
Scalable Quantum Neural Networks for
Classification

Jindi Wu
Department of Computer Science

William & Mary
Williamsburg, VA, USA

jwu21@wm.edu

Zeyi Tao
Department of Computer Science

William & Mary
Williamsburg, VA, USA

ztao@cs.wm.edu

Qun Li
Department of Computer Science

William & Mary
Williamsburg, VA, USA

liqun@cs.wm.edu

Abstract—Many recent machine learning tasks resort to quan-
tum computing to improve classification accuracy and training
efficiency by taking advantage of quantum mechanics, known
as quantum machine learning (QML). The variational quantum
circuit (VQC) is frequently utilized to build a quantum neural
network (QNN), which is a counterpart to the conventional
neural network. Due to hardware limitations, however, current
quantum devices only allow one to use few qubits to represent
data and perform simple quantum computations. The limited
quantum resource on a single quantum device degrades the data
usage and limits the scale of the quantum circuits, preventing
quantum advantage to some extent. To alleviate this constraint,
we propose an approach to implementing a scalable quantum
neural network (SQNN) by utilizing the quantum resource of
multiple small-size quantum devices cooperatively. In an SQNN
system, several quantum devices are used as quantum feature
extractors, extracting local features from an input instance in
parallel, and a quantum device works as a quantum predictor,
performing prediction over the local features collected through
classical communication channels. The quantum feature extrac-
tors in the SQNN system are independent of each other, so
one can flexibly use quantum devices of varying sizes, with
larger quantum devices extracting more local features. Especially,
the SQNN can be performed on a single quantum device in a
modular fashion. Our work is exploratory and carried out on
a quantum system simulator using the TensorFlow Quantum
library. The evaluation conducts a binary classification on the
MNIST dataset. It shows that the SQNN model achieves a
comparable classification accuracy to a regular QNN model of
the same scale. Furthermore, it demonstrates that the SQNN
model with more quantum resources can significantly improve
classification accuracy.

Index Terms—Quantum Machine Learning, Quantum Neural
Networks, Variational Quantum Circuits, Distributed Quantum
computing

I. INTRODUCTION

Quantum machine learning (QML) is a revolutionary ap-
proach combining machine learning (ML) and quantum com-
puting [1]–[3]. The explosion of data volume and memory con-
sumption makes the ML algorithms run on classical computers
unsupportable, although the massive data is desired for ML al-
gorithms to train models. On the contrary, quantum computing
based on the law of quantum mechanics (e.g., superposition,
entanglement and teleportation) excels at efficiently processing
information and outperforms classical computing [4], [5].
For example, Shor’s algorithm is sub-exponentially faster in

Ue U(θ) M

Classical input

 updatesθ

General QNN in hybrid classical-quantum architecture. The encoding unit U_e
prepares quantum states for classical input data. The VQC U_theta process the

prepared quantum states with variational parameters theta, which will be updated
by a classical device based on the circuit output measured by M.

Classical device

Fig. 1. General QNN in hybrid quantum-classical architecture. The encoding
unit Ue prepares quantum states for classical input data. The VQC U(θ)
process the prepared quantum states with variational parameters θ, which
will be updated by a classical device according to the circuit output measured
by M .

factoring [6] and Grover’s algorithm is quadratically faster in
searching [7]. Therefore, the combination of ML and quantum
computing is a natural trend.

Numerous applications of classical neural networks (NNs)
have achieved huge success, which motivates many research
into quantum neural networks (QNNs) [8]–[13]. Considering
the current Noisy Intermediate-Scale Quantum (NISQ) devices
are prone to many noises, the variational quantum circuit
(VQC) is the general approach to building QNNs on such
devices [14], [15]. VQC, which consists of a set of quantum
gates with trainable parameters, is a counterpart of classical
NN made up of neurons. The QML algorithm implemented
with VQC is the hybrid quantum-classical method that jointly
employs quantum and classical devices, as shown in Fig. 1.
This method trains a QNN model on a classical dataset by
running its quantum circuit on a quantum device, which pre-
pares qubits and modifies their quantum states using quantum
gates (unitary transformations). And based on the measure-
ment results of the qubits, calculating the updates to VQC’s
parameters on a classical device using a classical optimizer,
e.g., stochastic gradient descent (SGD) [16], [17]. More details
of QNN will be provided in Sec. II.

A barrier to achieving quantum supremacy is the limited
number of qubits and connectivities on NISQ devices. With
such limitations, only small-scale QNNs can be constructed,
and they are unable to load the high-dimensional classical

ar
X

iv
:s

ub
m

it/
44

35
38

1
 [

cs
.A

I]
 4

 A
ug

 2
02

2

data. Hence, many efforts have been made to overcome this
limitation, including quantum encoding and data dimension
reduction methods. The amplitude encoding method can load
2n-dimensional classical data on n qubits by taking the
advantage of quantum entanglement and superposition, but
its hardware implementation is inefficient and may induce
additional errors. Angle encoding is an alternative method that
has easier hardware implementation, but it can only load n-
dimensional data on n qubits. The encoding methods involve
a trade-off between representation capability and hardware
implementation. Therefore, quantum encoding is still an open
problem. Moreover, Chen et al. use a pre-trained classical
NN to extract features from original data in order to fit the
data dimension to the number of available qubits on quantum
devices [18]. And Steni et al. use principal component analysis
(PCA) [19] to downscale original data [20]. Nevertheless,
These methods that require additional computation undermine
the advantages of quantum acceleration. This unsolved prob-
lem motivates us to design a QNN system that is not limited
by the size of current quantum devices and is easy to scale up
for high-dimensional classical data. We name it as Scalable
Quantum Neural Network (SQNN).

An SQNN system combines the quantum resources of mul-
tiple small-size quantum devices to simulate a large quantum
device with sufficient resources and trains a large-scale QNN
for high-dimensional data. Suppose there are five available
small-size quantum devices in a quantum system for an image
(high-dimensional data) classification task. Four of them work
as quantum feature extractors and the remaining one acts as
a quantum predictor. The SQNN system partitions a training
instance into four segments that can fit the capacity of the
quantum feature extractors and assigns them to quantum
feature extractors. Each quantum feature extractor encodes the
received classical data to quantum data, uses a VQC to reduce
the original data size and represent the information as abstract
features, then obtains the extracted features by measuring
the readout qubits of the circuit. The quantum predictor
collects extracted local quantum features from quantum feature
extractors via classical communication channels, learns from
them, and makes prediction on them with a VQC. So far, the
SQNN system could obtain the prediction result by measuring
the readout qubits of the quantum predictor’s VQC. Then
like the optimization of the classical NNs, a classical device
calculates the updates of the parameters in VQCs according to
the prediction results and the pre-defined objective function.
The updates are further used to set the VQCs’ parameters for
the next training step.

