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Abstract—Deep convolutional neural networks (DNNs)
have brought significant performance improvements to face
recognition. However the training can hardly be carried
out on mobile devices because the training of these models
requires much computational power. An individual user
with the demand of deriving DNN models from her own
datasets usually has to outsource the training procedure
onto an edge server. However this outsourcing method
violates privacy because it exposes the users’ data to
curious service providers. In this paper, we utilize the
differentially private mechanism to enable the privacy-
preserving edge based training of DNN face recognition
models. During the training, DNN is split between the user
device and the edge server in a way that both private
data and model parameters are protected, with only a
small cost of local computations. We rigorously prove that
our approach is privacy preserving. We finally show that
our mechanism is capable of training models in different
scenarios, e.g., from scratch, or through fine-tuning over
existed models.

Index Terms—Deep Learning, Convolutional Neural Net-
works, Privacy-Preserving, Differential Privacy

I. INTRODUCTION

People with mobile devices such as smartphones,

Google glasses or HoloLens can sense the environment

and use collected sensitive data (image, sound, and more)

to train a deep convolutional neural network (DNN) for

various applications, e.g., face recognition of people met

before. Usually, there are two ways for these mobile

devices to train a DNN. The first one is to send all

sensitive data to a central server (or cluster) which has

enough computing power. The second one is to perform

distributed training with a local DNN being trained on

each device. Obviously, the first one is more suitable for

mobile devices with limited computing resources. But

user’s private data will be violated seriously if the central

server is untrusted [1]. The second one has higher re-

quirements for devices’ computing power. Assuming that

it’s possible for mobile devices to perform distributed

training given powerful equipments like neural engines

built in iPhone X and Tensorflow Lite training frame-

work for mobile devices provided by Google, user’s

private data will still be violated by an active adversary

even with efficient privacy-preserving schemes applied

[2], [3]. To meet privacy and resource requirements,

we offer a more suitable option for privacy-aware DNN

training for mobile devices aided by edge computing. In

particular, we will show how this can be done through

the popular application of DNN based face recognition.

Training a multi-label DNN entirely on a mobile

device is daunting due to resource limitations. Recently,

many DNNs have been proposed for training fine-

grained face recognition models, such as [4], [5], [6], [7],

[8]. A notable feature that those networks have in com-

mon is the great depth of networks. The large amount

of parameters to train makes both forward-passing con-

volutional computation and backward-passing weights

updating very expensive. For example, a popular DNN

VGG-16 [9], [5] needs 28 GB memory and several days

for training with batch size 256[10]. Meanwhile, users’

privacy cannot be guaranteed in client-server model. An

untrusted server can peek at users’ images containing

confidential information. Even if cryptographic tools

or obfuscation schemes are applied to protect images,

membership inference attacks against a trained model
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could still be achieved [11], [12] even without training

data present. There is still a huge gap between deploying

fully functional DNNs on devices and reality.

Privacy issue in deep learning has been a hot topic

recently because of severe privacy leakage results [11],

[3], [12]. Several efficient privacy-aware DNN training

mechanisms have been proposed. A differentially private

(DP) gradients computing mechanism is designed in [13]

to protect locally trained parameters. Privacy-preserving

parameters aggregation for distributed learning has been

studied in [2], [1]. A DP parameters updating mechanism

is introduced in [2], while a secure parameters aggrega-

tion mechanism based on combing masking technique

and threshold secret sharing is proposed in [1]. Target-

ing at privacy-preserving fine-tuning, [14] migrates the

learning process from a client to a server after mixing

basic features extracted by clients with noise. However

this scheme focuses on fine-tuning only. None of these

existed mechanisms can protect mobile user’s private

data in a client-server training model very well.

This paper tries to fill the gap by introducing a

new client-server model based DNNs training scheme

in privacy-preserving manners. Users within the scheme

just do limited computation to train very deep neu-

ral networks on off-the-shelf devices and aided edge

server with users’ private data preserved. For example,

smartphone users can train their own multi-label face

recognition models on a edge server with their private

images. Another possible application is to use smart

cameras and edge computing server [15] to make real-

time neighborhood surveillance with residents’ privacy

preserved. It will just take seconds to process a batch on

mobile client. Edge server aided deep learning has at-

tracted lots of attentions, such as [16], [17]. Our privacy-

preserving deep learning scheme is more suitable in edge

computing context than cloud computing environment.

Because uploading the sanitized data to the server will

cause a high network traffic demand. A server located

in close geographical proximity to the user will have

significant advantage to improve overall performance.

The basic idea of our scheme is based on an important

observation, that a DNN can be split inside between

two successive layers and deployed two partitions on

different locations without hazarding the optimization.

To minimize the cost of mobile users, we partition DNN

after the first convolutional layer. Deploy the first part on

user side while the second part on the edge server side.

We keep the output of the user part privacy-preserving

and feed the output of the user part as the input of the

second part on server side. We avoid cryptographic tools

so that we can keep user side lightweight. Meanwhile,

we use the differential privacy to ensure a strong privacy

guarantee for user’s confidential datasets. We use VGG-

Face network as a study example. Our scheme is based

on VGG-16 architecture, but not limited to specific

image processing techniques. In general, our contribution

can be summarized as,

• We have proposed a privacy-preserving algorithm

to calculate DP activations for convolutional layers.

Based on this algorithm, we have designed a new

privacy-preserving DNN training scheme for face

recognition. We prove that our scheme has tighter

privacy loss estimates than simply multiple compo-

sitions of differential privacy for both training and

fine-tuning scenarios.

• By tracing privacy loss, noise level and training ac-

curacy for different partitioning positions in DNNs,

we give some inspirations for how to choose the op-

timal partitioning strategy depending on customized

metrics (e.g. computing resources, privacy loss,

training accuracy). We prove that partitioning at the

first convolutional layer is the optimal solution for

a trade-off between computing resources, privacy

loss and training accuracy.

• We have implemented a privacy-preserving VGG-

Face network for face recognition. We have also

implemented a client demo on Android smartphone.

We evaluate our scheme for training and fine-tuning

tasks using public datasets. Evaluation results show

that both privacy and accuracy are satisfactory.

