
Chatbot Security and Privacy in the Age of
Personal Assistants

Winson Ye
Computer Science Department
College of William and Mary

Williamsburg, VA
wye@email.wm.edu

Qun Li
Computer Science Department
College of William and Mary

Williamsburg, VA
liqun@cs.wm.edu

Abstract—The rise of personal asistants serves as a testament
to the growing popularity of chatbots. However, as the field
advances, it is important for the conversational AI community
to keep in mind any potential vulnerabilities in existing archi-
tectures and how attackers could take advantantage of them.
Towards this end, we present a survey of existing dialogue system
vulnerabilities in security and privacy. We define chatbot security
and give some background regarding the state of the art in
the field. This analysis features a comprehensive description of
potential attacks of each module in a typical chatbot architecture:
the client module, communication module, response generation
module, and database module.

Index Terms—dialogue system, chatbot, personal assistants,
conversational response generation, conversational AI, chatbot
security, NLP security, adversarial text generation, IoT security

I. INTRODUCTION

Chatbots are achieving impressive feats in modern times.
Everyday, millions of people use personal assistants like Siri
in order to complete tasks such as booking flights or finding
good restaurants. They have fundamentally changed the way
that humans interact with computers for the better. However,
all this progress in developing human like dialogue systems
must also be met with optimistic caution. Indeed, members of
the chatbot community must be vigilant about possible security
vulnerabilities in these chatbots, especially as they are tasked
with more and more critical tasks as time goes on. People who
interact with chatbots perceive them to be almost human, so
they may be more open to giving them personally identifiable
information. This presents possible privacy risks.

In order to present the community with a detailed overview
of chatbot vulnerabilities, we survey possible attacks as well
as their potential solutions. First, we must define what a
chatbot is. Quite simply, a chatbot is any computer application
designed to hold natural conversations with human users. This
definition is broadly construed so as to capture the wide variety
of chatbots available today, including personal assistants like
Siri or customer service chatbots on the front page of many
prominent companies like Amazon. Next, we must define the
typical chatbot architecture:

1) Client Module: the part of the chatbot that the user
interacts with along with all the applications the chatbot
can control.

2) Communication Module: the infrastructure that transmits
user messages from the client module to the response
generation module and from the response generation
module to the database module.

3) Response Generation Module: the program responsible
for actually understanding the input message and gener-
ating an appropriate response for the user.

4) Database Module: the place where all the data relevant to
a conversation is stored, such as message history, photos,
and user preferences.

To better understand how this architecture works, we can
follow the path that a message takes from the client module
all the way to the database module. First, the user logs on to
the platform the chatbot is hosted on. This could be an app
on their phone, a website, or a smart device. These are the
client side interfaces that the user will craft their messages
on. Other important functions on the client side include user
authentication and voice recognition as appropriate. Once the
message is sent, the communication module is responsible
for transporting the text from the client side to the response
generation module. Here, developers focus on encrypting and
authenticating communications by using secure protocols like
HTTPS. This module is also responsible for monitoring traffic
to detect suspicious activity such as an imminent DDoS attack.
After arriving at the server side, the chatbot must interpret
the message and generate a reply. Interpreting the message
either implies that NLP algorithms will be used to parse
the sentences into useful fields, or a neural network will
convert the message into some abstract vector representation
using word embeddings. To generate the appropriate message,
either a neural network will directly synthesize one using
a seq2seq model that learns to map an input sentence into
the most appropriate output sentence, or the optimal response
is selected from a repository of candidate responses. Once
the response generation module has produced the reply, the
communication module transports it back to the client module.
At the same time, the database module stores information
related to the current chatbot interaction. For example, the
response generation module can make use of a knowledge
graph stored in the backend. User preferences may be stored
here as well, such as which conversational topics the current



user responds most positively to.