The SQNN system enables the QNN models to learn from
high-dimensional data by scaling QNNs up. Furthermore,
the SQNN system supports a flexible data partition strategy
to fully utilize the quantum system’s resources. With the
strategies, SQNN assigns the high-dimensional data segments
of different sizes to quantum feature extractors according to
their various amount of quantum resources. Fig. 3 illustrates
the possible input partition strategies. Especially, a quantum
system with fewer or even a single quantum device can

also train an SQNN. After partitioning the training instance
into several segments, one can repeatedly use the available
quantum devices as quantum feature extractors to act on data
segments with recording the intermediate result, then as the
quantum predictor.

The major contributions of this paper as following:

• We present the first, to the best of our knowledge, scalable
quantum neural network (SQNN) that can learn from
high-dimensional data without being constrained by the
quantum hardware limitation on qubit amount.

• We propose a scalable quantum ML approach that collab-
oratively uses the quantum resources of multiple small-
size quantum devices.

• We implement a SQNN for a binary classification task
and conduct extensive evaluations to show the effective-
ness of the proposed design.

In the rest of this paper, we will recap some background
knowledge about quantum gates, quantum encoding methods,
and QNN in Sec. II. We will introduce the proposed approach
in Sec. III, and show the evaluations in Sec. IV. Some related
works will be reviewed in Sec. V. At last, we will conclude
our work in Sec. VI.

II. PRELIMINARY

A. Quantum gates

Qubit is the basic unit of quantum computation. Compared
with a classical bit that can only represent state 0 or 1, a
qubit can simultaneously represent state 0 and 1 with a certain
probability distribution. The state of a qubit is denoted as

|ψ〉 = α|0〉+ β|1〉 with α, β ∈ C

where |α|2 and |β|2 respectively express the probability of the
qubit is measured as state 0 and 1, i.e., |α|2 + |β|2 = 1. The
qubit state is also written as a vector |ψ〉 = [α, β]>.

The quantum computation is conducted by changing the
state of the qubits with quantum gates U (unitary matrices
that satisfy U†U = UU† = I). The Pauli gates {X , Y , Z}
and the Hadamard gate H is the fundamental single-qubit gate.
Their matrices are shown as

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
H =

1√
2

[
1 1
1 −1

]
The Pauli gates X , Y and Z rotate the qubit by π radians
around the X, Y and Z-axis of the Bloch sphere (a visual
representation of quantum state). And the Hadamard gate H
creates an equal superposition state for the computational basis
states: |0〉 → (|0〉+ |1〉)/

√
2 and |1〉 → (|0〉 − |1〉)/

√
2. It is

a π/2 rotation around the Y-axis followed by a π rotation
around the X-axis.

Based on the Pauli gates, the single-qubit rotation gates are
generated that allow the qubit to be rotated arbitrary radians

in the Bloch sphere. The Rx(θ), for example, rotates the qubit
by θ radians around the X-axis in the Bloch sphere as

Rx(θ) = exp

(
−iX θ

2

)
=

[
cos(θ2) −i sin(θ2)
−i sin(θ2) cos(θ2)

]
The same for Ry(θ) and Rz(θ). Ising coupling gates are two-
qubit gates expended from single-qubit rotation gates, e.g.,

Rxx(θ) = exp

(
−iX ⊗X θ

2

)

=

cos(θ2) 0 0 −i sin(θ2)

0 cos(θ2) −i sin(θ2) 0
0 −i sin(θ2) cos(θ2) 0

−i sin(θ2) 0 0 cos(θ2)

It performs the same rotation on two qubits simultaneously.
And the same for Ryy(θ) and Rzz(θ). In QML, Ising coupling
gates are frequently used to construct VQC [21].

B. Quantum encoding

To be processed on quantum devices, classical data must
be encoded into quantum states in Hilbert space. Because
current quantum devices have limitations on the number of
qubits and the depth of circuits, the encoding methods impact
the efficiency of hardware implementation and the design of
the following quantum information processing circuits. This
subsection will introduce three mainly used quantum encoding
schemes [22].

1) Basis encoding: The basis encoding method is the most
straightforward quantum encoding method for arithmetic op-
eration. Basis encoding first represents classical data in binary
form and directly maps them onto quantum computational
bases. For example, a numerical data point [0.3, 0.6, 0.2,
0.8] will be converted into a binary data point [0, 1, 0, 1]
based on a threshold 0.5, and mapped to the 4-qubit quantum
computational basis |0101〉. For the implementation of the
encoding circuit, four qubits are prepared with initialized
state |0〉, and an Pauli-X gate is appended after the second
and fourth qubits to flip their states to |1〉. In general, the
basis encoding method takes n qubits to load the binary
representation of a classical data point x = (x1, x2, · · · , xn)
and encodes it as

|Ψx〉 =

n⊗
i

|xi〉

where
⊗

is tensor product operator.
2) Angle encoding: The angle encoding method loads the

classical data as the radians of rotation gates acting on qubits.
n qubits and n quantum rotation gates R ∈ {Rx, Ry, Rz} are
required to embed the classical data in size n. For a classical
data instance x = (x1, x2, · · · , xn), the angle encoding
method prepares it as

|Ψx〉 =

n⊗
i

R(xi)|0〉

3) Amplitude encoding: The amplitude encoding method
embeds classical data into the amplitudes of a quantum

state. An n-dimensional normalized classical vector x =
(x1, x2, · · · , xn) is encoded to the amplitudes of log n-qubit
quantum state by

|Ψx〉 =

n∑
i=1

xi|i〉

where |i〉 is the i-th computational basis state and
∑
|xi|2 = 1.