II. RELATED WORK

Recently, severe attacks against DNNs have been

identified [12], [11], [3]. In [12], a model-inversion

attack is identified against DNNs. An adversary may be

able to extract parts of the training data from a well

trained model. For example, an efficient model-inversion

attack that recovers face images from a trained facial

recognition system is demonstrated in [12]. Furthermore,

a membership inference attack is reported in [11]. To

address privacy issue in deep learning, Abadi et al.

proposed a solution using differential privacy to protect

model’s parameters [13]. Core idea of Abadi’s solution

is to add Gaussian noise to the expected gradient in

each iteration of neural network before applying weights

updating algorithm. However, privacy threats of input

data in client-server model is not considered in this work.

A distributed client-server application with differential

privacy is considered in [2], where each party keeps

its input dataset private and jointly learns an accurate

neural network model. To achieve this goal, Shokri et al.

proposed a DP parameters updating algorithm to update

the global model [2]. Specifically, each party locally runs

a neural network algorithm on private dataset. Then all

participants upload selected gradients to an aggregation

server which will be in charge of global parameters

updating. The selection of gradients includes how many
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parameters to update and perturbed values of gradients.

This selection procedure follows differential privacy.

Within the same system model, Bonawitz et al. pro-

posed a secure aggregation scheme for multi-party deep

learning [1]. This paper uses masking technique and

threshold secret sharing method rather than differential

privacy to achieve secure aggregation of global param-

eters. This paper provides promising security. However

this method cannot be applied to a single mobile device.

In [18], Dowlin et al. reconstruct operators in neural

network with primitive operations, such as addition and

multiplication. Then authors use leveled homomorphic

encryption to protect input datasets and intermediate

results. Secure multi-party computation is a promising

solution for general privacy-aware DNNs. But this gen-

eral solution may suffer from heavy computation and

complex communication protocols. It is not suitable for

resources limited devices.

Wang et al. has proposed a privacy-preserving deep

learning framework with aided cloud server in [19],

which describes how to inference with private data while

the training phase is done with public data and generated

noise. Client will use a lightweight DNN to extract raw

features from private data for inference while training

phase is mainly done in cloud server with public data.

The most significant difference between their work and

ours is that we preserve more precise features for both

training and inference. On the other hand, client in our

solution has less computing load but higher communi-

cation cost, when compared with [19].

Another research relevant to our work is [14], Osia et

al. proposed a transfer learning based privacy-preserving

DNN architecture. Low-level features are first extracted.

Then principal component analysis is done before the

client sends extracted features to the server. The way

that client’s privacy keeps preserved is to add noise to

extracted features. Authors of [14] have done great work.

But this scheme focuses on fine-tuning applications.

Their architecture is not capable of training from scratch.

In this paper, we propose a new scheme to address pri-

vacy issues in both training and fine-tuning scenarios for

deep learning. Fine-tuning on well trained models is to

train a small portion of DNN parameters while training

from scratch will train all parameters. Taking VGG-

16 as an example, the amount of parameters trained

from scratch is about 33 times as much as fine-tuning

parameters of the last one fully connected layer.

III. PRELIMINARIES

In this section, we will briefly review the deep neural

network architecture of our interest and the definition of

non-interactive DP mechanism.

Input volume
depth

Output volume

filter
number connected

region

pad=1

stride=1

filter
size=3

Fig. 1. Two neurons in a convolutional layer use one shared filter
to compute output with their own locally connected region as input.
Parameters including filter size, pad, stride, volume depth are also
demonstrated here.

A. Deep Convolutional Neural Networks

DNNs, such as [20], [4], [5], [7] have similar archi-

tectures with other neural networks in appearance. What

makes a convolutional neural network (CNN) mostly

special is the convolutional layer. A convolutional layer

is where filters convolve around input volume. Each

neuron in the convolutional layer will compute a dot

product between its weights and a locally square region

that it is connected to in the input as corresponding

output. If each neuron in one convolutional layer is

connected with entire input volume, then this layer is

also called fully connected layer. In order to extract

features from images correctly and efficiently, locally

connected convolutional layers are used as hidden layers.

In short, locally connected convolutional layers treat

each region of input as a feature dimension, while every

local region of input is connected with one neuron.

Instead of training each neuron individually, all neurons

in one convolutional layer will share the same weight

parameters of each filter. Generally, output volume size

of a convolutional layer depends on input size, depth,

kernel size, stride and padding style. Figure 1 shows

how a convolutional layer works with these parameters.

As pointed out in [20], a Rectified Linear Unit (ReLU)

right behind a convolutional layer can make training

much faster than using a tanh unit. Thus, we assume the

network we talk about uses ReLU to active all neurons’

output. Then any neuron in a convolutional layer with

ReLU applied will yield activation: f(x) = max(0, x),
where x is the output of the neuron. A pooling layer

in CNNs will summarize activations of neighbouring

neurons in a convolutional layer and narrow down the

input dimensions of the next convolutional layer. The

most popular pooling method is MAX pooling, which

will produce the maximum neuron among neighbouring

neurons.

In the beginning of network workflow, the first convo-

92



Input Images ... ... Preprocess

Conv: 
Convolutional

Layers

Conv1_1
3x3x64x64

ReLU

Conv1_2
3x3x64x64

ReLU
Max

Pooling

Conv2_1
3x3x64x128

ReLU

Conv2_2
3x3x128x128

ReLU
Max

Pooling

Conv3_1
3x3x128x256

ReLU

Conv3_2
3x3x256x256

ReLU
Max

Pooling

Conv3_3
3x3x256x256

ReLU

Conv4_1
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Conv4_2
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Fig. 2. Network architecture and workflow of VGG-Face. Dimensions
and number of kernels in each convolutional layer are indicated. We
will use “conv” with numbers to refer to some specific convolutional
layer hereafter. Portraits in the figure are designed by Freepik

lutional layer will take face images as its input. Profiting

from efficient algorithms, such as [21] and [22], human

faces in images can be detected and aligned quickly and

precisely. So, we assume that all face images in users’

datasets are perfectly aligned. Note that our privacy-

preserving scheme is designed for all DNN based face

recognition. However we will use VGG-Face network in

this paper as an example. Figure 2 demonstrates network

architecture and workflow of VGG-Face.

B. Differentially Private Mechanism

Differential privacy [23] provides a promising foun-

dation of privacy property. It is possible to implement a

privacy-preserving mechanism for any specific applica-

tion by using DP mechanism. In face recognition appli-

cation, datasets for training and testing are collections of

pairs of face images and labels. But we need more fine-

grained datasets if we want to take a deep investigation

of DNNs. The output of a convolutional layer with

ReLU is volume of activations. These activations can be

seen as outputs of specific query functions (or kernels).

