Virtual Machine Migration for loT Applications

Yutao Tang
Sam’s Club Lab
Yutao.Tang@walmart.com

Shanhe Yi
VMware
yshanhe@vmware.com

ABSTRACT

To integrate heterogeneous devices in IoT (Internet of Things),
we design and implement an IoT system consisting of smart
meters, smartphones, and cloud servers. In our system, a
smartphone can rent its idle resources to the third party,
which can install an application to conduct various tasks,
such as collecting and processing data from nearby smart
meters. Built on the top of Xen hypervisor and MiniOS, our
system cannot only ensure smartphone’s security by provid-
ing isolated resources to the application, but also guarantee
data integrity and privacy of the application. We are the first
to build a lightweight virtual machine migration system on
an ARM-architecture smartphone.

CCS CONCEPTS

« Security and privacy — Security services;

KEYWORDS
Virtual machine migration, IoT, Mobile computing

ACM Reference Format:

Yutao Tang, Zhengrui Qin, Shanhe Yi, and Qun Li. 2019. Virtual
Machine Migration for IoT Applications. In The Fourth ACM/IEEE
Symposium on Edge Computing (SEC 2019), November 7-9, 2019, Ar-
lington, VA, USA. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3318216.3363383

1 INTRODUCTION

Recently, Internet of Things (IoT) has emerged as the fu-
ture of Internet. However, one big issue of the current IoT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

SEC 2019, November 7-9, 2019, Arlington, VA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6733-2/19/11...$15.00
https://doi.org/10.1145/3318216.3363383

437

Zhengrui Qin
Northwest Missouri State University
zqin@nwmissouri.edu

Qun Li

College of William and Mary
liqun@cs.wm.edu

is that those devices are mostly resource-limited in collect-
ing, on-site processing and sharing large volume of data for
advanced analytics. One way to mitigate this problem is to
back IoT systems with cloud services, but it cannot catch up
with the pace of the increasing demands for cost efficiency,
low latency, and mobility support. As a result, edge comput-
ing is recently proposed to push computations from cloud to
the edge of networks. While there is not restriction on what
type of devices can be the edge node, most existing literature
or proposals prefer resource-rich edge nodes, like servers,
high-end desktops or laptops. However, deploying those de-
vices usually means extra cost and low mobility, which are
all important inhibitor factors considered by end users.

Therefore, in this paper, we explore the feasibility and
techniques that can turn smartphones into lightweight edge
nodes to enhance current IoT systems. We argue that recruit-
ing smartphones as edge nodes can be a complementary
edge computing deployment method. For example, there is
already a trend of merging IoT and smartphones in Android
Things where IoT device will have similar architecture as
smartphone [7].

Our motivation is that computing resources of smartphone
are not fully utilized all the time. Hence, it is possible to
use an incentive mechanism to recruit smartphones as edge
nodes to complement or substitute the fixed sink nodes in
current IoT systems. Different from fixed sink nodes, smart-
phones can collect data from smart meters along the paths
of smartphone owners, enhancing the mobility of the IoT
network. They can process data at a very early stage and
help scale up IoT easily at low cost. An illustrative example
would be a smart city with massive smart meters deployed at
various locations. As mobile users come and go, their smart-
phones can collect data from smart meters within the com-
munication range. At the same time, smartphones can help
process the collected data, store it, and send it to backend
server or cloud services.

In general, our proposed system consists of four entities:
application administrator, cloud service, smartphones, and me-
ter, as shown in Fig. 1. The application administrator issues
an application request to the cloud service, which relays the
request to a set of chosen smartphones. Once receiving the

https://doi.org/10.1145/3318216.3363383
https://doi.org/10.1145/3318216.3363383
https://doi.org/10.1145/3318216.3363383

SEC 2019, November 7-9, 2019, Arlington, VA, USA

7
Smartphone ‘,
— N
/ / \ Meters

Administrator

Figure 1: The scenario where the smartphone serves as
the hub of IoT networks.

request, each smartphone will allocate resources to run the
application. The application can interact with the nearby
meters through wireless links, such as collecting data from
meters, processing data, and sending feedback or control
command back to meters. The application can also sends pre-
processed data back to the application administrator through
the cloud service.