C. Quantum neural network

The current widely used QNN that can run on NISQ devices
for classification tasks was proposed in 2018 [10], which is
an analogue of the classical NN in the quantum computing
field. The QNN is a quantum circuit within a sequence of
parameter-dependent quantum gates (unitary operators) which
act on quantum input data. Generally, a QNN can be shown
as

U(θ) =

N∏
l=1

VlUl(θl) (1)

which is a product of N quantum layers [21]. The l-th quantum
layer consists of product of non-parametric quantum gates Vl
and parametric quantum gates Ul(θl) where θl are variational
parameters. We can further represent the parametric quantum
gates Ul(θl) in l-th layer as the production of S parametric
quantum gates,

Ul(θl) ≡
S⊗
j=1

Ul,j(θl,j) (2)

In which each parametric quantum gate Ul,j(θl,j) can be
transformed with Euler’s formula as

exp(−iθl,jP) = I cos(θl,j)− i sin(θl,j)P (3)

where i is the imaginary number, I is a 2 × 2 identity matrix,
and P is a Pauli operator from the set {X , Y , Z} that acts
on qubits.

The output of the QNN is the measurement result on a com-
putational basis of the readout qubits. Since the measurement
result of a qubit is probabilistic, the expectation value E of
the measurement results is used as the QNN output,

E = 〈Ψx|U†(θ)MU(θ)|Ψx〉 (4)

where |Ψx〉 is the input quantum state of the QNN and M is a
linear combination of Pauli operators that serve as observables
for readout qubits.

The loss L of a training sample in hybrid quantum-classical
model is calculated in conventional manner on a classical
device. For the given training sample, the loss L is calculated
with an objective function `(.) of the task on the expected
output y and the actual output E

L = `(E, y) (5)

During the model optimization phase, like in the classical
NN, back-propagation and gradient descent will be performed
to update variational parameters in the QNN. The gradient of

Ue Upre(θ) M

Classical deviceClassical input

Quantum System

 updatesθ

Feature extractor 1

Feature extractor 2

Feature extractor 3

Feature extractor 4

Predictor

U1
f (θ) MUe

U2
f (θ) MUe

U3
f (θ) MUe

U4
f (θ) MUe

Fig. 2. An SQNN in hybrid quantum-classical architecture. The quantum system contains five small-size quantum devices, four of which work as quantum
feature extractors to extract features from the segments of input data, and the remaining one as a predictor to make predictions using the extracted features
collected from feature extractors. Each quantum device has a quantum circuit that consists of an encoding unit Ue, a VQC U(θ), and a measurement unit
M . The classical device will assist them in updating their variational parameters during training.

a variational parameter θk in k-th quantum layer with respect
to with respect to loss L can be calculated by

∂L

∂θk
=
∂L

∂E

∂E

∂θk
(6)

It is easy to obtain ∂L/∂E according to the objective function
`(.). ∂E/∂θk could be calculated by

∂E

∂θk
= i〈Ψx|U†−[Pk, U

†
+HU+]U−|Ψx〉 (7)

where

U+ =

N∏
l=k+1

VlU(θl) and U− =

l=k∏
l=1

VlU(θl). (8)

With the gradients of parameters, the classical device sets
updated parameters for QNN using an optimization algorithm,
such as SGD. An alternative gradient calculation for a quantum
model is parameter-shift, which obtains the gradients by run-
ning the same VQCs with shifted parameters and calculating
the difference in their outputs [23], [24].

III. SCALABLE QUANTUM NEURAL NETWORK

The limited quantum resources on NISQ devices constrain
the scalability of quantum circuits and computational power of
quantum computing, particularly for QML tasks that demand
extensive computation. In this section, we present a solution,
SQNN, to circumvent the hardware constraints of quantum
devices. The concept behind SQNN is to construct and train a
large-scale VQC by cooperatively using the quantum resource
on multiple small-size quantum devices. The architecture
overview of the proposed design is shown in Fig. 2. The

components of SQNN are detailed in the following subsec-
tions. The adopted encoding method is discussed in III-A.
The variational quantum layers of SQNN are introduced in
III-B. The optimization of SQNN is described in III-C. III-D
shows how to build SQNN in small quantum systems. And
the important notations are listed in Table I.

Considering a quantum system with p+ 1 small-size quan-
tum devices, we use p of them as quantum feature extractors
for quantum local feature extraction, and the remaining one
as a quantum predictor for prediction (classification). Given a
classical training dataset in which the instances x are too large
to be loaded by a quantum device in the system, we partition x
into p small segments of size n using the first partition strategy

TABLE I
NOTATION LIST

Notation Description

x A classical training instance
|Ψx〉 The quantum state representation of x
fi The i-th quantum feature of a training in-

stance
y The correct label of the training instance
y′ The predicted label of the training instance
θ The variational parameters of VQC
R(θ) A rotation gate with θ radians
U if (θ) The VQC on i-th quantum feature extractor
Upre(θ) The VQC on quantum predictor
Ue(x) The quantum circuit of the encoding unit
M The qubit measurement unit

Fig. 3. Input partition strategies. Depending on the size of quantum feature
extractors, a high-dimensional input image could be evenly partitioned with-
out overlap (left), unevenly partitioned without overlap (middle), or evenly
partitioned with overlap (right).

shown in Fig. 3, where n is less than the number of available
qubits on the quantum devices. We denote the instance in
segments as x = {x1, x2, · · · , xp} and the i-th segment of
instance x as xi = {xi1, xi2, · · · , xin}.

A. Encoding unit

Both the quantum feature extractors and the quantum
predictor in the SQNN system need the encoding unit to
transform classical data into quantum data for further quantum
operations. We use the angle encoding method in the encoding
unit because of its simple hardware implementation and ability
to support the gradient calculation for input quantum data,
which is necessary for SQNN to perform back-propagation
via chain rule.

There are some reasons that the other commonly used
encoding methods are not adopted in our work. As mentioned
in the Sec. II-B, the basis encoding method embeds numer-
ical data into binary data and is implemented by selectively
appending Pauli-X gate behind the qubits with initial state
|0〉. Although the basis encoding method is straightforward,
it is not adopted for several reasons. First, it processes the
original data with a discontinuous function that does not
support the gradient calculation for the input of VQC. Second,
the binary representation of an instance will lose much useful
information, which is not desirable in ML tasks. And third,
multiple numerical instances may map to the exact binary
representation, which reduces the amount of training data.
The amplitude encoding method is also not used in this work
because its hardware implementation is complex and does
not offer a simple way to calculate the gradients of quantum
circuit input. The details of the calculation and usage of input
gradients of quantum circuits in SQNN will be discussed in
the Sec. III-C.

