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Abstract—Variational quantum algorithms (VQAs) have re-
cently received much attention due to their promising perfor-
mance in Noisy Intermediate-Scale Quantum computers (NISQ).
However, VQAs run on parameterized quantum circuits (PQC)
with randomly initialized parameters are characterized by barren
plateaus (BP) where the gradient vanishes exponentially in the
number of qubits. In this paper, we proposed a Look Around
Warm-Start (LAWS) quantum natural gradient (QNG) algorithm
to mitigate the widespread existing BP issues. LAWS is a
combinatorial optimization strategy taking advantage of model
parameter initialization and fast convergence of QNG. LAWS
repeatedly reinitializes parameter search space for the next
iteration parameter update. The reinitialized parameter search
space is carefully chosen by sampling the gradient close to the
current optimal. Moreover, we present a unified framework (WS-
SGD) for integrating parameter initialization techniques into the
optimizer. We provide the convergence proof of the proposed
framework for both convex and non-convex objective functions
based on Polyak-Lojasiewicz (PL) condition. Our experiment
results show that the proposed algorithm could mitigate the BP
and have better generalization ability in quantum classification
problems.

Index Terms—Variational Quantum Algorithms, Natural Gra-
dient Descent

I. INTRODUCTION

A Quantum Neural Network (QNN) implements a neural
network on a quantum computer. In QNN, a task of interest
is prepared and evaluated via a parameterized quantum circuit
(PQC) on a quantum computer, with iteratively updating the
parameters by a classical optimizer to find the optimum for
the objective function [1]–[3]. However, a recently discovered
phenomenon, so-called barren plateaus (BP) [4], where gradi-
ents of the cost functions vanish exponentially with the size
of the system, dramatically limits the application of QNNs to
practical problems. BP prevents QNN’s parameter update from
gradient changes when using gradient-based optimizers. To
acquire the gradient information, exponential resources might
be used for sampling errors in quantum measurements.

To address the BP issue, gradient rescaling [5], [6], QNN’s
parameter initialization [7], [8], and gradient-free optimiza-
tions [9] have been studied. Our work is also motivated
by addressing the BP issue. In this paper, we first review
the gradient-based method, particularly the quantum natural
gradient (QNG), from the viewpoint of mirror descent [10].
Then, we proposed a look around the warm-start QNG algo-
rithm as a primary instrument to mitigate the BP issue. The

proposed algorithm is based on two observations: First, the
QNG can consistently find a global optimum and requires
significantly fewer epochs than other optimizers [11]. This
outperformance holds even for large system sizes (40 qubits),
indicating that using QNG to solve the QNN problem is suit-
able. Second, the success of applying parameter initialization
in QNN demonstrates a potential direction for mitigating the
BP issue [7], where it withstand the possible failure of using
the gradient-based [12] or gradient-free [13] algorithm. Based
on the above, the intuition behind LAWS is that we repeatedly
reinitialize the QNN’s parameter while in training. We call this
reinitialization during the training as warm-start. In this way,
the fast convergence speed of QNG is adopted, and the BP
could be mitigated via multiple parameter reinitializations.

The contributions of this paper are fourfold: (1) we propose
a new derivation of QNG by using a classical first-order op-
timization scheme known as mirror descent; (2) we proposed
a new algorithm named LAWS for solving QNN in general.
Our experiment results show that the proposed algorithm could
mitigate the BP issue and have better generalization ability in
quantum classification problems; (3) based on LAWS, we pro-
pose a unified framework WS-SGD for the warm-start gradient
descent algorithm that is easy to implement and compatible
with the most current quantum learning libraries; (4) Lastly,
we provide the convergence proof of the proposed framework
for both convex and non-convex objective functions.