There are two major challenges to realize the above sys-
tem. The first challenge is the continuity of application exe-
cution. A smartphone may abort the execution of the appli-
cation, due to either the smart phone is out of the commu-
nication range of the meters or its available resources run
out. In these cases, the smartphone must migrate the unfin-
ished application to another smartphone nearby, or hand it
over to a normal sink node, or upload it to cloud services
for further processing. The second challenge is the security.
From either the perspective of the smartphone or that of the
IoT application, the other entity is untrusted. On one hand,
although the owner of the smartphone is willing to sell her
idle resources, she must be guaranteed that there is no se-
curity and privacy risk or hardware/software damage to her
own device. On the other hand, the IoT system must be as-
sured that the smartphone keeps the integrity of its data,
processes the data as it is instructed to, and does not leak
any content of the application.

In addressing the challenges, we propose to construct vir-
tual machine on smartphones with migration scheme. We
build an Xen hypervisor above the smartphone hardware.
On top of the hypervisor, there is a special virtual machine,
called Dom0, which is trusted. Then we create multiple Min-
i0S, each of which is supervised by Domo0 and runs an ap-
plication solely. In this way, each MiniOS is an isolated re-
source block and does not affect other resources of the smart-
phone. At the same time, the user of the smartphone cannot
access the data that is collected and processed in the MiniOS.
MiniOS occupies only a small portion of resources, which is
suitable to run on smartphone hardware. As the creation,
deletion, and migration of MiniOS can be done in real time,
the continuum of the IoT application is guaranteed and the
resources on smartphone can be efficiently utilized.

In summary, our main contributions are as follows:

438

Yutao Tang, Zhengrui Qin, Shanhe Yi, and Qun Li

e We have proposed an IoT system that harnesses idle
resources of untrusted smartphones to run applica-
tions from a third party.

e We have designed a virtualization based isolation with
Xen and MiniOS on top of ARM architecture.

e We have designed an efficient virtual machine migra-
tion scheme.

e We have implemented a prototype system.

e We are the first to migrate MiniOS virtual machine on
smartphone of ARM architecture.

2 RELATED WORK

In this section, we will briefly review the role of smartphone
in IoT application and and point out the difference between
our work and the existing work. As the focus of our work
is on application migration on smartphones, we will also
review work along this line.

2.1 Smartphone in IoT

Smartphones have been playing important roles in IoT ap-
plications. For instance, they have been utilized for data col-
lection and data relay in wireless networks, such as work
[12]. Furthermore, they have been harnessed in IoT-related
environments in work [13]. Our system shares distinct dif-
ference as the smartphones in our system are not trusted.
Due to the mobility and serving purpose, smartphones are
allowed to join or leave the IoT system at will. Therefore,
with our system, IoT devices are not necessarily bounded
to a single smartphone that has to be owned by the same
person. Most importantly, our system solves the problem of
continuum execution by migrating the unfinished applica-
tion seamlessly to other smartphones.

2.2 Virtualization and Migration

Researchers have built systems based Xen hypervisor [4]
and MiniOS, such as ClickOS [10] and MirageOS [8]. While
ClickOS is built on x86 architecture and MirageOS is able to
be built on both x86 and ARM architectures, they do not con-
sider migration. Work [9], being along the line of using min-
imalistic VMs, makes use of MiniOS. However, they focus
more on consolidating more VMs on high-volume server.
Rump kernel [3] is a unikernel that allows applications to
be linked into a standalone executable running on the Xen
hypervisor without an operating system. It shares some sim-
ilarities with our design in this paper, but faces different
challenges as our system is on smartphones with ARM ar-
chitecture.

As to migration, most of existing work focuses on full op-
erating system migration on x86 [5, 6, 11], either on com-
modity computers or on servers. We are the first to migrate
the lightweight MiniOS on an untrusted smartphone.

Virtual Machine Migration for loT Applications

3 SYSTEM OVERVIEW

In this section, we will present the assumption, design goals
and system architectures.