The circuit of the quantum angle encoding unit is illustrated
in Fig 4. When a quantum device receives the i-th segment of
the classical instance x, it flats the segment as a vector xi =
[xi1, x

i
2, · · · , xin] and maps the entries into [0, 2π), and prepares

n qubits with initial sate |0〉. The encoding unit sets the state
of qubits independently to represent the data using rotation
gate R. To be more specific, j-th qubit will pass a rotation

|0⟩
|0⟩

|0⟩

Data qubit 1

Data qubit 2

Data qubit n

⋮

R(xi1)
R(xi2)

R(xi
n)

⋮

Encoding unit Ue
Fig. 4. Angle encoding unit. The classical data vector xi = [xi1, x

i
2, · · · , xin]

is loaded on n data qubits using rotation gate R ∈ {Rx, Ry , Rz}.

gate R(xij) to load xij in its state as a certain superposition

|Ψxi
j
〉 = R(xij)|0〉 = cos

(
xij
2

)
|0〉 − i sin

(
xij
2

)
|1〉 (9)

Hence, the prepared quantum state for xi is shown as a tensor
product of each qubit state

|Ψxi〉 =

n⊗
j

|Ψxi
j
〉. (10)

B. Variational quantum layers

A SQNN consists of two types of variational quantum lay-
ers: quantum feature extraction layer and quantum prediction
layer. They are deployed on quantum feature extractors and a
quantum predictor, respectively.

1) Quantum feature extractor: A quantum feature extractor
that receives i-th piece of the classical instance xi of size
n will use n + 1 qubits in its quantum circuits, as shown
in Fig. 5(a). The first n qubits are data qubits that pass the
encoding unit to load the classical data as quantum state |Ψxi〉.
And the last one serves as readout qubit that will be measured
to obtain the results of the quantum data processing. In general,
a quantum circuit could have multiple readout qubits, but we
only show one out of simplification.

The quantum feature extraction layer is a VQC that maps
the quantum features from the data qubits to the readout
qubit using two-qubit parameterized quantum gates that create
entanglement between them. In this work, we adopt the Ising
coupling gates to entangle qubits and follow the same design
of VQC introduced in [25]. We define the n gates that
consecutively act on n pairs of data and readout qubits as
a block. Similar to the classical NN, the variational gates
works as neurons and a block as a layer of the QNN. The
block could be repeated to build a complex QNN with more
parameters. We denote the quantum feature extraction layer
deployed on i-th quantum feature extractor as U if (θif) where
θif is the trainable parameters. With the entanglement with all
data qubits, the state of the readout is the extracted quantum
features from the segment xi and will be obtained as a real
number fi by measurement with Eq. 4

fi = 〈Ψxi |U if
†
(θif)MU if (θif)|Ψxi〉 (11)

|0⟩
|0⟩

|0⟩
⋮

|0⟩

Ue

H M

Uf (θ1)

Uf (θ1)

Uf (θ2)

Uf (θ2) Uf (θn)

Uf (θn)

fi

xi1
xi2

xi
n

readout

(a) Quantum feature extraction layer

|0⟩
|0⟩

|0⟩
⋮

|0⟩

Ue

H M

Upre(θ1)

Upre(θp)

y′

f1
f2

fp
readout Upre(θ1)

Upre(θ2)

Upre(θ2) Upre(θp)

(b) Quantum prediction layer

Fig. 5. Two types of quantum layers in SQNN

2) Quantum predictor: The quantum predictor collects
extracted local features that represented as real numbers
f = {f1, f2, · · · , fp} from p quantum feature extractors
via conventional communication channels. The circuit of the
predictor uses p data qubits to load extracted local features
using the encoding unit and one readout qubit for outputting
prediction result, as shown in Fig. 5(b). Generally, the number
of readout qubits depends on the classification task, i.e., log k
readout qubits are needed for a k-class classification task.
Assuming we are performing a binary classification task, only
one readout qubit is used.

The quantum prediction layer is a VQC that jointly learns
local features and makes a prediction on them. The design of
the VQC is the same as that of the quantum feature extraction
layer. We represent the quantum prediction layer as Upre(θpre)
and θpre stands for the trainable parameters. The prediction
result of the instance x is

y′ = 〈Ψf |Upre†(θpre)MUpre(θpre)|Ψf 〉 (12)

where |Ψf 〉 is the quantum state of the extracted features f
and y′ is a real number in the range of [-1, 1]. For the binary
classification with labels -1 and 1, we map the result y′ to
label -1 if it is negative; otherwise, to label 1.

C. Optimization

After the forward propagation, a classical device receives
the prediction result y′ of x from the quantum predictor. The
classical device will calculate the loss of the current training
instance x by

L = `(y, y′) (13)

where `(·) is a pre-defined loss function, e.g., Mean squared
error (MSE) loss, and y is the actual label of x. The classical
device with the knowledge of VQCs on quantum devices will
optimize the parameters of SQNN. In the following, we will
demonstrate the gradient derivation of the quantum prediction
layer and quantum feature extraction layers according to back-
propagation and the optimization with the gradient descent
method.

The gradient of the variational parameters θpre in the
quantum prediction layer with respect to the loss L is obtained
by

∂L

∂θpre
=
∂L

∂y′
∂y′

∂θpre
(14)

where the ∂y′/∂θpre can be calculated with Eq. 7 and ∂L/∂y′

is easily calculated. Then the parameters θpre will be updated
with the learning rate r by

θpre = θpre − r
∂L

∂θpre
(15)

The gradients of the variational parameters θif in the i-th
quantum feature extraction layer with respect to the loss L
can be obtained as follow

∂L

∂θif
=
∂L

∂y′
∂y′

∂fi

∂fi
∂θif

(16)

The ∂fi/∂θif can be calculated by Eq. 7 as well. The ∂y′/∂fi
is the partial derivative of the input local feature fi with
respect to the output of the quantum predictor y′. With
the encoding method mentioned above, the input fi of the
quantum prediction layer is encoded in the i-th qubit by using
R(fi). Hence, we have

∂y′

∂fi
= i〈0|[R,Upre†(θpre)MUpre(θpre)]|0〉. (17)

To optimize i-th quantum feature extraction layer, the classical
device updates θif with learning rate r by

θif = θif − r
∂L

∂θif
. (18)

So far, we have gone through the optimization process of
SQNN on a single training instance. To train the SQNN in
the mini-batch style, one just needs to record the gradients of
parameters for each sample in a mini-batch of data, and make
the classical device update the variational parameters using the
average of gradients.