II. CLIENT MODULE

The client module is the user experience side of the chatbot
architecture. It is primarily responsible for executing the
chatbot’s agenda and receiving user input. Other functions
embedded in this module include authentication, companion
apps, and voice recognition for personal assistants. For exam-
ple, a customer service chatbot may use a website as its client
module.

A. Unintended Activation Attacks

Personal assistants are always collecting voice data. In
theory, however, they usually listen for a wake-up command
such as ”Hey Siri” before they record any actual conversations.
The conversations that are recorded can be sent up to the
cloud to improve personalized advertising or machine learning
algorithms. In the ideal situation, the user has complete control
over the data that personal assistants collect.

However, there are a number of ways things could go wrong.
Sometimes the wake-up phrases that these personal assistants
use can be confused with other words in regular conversation.
In this case, the user could have their conversations recorded
unintentionally. Moreover, other people in the same room but
who are not the user can also have their voices recorded during
a personal assistant session [1]. Humans do not even have to be
present in the room to trigger a personal assistant’s recording
capabilities. An adversary could play a recording or talk to
the personal assistant through another infected ioT device.

All of these attacks exploit the personal assistant’s method
of turning on and recording conversations. If successful, these
attacks could seriously violate user privacy. Fortunately, there
are countermeasures. To prevent remote activation, Lei et al.
[2] have developed tools to determine whether there is an
actual human nearby by using Wifi signals within the home to
detect human motion. Microsoft’s Xiaoice uses a human-to-
bot classifier to determine whether a human is talking to the
chatbot. Otherwise, Xiaoice may pick up conversations the
user is having with other people. [3].

B. Faked Response

Many users have preconceived notions about how Alexa
and Google Home work. For example, Zhang et al. [4] found
that almost half of the 156 users in their user study tried
to switch from one skill to another in the middle of an
interaction. Furthermore, 30% had trouble turning off their
personal assisants and 78% did not use the LED indicator on
the personal assistant to check for proper termination. As such,
an adversary can develop malicious skills that fake responses
to take advantage of these user misunderstandings.

Let us consider possible attacks in action. Imagine that
the user has downloaded a malicious skill that is advertised
as an airplane ticket reservation system. On its own, this
malicious skill could only collect the user’s travel details
without arousing suspicion. However, once the user decides
to switch to a workout skill, the malicious app could pretend

to hand control over by uttering a fake response, such as ”Sure,
here is Workout App.” At this point, the adversary is free to
collect the user’s health information.

Another attack is to fake termination. As long as the skill
says a response like ”goodbye” to the user, everything will
seem okay and safe on the outside. With the user now tricked
into thinking the app is closed, the skill can continue recording
the user. It is important to note that the personal assistant will
forcefully terminate an app at some point without audio input,
but Zhang et al. bypass this by including a silent audio file in
their attack to feed to the personal assistant.

Developers can develop countermeasures against these at-
tacks by developing a blacklist of suspicious personal assistant
responses. Zhang et al. take such an approach. They perform
fuzzy matching to determine the similarity between a given
personal assistant response and the ones on the blacklist. If
the similarity exceeds a certain threshold, then the personal
assistant is notified and verification procedures are executed
to ensure that the skill in question is legitimate.

C. Access Control Attacks

Malicious apps on personal assistants could take advantage
of the loopholes in the permissions system in an IoT network
to control other devices during a coordinated attack. Since
personal assistants usually lie at the command center of
many IoT networks, this kind of attack could be particularly
devastating.

For example, the malicious app may be disguised as a
home monitoring app. As such, it may be given several coarse
grained permissions such as the ability to disable security
cameras. The attacker can take advantage of this and disable
the cameras when the user has left home [5]. At that time, a
robber could infiltrate and steal valuable belongings. Another
example is a temperature monitoring app that can open the
windows when the temperature reaches a certain point. Sim-
ilarly, a robber can take advantage of this by instructing the
app to open the windows when the user is sleeping.