II. RELATED WORK

The barren plateau (BP) phenomenon in the cost function
landscape was originally discovered in [4] where it was
shown that deep (unstructured) parameterized quantum circuits
exhibit BPs when randomly initialized. Many works have been
studied to mitigate BP, and they can be roughly categorized
into two directions. The first type of approach uses problem-
inspired ansatzes because problem-agnostic ansatzes, such as
deep hardware efficient ansatzes, could exhibit barren plateaus
due to their high expressibility [14], [15]. The approach, for
example [14], relaxes search space during the optimization to
a smaller space that contains the solution to the problem or
that at least contains a good approximation to the solution
while maintaining a low expressibility. Another line of study
focuses on QNN initialization [7], [8]. Parameter initialization
has been proven to be helpful in classical machine learning.
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In [7], the proposed method uses the identity block strategy
to limit the effective depth of the circuits used to calculate
the first parameter update to avoid the QNN being stuck in a
barren plateau at the start of training.

The natural gradient [16] (NG) automatically chooses gradi-
ent step size and moves in the steepest descent direction with
respect to the Fisher information. The pioneering work [17]
proposes QNG as part of a general-purpose optimization
framework for variational quantum algorithms. QNG’s compu-
tation is expensive; hence it becomes an obstacle for applying
in both classical learning and VQA.

III. BACKGROUND

Let’s first introduce some notations we will use in the paper.
For θ, µ ∈ Rd, let

√
θ, θ ⊙ µ, and θ/µ denote the element-

wise square root, multiplication, and division of the vectors.
The ∥θ∥22 is l2-norm. We denote θtk for parameter θ at t-th
iteration k-th step.

A. First-order Optimization

Globally optimizing the objective function C(θ) is imprac-
tical due to the nonconvexity. To this end, practitioners search
for local optima by solving the following dynamical system

θt+1 = argmin
θ

{
⟨θ,∇C(θt)⟩+

1

2η
∥θ − θt∥22

}
(1)

which is equivalent to the gradient descent in the form θt+1 =
θt−η∇C(θt). Notice, the stochastic gradient descent (SGD) is
obtained when gt = ∇C(θt, ξ) where ξ is a sample drawn from
dataset D such that E[gt] = ∇C(θt) is an unbiased estimator
of ∇C(θt) and

θt+1 = θt − ηgt (2)

Optimization problem Eq.( 1) or Eq.( 2) is well-suited to
assumptions regarding the objective function C which involve
the Euclidean norm. The intuition behind optimization in
Eq.( 1) is objective function C is replaced by its linearization at
θt plus a Euclidean distance term 1

2η∥θ−θt∥
2
2, which prevents

the next iterate θt+1 from being too far from θt.
Instead of using Vanilla SGD above, recent studies tackle

the optimization problem

C(θ) = Tr(PψH) = ⟨ψ|H|ψ⟩

by using natural gradient descent, where we update the pa-
rameter as

θt+1 = θt − ηF (θ)−1gt (3)

Here, F (θ) = ℜ[G(θ)] is Fubini-Study metric tensor a P ×P
matrix recently identified as the (classical) Fisher information
matrix. We define quantum geometric tensor G(θ) as

Gi,j =
〈 ∂ψ
∂θi

,
∂ψ

∂θj

〉
−
〈 ∂ψ
∂θi

, ψ
〉〈
ψ,

∂ψ

∂θj

〉
(4)

Seminal work [17] demonstrates the block-wise Fubini-Study
metric tensor can be evaluated in terms of quantum expectation
values of Hermitian observables which is thus experimentally
realizable.

Gradient Descent

Warm-start SGD

warm-start

Fig. 1. A demonstration of gradient trajectory of gradient descent and warm-
start QNG. The circle in red indicates the parameter re-initialization for the
next step of parameter update.

B. Barren Plateau Problem

The gradient (∇C(θ)) or stochastic gradient (g) plays
an essential role in the parameter optimization process via
the gradient-based method. Here, we consider the following
generic definition of a barren plateau without loss of generality.

Definition 1. (Barren Plateau). Consider the cost function
C(θ) defined in

min
θ

C(θ).

This cost exhibits a barren plateau if, for all θi ∈ θ, the
expectation value of partial derivative ∂iC(θ) = ∂C(θ)/∂θi
respect to the cost function is zero i.e., E[∂iC(θ)] = 0. The
variance of the above partial derivative vanishes exponentially
with the number of qubits, i.e,

Varθ[∂iC(θ)] ∈ O(p−n) (5)

for some p > 1.