D. SQNN in small quantum systems

This section shows how the SQNN can be built and trained
in a small quantum system with insufficient quantum devices
with the assistance of a classical device. We consider a
particular case where only one quantum device is available
in the quantum system.

Since the quantum feature extractors work independently,
we partition the classical training instance into p segments
of the equal size based on the number of qubits on the
quantum device, and make the device serve as p feature

extractors sequentially. When the quantum device works as the
i-th quantum feature extractor, it builds the circuit U if with
initialized parameters θif and performs quantum operations
on the data segment xi. The classical device records the
circuit structure, current parameters, and the extracted local
feature fi for it. Once the device has completed the work as
quantum feature extractors, it acts as the quantum predictor
by initializing the quantum predictor circuit Upre(θpre) and
performing it on the extracted features f . The classical device
also records the circuit structure and parameters for it. The
classical device then updates the parameters as introduced in
III-C. In the following training steps, the quantum device will
first reproduce the circuits and reload the latest parameters
before repeating the previous step.

In the quantum system that consists of several quantum
devices of different sizes, one can divide the classical instance
into segments that fit the various sizes of available quantum
devices as Fig. 3, to fully use the system’s quantum resources.

IV. EXPERIMENTS AND RESULTS

The SQNN is evaluated using a binary classification task.
We conduct the binary classification using the images labeled
“3” and “6” in the MNIST handwritten digits dataset [26].
After removing the images with other labels, we have 12049
training and 1968 test samples. The handwritten digit images
in MNIST are pre-processed to position the digits in the center
of 28× 28 fields. In our experiments, we simulate the circuits
of SQNN on a classical device with the TensorFlow Quantum
library. And two scenarios of multi-quantum machine systems
for SQNN are considered: the SQNNs with quantum feature
extractors of the same and different sizes.

Here we define the form of the basic model used in
our experiments to construct QNN classifiers. For a quantum
device with n+1 qubits, the basic model is defined as: the first
n qubits are data qubits that store quantum data, and the last
qubit is the readout that provides the quantum computation
result by measurement. In each block of the basic model,
the entanglement between each data and the readout qubit
is created by the same variational Ising coupling gates in
{Rxx(θ), Ryy(θ), Rzz(θ)} as shown in Fig. 5. The source
code used to generate the experiment results is available in
github.com/Jindi0/SQNN.

A. Observations

We first show some observations about how the hardware
limitations of NISQs impact the performance of regular QNN
classifiers. Assuming there are three quantum machines of
size 4 + 1, 9 + 1, and 16 + 1 qubits, we implement a QNN
classifier with the basic model defined above on each device.
The last qubit works as the readout, and the remaining qubits
are used to load classical training data with Rx gate in
encoding unit described in Sec. III-A. During the encoding
phase, the classical handwritten digit images of size 28 × 28
are downscaled to 2× 2, 3× 3, and 4× 4 sizes and loaded on
the three quantum devices, respectively.

Fig. 6(a) demonstrates the performance of the QNN clas-
sifiers with three blocks. Each model has been trained 100
epochs, and its best accuracy is indicated by a red dot in
the right panel of Fig. 6(a). Among the QNN classifiers with
three blocks, 16qb 3blk model with 16 data qubits has the best
accuracy of 92.04% on the validation dataset. The following
is the 9qb 3blk model with 9 data qubits has an accuracy
of 88.37%. The 4qb 3blk model with 4 data qubits has the
lowest accuracy of 81.18%. We also evaluate the performance
of QNN classifiers with six blocks on these quantum devices
and present the results in Fig. 6(b). The best accuracy of the
models are 90.99% on 16qb 6blk model, 89.45% on 9qb 6blk
model and 82.00% on 4qb 6blk model. We observe that the
QNN model that learns from higher dimensional input data
can achieve lower training loss and higher accuracy with the
same number of blocks based on the comparison among the
models with various amounts of data qubits. Additionally,
because more parameters need to be trained, the larger model
requires more training epochs to reach the point with the best
performance.

We further compared the classification accuracy of three
pairs of QNN classifiers with the same number of data qubits
but the different number of blocks. For the QNNs with the
same number of data qubits, as shown in Fig. 7, more blocks
will not improve the validation accuracy but can improve the
stability of the training process. Therefore, we argue that the
number of qubits (the dimension of input data) has a more
significant impact on the classification accuracy of the QNN
classifier than the circuit depth.

B. SQNN with even partitioning

This subsection shows the performance of SQNN-based
quantum classifiers. SQNN classifiers are supposed to learn
from raw-sized training data. However, very high-dimensional
quantum operations cannot be simulated by classical devices.
As a result, in our simulator, a VQC made up of basic
quantum blocks can only contain at most 17 qubits.

First, we demonstrate the effectiveness of the SQNN clas-
sifier by comparing the performance of the SQNN classifier
trained on data of the same size with the regular QNN classi-
fier. We implement an SQNN classifier trained on MNIST “3”
and “6” images of downscaled size 4 x 4 to compare with the
16qb 3blk model that achieves the best performance among
regular QNN classifiers.