One solution to these access control attacks is simply
to adopt defensive coding strategies. Permissions should be
granted very carefully and narrowly so that no one app can
wreck havoc on someone’s home if they turn out to be
malicious. However, human error is inevitable and this defense
may not always work. As such, there are automated approaches
to defense. For example, Jia et al. develop ContexIoT [5], a
program that automatically profiles IoT apps for suspicious
behavior. The main idea behind their work is that each security
sensitive action executed by the app must get approval from
the user first. For example, in the aforementioned temperature
app scenario, ContexIoT will notice that the user has not
specifically authorized for the windows to be open when they
are asleep before. As such, the user will be prompted to
authorize this action, thus revealing the adversary’s motives.

D. Adversarial Voice Samples

Many personal assistants rely on a voice recognition feature
embedded in the client module to function properly. However,



these voice recognition features are not always perfect. There
have been incidents in the past where hackers could fool
personal assistants into doing their bidding.

To fool the voice recognition module embedded in the client
program, one can craft adversarial voice samples. Overall,
there are two kinds of attacks one can pull off: white box
attacks and black box attacks. White box attacks rely on
some knowledge from the model, whereas black box attacks
assume nothing about the model. Either way, the main goal is
to disguise the adversarial voice command that the attacker
is trying to evoke. One way of accomplishing this is to
introduce a perturbation to the original voice sample such
that it is misinterpreted by the voice recognition module but
imperceptible to human beings. More sophisticated attacks
may embed voice commands into seemingly innocent audio
sources like songs [6]. Here, the authors perturb the innocuous
song just enough so that the voice recognition module can
make out the adversarial voice commands but human beings
cannot.

Countermeasures against adversarial samples in the voice
domain have been proposed. White box attacks are quite
easy to foil simply by keeping the model secret. However,
adversarial samples can still be crafted even in black box
settings, so overreliance on the secrecy of the model is bad
practice. Other measures focus on increasing the amount of
work needed to pull off a successful attack. If the adversary
has to query the model many times, the attack may become
unfeasible. Additionally, the developers can retrain the model.
Adversarial training can correct the voice recognition module’s
misunderstandings.

III. COMMUNICATION MODULE

Next, we will discuss the communication module. On the
whole, this module serves two functions: 1) transporting
messages from the client program to the response generation
module and 2) fulfilling data requests sent from the response
generation module to the database module. All the layers of
the typical networking stack are in play here, but we will focus
primarily on the top level layers, such as the application layer
and transport layer.

A. Wiretapping

Even if traffic in the communication module is fully en-
crypted, an adversary may still be able to extract information
from seemingly harmless metadata.

Consider Amazon Alexa. Attackers are still able to deduce
with confidence significantly greater than chance what kind
of voice command is used even if the data is encrypted
before being sent to the cloud. Indeed, Kennedy et al. [7]
describe one such attack. Features such as the packet size
and number of bytes transmitted can be used to determine
the corresponding voice command for a given traffic trace.
This generic information is easily obtained through a packet
sniffer like Wireshark. The classification algorithm itself can
be formulated as a machine learning problem, and the authors

demonstrated that naive bayes classifiers or support vector
machines are reasonable choices.

There are a number of countermeasures in place to make
sure that packet sniffing does not reveal sensitive information
to hackers. For example, Buffered Fixed-Length Obfuscation
[8] aims to send packets of a fixed size at fixed intervals.
This way, hackers cannot discern any kind of discriminative
pattern from the network traffic. However, the overhead for this
approach in the personal assistant domain is high. As such,
finding an efficient way to prevent hackers from extracting
important information from encrypted communications is still
an open research problem.

B. MitM Attacks

Man in the Middle (MitM) attacks can intercept messages
between client A and client B and replace them with the
adversary’s own malicious messages. These attacks could
incite violence by provoking the human users, change political
opinion through social engineering attacks, or spam both
clients.