All regions extracted from all labeled face images will

compose domain D. All regions in the same position

in all face images compose a dataset d ∈ D. Thus an

element in dataset d will be a region of pixels (include

all color channels) in one image. An adjacent dataset d′

is a dataset that differs in a single pair of pixel group

and label with d.

Definition 1 (Differentially Private Mechanism). A ran-

dom mechanism M : D → R with domain D and

range R satisfies (ε, δ)-differential privacy if for any two

adjacent inputs d, d′ ∈ D and for any subsets of outputs

s ⊂ R it holds that

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ. (1)

This definition [23] of differential privacy allows for

that original ε-differential privacy can be broken with

probability δ. To derive a (ε, δ)-DP mechanism from an

original function f : D → R, additive noise correlated

to the sensitivity Sf of function f is needed. Sf can be

defined as

Sf = max
d,d′∈D

|f(d)− f(d′)|. (2)

Then if we want to construct a (ε, δ)-DP mechanism

with Gaussian noise, it can be achieved by

M(d) � f(d) +N (0, S2
f · σ2), (3)

where N (0, S2
f ·σ2) is a Gaussian distribution with mean

0 and standard deviation Sfσ. Following the theorem

proposed in [23], this type of construction, corresponding

to f and Sf , can guarantee that mechanism M(d) satis-

fies (ε, δ)-differential privacy for multiple combinations

of possible ε and δ.

IV. THREAT MODEL

In a client-server model, the client is supposed to send

training data to the server, and the server then performs

training for the client. The privacy considered here is

about client’s confidential data. So the privacy property

that we want to guarantee is, no semi-trusted server can

tell whether a specific labeled face image is in client’s

datasets or not if the server has not seen this labeled

image in any public dataset.

The semi-honest server is considered to be curious.

This adversary type is similar to [2], [13]. However ours

has a view of the whole learning procedure including

input, output and parameters of every network layer

which is on the server side, while [2] feeds the adversary

with selected gradients and the adversary of [13] only

has a view of the model’s parameters. This means that

our adversary is relatively powerful and hard to defend

against.

Generally, the curious server can violate client’s pri-

vacy by copy-and-embezzling client’s input images di-

rectly, or infering client’s input images from learned

model parameters [12]. We will deal with these two

attacks in this paper. We assume that the server has un-

limited computing power while communication channel

between the server and any client is physically secure.

Other kinds of attacks will be left for further study.
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V. DIFFERENTIALLY PRIVATE DEEP

CONVOLUTIONAL NEURAL NETWORK

In neural networks, each hidden layer can be seen

as a separate unit taking previous layer’s output as its

input. Input of the first layer in DNNs is special because

it is original image data. It is not recommended to use

high noise to perturb images directly because the utility

of images will be damaged seriously [24]. However we

consider to partition the network inside at some specific

convolutional layer instead of the input layer because

layers in DNNs are loosely coupled units. Once we

select one layer to partition the whole network into

two parts for the client and server, the client can hide

all intermediate results and input from the server. All

information that the server needs to know for the forward

passing is the output of the last layer in the client’s

part. As for backward passing, the client can compute

gradients and update parameters by following the chain

rule as long as the server provides the partial of loss with

respect to client’s output.

To this end, we need to find out where should we

partition the DNN and how can we preserve client’s

privacy while avoiding resource intensive computation

at the same time. One important result of our study is

that for any specific DNN, if all output activations of i-
th layer are (ε, δ)-DP then weights updating mechanism

will be εi-DP for each iteration, where εi is privacy

budget for the i-th layer. And εi > εj , if i < j for any

two convolutional layers in the network. This means the

deeper layer we interfere with, the more privacy is kept

but the less recognition accuracy we obtain, if we use the

same level noise. Without the loss of generality, we will

introduce our scheme with a simple partitioning strategy

where the client holds the first convolutional layer (with

ReLU attached) and feeds the output to an untrusted

server, who will succeed the client to finish following

layers in a pre-designed DNN. In the next section,

we will discuss how to make the optimal selection of

partitioning position.

In our scheme, client sends output activations of the

first convolutional layer instead of raw images to the

edge server. Artificial noise will be added to output

activations. The addition of artificial noise can prevent

adversary edge server from reversing activations in case

that the edge server learns parameters of the first con-

volutional layer somehow (e.g. if client does fine-tuning

on any public pre-trained model). We are going to show

that if we use DP Gaussian noise then model parameters’

updating will also be privacy-preserving. A partitioning

example for the VGG-Face network is illustrated in

Figure 3.

A. Differentially Private Activations

As shown in Figure 3, when we partition VGG-Face
network into two parts, except for the first convolutional

Input Images

Conv: Convolutional
     Layers

Max
Pooling

Softmax
Prob/LossFC: Fully Connected

   Layers

Client:

... ...

Preprocess

Conv1_1

ReLU

Normalization

DP-A
Algorithm

Server:

Conv1_2

ReLU

Conv2_1

ReLU

Conv2_2

ReLU
Max

Pooling

Conv3_1

ReLU

Conv3_2

ReLU

Conv3_3

ReLU
Max

Pooling

Conv4_1

ReLU

Conv4_2

ReLU

Conv4_3

ReLU
Max

Pooling

Conv5_1

ReLU

Conv5_2

ReLU

Conv5_3

ReLU
Max

Pooling

FC1

ReLU

FC2

ReLU

FC3

Fig. 3. After the partitioning, the first convolutional layer with our DP-
algorithm is deployed on the client while the rest part of VGG-Face
network will be deployed on an edge server.

layer on the client, all other layers being deployed on
the edge server are the same as in original VGG-Face
network. When the client communicates with the edge
server, in client’s view, server’s partial network can be
seen as a black-box function and vice versa. In forward
passing, the first layer on the client can be seen as
a composite function, whose input is client’s datasets
and output is volume of activations. Activation function
denoted by f is actually the composition of kernels in
convolutional layer, ReLU and local response normal-
ization unit. In the first convolutional layer, we assume
that there are m kernels with size l × l × r, where r is
number of color channels. When one training example
s in client’s private datasets goes into f i, i ∈ [1,m],
each activation is generated corresponding to one spatial
position (e.g. (x, y)) on the surface of face image s. Then
function f i (f will be used equivalently if no ambiguity
is caused.) can be defined as,

f i(s(x, y)) = ai
(x,y)/(γ + α

∑min(m−1,i+ u
2
)

j=max(0,i−u
2
)
(aj

(x,y))
2)β ,

(4)

where u, α, β, γ are constants which should be deter-

mined using a validation set empirically (Please refer

to ImageNet paper [20] for more detailed information

if interested). ai(x,y) is the activation generated by i-th
kernel at position (x, y).