3.1 Trust Model

In our system, we focus on the security concern of the smart-
phone and the IoT application, rather than other compo-
nents or any communication link. Thus, we assume that the
cloud service is trusted, which is usually the case when us-
ing large commercial cloud services like Amazon EC2, Mi-
crosoft Azure, and Google Cloud Platform. We further trust
the meters themselves, since they are controlled and config-
ured by the application administrator. However, from the
perspective of the application administrator, the smartphones
are not trusted. From the perspective of the mobile users, the
meters and the application are not trusted.

We assume that the smartphones support virtualization.
We also assume that the Xen hypervisor is trusted. Further-
more, we assume that the the initial domain started by Xen
on boot, i.e. Dom0, is trusted.

3.2 Design Goals

We are to build a system that fulfills the following design
goals:

e G1Isolated resources. The dedicated resources for rent
should be isolated from other resources on the smart-
phone.

e G2 Correct computation. All computations must be
conducted correctly as the application instructs.

e G3 Data privacy. The smartphone must have no access
to any data run by the application, neither does the
application have access to smartphone’s data.

e G4 Data integrity.The smartphone is forbidden to ma-
nipulate any data passing through it by the IoT appli-
cation.

e G5 Flexibility. The system must support fast alloca-
tion and revocation of resources.

3.3 Architecture on Smartphone

As mentioned in Section 1, our system has four components:
application administrator, cloud service, smartphone, and
meters. The core is the smartphone, while others are the
same as those in a standard IoT system. Hence, our focus
here is on the architecture design on the smartphone, where
the migration takes place.

The smartphone provides a virtual machine architecture
consisting of two major components: Xen hypervisor and
MiniOS. As shown in Fig. 2, Xen hypervisor runs on the top
of the smartphone’s hardware. On top of Xen hypervisor,
there are multiple virtual machines, including Dom0, Dom1
and multiple MiniOS instances. As the initial domain started

439

SEC 2019, November 7-9, 2019, Arlington, VA, USA

VM, (or Dom0) VM,
PLO [Tool stack [Applications |
Dom0 Kernel Dom1 Kernel Mini-OS
One Application eoeo

XEN | Config ||Scheduler| | MMU || Timer | | Interrupts | |

PL1

Wirs

PL2

Figure 2: The architecture on the smartphone.

by Xen hypervisor, Dom0 is trusted and can access the hard-
ware directly. Dom1 is the Android operating system for the
smartphone owner. Each MiniOS is started for an IoT ap-
plication exclusively, and it is configured and controlled by
Domo.

3.4 System Procedure

Suppose the application administrator has an IoT applica-
tion to run. Our system takes the following procedures (please
refer to Fig. 1):

(1) The administrator creates the MiniOS image of the ap-
plication and sends it to the cloud service (e.g. an im-
age registry service);

(2) The cloud service store and relays the MiniOS image
to Domo0 of any available smartphone;

(3) AT the smartphone side, the Dom0 creates a MiniOS
instance with the given image;

(4) The created MiniOS starts the application and execute
its tasks;

(5) If MiniOS has finished all the tasks of the application,
Dom0 revokes all resources and sends the result of the
application back to the cloud service;

(6) Ifthe smartphone is not able to provide resources while
the task of the application is not finished yet, MiniOS
creates the migration image of the unfinished tasks of
the application, and Dom0 revokes all resources and
sends the migration image back to the cloud service;

(7) The cloud service sends the result to the administrator
if the application is finished, or finds another available
smartphone to continue the unfinished application by
sending it the original MiniOS image and the migra-
tion image.

The most challenging part of this system is the migration

procedure, on which we focus in this paper. We will detail
the migration procedure in Section 4.

4 MIGRATION PROCEDURE

The most important advantage of our system is the flexibil-
ity of smartphone participation, which allows smartphones
join and leave the IoT system at any moment. It is inevitable

SEC 2019, November 7-9, 2019, Arlington, VA, USA

that a smartphone may leave the system before the finish of
tasks of an application. As a result, the unfinished applica-
tion must be picked up by another smartphone seamlessly.
In the following, we will detail how to migrate the unfin-
ished application from one smartphone to another.