The key challenge behind these attacks is to develop a
believable modification of the original messages. Lauinger et
al. [9] describe how their work can accomplish this using
their man in the middle, Honeybot. Honeybot makes the
conversation seem natural by engaging the users in a topic
before making any modifications to messages. For example,
Honeybot may ask certain questions such as ”What are
your favorite movies?” Once the conversation has developed
enough, Honeybot can begin its spamming attacks by inserting
malicious links. This will seem natural because the users are
sharing links to their favorite movies anyway. Honeybot can
delete and insert messages of its own as well.

Detecting these attacks can be challenging. In cases where
there is a sophisticated agent acting as a man in the middle,
the conversation may seem very natural. In these scenarios,
it is best to adopt encryption and authentication protocols to
secure the traffic between the client module and the response
generation module. Despite the risks, many chatbots still do
not adopt these best practices.

C. DDos Attacks

DDos attacks aim to prevent the chatbot from interacting
with users by flooding the server with requests. For companies
that rely on chatbots to serve customers, a few hours of
downtime may cause catastrophic damage. In order to conduct
such an attack, attackers usually have to gather a large number
of compute resources, usually by infecting computers with a
virus and forcing them to join a malicious network known as
a botnet.

There are several ways hackers can launch DDos attacks.
One method is to simply clog the network with meaningless
traffic, thus dramatically slowing down the server’s response
time. Another method is to craft adversarial packets that
contain the same IP address for both source and destination
fields. Yet another technique is to ask the dialogue agent
to generate a very long and verbose response to some kind



of query. For example, the hacker could ask the response
generation module to tell it a story. If multiple malicious
computers make this same request and they trick the server
into sending all of these replies back to an unsuspecting user,
the resulting traffic will completely clog all communication
channels.

Since DDos attacks are not unique to chatbots, researchers
have had a long time to come up with a solution to this prob-
lem that plagues any application that requires networking in
general. One technique is to measure the statistical properties
of the packets being sent over the network [10]. The crucial
intuition here is that administrators can use past information
to guide their threat detection systems. For example, one can
capture the distribution of source IP addresses and compare
this to the past distribution. If the match is high, then it is likely
that the current traffic is legitimate. Otherwise, someone may
be performing a DDos attack.

IV. RESPONSE GENERATION MODULE

Let us now discuss the response generation module. This
module is primarily responsible for interpreting the user mes-
sage and generating an appropriate reply. Incorporated in these
modules could be policy planning algorithms, domain specific
dialogue models and affective computing modules that give
the chatbot emotional intelligence.

A. Out of Domain Attacks
Consider a chatbot that is trained very well on a few

domains but lacks authoritative knowledge on other domains.
An adversary could systematically find these weak points in
the chatbot by either brute force attacks or even by developing
another ”probing neural network” that can estimate the con-
fidence the dialogue model has in its response. We will refer
to this kind of attack as an ”out of domain” attack.

If hackers can exploit out of domain attacks successfully,
major damage could be done as the chatbot’s behavior for
these edge cases may be highly unpredictable. For example, if
an adversary finds out that a customer service chatbot designed
for flight booking cannot handle car rentals well, then hackers
could trick users into divulging personal information to rent a
car only to have their information stolen by the hackers.

To defend against these attacks, there must be some way
for the chatbot to monitor its own confidence of a response.
For example, a detector could be trained to classify certain
requests as in domain or out of domain. However, the research
challenge here is in coming up with the training data as manual
labeling is time consuming and expensive. Zheng et al. [11]
tackle the problem by automatically generating pseudo out
of domain requests from normal in domain requests. Alter-
natively, Liu et al. [12] propose a technique to improve how
deep neural networks can quantify uncertainty by improving
the model’s ability to quantify how far a given test example
is from other training points in the input space.

B. Adversarial Text Samples
Adversaries can directly attack the response generation

module itself by crafting clever input messages. These input

messages may cause the chatbot to respond with false infor-
mation or use offensive language.