To protect confidential datasets of the client, we need
to guarantee that output activations of function f for
every single image is privacy-preserving. Function f
can be regarded as a specific query on client’s datasets
d ∈ D. To construct a (ε, δ)-DP mechanism for f with
Gaussian noise, sensitivity of f on adjacent datasets d, d′

should be clarified. Based on the definition of function
sensitivity [23] and ReLU’s output activation ai(x,y) ≥ 0,

94



TABLE I
NOTATION TABLE FOR QUICK REFERENCE

Notation Comments

h,w, r Image height h, width w, color channels r.
(x, y) Pixel position offset, relative to top left of the

image.
ki The i-th kernel in one convolutional layer, i ∈

[1,m].
Ki Flattened vector of kernel ki.

g(x,y) Group of pixels designated by a square region with
length l, top left vertex at (x, y).

G(x,y) Flattened vector of pixels group g(x,y).

ai
(x,y)

Output activation of a neuron computed by apply-
ing kernel ki at position (x, y) with the ReLU
applied.

ci
(x,y)

Output of ai
(x,y)

with local response normalization

applied.

di
(x,y)

Output of ci
(x,y)

by applying DP mechanism.

we can define f ’s sensitivity Sf as,

Sf = max
d,d′∈D

∣∣ai
(x,y)(d)/(γ + α

∑min(m−1,i+ u
2
)

j=max(0,i−u
2
)
(aj

(x,y)(d))
2)

− ai
(x,y)(d

′)/(γ + α
∑min(m−1,i+u

2
)

j=max(0,i−u
2
)
(aj

(x,y)(d
′))2)β

≤ max
d∈D

ai
(x,y)(d)/(γ + α

∑min(m−1,i+ u
2
)

j=max(0,i− u
2
)
(aj

(x,y)(d))
2)β.

Given sensitivity Sf , when f is applied at the same

spatial position (x, y) on training face images, we can

use ci(x,y) + N (0, S2
fσ

2) to replace ci(x,y) as output of

f . Since 0 ≤ ai(x,y)(s) < 1, ∀s ∈ d after we pre-process

input images, we can have 0 ≤ Sf < 1/
√
2 when we

select parameter u = 5, α = 1, β = 0.5, γ = 2.
Parameters including stride, padding and kernel size

should be determined before training session begins.
With input images’ size fixed, the shape of output
volume of the neurons with m kernels should be,

pqm = (�
w + 2pad− l

stride
�+ 1)(�

h+ 2pad− l

stride
�+ 1)m. (5)

Although parameters including stride, padding and

kernel size should usually be selected to give perfect

alignment, we use rounding operator here just in case.

In this way, we will have a (ε, δ)-DP mechanism for

activations of convolutional layer. Detailed algorithm

of DP activation mechanism named DP-A is shown in

Algorithm.1. Note that input images should subtract their

mean and then be divided by standard variance cross

each mini-batch. Some notations used in our algorithm

can be referred to Table.I.

B. Privacy-Preserving Weights Updating

After DP activations are transmitted to the edge server,

client’s task in forward passing is finished. To continue

training, the edge server will run subsequent training pro-

cess from the second convolutional layer with activations

received as its input. There is no additional modification

Algorithm 1 DP activation mechanism DP-A

Require: Pre-processed training example s(w, h, r),
kernels and bias {ki, bi|0 < i ≤ m}, stride, pad.

Ensure: DP activations {di1, di2, . . . , dip×q}mi=1.

1: for all ki, i ∈ [1,m] do

2: In padded s, x← 0, y ← 0
3: while y + l < h+ pad× 2 do

4: while x+ l < w + pad× 2 do

5: ai(x,y) ← max (0, < G(x,y),Ki > +bi)
6: x← x+ stride
7: end while

8: y ← y + stride
9: end while

10: x← 0, y ← 0
11: while y + l < h+ pad× 2 do

12: while x+ l < w + pad× 2 do

13: ci(x,y) ←
ai(x,y)

(γ + α
∑min(m−1,i+u

2
)

j=max(0,i−u
2
) (a

j

(x,y))
2)β

14: di(x,y) ← ci(x,y) +N (0, S2
f × σ2)

15: x← x+ stride
16: end while

17: y ← y + stride
18: end while

19: end for

needed for our scheme to be deployed on the edge

server. However, it’s important to ensure that when all

activations generated by DP activation algorithm are

compounded through server’s convolutional layers, the

output will still be privacy-preserving. The output of

each layer can be seen as combination of DP activations.

The total loss of network prediction can also be seen as a

composed mechanism of multiple DP mechanisms. But

the real challenge is how to guarantee the privacy loss of

our composed mechanism can be tightly bounded instead

of a simple composition of multiple DP mechanisms.

When multiple DP mechanisms are composed, the

privacy guarantee normally goes down. Basically we

encounter an adaptive composition situation suggested in

Dwork’s boosting theory [25]. If we directly follow the

adaptive composition theory, the prediction mechanism

of this deep learning network should be (ε′, pqδ + δ′)-
DP in adversary’s view, where p, q are dimensions of

activations for each kernel, ε′ = ε
√
2pqln( 1

δ′
)+pqε(eε−

1), δ′ > 0. We find that in DNN training, we can actually

achieve a tighter bound than simple composition theory.

We use softmax log-loss function L to score the VGG-

Face network’s prediction. As to the gradient compu-

tation in backward passing, we use a popular method

called mini-batch stochastic gradient descent (SGD).

Simply, if we want to update parameters W in t-th
iteration, we can use Wt = Wt−1−lr∗gt, where gt is an
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average estimation cross the mini-batch to the gradient
∂L
∂W

, lr indicates learning rate. And this estimation gt
can be calculated by gt =

1
|S|

∑
s∈S

∂L(s)
∂W

, where S is a

mini-batch randomly generated from dataset d ∈ D. Loss

L w.r.t si is L(si) = − log( eoi∑
N
j=1

eoj
), where oi is the

prediction score of image sample si for one identification

indexed by i among all N identifications.