Notice, we have the following conclusion by using Cheby-
shev’s inequality

P (|∂iC(θ)| ≥ c) ≤ Varθ[∂iC(θ)]
c2

(6)

for some constant c. The definition and above inequality tell
that the probability of finding a ∂iC(θ) that is larger than c de-
creases exponentially when the variance of the partial deriva-
tive establishes an exponential decay. The presence of BPs
exists in both deep unstructured PQC with randomly initialized
parameters [4] and QNNs [7]. Ref. [7] theoretically analysis
the BP based on the fact that when ansatzes become unitary
2-designs [18], the expected number of samples required to
estimate ∂C(θ) is exponential in the system size which often
refers the number of qubits n. BP is fatal in gradient-based
optimization because it might halt the parameter update and
quickly converge to some sub-optimal solution.

IV. MAIN RESULTS

In this section, we show that QNG corresponding to
quantum probability space can be implemented as a classical
first-order optimization known as mirror descent. Then we
show the proposed LAWS algorithm and a general WS-SGD
framework.
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A. Quantum Information Geometry of Mirror Descent

In the seminar work [10], the Euclidean distance term
1
2η∥θ − θt∥22 in Eq.( 1) has been replaced with a general
distance function DΦ(·, ·), i.e.,

DΦ(θ1, θ2) = Φ(θ1)− Φ(θ2)− ⟨∇Φ(θ2), θ1 − θ2⟩ (7)

where Φ(·) is a carefully chosen continuously differentiable,
strictly convex proximity function defined on some convex set.
Notice, DΦ(θ1, θ2) ≥ 0 with DΦ(θ1, θ1) = 0. DΦ(·, ·) defined
above is also known as Bregman divergence, which is widely
used in statistical inference, optimization, machine learning,
and information geometry. As a result, a generalization of
stochastic iterative optimization Eq.( 1) has following

θt+1 = argmin
θ

{
⟨θ, gt⟩+

1

η
DΦ(θ, θt)

}
(8)

The above optimization is known as mirror descent (MD) [19]
with proximity function DΦ. Note, if Φ(θ) = 1

2∥θ∥
2
2 convex,

then DΦ(θ, θt) = 1
2∥θ − θt∥22 yields the standard gradient

descent update Eq.( 2). In addition, many modern machine
learning optimizations such as Vanilla SGD, AdaGrad and
Adam [20] fall into MD 8 point view. For example, given
Mahalanobis distance Φ(θ) = θ⊤Aθ where A ≻ 0 is a

positive (semi)definite matrix, i.e., A =
√∑t

i=1 g
2
i a sum

of all gradients for t = 1 to t. We have AdaGrad

θt+1 = argmin
θ

{
⟨θ, gt⟩+

1

2η
(θ − θt)

⊤A(θ − θt)
}

(9)

which is equivalent to

θt+1 = θt −
η√∑t

i=1 g
2
i + ϵ

⊙ gt (10)

where ϵ is a small number, typically set as 10−8, ⊙ indicates
the element-wise product. Moreover, if

A =

√√√√(1− β2)

t∑
i=1

βt−i
2 g2i (11)

and set mt = β1mt−1 + (1 − β1)gt as exponential moving
average (EMA) of stochastic gradient gt with β1, β2 ∈ R
(typical values are β1 = 0.9 β2 = 0.999). We recover the
Adam optimizer

θt+1 = θt −
η√

(1− β2)
∑t

i=1 β
t−i
2 g2i + ϵ

⊙mt (12)

In VQA, consider a parametric family of strictly positive
probability distributions pθ(x) parametrized by θ ∈ Rd where
x ∈ [N ] is a set of probability distributions on N elements
[N ] = {1, · · · , N} and satisfies the normalization condition∫

pθ(x)dx = 1 for all θ (13)

Assuming sufficient regularity, the derivatives of such densities
satisfy the identity

∀t > 0

∫
∂tpθ(x)