4.1 What to Migrate

To migrate the unfinished application as quickly as possible,
we first must determine the only necessary data that needs
to be migrated. The data can be categorized to memory data,
CPU states, and disk data. Since the disk migration is rela-
tively easy, just by copying all data in source disk to the des-
tination disk, and CPU state will be stored into the memory
when the migration process runs, our problem boils down
to migrate the memory data.

heap

alloc_bitmap

irgstack (4KB)
shared information page (4KB)

bss

read-write data

read-only data

text

translation table (16KB)

boot stack (16KB)

Figure 3: Virtual address space.
Next we need to analyze the memory usage in MiniOS.
The virtual memory address space is shown Fig. 3, and we
can classify the memory into three categories:

(1) The memory that is not modified during system run-
ning such as the read-only data and the text segment,
and that is used by by system processes and system
structures to support system running such as the boot
stack segment and the translation table segment;

(2) The memory that is used by drivers or system pro-
cesses for communication between MiniOS and Xen,
such as the shared information page segment.

(3) The memory that is used by application processes, in-
cluding all application data, some system data in the
read-write data and the bss segment, and all memories
allocated by malloc function by application processes.

We divides the MiniOS virtual machine into two parts:
Base and Delta. Base contains resources that do not change,

440

Yutao Tang, Zhengrui Qin, Shanhe Yi, and Qun Li

and Delta contains resources that change as the application
is running. We take all resources allocated before the cre-
ation of application processes as Base, and all resources al-
located thereafter as Delta.

It is clear that the memory of category 1 belongs to Base
and that of category 3 belongs to Delta. However, it is not
easy to infer which the memory of category 2 belongs to. To
solve this uncertainty, we design to shut off all device dri-
vers before migration and initialize them in the destination
smartphone before resuming the application. And we re-
quire the application processes access drivers only by APIs
provided by our system. In this way, the memory of cate-
gory 2 does not need to be migrated, since it is freed before
migration. Thus, our work boils further down to migrate the
memory of category 3.

4.2 How to Migrate

Once we know the concept of Delta for migration, the next
is how to migrate it. The most important challenges are:

4.2.1 How to design the migration process. We need a ded-
icated process to handle the migration. Since this process
runs as a standard process in MiniOS, it also consumes mem-
ory resource, which could be mingled together with the mem-
ory chunks which should be migrated.

4.2.2 Where to save Delta. As we have mentioned before,
we shut off all devices used by the application processes, in-
cluding networking. Therefore, we cannot transmit Delta to
the cloud service during migration. We cannot save Delta
into memory either, since the smartphone may have limited
memory resource. As a result, we need a storage space used
exclusively by the migration process.

4.2.3 How to locate Delta. The memory resource owned by
application processes are located in different memory ad-
dress spaces. We design a scheme to locate the data indis-
pensable for migration and we explain it in the following
steps:

1) Allocate Memory Early. We design a system process
called migration to handle the MiniOS migration. MiniOS
utilizes migration and three other processes, xenstore, shut-
down and idle, to support system running. Before running
application processes, we create all system processes and
pre-allocate enough memory to migration process such that
the system processes have the same memory distribution
for every boot and migration process does not need to allo-
cate memory later. Second, if we plan to obtain a memory
snapshot, we do so only when xenstore has empty buffers to
make sure no new heap memory allocated.

2) Save Data to Disk. We design to store Delta to disk.
We create an extra para-virtualized disk for MiniOS, called
Disk0, to exclusively save the migration data.

Virtual Machine Migration for loT Applications

3) Mine Necessary Data for Migration. To obtain the
modified memory, we keep two snapshots of the selected
memory at different time. The first snapshot, called snap-
shot0, is obtained at the point right before the application
processes are created, and the second, called snapshotl, is
obtained at the time when the migration begins. The migra-
tion process performs XOR operation on the two snapshots,
and save the XORed results into Disk0.

4) Use CPU Exclusively. When the migration process
performs MiniOS migration, it has to keep the memory dis-
tribution unchanged. Therefore, we design to stop all other
processes from executing, otherwise their execution can mod-
ify the memory distribution.

4.3 The Migration Flow

Mini-
0s | 000

N
Android .
Dom0 Mini-

(P N_-”
Xen Xen }
Smartphone 1 Smartphone 2

Figure 4: The migration procedure.

Suppose smartphone 1 stops providing resources due to
whatever reasons and wants to migrate the unfinished appli-
cation to smartphone 2, the corresponding migration flow is
illustrated in Fig. 4:

(1) Smartphone 1 generates Delta and stores it into Disk0.