Assume that we are looking at the first iteration of

training session. All weight parameters in convolutional

layers are initialized by sampling from normal distri-

bution N(0, 0.01). For prediction mechanism Mp(S),
the definition of adjacent datasets are still the same as

before, but the element of dataset is one integral face

image instead of just one group of pixels. This means

we group dataset families for activating function into one

new dataset family D. If we process two identical batch

generated from D with Mp, then output loss for each

sample should be the same. So is the gradient estimation.

To show that Mp can be privacy-preserving, we need

bound probabilistic differential when Mp applies to two

adjacent datasets d, d′ ∈ D.

Corollary 1. Softmax log-loss L is ε1-DP, where ε1 =
p×q×ε−c and c is a small constant, if output activations

of the first convolutional layer are all (ε, δ)-DP.

Proof. Let d, d′ be two adjacent batches where d has

sample s′ while d′ has a faked record replacing s′.
|d| = |d′| = M . For any sj ∈ d, output of i-th convolu-

tional layer with ReLU applied is denoted by CLi(sj)

with output value l
(i)
j , output of i-th convolutional layer

before ReLU is denoted by ĈLi(sj) with possible value

l̂
(i)
j , where j ∈ [1,M ], sj ∈ d.

Assume fully connected layers don’t apply dropout.

If l
(15)
j is the output of 15-th convolutional layer, then

Pr[Mp(sj) = l|CL15(sj) = l
(15)
j ] = 1. But because

Pr[CL15(sj) = l
(15)
j |ĈL15(sj) = l̂

(15)
j ] may not equal

to 1, we assume that there are n
(15)
j activations in

l
(15)
j are turned from negative to zero. Then l̂

(15)
j has

a subspace Φ
(15)
j where n

(15)
j activations before ReLU

can have any negative values. Then, the privacy loss can
be traced as,

Pr[Mp(d) = L]

Pr[Mp(d′) = L]

=
Pr[Mp(d) = L|CL15(d) = l(15)]Pr[CL15(d) = l(15)|

Pr[Mp(d′) = L|CL15(d′) = l(15)]Pr[CL15(d′) = l(15)|

l̂(15) ∈ Φ(15)]Pr[l̂(15) = φ, φ ∈ Φ(15)]

l̂(15) ∈ Φ′(15)]Pr[l̂(15) = φ, φ ∈ Φ′(15)]

=
Pr[Mp(d) = L|CL15(d) = l(15)]Pr[CL15(d) = l(15)|

Pr[Mp(d′) = L|CL15(d′) = l(15)]Pr[CL15(d′) = l(15)|

l̂(15) ∈ Φ(15)]Pr[l̂(15) = φ, φ ∈ Φ(15)|CL14(d) = l(14)]

l̂(15) ∈ Φ′(15)]Pr[l̂(15) = φ, φ ∈ Φ′(15)|CL14(d′) = l(14)]

Pr[CL14(d) = l(14)|l̂(14) ∈ Φ(14)]Pr[l̂(14) = φ, φ ∈ Φ(14)]

Pr[CL14(d′) = l(14)|l̂(14) ∈ Φ′(14)]Pr[l̂(14) = φ, φ ∈ Φ′(14)]
.

Since max pooling layers will take the maximal activa-

tion within each pooling frame, they reduce the output

size of convolutional layers. But on the other hand, each

max pooling layer helps to increase the possibility space

Φ of the convolutional layer that is just in front of it.
The possibility space of CL2 in the chain to trigger

Mp = L has momentum n(2). Since n(2) ≥ 1, CL1
can have at least one activation output to be turned.
Recall that the output of the first convolutional layer l(1)

consists of p × q activations corresponding to different
subregions. Here we donate those activation elements of

the first layer by Subi with value l
(1)
i , i ∈ [1, p × q].

Noting that Pr[Subi(d) = l
(1)
i ] = eεPr[Subi(d

′) =

l
(1)
i ] + δ, we can revisit the privacy loss,

Pr[Mp(d) = L]

Pr[Mp(d′) = L]

≤

∏p×q

i=1 Pr[Subi(d) = l
(1)
i ]

∏p×q

i=1 Pr[Subi(d′) = l
(1)
i ] +

∑p×q

j=1

∏p×q

i=1,i�=j

Pr[Subi(d′) = l
(1)
i ]Pr[l̂(2) = φ, φ ∈ Φ′(2)

|Subj(d′) �= l
(1)
j ]Pr[Subj(d′) �= l

(1)
j ]

≤
1

(
1− δ′

eε
)p×q +

p× q × (1 + c0)(1− δ′)p×q

ep×q×ε

=
ep×q×ε

(1− δ′)p×q(1 + p× q × c0)

= exp(p× q × ε− ln(1 + p× q × c0)− p× qln(1− δ′)),

where δ′ > 0, c0 ∈ (0, 1). If δ′ � 0, then ln(1−δ′) � 0.

Since ln(1 + p × q × c0) ≤ p × q × c0 will always

hold, we can ensure there exists real number c to satisfy

ln(1 + p × q(1 + c0)) + p × qln(1 − δ′) ≤ c. Hence,

Pr[Mp(d) = L]/Pr[Mp(d
′) = L] ≤ exp(p × q × ε −

c). By symmetry, Pr[Mp(d
′) = L]/Pr[Mp(d) = L] ≥

exp(−p× q × ε+ c).

Based on this result, we can also count privacy loss in

backward passing. One trip of backward passing mainly

consists of gradient computing and variable updating.

When we have gradient computed, variable updating will

be trivial. So the part that really matters is gradient

computing. To secure user’s privacy against revealing

from model’s parameters, we here prove that our privacy-

preserving weights updating satisfies differential privacy.

Since we can control privacy loss with ε, the privacy

level can be designed as a flexible hyperparamter for

user to choose (within a feasible range).
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Corollary 2. Weights updating mechanism is

(O(pbε0
√
T ), δ0)-DP for T iterations, where ε0 = c′+c,

if output activations of the first convolutional layer are

all (ε, δ)-DP.

Proof. Given loss L, we can calculate gradient for

weights of previous convolutional layer CL15 by,

∂L

∂w
(15)
ij

=

w−l+1∑
x=1

h−l+1∑
y=1

∂L

∂l̂
(15)
(x,y)

l
(14)
(x+i,y+j). (6)

The delta part on the right hand of this equation can be

computed using chain rule,

∂L

∂l̂
(15)
(x,y)

=
∂L

∂l
(15)
(x,y)

∂l
(15)
(x,y)

∂l̂
(15)
(x,y)

=
∂L

∂l
(15)
(x,y)

f ′
a(l̂

(15)
(x,y)), (7)

where f ′
a is the derivative of activation function. When

we want to compute gradient for any lower convolutional

layer, we need the loss to be computed for that layer first.