∂θt
dx =

∂t

∂θt

∫
pθ(x)dx =

∂t1

∂θt
= 0 (14)

To elucidate the geometry of the probability space P , we mea-
sure the density pθ changes when one adds a small quantity dθ
to its parameter. It can be achieved in a statistically meaningful
way by using the Kullback-Leibler (KL) divergence [21].
Interestingly, KL-divergence is also an instance of Bregman
divergence mentioned in Eq.( 7) by letting proximity function
Φ(θ) =

∑
i θi log(θi) result in

DΦ(θ, θ + dθ) = KL(θ∥θ + dθ) = Epθ

[
log

(
pθ(x)

pθ+dθ(x)

)]
(15)

where Epθ denotes the expectation with respect to the distri-
bution pθ. Further, we can approximate the divergence with a
second-order Taylor expansion such as

KL(θ∥θ + dθ) = Epθ

[
log(pθ(x))− log(pθ+dθ(x))

]
≈ −dθ⊤Epθ

[∂ log(pθ(x))

∂θ

]
+

1

2
dθ⊤Epθ

[∂2 log(pθ(x))

∂θ2

]
dθ

(16)

Applying the fact that first-order term is 0 shown in Eq.( 14),
we have

DΦ(θ, θ + dθ) = KL(θ∥θ + dθ) ≈ 1

2
dθ⊤F (θ)dθ (17)

F (θ) is defined by the Fisher information matrix (FIM)

F (θ) = Epθ

[(
∂ log(pθ(x))

∂θ

)(
∂ log(pθ(x))

∂θ

)]
(18)

We notice the second equality of F (θ) is often preferred
because it makes clear that the F (θ) is symmetric and always
positive semidefinite, though not necessarily positive definite.
Finally, we plug the Bregman divergence defined on informa-
tion entropy Φ(θ) =

∑
i θi log(θi) in MD optimization Eq.( 8),

and we have

θt+1 = argmin
θ

{
⟨θ, gt⟩+

1

2η
(θ − θt)

⊤F (θ − θt)
}

(19)

The iterative solution of the above optimization problem
Eq.( 19) is

θt+1 = θt − ηF−1gt (20)

where F−1 is the pseudo-inverse of the Fisher information
matrix, which recovers the natural gradient descent in Eq.( 3).
In the over-parameterized classical deep learning model, F is
singular. To make it invertible, one often adds a non-negative
damping term δ such that θt+1 = θt − η(F + δI)−1gt.

B. Look Around Warm-start Natural Gradient

The presence of BP becomes one of the major bottlenecks
in optimizing VQA, such as deep QNN. Notably, this does not
preclude VQA, allowing for efficient gradient-based optimiza-
tion. In section II, we discuss two mainstream techniques to
mitigate BP. This work focuses on the optimization solution
combined with the QNN parameter initialization strategy.

1) Motivation: Intuitively, a good parameter initialization
(i.e., the distribution of initialized parameter close to optimal)
requires a large number of empirical studies, hyper-parameter
tuning, and possibly human intervention, which is unproduc-
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Algorithm 1: Look Around and Warm-Start Natural
Gradient Descent

1 Input: Objective function C(θ), learning data D
2 Initialization: θ0, learning rate η0, warm-start learning

rate µ0, warm-start iteration K (K = 5, 3, or 2)
3 for t = 1, · · · , T do
4 vt0 = θt−1

5 for k = 1, · · · ,K do
6 Draw sample from batch data ξ ∼ Db
7 vtk = vtk−1 − µk∇C(θ; ξ)
8 end
9 θtwarm-start = vtk

10 Compute natural gradient Ft = FisherIM(θtwarm-start)

11 Compute new gradient gt = θtwarm-start − θt−1

12 θt = θtwarm-start −
ηt
KF

−1
t gt

13 end

tive. Therefore, a natural question is raised: can we perform
efficient and effective parameter initialization for QNNs? This
is the primary motivation behind our approach. Second, the
one-shot model initialization strategy initializes the model only
at the beginning of the training process. However, as the
training process proceeds, BP appears again when we use the
gradient-based method to train the model. Besides finding a
suitable initialization strategy, we also consider the algorithm’s
efficiency since computing quantum Fisher information in
QNG is expensive, as discussed in section III-A.