(2) Dom0 of smartphone 1 transmits Delta to the cloud
service.

(3) The cloud service sends Delta and the associated Base
to Dom0 of smartphone 2.

(4) Dom0 creates a MiniOS with Base and Delta.

(5) MiniOS resumes the application.

5 IMPLEMENTATION

To validate our system design, we have implemented a pro-
totype system on top of Arndale Board-K development board,
which is same as the boards used in Nexus 10 and Chrome-
book. This board has two advantages for implementing our

prototype system. One is that it has an ARM Cortex-A15 pro-
cessor, which provides virtualization extension and is offi-
cially supported by Xen hypervisor. The other is that Linaro

[1] provides open-sourced bootloader of this board.

441

SEC 2019, November 7-9, 2019, Arlington, VA, USA

5.1 Device APIs

We implement our system with the following suports:

Network. Network is required for communication with
the cloud service, such as uploading Delta, downloading Base
and/or Delta. In our system, we choose IwIP (lightweight IP)
as the TCP/IP stack. IwIP is an open-source project designed
for embedded system [2]. Occupying only a very small mem-
ory footprint (512KB), IwIP can provide applications the ba-
sic network access functionalities.

Disk. We provide APIs for the application to access disk,
instead of providing a file system, because there is only one
application in MiniOS. Our system needs two disks, one for
the application itself (Disk 1), the other for the migration data
(Disk0).

GPS. In our system, GPS is used to measure the distance
between the smartphone and the meters and thus to trigger
the migration when the smartphone is out of the communi-
cation range of the meters. The Arndale development board,
however, does not have a GPS module. We hence design a
GPS emulator to generate GPS data, which consists of three
components: a generator, a backend driver, and a frontend
driver.

Bluetooth. Bluetooth is used by the application to com-
municate with the meters. As the Arndale development board
does not have a bluetooth module, we emulate the bluetooth
device, similar as GPS.

5.2 Application Programming

The application running in MiniOS is required to be com-
piled into a user library and uses main_app as the entry
point. It can only utilize APIs listed above to access devices,
since it is forbidden to modify the system memory. Further-
more, it must provide a network reconnection function in
case that a new IP address is assigned to its MiniOS after
being migrated to a new smartphone.

5.3 Migration Implementation

When MiniOS starts to boot, it first initializes all system re-
sources. Then, as shown in Fig. 5, MiniOS creates four sys-
tem processes: xenstore, shutdown, idle, and migration. mi-
gration is created earlier than any of the application pro-
cesses and serves as the entry point of the application code.
Furthermore, it calls the malloc function only once to allo-
cate memory large enough to finish all operations.

6 EVALUATION

In this section, we will evaluate save/resume time of our pro-
totype system.

SEC 2019, November 7-9, 2019, Arlington, VA, USA

Boots

create_thread(“xenstore”, ...) l

create_thread(“shutdown”, ...)

A A
Get the snapshot0

DiskO is
empty?
No

¥ y

¥ PRunap Hte::;e :
i f processes i

process |

create_thread(“idle”, ...)

create_thread(“migration”, ...)

Figure 5: The migration implementation.

6.1

The smartphone board in our prototype system is the Arn-
dale Board-K development board. The board has the Exynos
5 Dual SoC, 1 GB RAM, and a 64 GB external SD card. It
is also equipped with a 1.7 GHz dual-core ARM Cortex-A15
processor that provides hardware virtualization support. The
cloud is emulated by a Lenovo Y480, equipped with a 2.4G
Hz 17 processor, 8G memory, and a Qualcomm Atheros AR8161
gigabit Ethernet. The development board and the cloud are
wired through a router. We use Xen4.4.1 for the hypervisor,
u-boot from Linaro for the bootloader, and Linux 3.19.7 for
Dom0 and Dom1. The application, i.e., MiniOS image, is pro-
vided to Dom0 by the cloud.