Loss for the u-th convolutional layer can be computed

by,

∂L

∂l
(u)
(x,y)

=

l∑
i=1

l∑
j=1

∂L

∂l̂
(u+1)
(x−i,y−j)

w(i,j). (8)

Given Equation (6-8), it can be inferred that when we
want to compute gradient for the u-th convolutional

layer, l(u−1), l̂(u), l(u) are needed. Given loss L, prob-

ability of l(u−1), l̂(u), l(u) happening can be calculated
by conditional probability. Thus similar with proof of
Mp, we can bound privacy loss for weights updating
mechanism,

Pr[Mu(d) = gt]

Pr[Mu(d′) = gt]

≤
(
∏p×q

i=1 Pr[Subi(d) = l
(1)
i ])Pr[l̂(u) ∈ Φ(u)]/Pr[Mp (d) = L ]

(
∏p×q

i=1 Pr[Subi(d′) = l
(1)
i ])Pr[l̂(u) ∈ Φ′(u)]/Pr[Mp (d′) = L]

≤ec
′ (
∏p×q

i=1 Pr[Subi(d) = l
(1)
i ])Pr[Mp(d

′) = L]

(
∏p×q

i=1 Pr[Subi(d′) = l
(1)
i ])Pr[Mp(d) = L]

= exp(c′ + p× q × ε − (p× q × ε− c)),

where ec
′ ∈ (0, 1) depends on differential between

momentums of Φ(u) and Φ′(u). This proof is for single it-

eration. Following the results that [13], [23] give, we can

compose weights updating mechanisms with regarding

to iterations as (O(pbε0
√
T ), δ0)-DP mechanism, where

pb is the sampling ratio of each batch, T is the total

iteration number.

C. Communication Complexity and Computation Com-

plexity

In forward passing of training, the client should trans-

mit activations volume and classification identifications

to the server. Assume it will be E epochs when the

server has done T iterations’ training and each epoch

consumes N images. Total activations the client needs

to send is ENpqm. Assuming that activation type is

float32 and label type is int32, we can have client’s

transmission amount as Θ(4EN(pqm + 1)) bytes for

entire training session. In backward passing phase, the

client need receive server’s transmission for weights

updating. Assuming that type of calculated loss for the

first layer is float32, we can have client’s reception

amount as Θ(4T ) bytes for entire training session.

Computation in client’s side mainly contain three

phases: pre-processing, activation computing, weights

updating. Pre-processing can be bounded by O(3EN)
since the client needs to substract images’ mean and

divide images by standard deviation. Complexity of ac-

tivation computing is actually the complexity of our DP-

A algorithm, which can be bounded by O(2pqmT ) for

T iterations. weights updating process can be bounded

by O(3pqmT ) for T iterations. Hence, total compu-

tation complexity on client’s side can be bounded by

O(3EN + 5pqmT ) for the entire training session.

D. Fine-tuning

Many fine-grained, well-trained face recognizing mod-

els are public for use. Public face recognizing models

such as [5], [7], [26], [8] have contributed a lot to

accelerate development of both academia and industry.

But how to make greater use of these public models

is still an open question. One of the major concerns is

that public models are pre-trained using fixed datasets.

Datasets for training will never be big enough to satisfy

all applications, especially when we want to recognize

some identities belonging to private datasets. Also, some

people may not want to train an entire DNN from scratch

in practice, because it is difficult to get a proper dataset

of sufficient volume and training procedure usually takes

long time. Instead, it is a good idea to do fine-tuning [27]

on a pre-trained DNN with one’s own target datasets.

The scheme we proposed is capable of privacy-

preserving fine-tuning. Intuitively, fine-tuning with our

scheme is a special case of training. Here we will focus

on the situation where only output layer parameters

will be tuned. Recall that each output activation of

DP-A is (ε, δ)-DP. But in adversary’s view, strength

of privacy will degrade because images with the same

noise distribution may appear in multiple rounds with

regarding to one identity. With advanced composition

theory in [23] applied directly, we know that output

activations in T iterations will at least be (ε′, pbTδ+δ′)-
DP where δ′ ≥ 0,

ε′ = pbε
√

2T ln(1/δ′) + pbT ε(e
ε − 1). (9)

Hence, to ensure (ε′, pbTδ + δ′)-differential privacy, ε
in our original scheme should be decreased correspond-

ingly. In our case it will be,

ε = ε′/(2pb
√
2T ln(1/δ′)). (10)
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(a) ε = 1 (b) ε = 5 (c) ε = 20 (d) w/o DP-A

Fig. 4. Output activations with DP-A and without DP-A when we
fine-tune VGG-Face model on LFW dataset for T = 10000, δ =
δ′ = 1e− 5, u = 5, α = 1, β = 0.5, γ = 2.

We show some results of output activations of the first

convolutional layer with different epsilon values in Fig-

ure 4. All activation volumes showed in this figure have

been multiplied by 255 with negative values removed

to make them more visual-friendly. We can tell from

this figure when ε = 1, utility of images is damaged

significantly. When ε is around 5, input images can be

well preserved. But when ε reaches 14 ∼ 20, privacy is

almost gone.

VI. OPTIMAL SELECTION OF PARTITIONING

POSITION

Since we have some helpful observations about pri-

vacy property on the first convolutional layer of DNNs,

we can now investigate how to achieve the optimal

selection of partitioning while taking privacy loss, com-

puting resource and training accuracy into consideration.

Assume that we will partition VGG-Face network at the

i-th convolutional layer. This means that layers less or

equal i will be in client’s control, while layers greater

than i will be deployed on the server. The client should

generate noise which corresponds to function sensitivity

of i-th convolutional layer output and then add this noise

to the output.

In each convolutional layer, output volume should

be compositions of its input. Instead, a max pooling

layer and dropout operation will reduce dimensions of

its input. Another fact is that the closer a convolutional

layer is to final output (A latter convolutional layer will

be used to refer to a convolutional layer which is closer

to final output, when compared with another layer), the

higher feature dimension of its output is. Because output

activations of latter convolutional layer will contain

compositions of local responses of earlier convolutional

layers. This factor also makes output activations of a

latter convolutional layer more sensitive than activations

of earlier ones. Based on these two facts mentioned

above, we can measure the privacy loss of total loss

function when the DNN is partitioned at the i-th layer.