2) Proposed Method: We present our proposed algorithm
shown in Algorithm 1. The key step in the proposed algorithm,
in short, is that we perform the initialization after every
parameter update instead of only initializing the PQC one
at a time. The intuition behind this algorithm is that we try
to warm-start the natural gradient descent for each iteration.
Every time the optimizer finds a sub-optimal solution, say θt,
we utilize this θt and re-initialize the model around θt within a
small region. Later, we generalized the LAWS to accommodate
all existing gradient-based methods in Algorithm 2.

There are two major advantages when using LAWS. First,
LAWS could mitigate the BP issue by repeatedly performing
the parameter re-initialization, where our empirical results
also support this observation. Second, LAWS adopts a fast
convergency speed, and it is more computationally efficient
than the QNG. Third, we empirically find that LAWS achieves
better generalization ability in the classification learning task.

3) Implementation Details: The implementation of LAWS
is simple and is compatible with all existing gradient-based
optimization frameworks. Therefore, how to effectively and
efficiently perform warm-start (parameter re-initialization) is
the key challenge in LAWS’s design. To this end, the design
of warm-start is based on a stochastic procedure, where the

re-initialized parameter is sampled from a set of stochastic
gradients. Fig 1 demonstrates the optimization trajectory of
LAWS compared to the original QNG. We search gradients
for fewer steps around the current optimal θt and then perform
a natural gradient descent step (F−1

t ) on the accumulation of
the previous gradient (vtk − θt) at the re-initialized parameter
point vtk.

We present two different warm-start strategies. The first one
uses a K-step (K usually small, such as K = 5) inner loop
(as the Algorithm 1 shows) to compute a set of K consecutive
gradients such as GtK = {gt1, gt2, · · · , gtK}. Then, we compute
a weighted average of gradients in GtK as a warm-start point
of the next iteration

θwarm-start = θt−1 +
1

K

K∑
k=1

gk (21)

for all gtk ∈ GtK such that

GtK =
{
∇C(vtk, ξ)|ξ ∼ Db

}
(22)

where each vtk is computed as line 9 in Algorithm 1. The
second one also uses a K-step inner loop to sample gradient
candidates. But one significant difference compared to the first
method is that sample gradient candidates are computed with
respect to the same model parameter at the current step t− 1,
say θt−1. Mathematically, we have

θwarm-start = θt−1 +
1

K

K∑
k=1

∇C(θt−1, ξ) where ξ ∼ Db (23)

We empirically evaluate the above-mentioned warm-start
strategies. More detailed results and analysis are shown in
section V.

We notice that the proposed LAWS belongs to a certain
first-order optimization in modern classical learning regime
so-called Lookahead optimizer. Based on their extraordinary
work, we propose a general warm-start framework for VQA
in the next section.

4) Generalized Warm-start Algorithm: In the classical ma-
chine learning study, [22] proposed a new optimization al-
gorithm named Lookahead. Lookahead is orthogonal to the
aforementioned approaches [20] due to the different parameter
update settings. The core idea of Lookahead is to maintain two
kinds of model parameters, i.e., “fast parameter” vtk and “slow
parameter” θt, and jointly update them. Specifically, the inner
loop takes the slow weights (θt−1) as initial point and updates
the fast weights (vtk) K times to receive vtK ; while the outer
loop updates the slow weights as

θt = (1− α)θt−1 + αvtK , α ∈ (0, 1) (24)

Any standard optimizer, e.g., Vallina SGD, AdaGrad, and
Adam, can serve as the inner-loop optimizer. In our speech,
the inner-loop act as a warm-start initialization. In this way,
the Lookahead optimizer achieves remarkable performance
improvement over the standard optimizer. Further, due to
its simplicity in implementation, negligible computation and