Assuming there are five (4 + 1)-qubit quantum devices in a
quantum system, we use four of them as the quantum feature
extractors and the remaining one as the quantum predictor.
The quantum circuits on quantum feature extractors are
structured similarly to the 16qb 3blk model, and the quantum
circuit on the quantum predictor has an encoding unit and
a block to incorporate the extracted features. We refer the
SQNN model as the 16qb sqnn model, which has 16 data
qubits in total. We evenly partition the 4x4 downscaled image
into four 2x2 segments, as shown in the left panel of Fig. 3.
The comparison of the training loss and validation accuracy

https://github.com/Jindi0/SQNN.git

0 20 40 60 80 100
0.0

0.2

0.4

0.6

Epochs

Tr
ai

ni
ng

 lo
ss

0 20 40 60 80 100
70

80

90

100

Epochs

Va
lid

at
io

n
ac

cu
ra

cy

4qb_3blk

9qb_3blk
16qb_3blk

(a) Training loss and validation accuracy of 3-block QNN classifiers

0 20 40 60 80 100
0.0

0.2

0.4

0.6

Epochs

Tr
ai

ni
ng

 lo
ss

0 20 40 60 80 100
75

80

85

90

95

Epochs

Va
lid

at
io

n
ac

cu
ra

cy

4qb_6blk

9qb_6blk

16qb_6blk

(b) Training loss and validation accuracy of 6-block QNN classifiers

Fig. 6. The performance of QNN classifiers on a single device. The single-device QNN models consist of 4, 9, and 16 data qubits (qb). The QNNs in
each size are evaluated using three and six variational circuit blocks (blk). Their best accuracy is marked with red dots during 100 epochs of training. These
results indicate the QNN model that learns from higher dimensional data can achieve better performance.

0 20 40 60 80 100
70

75

80

85

Epochs

Va
lid

at
io

n
ac

cu
ra

cy

4qb_3blk
4qb_6blk

(a) Accuracy of 4-qubit QNNs classifiers

0 20 40 60 80 100
70

75

80

85

90

95

Epochs

Va
lid

at
io

n
ac

cu
ra

cy

9qb_3blk
9qb_6blk

(b) Accuracy of 9-qubit QNNs classifiers

0 20 40 60 80 100
75

80

85

90

95

Epochs

Va
lid

at
io

n
ac

cu
ra

cy

16qb_3blk
16qb_6blk

(c) Accuracy of 16-qubit QNNs classifiers

Fig. 7. The comparison of accuracy between 3-block and 6-block QNN classifiers. The QNN models with the same amount of data qubits (qb) but
the different numbers of variational circuit blocks (blk) are compared. The images demonstrate the models with the same number of qubits achieve similar
performance, but the accuracy of the models with six blocks shows less fluctuation.

between the 16qb 3blk and 16qb sqnn model is shown in
Fig. 8. 16qb sqnn achieves the accuracy of 92.59%, which
is comparable with the accuracy achieved by 16qb 3blk,
92.04%. Thus, the experiment shows the effectiveness of
SQNN.

Next, we discuss the performance of SQNN classifiers
in quantum systems at different scales. SQNN classifiers
are implemented in three scales of quantum systems, and
their performance is shown in Fig. 9. Each quantum system

considered in this experiment contains a (4+1)-qubit quantum
predictor and four quantum feature extractors of (4+1)-qubit,
(9 + 1)-qubit, or (16 + 1)-qubit size, i.e., the data samples are
evenly partitioned into four segments as the first panel shown
in Fig. 3, then the three SQNN classifiers are trained on 4×4,
6 × 6, and 8 × 8 sizes of images, respectively. The SQNN
classifier with 64 data qubits (four quantum feature extractors
with 16 qubits each) in total is denoted as 64qb sqnn model
and achieves the best accuracy of 97.47%. The 36qb sqnn
model with 36 data qubits has accuracy of 95.10% and

0 20 40 60 80 100
0.0

0.2

0.4

0.6

Epochs

Tr
ai

ni
ng

 lo
ss

0 20 40 60 80 100
70

75

80

85

90

95

Epochs

Va
lid

at
io

n
ac

cu
ra

cy

16qb_3blk

16qb_sqnn

Fig. 8. The comparison of performance between QNN and SQNN classifiers. The SQNN and the single-device QNN models both have three variational
circuit blocks (blk) and 16 data qubits (qb). Their comparable performance illustrate the effectiveness of the SQNN model.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

Epochs

Va
lid

at
io

n
ac

cu
ra

cy

0 20 40 60 80 100
50

60

70

80

90

100

Epochs

Va
lid

at
io

n
ac

cu
ra

cy

16qb_sqnn

36qb_sqnn

64qb_sqnn

Fig. 9. The performance of SQNN classifiers in three scales of quantum systems. Three SQNN models are implemented with 16, 36, and 64 data qubits
(qb), and their best accuracy is marked with red dots. The comparison shows that models with more quantum resources can perform better.

16qb sqnn model with 16 data qubits has accuracy of 92.59%.
Based on the results, one can observe that the SQNN clas-

sifiers implemented in the larger-scale quantum systems have
better performance, which is consistent with the observations
in Sec. IV-A. The 36qb sqnn model and 64qb sqnn that utilize
more quantum resources from multiple quantum devices all
achieve higher classification accuracy than 16qb 3blk model,
the best model trained on a single quantum device.

C. SQNN with uneven partitioning

We now assume a quantum system containing various size
quantum feature extractors. A quantum system, for example,
contains four quantum devices: a (8+1)-qubit quantum device,
two (4+1)-qubit quantum devices, and a (3+1)-qubit quantum
device. Typically, the smallest device is chosen as the quantum
predictor. To make full use of the quantum resources on
quantum feature extractors, we downscale the data to 4×4 and
partition it into a 2 × 4 segment and two 2 × 2 segments, as
the second panel in Fig. 3. We then respectively assign them
to the (8 + 1)-qubit quantum device and the two (4 + 1)-
qubit quantum devices. Fig. 10 compares the performance
of uneven partitioning model 16qb uneven sqnn to the other
two models, 16qb 3blk and 16qb sqnn, that are trained with
the same size input data. Fig. 10 illustrates that the SQNN
with an uneven partitioning strategy performs similarly to
the other two models. Hence, we argue that SQNN in the

quantum system with quantum devices of different sizes is
also effective.

V. RELATED WORK

The topic studied in this paper is known as quantum
neural network [27]–[29], a case of variational quantum
algorithm [14]. There have been some works in this field
that perform classification tasks with quantum computing
[30]. The approaches include quantum machine learning [31]–
[34], quantum-inspired machine learning [35]–[37], and hybrid
quantum-classical machine learning [13], [38]–[41].