Corollary 3. Weights updating mechanism is

(O(pbεi
√
T ), δi)-DP, where εi = c′ + ci, if the

network is partitioned at the i-th convolutional layer

and output activations of the i-th convolutional layer

are all (ε, δ)-DP.

Proof. Since the network is partitioned at the i-th convo-
lutional layer, output activations of the i-th convolutional
layer are all (ε, δ)-DP, which means that Pr[Subj(d) =

l
(i)
j ] = eεPr[Subj(d

′) = l
(i)
j ] + δ, j ∈ [1, p × q]. Then

similar as proof of Corollary.1, we have privacy loss,

Pr[Mp(d) = L]

Pr[Mp(d′) = L]

≤

∏p×q

j=1 Pr[Subj(d) = l
(i)
j ]

∏p×q

j=1 Pr[Subj(d′) = l
(i)
j ] +

∑p×q

k=1

∏p×q

j=1,j �=k

Pr[Subj(d′) = l
(i)
j ]Pr[l̂(i+1) = φ, φ ∈ Φ′(i+1)|

Subk(d′) �= l
(i)
k ]Pr[Subk(d′) �= l

(i)
k ]

=
ep×q×ε

(1− δ′)p×q(1 + p× q(1 + c′0))
,

where δ′ > 0, c′0 ∈ (0, 1). There exits real number ci
to satisfy ln(1 + p× q(1 + c′0)) + p× qln(1− δ′) ≤ ci.
Thus, loss function is (p × q × ε − ci)-DP. Possibility
space of (i+1)-th convolutional layer Φ(i+1) is smaller

than Φ(2) if i > 1. This leads to c′0 < c0. Hence,
ci < c. Noting that weights of layers that are before
the i-th convolutional layer should be updated by the
client locally, we can revisit privacy property of weights
updating mechanism for u-th layer which is after the i-th
convolutional layer just like Corollary.2,

Pr[Mu(d) = gt]

Pr[Mu(d′) = gt]

≤ec
′ (
∏p×q

j=1 Pr[Subj(d) = l
(i)
j ])Pr[Mp(d

′) = L]

(
∏p×q

j=1 Pr[Subj(d′) = l
(i)
j ])Pr[Mp(d) = L]

= exp(c′ + p× q × ε− (p× q × ε− ci)),

where c′ depends on differential between momentums

of Φ(u) and Φ′(u), which is irrelevant to the value

of i. Thus, if we partition the network at the i-th
convolutional layer, weights updating mechanism will be

(O(pbεi
√
T ), δ0)-DP, where εi = c′ + ci.

As mentioned in the proof, c′0 < c0 because Φ(i+1)

is smaller than Φ(2) for i > 1. For the same reason, we

can tell Φ(i) is smaller than Φ(j) if i > j. Then we can

directly infer that ci < cj , for i > j.

Corollary 4. For any specific DNN, if all output activa-

tions of i-th layer are (ε, δ)-DP then weights updating

mechanism will be εi-DP for each iteration. And εi < εj ,

if i > j for any two convolutional layers in the network.

This corollary directly reveal the correlation between

privacy loss and partitioning position, given fixed noise

level and unlimited computing resource. Corollary.4 can

be seen as a derived result of Corollary.3. Since ci <
cj when i > j, εi = c′ + ci should be smaller than

εj = c′ + cj . Simply, Corollary.4 can be derived into

a composing version where (pbεi
√
T ) is smaller than

(pbεj
√
T ) for i > j.

98



Training accuracy of the model is difficult to be

formalized. Because it involves too many undetermined

factors during training. Besides, training accuracy may

vary depending on the actual implementation. However,

we can still give an empirical formula to predict training

accuracy based on experiment results which are partially

shown in the Evaluation section. With unlimited com-

puting resource, training accuracy can be modeled as

1− αa

eε + βa

, where αa and βa are empirical parameters.

Taking our experiments as an example, αa and βa are

fitted to be 2 and −1.

How much computing resource will be occupied

mainly depends on the quantity of parameters. As for

VGG-Face, parameter quantity for each layer can be

found in Figure 2. Basically, a latter convolutional layer

will get more parameters than a previous one. It can

be seen as a linearly increasing tendency approximately.

The computing resource needed by client side for parti-

tioning at i-th layer can be depicted by the quantity of

accumulated parameters, which will be
∑i

j=1 ojQ(j),
where Q(j) will return a normalized quantity of param-

eters of the j-th layer, oj is 1 if the j-th layer is trainable

and 0 if not.

Given all these constraints, we can now have our

object function to minimize cost for the client as,

min
εi

w1εi + w2

i∑
j=1

ojQ(j)− w3(1 − αa

eεi + βa

),

s. t. w1, w2, w3 > 0, i ∈ [1, 15].

w1, w2, w3 are weights for different factors. Generally,

we can assign them all as 1 since we take these factors

equally. The convexity of the cost function can be easily

calculated by any optimization tool. It can be proved

that the cost function will get its minimum value when

i = 1 in this case. This means partitioning at the first

convolutional layer is the best choice when we take

multiple factors into our consideration. Although the

optimal partitioning position will vary when specific

factors are valued more, it can always be calculated as

long as following our cost function.

VII. EVALUATION

We have implemented our privacy-preserving DNN

for face recognition with TensorFlow framework, based

on VGG-Face network, whose architecture is shown in

Figure 1. The dataset we use is Labeled Face in the

Wild dataset (LFW) [28], which has been regarded as a

standard benchmark for unconstrained face recognition.

According to [5], training data for published model does

not contain LFW dataset. So some subsets of LFW

dataset will be used to perform training and fine-tuning.

Face images alignment is performed using MTCNN tool

provided by [21]. To allow further comparison with

other work, we use the same training parameters as

described in original VGG-Face training process [5].

All convolutional layers have stride = 1, pad = 1.

Max pooling size is 2 × 2. Mini-batch size is 64.

Momentum coefficient is 0.9. Learning rate is initialized

with 0.01 and exponentially decayed with factor 0.1.

Besides, for the local normalization unit that we use in

the partitioning layer, u = 5, α = 1, β = 0.5, γ = 2.

Since LFW dataset is unbalanced in images per per-

son, we use some subsets of LFW dataset to train a new

model or to fine-tune on a existing model. In order to

take more advantages of public pre-trained models and to

save training time, a well trained VGG-Face caffe model

provided by [5] is used to initialize weight parameters.