79

Authorized licensed use limited to: William & Mary. Downloaded on October 31,2023 at 12:39:35 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2: Generalized Warm-start Stochastic Gra-
dient Descent (WS-SGD)

1 Input: Objective function C(θ), learning data D,
warm-start optimizer W , reparameterization
coefficient function ∆t

2 Initialization: θ0, warm-start learning rate µ0,
warm-start iteration K

3 for t = 1, · · · , T do
4 vt0 = θt−1

5 for k = 1, · · · ,K do
6 vtk = W

(
C(θ), vt0, µ0,Dm

)
7 end
8 θtwarm-start = vtk
9 θt+1 = ∆tθt + (1−∆t)θ

t
warm-start

10 end

memory cost, and compatibility with almost current ML
libraries, Lookahead has been widely adopted.

Interestingly, we find LAWS also falls into this line of
research. In algorithm 1, let λt = ηt/K, we compute the θt
as

θt = θtwarm-start − λtF
−1
t gt

= λtF
−1
t θt−1 + (1− λtF

−1
t )θtwarm-start.

(25)

The last equality is due to vtk = θtwarm-start. From the above
derivation, we see that the mathematical difference between
LAWS and Lookahead is: we replace α in Lookahead Eq.( 24)
to some value such as

α = 1− λtF
−1
t

where is not a fixed real coefficient but a Fisher information
related quantity.

To this end, we propose our unified framework WS-SGD
for a warm-start stochastic gradient descent algorithm for
QNNs as shown in Algorithm 2. We first employ a generalized
optimizer W for the warm-start inner loop. The choice of
such an optimizer heavily affects re-initialization and model
performance. As reported in [22], WS-SGD may benefit from a
larger learning rate in the inner loop. In other words, we could
use a larger step size µ. We also propose the general form for
reparameterization coefficient ∆t as a function of gradient,
for example, ∆t = 1− α (Lookahead), ∆t = 1− λtFt (WS-
SGD), and ∆t = 1− λt

√∑
k∇C(vtk, ξ)2 (Adam-like SGD).

Our empirical results are present in section V, we conclude
that WS-SGD achieves faster convergence rates (i.e., smaller
optimization error), and enjoys smaller generalization errors.

C. Convergence Analysis

In this section, we present the convergence and generaliza-
tion analysis of the proposed algorithm. We first provide some
useful definitions and assumptions which have been widely

adopted in classical machine learning. We provide the analysis
of the convergence for both convex and non-convex objective
functions C(θ). We start by showing the proof of convergence
on the convex problem to give some intuition first and then
give the proof on a more realistic non-convex problem.

1) Assumption: The assumptions we are making are

Assumption 1. (Bounded gradient). The function C(θ) has
bounded (stochastic) gradients, i.e., for any θ ∈ Rd we have

||∇C(θ, ξ)||2 ≤ G for all ξ ∼ D (26)

Assumption 2. (L-Lipschitz smooth). The function C(θ) is L-
Lipschitz smooth i.e.

||∇C(θ)−∇C(µ)||2 ≤ L||θ − µ|| for all θ, µ ∈ Rd (27)

Assumption 3. (M-Lipschitz continuous). The function C(θ)
is L-Lipschitz continous i.e.

||C(θ)− C(µ)||2 ≤M ||θ − µ|| for all θ, µ ∈ Rd (28)

We also define Polyak-Lojasiewicz (PL) condition as

Definition 2. (PL Condition) Let θ∗ ∈ argminθ C(θ). We say
a function C(θ) satisfies σ-PL condition if

σ(C(θ)− C(θ∗)) ≤ ∥∇C(θ)||2 (29)

with some constant σ.

The above assumptions and definitions can be easily ob-
tained and verified in VQE. Now, we show our theoretical
results below in the Theorem 1 and Theorem 2.