Environment Setup

6.2 Save/Resume Time

The most significant advantage of our system is the migra-
tion of the (unfinished) application from one smartphone to
another whenever necessary. Here we investigate how fast
the migration can be conducted. We focus on the save time
and the resume time while ignoring the networking time
from a smartphone to the cloud and that from the cloud to
another smartphone. The save time is the time span from the
time when the migration is triggered to the time once all the
migration data, i.e. Delta, is stored into the disk (Disk0 and
Disk1). The resume time is the time span from the time when
Dom0 of Xen receives all the migration data (i.e. Delta+Base)
to the time when the (unfinished) application is ready to con-
tinue running. In our experiment, we choose a matrix mul-
tiplication task as the application, and deliberately choose
different matrix size such that different size of memory has
to be allocated for the migration data (Delta). Fig. 6 shows
the average of the save/resume time of 10 round tests along
with error bar for different memory size. We can see that the
save time is a little longer than the resume time, and both
scale out almost linearly with regard to the memory size.

7 CONCLUSION

In this paper, we have proposed an Edge-IoT system that
consists of smartphones, meters, the cloud service, and the
application administrator. The smartphones are not trusted,
and they can join and leave the system at will. We imple-
mented a prototype system on the smartphone side. We have

442

Yutao Tang, Zhengrui Qin, Shanhe Yi, and Qun Li

Il save
I resume

2M 4M

Memory Size

8M

16M

Figure 6: The save time and the resume time for differ-
ent memory size.

built a Xen hypervisor on the Arndale development board,
and created multiple MiniOSes on top of Xen hypervisor.
We are the first to migrate MiniOS virtual machine on ARM
architecture. Even though the application and the smartphone
are mutually untrusted, they are guaranteed the protection
of data integrity and data privacy. We have also carefully de-
signed the migration process such that only the necessary
data is migrated.

REFERENCES

[1] 2017. Linaro. https://www.linaro.org. (2017).

[2] 2017. MiniOS on cubieboard2. http://savannah.nongnu.org/projects/
lwip/. (2017).

[3] 2017. Rump kernel. http://rumpkernel.org. (2017).

[4] Paul Barham and others. 2003. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review 37, 5 (2003), 164-177.

[5] David Breitgand, Gilad Kutiel, and Danny Raz. 2010. Cost-aware live
migration of services in the cloud.. In SYSTOR.

[6] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live
migration of virtual machines. In Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2.
USENIX Association, 273-286.

[7] Google Inc. 2017. Android Thing. https://developer.android.com/
things/index.html. (2017).

[8] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, David J Scott, Richard Mortier, Amir
Chaudhry, Balraj Singh, Jon Ludlam, and others. 2015. Jitsu: Just-In-
Time Summoning of Unikernels.. In NSDI. 559-573.

[9] Filipe Manco, Joao Martins, Kenichi Yasukata, Jose Mendes, Simon
Kuenzer, and Felipe Huici. 2015. The Case for the Superfluid Cloud..
In HotCloud.

[10] Joao Martins et al. ClickOS and the art of network function virtual-
ization. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14). USENIX Association, 459-473.

[11] Mahadev Satyanarayanan, Paramvir Bahl, Ramén Caceres, and Nigel

Davies. 2009. The case for vm-based cloudlets in mobile computing.

Pervasive Computing 8, 4 (2009), 14-23.

Shusen Yang and others. 2013. Selfish mules: Social profit maximiza-

tion in sparse sensornets using rationally-selfish human relays. Se-

lected Areas in Communications, IEEE Journal on 31, 6 (2013), 1124—

1134.

[13] Thomas Zachariah and others. 2015. The Internet of Things Has a
Gateway Problem. In Proceedings of the 16th International Workshop
on Mobile Computing Systems and Applications. ACM, 27-32.

[12]

https://www.linaro.org
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/
http://rumpkernel.org
https://developer.android.com/things/index.html
https://developer.android.com/things/index.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 Smartphone in IoT
	2.2 Virtualization and Migration

	3 System Overview
	3.1 Trust Model
	3.2 Design Goals
	3.3 Architecture on Smartphone
	3.4 System Procedure

	4 Migration Procedure
	4.1 What to Migrate
	4.2 How to Migrate
	4.3 The Migration Flow

	5 Implementation
	5.1 Device APIs
	5.2 Application Programming
	5.3 Migration Implementation

	6 Evaluation
	6.1 Environment Setup
	6.2 Save/Resume Time

	7 Conclusion
	References