This caffe model is converted into a tensorflow model

using a popular tool [29]. We first perform experiments

with the first convolutional layer as partitioning position.

Then we will show how different partitioning positions

affect training process exclusively. To verify the feasi-

bility of our privacy-preserving training architecture, we

also implement a client demo on Android smartphones.

We have measured computation overhead and memory

consumption to evaluate our scheme’s performance on

client side.

A. Training Results

We use Amazon Web Service EC2 P2 instance to

perform training experiments. Gaussian noise and local

response normalization are added to the output of ReLU

in the first convolutional layer. We filter LFW dataset

by choosing persons with no less than 10 images. This

leads to a subset which contains 158 identities, 4324

labeled face images. We split images of each person in

a 9:1 ratio to define training set and testing set. For each

iteration, images in training set are randomly sampled

to compose a batch. To evaluate training progress, we

record output of loss function, training accuracy and

testing accuracy. In Figure 5, training results of different

epsilon values are shown. Training session with no noise

added is recorded as baseline. The smaller the epsilon is,

the higher the noise is. It is obvious that small epsilon

makes training process more unstable. It will take more

epochs to train with higher noise than lower noise to

achieve the same training accuracy or the same loss.

When ε = 2 ∼ 5, our scheme can achieve strong privacy

and high accuracy. In evaluation, we have verified testing

performance in the same client-server model as training,

which means testing procedure will use the same level

noise as training. Thus, when noise is very high (ε ≤ 1),

classification accuracy will be affected.

B. Fine-tuning Results

To perform fine-tuning on pre-trained VGG-Face

model, we use a LFW subset where each person has

at least 50 images. We split images of each person in a
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(d) ε = 5

Fig. 5. Training results of accuracy and loss with regard to different epsilons.

9:1 ratio to define training set and testing set. Weights in

pre-trained VGG-Face model are loaded before training.

During training, weights in fully connected layers will be

tuned while all the other parameters keeps immovable.

Learning rate will be initialized by 1e − 3 and then

decreased to 1e − 4. The network is still partitioned

at the first convolutional layer. Fine-tuning result in the

same setting with no noise added is seen as our baseline

of tuning. Results of tuning with different epsilons are

shown in Figure 6. High accuracy can be achieved in

early learning stage. But adding noises to activations

can affect learning speed. Especially when ε ≤ 1,

noise is too large for the network to minimize its loss

because trainable parameters are limited in tuning cases.

However, when epsilon = 2 ∼ 5, we can still get high

accuracy and strong privacy after slightly more epochs.

Specifically, it takes no more than 5 epochs for tuning

with ε = 3 to achieve similar accuracy as the baseline.

C. Selection of Partitioning

To investigate how partitioning position would affect

training, we perform multiple training sessions with

different partitioning positions. The same level noises

are added to partitioning layers, which is equivalent to

ε = 5 in the first convolutional layer. Public model

parameters are loaded before training to lead to a quicker

convergence. Also, we use a LFW subset where each

person has at least 20 images. Images of each person

are split in a 9:1 ratio to define training set and testing

set. All other hyper-parameters are the same as previous

training evaluation. We generally choose four positions

in the network, their relative distances can be measured

in Figure 2. As shown in Figure 7, in the same level noise

situation, the latter the partitioning layer is, the harder the

training process is. When the network is partitioned at

“conv5_1” layer, activations are so sensitive to the noise

that loss cannot be reduced in early stage. This directly

depicts how training accuracy is affected by partitioning

position.

D. Mobile Application Evaluations

To understand the impact of our client-server model

in terms of mobile client time cost, memory consump-

tion, energy cost, network transmission cost, we have

implemented and evaluated our client application. The

biggest challenge of training model on smartphone is the

substantial memory consumption, which makes training

full model on smartphone unaffordable. To address this

challenges, we train only one or two layers at the mobile

client with carefully tuned parameters. Our implementa-

tion is based on ND4J, a multi-dimensional array based

Java library. Our device model is Huawei Nexus 6P

(2GHz Qualcomm Snapdragon 810 processor), with a

non-removable Li-Po 3450 mAh battery.

As shown in Figure 8, we find that the mobile client

is efficient at small batch size and the time cost of

backward passing scales against the batch size. The

client can also afford to run two layers with no batching

within the memory limits. Figure 9 provides the break-

down of the client’s memory consumption which consists

of the JVM heap and the native allocated memory.

The JVM heap size is measured in the Android device

monitor, while the native allocated memory is estimated

by polling the /proc/meminfo. We first make sure

that the Android phone is in idle state and record the

available memory as a baseline. Then we keep polling

the available memory while running our application. We

observe that the memory cost scales linearly against

the batch size, and the memory cost of addition layer

depends on the layer parameters. We coarsely measure

the energy cost under different layer configurations and

batch sizes through a twenty-minute battery pressure test.

During the test, we keep the training running and log the

battery consumption every 5 minutes. The results shown

in Figure 10 indicate that the energy consumption is

acceptable given that the device we are using has a 3450

mAh battery. The network transmission cost, illustrated

in Figure 11, is straight-forward, as the client needs to

send the forward propagation result after the activation

to the remote server and will receive the backward-

propagated partial of loss with respect to client’s output.

The network transmission cost is moderate as the the first

two convolution layers have a small depth (both 64). The

transmission cost grows linearly against the batch size

and it is determined by the parameter of boundary layer.
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Fig. 6. Fine-tuning results of accuracy and loss with regard to different epsilons.
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Fig. 7. Training results of accuracy with regard to different partitioning selections.

Fig. 8. Time cost on mobile client. Fig. 9. Memory cost on mobile
client.

Fig. 10. Energy cost on mobile
client.

Fig. 11. Network transmission
cost on mobile client.

VIII. CONCLUSION

We have proposed a new edge computing based DNN

training architecture with DP mechanism to protect pri-

vate data. Corollaries and evaluation results obtained

in this paper ensure that applying DP mechanism on

activations is a feasible solution for outsourcing training

tasks of DNNs to untrusted edge servers. Our observation

of partitioning the network shows that training accuracy

is more sensitive to deeper convolutional layer’s noise.

Taking client’s computing load and accuracy into con-

sideration, we recommend to keep just the first convolu-

tional layer with ReLU and local response normalization

applied on the client. Since there are many other DNNs

except for VGG networks, verifying similar corollaries

and observation in other deep neural networks may be

our future work.
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