Among these approaches, the hybrid approach attracts much
attention. A quantum multi-class classifier, QMCC, proposed
in [39], uses n qubits to encode an N-dimensional data vector
and uses k ancilla qubits as readouts to store the predicted
label out of k classes. Although the quantum computer is
much faster than the classical computer, the speed of hybrid
quantum-classical approaches is still constrained by classical
phases. Hence, some efforts have been made for acceleration.
A “single-shot training” style proposed in [13] uses all the
input samples with the same label to train the classifier at the
same time to speed up the training procedure. QReliefF ac-
celerates the training process by combining quantum machine
learning and edge computing so that some computations can
be finished parallelly [42]. Besides the quantum computation
phase, the time cost in the quantum encoding phase can

0 20 40 60 80 100
0.0

0.2

0.4

0.6

Epochs

Tr
ai

ni
ng

 lo
ss

0 20 40 60 80 100
70

75

80

85

90

95

Epochs

Va
lid

at
io

n
ac

cu
ra

cy

16qb_3blk

16qb_sqnn
16qb_uneven_sqnn

Fig. 10. The comparison of performance among input partition strategies. Three 16 data-qubit (qb) models are compared in this experiment: single-device
model 16qb 3blk, SQNN model 16qb sqnn and SQNN model with uneven input partition 16qb uneven sqnn. The availability of various input partition
strategies is proven by their comparable performance.

also be reduced by using a quantum dataset so that the
quantum devices do not need to perform encoding for classical
data. A quantum dataset NTangled is proposed in [43]. It is
composed of quantum states with different amounts and types
of entanglements.

Quantum models are limited in their ability to investigate
potential patterns in data due to hardware restrictions on
quantum devices. The existing approaches must shrink the
raw data size to fit the number of available qubits on the
quantum device. The intuitive method is to downscale the raw
data into a small size, but much helpful information is lost. A
solution proposed in [44] is to use a quantum-inspired tensor
network (TN), particularly a matrix product state, as a feature
extractor to reduce data size and then use the compressed data
as the input of VQC to perform supervised learning tasks.
However, the quantum-inspired TN runs on classical devices,
which slows down the training speed. A large-scale QML is
proposed in [45]. It computes quantum kernels using random-
ized measurements and loads high-dimensional classical data
on a quantum device by repeating the encoding layer, which
increases the depth of the quantum circuit and is incompatible
with the QNN approaches considered in our work.

The distributed systems of QNN are designed to train a
quantum model among multiple parties collaboratively. Quan-
tumFed [46] combines QNN and federated learning to allow
multiple quantum devices to train a QML model collabora-
tively on their private dataset. And the authors further consider
the security issue of quantum federated learning. Their work
presented in [47] protects the QML model trained in the
federated learning system from Byzantine attacks, in which
adversaries upload malicious information to degrade model
performance. The federated QNN through blind quantum
computing implemented with differential privacy in order to
guarantee clients’ privacy [48]. DSQML, distributed secure
quantum machine learning, is proposed to implement a secure
QNN without leakage of any information about training data
[49]. The above approaches are computationally intensive on
classical devices and do not overcome the quantum hardware
limitation. In comparison to the previous works, our proposed
approach performs no additional computation on classical

devices other than the update calculation required in the hybrid
method.

VI. CONCLUSION

Considering the difficulty and cost of building a large-scale
quantum device for QNN, we propose a scalable quantum
neural network (SQNN), which is deployed on multiple small-
size quantum devices. In this paper, we consider SQNN
models for a binary classification task. The SQNN classifier
learns from high-dimensional training data by partitioning it
into small segments. And the resource-constrained quantum
devices in the quantum system extract local features from
the segments in parallel. The extracted features are then
merged and predicted using a quantum device acting as a
quantum predictor. Moreover, the training sample could be
partitioned into segments of different sizes to fully utilize the
quantum devices with various amounts of quantum resources.
Furthermore, we show that a single small-size quantum device
is also able to train a large neural network according to the
SQNN approach. Extensive experiments indicate that having
more quantum resources improves SQNN classifier accuracy
significantly, and our proposed approach outperforms regular
QNNs trained with limited quantum resources.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for their
helpful comments. This project was supported in part by
US National Science Foundation grant CNS-1816399. This
work was also supported in part by the Commonwealth Cyber
Initiative, an investment in the advancement of cyber R&D,
innovation and workforce development. For more information
about CCI, visit cyberinitiative.org.

REFERENCES

[1] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum
machine learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185,
2015.

[2] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp.
195–202, 2017.

[3] E. H. Houssein, Z. Abohashima, M. Elhoseny, and W. M. Mohamed,
“Machine learning in the quantum realm: The state-of-the-art, chal-
lenges, and future vision,” Expert Systems with Applications, p. 116512,
2022.

[4] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[5] A. Steane, “Quantum computing,” Reports on Progress in Physics,
vol. 61, no. 2, p. 117, 1998.

[6] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[7] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212–219.

[8] K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann,
D. Scheiermann, and R. Wolf, “Training deep quantum neural networks,”
Nature communications, vol. 11, no. 1, pp. 1–6, 2020.

[9] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada,
and S. Lloyd, “Continuous-variable quantum neural networks,” Physical
Review Research, vol. 1, no. 3, p. 033063, 2019.

[10] E. Farhi and H. Neven, “Classification with quantum neural networks
on near term processors,” arXiv preprint arXiv:1802.06002, 2018.

[11] R. Zhou and Q. Ding, “Quantum mp neural network,” International
Journal of Theoretical Physics, vol. 46, no. 12, pp. 3209–3215, 2007.

[12] R. Zhou, “Quantum competitive neural network,” International Journal
of Theoretical Physics, vol. 49, no. 1, pp. 110–119, 2010.

[13] S. Adhikary, S. Dangwal, and D. Bhowmik, “Supervised learning with
a quantum classifier using multi-level systems,” Quantum Information
Processing, vol. 19, no. 3, pp. 1–12, 2020.

[14] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., “Variational
quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–
644, 2021.

[15] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[16] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:
Tricks of the trade. Springer, 2012, pp. 421–436.

[17] R. Sweke, F. Wilde, J. Meyer, M. Schuld, P. K. Fährmann, B. Meynard-
Piganeau, and J. Eisert, “Stochastic gradient descent for hybrid quantum-
classical optimization,” Quantum, vol. 4, p. 314, 2020.

[18] S. Y.-C. Chen and S. Yoo, “Federated quantum machine learning,”
Entropy, vol. 23, no. 4, p. 460, 2021.

[19] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal compo-
nent analysis,” Nature Physics, vol. 10, no. 9, pp. 631–633, 2014.

