symp.
Edge Comput. (SEC), Oct. 2018, pp. 300–312.

[119] L. Feng, P. Kudva, D. Da Silva, and
J. Hu, “Exploring serverless computing for neural
network training,” in Proc. IEEE 11th Int. Conf.

Cloud Comput. (CLOUD), Jul. 2018, pp. 334–341.
[120] A. Aske and X. Zhao, “Supporting multi-provider

serverless computing on the edge,” in Proc. 47th
Int. Conf. Parallel Process. Companion, 2018, p. 20.

[121] Amazon. (2019). AWS—Invoke. [Online].
Available: https://serverless.com/framework/
docs/providers/aws/cli-reference/invoke/

[122] I. E. Akkus et al., “SAND: Towards
high-performance serverless computing,”
in Proc.USENIX Annu. Tech. Conf. (USENIX ATC),
2018, pp. 923–935.

[123] P. Hao, Y. Bai, X. Zhang, and Y. Zhang,
“Edgecourier: An edge-hosted personal service
for low-bandwidth document synchronization
in mobile cloud storage services,” in Proc. 2nd
ACM/IEEE Symp. Edge Comput., Oct. 2017, p. 7.

[124] S. Echeverría, D. Klinedinst, K. Williams, and
G. A. Lewis, “Establishing trusted identities in dis-
connected edge environments,” in Proc. IEEE/ACM
Symp. Edge Comput. (SEC), Oct. 2016, pp. 51–63.

[125] D. Boneh and M. Franklin,
“Identity-based encryption from
the weil pairing,” in Proc. Annu. Int. Cryptol. Conf.
Berlin, Germany: Springer, 2001, pp. 213–229.

[126] B. Waters, “Ciphertext-policy
attribute-based encryption: An expressive,
efficient, and provably secure realization,”
in Proc. Int. Workshop Public Key Cryptogr.
Berlin, Germany: Springer, 2011, pp. 53–70.

[127] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-
based encryption for fine-grained access control
in cloud storage services,” in Proc. 17th ACM Conf.
Comput. Commun. Secur., 2010, pp. 735–737.

[128] F. Lin, Y. Zhou, X. An, I. You, and K. Choo,
“Fair resource allocation in an intrusion-detection
system for edge computing: Ensuring the security
of Internet of Things devices,” IEEE Consum.
Electron. Mag., vol. 7, no. 6, pp. 45–50, Nov. 2018.

[129] J. Arshad, M. M. Abdellatif, M. M. Khan, and
M. A. Azad, “A novel framework for
collaborative intrusion detection
for m2m networks,” in Proc. 9th Int.
Conf. Inf. Commun. Syst. (ICICS), 2018, pp. 12–17.

[130] C.-C. Lo, C.-C. Huang, and J. Ku, “A cooperative
intrusion detection system framework for cloud
computing networks,” in Proc. 39th Int.
Conf. Parallel
Process. Workshops (ICPPW), 2010, pp. 280–284.

[131] S. Roschke, F. Cheng, and C. Meinel, “An extensible
and virtualization-compatible ids management
architecture,” in Proc. 5th Int. Conf. Inf.
Assurance Secur. (IAS), vol. 2, 2009, pp. 130–134.

[132] C. Mazzariello, R. Bifulco, and R. Canonico, “Inte-
grating a network ids into an open source cloud
computing environment,” in Proc. 9th Int. Conf.
Inf. Assurance Secur. (IAS), 2010, pp. 265–270.

[133] M. Hussain and B. M. Almourad,
“Trust in mobile cloud computing with lte-based
deployment,” in Proc. IEEE 11th Int. Conf.
Ubiquitous Intell. Comput., IEEE 11th Int. Conf.
Autonomic Trusted Comput., IEEE 14th Int. Conf.
Scalable Comput. Commun. Associated Workshops
(UTC-ATC-ScalCom), Dec. 2014, pp. 643–648.

[134] S. Chen, G. Wang, and W. Jia, “A trust model
using implicit call behavioral graph for mobile
cloud computing,” in Cyberspace Safety Security.
Cham, Switzerland: Springer, 2013, pp. 387–402.

[135] J. Kantert, S. Edenhofer, S.
Tomforde, and C. Müller-Schloer, “Representation
of trust and reputation in self-managed computing
systems,” in Proc. Comput. Inf. Technol., Ubiquitous
Comput. Commun., Dependable, Autonomic
Secure Comput., IEEE Int. Conf. Pervasive
Intell. Comput. (CIT/IUCC/DASC/PICOM),
Oct. 2015, pp. 1827–1834.

[136] N. Bennani, K. Boukadi, and C. Ghedira-Guegan,
“A trust management solution in the
context of hybrid clouds,” in Proc. IEEE 23rd Int.
WETICE Conf. (WETICE), Jun. 2014, pp. 339–344.

[137] D. Satria, D. Park, and M. Jo, “Recovery for
overloaded mobile edge computing,” Future Gener.
Comput. Syst., vol. 70, pp. 138–147, May 2017.

[138] A. Aral and I. Brandic, “Dependency mining for
service resilience at the edge,” in Proc. IEEE/ACM
Symp. Edge Comput. (SEC), Oct. 2018,
pp. 228–242.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1499

http://dx.doi.org/10.1145/2785956.2787473
http://dx.doi.org/10.1145/2307849.2307858
http://dx.doi.org/10.1109/ICC.2016.7511131
http://dx.doi.org/10.1109/CloudCom.2015.23
http://dx.doi.org/10.1145/2038916.2038921
http://dx.doi.org/10.1145/2038916.2038921


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [576.000 782.640]
>> setpagedevice