2) Convex Objective function: Given a dataset D =
{(xi, yi)}ni=1 where (xi, yi) is is drawn from an unknown
distribution, one often minimizes the empirical risk L(θ) =
1
n

∑n
i=1 C(θ, xi, yi) via a randomized algorithm, e.g. SGD, to

find an estimated optimum θT ∈ argminθ L(θ). However, this
empirical solution θ̂, differs from the desired optimum θ∗ of
the population risk

θ∗ ∈ argmin
θ

L(θ,D) = Ex,y∼D[C(θ, x)]. (30)

To begin with, we first investigate the convergence perfor-
mance of WS-SGD when its warm-start optimizer W is SGD.
We summarize our main results in Theorem 1 below.

Theorem 1. (Convex) Suppose the objective function C(θ)
is gamma-strongly convex, M-Lipschitz continuous, and L-
Lipschitz smooth w.r.t., θ. Let θ∗ = argminθ C(θ). Let war-
start learning rate µtk = c0

((t−1)k+K+2) , c0 ∈ (0, 1], the
optimization error of the output θT of WS-SGD satisfies

E[C(θT )− Cθ∗)] ≤ e2∆L(k + 2)2∆

2((T + 1)K + 2)2∆
∥θ0 − θ∗∥2

+
16LG2

c20((T + 1)K + 2)2(1−∆)(2∆− 1)

(31)

3) Non-Convex Objective function: To prove the non-
convex objective function, we use the Polyak-Lojasiewicz
condition defined in 2.
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Fig. 2. Variational classifier for Iris classification task: SGD vs. Nesterov vs. LAWS

Theorem 2. (Non-Convex) Suppose the objective function
C(θ) is M-Lipschitz continuous, and L-Lipschitz smooth w.r.t.,
θ. In addition, suppose C(θ) satisfies σ-PL condition. Let
µtk = 1

tK+t+1 , we have

E[C(θT )− C(θ∗)] ≤ 4

(TK + 1)2∆
E
[
C(θ0)− C(θ∗)

]
+

2∆MG2C0

(TK + 1)2∆−1

(32)

where C0 = ∆+ (1−∆)(K − 1).

We again omit the complete proof of this theorem. The
proof sketch is we first bound E

[
∥C(vtK)− C(θ∗)∥

]
, then we

use the relation of vtK and θt defined in the Algorithm 1 line
10 to derive the final bound of E[C(θT )− C(θ∗)]. In the next
section, we present the numerical simulation results of LAWS,
WS-SGD, and their variants.

V. NUMERICAL SIMULATIONS

To evaluate the performance of LAWS, WS-SGD, and their
variants, we use the open-source library PennyLane [23] 0.22.2
built on Python 3.7. Most of the experiments follow the
open-source tutorials from the official PennyLane website. We
conduct experiments on variational quantum classifiers such
that the quantum circuits can be trained from labeled data to
classify new data samples. The classification training data is
public and can be downloaded from the PennyLane tutorial.
All the experimental results and source code implementation
can be found at https://github.com/taozeyi1990/LAWS.

We perform the binary Iris classification task, which is a
simple but powerful QNN to show that the warm-start strategy
could mitigate BP issue and has better generalization ability.
The learning rate for SGD and Nesterov momentum optimizer
is set to be 0.01. While the learning rate, look-around rate
and look-around steps are 0.01, 0.5, and 5, respectively. We
train QNN model within 50 iterations. Figure 2 show the (1)
gradient variance when increasing n-qubit; (2) cost value of
the objective function; (3) training accuracy, and (4) validation
accuracy, respectively. As shown in each figure, the warm-
start SGD in green demonstrates its superiority in this task.
Figure 3 indicates the decision boundaries of the model trained
with different optimizers. We observe that the two classes in
the train and validation dataset are perfectly separated when
using the warm-start optimizer, which indicates the WS-SGD

Fig. 3. Variational classifier for Iris classification task: decision boundary

has a stronger generalization ability. The result of the Nesterov
optimizer seems to suffer from the under-fitted where the
samples at the bottom left are mixed.

VI. CONCLUSION

In this work, we propose a unified framework for QNG by
using a classical first-order optimization scheme. The proposed
new algorithm named WS-SGD shows its power in QVA learn-
ing. Our experiment results show that the proposed algorithm
could mitigate the BP issue and have better generalization
ability in quantum classification problems.
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