[20] S. A. Stein, B. Baheri, D. Chen, Y. Mao, Q. Guan, A. Li, S. Xu, and
C. Ding, “Quclassi: A hybrid deep neural network architecture based on
quantum state fidelity,” Proceedings of Machine Learning and Systems,
vol. 4, pp. 251–264, 2022.

[21] M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, S. V.
Isakov, P. Massey, R. Halavati, M. Y. Niu, A. Zlokapa et al., “Tensorflow
quantum: A software framework for quantum machine learning,” arXiv
preprint arXiv:2003.02989, 2020.

[22] M. Schuld and F. Petruccione, Supervised learning with quantum com-
puters. Springer, 2018, vol. 17.

[23] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit
learning,” Physical Review A, vol. 98, no. 3, p. 032309, 2018.

[24] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, “Eval-
uating analytic gradients on quantum hardware,” Physical Review A,
vol. 99, no. 3, p. 032331, 2019.

[25] “Tensorflow quantum tutorial,” https://www.tensorflow.org/quantum/
tutorials/mnist#21 build the model circuit, 2020.

[26] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[27] M. Altaisky, “Quantum neural network,” arXiv preprint quant-
ph/0107012, 2001.

[28] S. Jeswal and S. Chakraverty, “Recent developments and applications in
quantum neural network: a review,” Archives of Computational Methods
in Engineering, vol. 26, no. 4, pp. 793–807, 2019.

[29] B. Ricks and D. Ventura, “Training a quantum neural network,” Ad-
vances in neural information processing systems, vol. 16, 2003.

[30] Z. Abohashima, M. Elhosen, E. H. Houssein, and W. M. Mohamed,
“Classification with quantum machine learning: A survey,” arXiv
preprint arXiv:2006.12270, 2020.

[31] D. Willsch, M. Willsch, H. De Raedt, and K. Michielsen, “Support
vector machines on the d-wave quantum annealer,” Computer physics
communications, vol. 248, p. 107006, 2020.

[32] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector
machine for big data classification,” Physical review letters, vol. 113,
no. 13, p. 130503, 2014.

[33] M. Schuld, I. Sinayskiy, and F. Petruccione, “Prediction by linear
regression on a quantum computer,” Physical Review A, vol. 94, no. 2,
p. 022342, 2016.

[34] A. J. da Silva, T. B. Ludermir, and W. R. de Oliveira, “Quantum
perceptron over a field and neural network architecture selection in a
quantum computer,” Neural Networks, vol. 76, pp. 55–64, 2016.

[35] P. Tiwari and M. Melucci, “Towards a quantum-inspired binary classi-
fier,” IEEE Access, vol. 7, pp. 42 354–42 372, 2019.

[36] G. Sergioli, R. Giuntini, and H. Freytes, “A new quantum approach to
binary classification,” PloS one, vol. 14, no. 5, p. e0216224, 2019.

[37] C. Ding, T.-Y. Bao, and H.-L. Huang, “Quantum-inspired support
vector machine,” IEEE Transactions on Neural Networks and Learning
Systems, 2021.

[38] M. Schuld and N. Killoran, “Quantum machine learning in feature
hilbert spaces,” Physical review letters, vol. 122, no. 4, p. 040504, 2019.

[39] A. Chalumuri, R. Kune, and B. Manoj, “A hybrid classical-quantum ap-
proach for multi-class classification,” Quantum Information Processing,
vol. 20, no. 3, pp. 1–19, 2021.

[40] A. Gianelle, P. Koppenburg, D. Lucchesi, D. Nicotra, E. Rodrigues,
L. Sestini, J. de Vries, and D. Zuliani, “Quantum machine learning for
b-jet identification,” arXiv preprint arXiv:2202.13943, 2022.

[41] Z. Tao, J. Wu, Q. Xia, and Q. Li, “Laws: Look around and warm-start
natural gradient descent for quantum neural networks,” arXiv preprint
arXiv:2205.02666, 2022.

[42] W. Liu, J. Chen, Y. Wang, P. Gao, Z. Lei, and X. Ma, “Quantum-based
feature selection for multiclassification problem in complex systems with
edge computing,” Complexity, vol. 2020, 2020.

[43] L. Schatzki, A. Arrasmith, P. J. Coles, and M. Cerezo, “En-
tangled datasets for quantum machine learning,” arXiv preprint
arXiv:2109.03400, 2021.

[44] S. Y.-C. Chen, C.-M. Huang, C.-W. Hsing, and Y.-J. Kao, “Hybrid
quantum-classical classifier based on tensor network and variational
quantum circuit,” arXiv preprint arXiv:2011.14651, 2020.

[45] T. Haug, C. N. Self, and M. Kim, “Large-scale quantum machine
learning,” arXiv preprint arXiv:2108.01039, 2021.

[46] Q. Xia and Q. Li, “Quantumfed: A federated learning framework for
collaborative quantum training,” in 2021 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2021, pp. 1–6.

[47] Q. Xia, Z. Tao, and Q. Li, “Defending against byzantine attacks in
quantum federated learning,” in 2021 17th International Conference on
Mobility, Sensing and Networking (MSN). IEEE, 2021, pp. 145–152.

[48] W. Li, S. Lu, and D.-L. Deng, “Quantum federated learning through
blind quantum computing,” Science China Physics, Mechanics & As-
tronomy, vol. 64, no. 10, pp. 1–8, 2021.

[49] Y.-B. Sheng and L. Zhou, “Distributed secure quantum machine learn-
ing,” Science Bulletin, vol. 62, no. 14, pp. 1025–1029, 2017.

https://www.tensorflow.org/quantum/tutorials/mnist#21_build_the_model_circuit
https://www.tensorflow.org/quantum/tutorials/mnist#21_build_the_model_circuit

	I Introduction
	II Preliminary
	II-A Quantum gates
	II-B Quantum encoding
	II-B1 Basis encoding
	II-B2 Angle encoding
	II-B3 Amplitude encoding

	II-C Quantum neural network

	III Scalable Quantum Neural Network
	III-A Encoding unit
	III-B Variational quantum layers
	III-B1 Quantum feature extractor
	III-B2 Quantum predictor

	III-C Optimization
	III-D SQNN in small quantum systems

	IV Experiments and results
	IV-A Observations
	IV-B SQNN with even partitioning
	IV-C SQNN with uneven partitioning

	V Related Work
	VI Conclusion
	References