Adversarial attacks directed at dialogue systems usually
craft an input sentence that can break the chatbot. Liu et
al. [13] use a reinforcement learning approach to tackle this
research challenge. In their work, the authors create a ”reverse
dialogue generator.” This agent is responsible for predicting
the correct input sentence that triggered the corresponding
output sentence. After training, this agent should be able to
produce an input sentence that will lead to the dialogue model
responding with the desired output sentence specified by the
attacker.

To address adversarial inputs, researchers have been propos-
ing a variety of solutions. To prevent attackers from coercing
the chatbot to use offensive language, one simple approach is
to employ a hate speech detector. Here we define ”hate speech”
broadly as any negative language that fosters animosity be-
tween users. Any sentences that contain hateful words will
automatically be filtered out. In practice, however, hate speech
detectors are not perfect and have well known vulnerabilities.
For example, one does not have to use swear words in order
to craft a hateful message. As such, simple keyword matching
is insufficient and never exhaustive. A more sophisticated
approach is proposed by Dinan et al [14]. In their work,
they propose a neural network classifier that can distinguish
between hate speech and safe speech. It is based on BERT,
a powerful general purpose language model. The model was
fine tuned on the Wikipedia Toxic Comments dataset. To make
the detector robust against clever messages that may change
the spelling of swear words or use unconventional insults, the
authors ask crowdworkers to break the detector, and then they
feed these adversarial examples back to the model to improve
its robustness.

C. Language Model Attacks

The state of the art in NLP systems calls for the use of
pretrained language models. Recently, these large models have
achieved impressive feats in areas such as neural machine
translation, sentiment classification, and toxicity detection.
However, their ubiquitous presence makes it all the more
important that these language models are secure enough for
live chatbots to use.

One way attackers could exploit the chatbot community’s
current dependence on language models is by crafting adver-
sarial models that can cause the NLP system to malfunction
in very specific ways [15]. These malicious language models
can make their way into the chatbot in the development
process if the programmer does not take the time to vet
each model. This is a very sophisticated attack because the
language model will have no perceivable effect on normal
text messages. However, for certain triggers, the chatbot will
exhibit suspicious behavior. For example, given certain input
sentences, the chatbot may respond with offensive language.

To protect against adversarial language models, the sim-
plest solution would be to adopt best practices in chatbot
development. Before integrating any language model into the



chatbot itself, extensive verification procedures must take place
to ensure that the language model has been disseminated by
a legitimate organization. In addition, future updates to this
language model have to be verified as well. Another more
sophisticated approach would be to develop a self defense
algorithm. For example, this algorithm would have to be
able to search for trigger words that may coerce the chatbot
into using offensive language. Once these trigger words are
detected, the chatbot can either be retrained to cleanse itself of
the triggers or the language model can be thrown out entirely.

D. Adversarial Reprogramming

A dedicated adversary can repurpose the response gener-
ation module to perform another task without changing the
model parameters at all. For example, the module may contain
a hate speech detector. If an attacker can convert this hate
speech detector into a social vulnerability detector, then a
terrorist can use this detector to target people who will be
vulnerable to radicalization.

Neekhara et al. [16] describe one approach to apply adver-
sarial reprogramming to the text classification domain. In their
black box attack, they define a reinforcement learning agent
that learns to feed carefully crafted input sequences to the
model. The output of the classifier is then remapped according
to some user defined function, and the final output is used as
the answer for the adversarial task.

It is difficult to mount a defense against adversarial repro-
gramming attacks because they are fundamentally different
from standard adversarial attacks. For example, the goal in
adversarial reprogramming is not to coerce the neural network
to make a mistake, but rather to repurpose the model for an
adversarial task. Nevertheless, the adversary still has to put in
some effort in order to pull off the attack successfully. One
avenue of defense is to increase the number of queries needed
for the hacker to learn the classification patterns of the model.

E. Feedback Engineering Attacks

Feedback engineering attacks take advantage of the response
generation module’s ability to learn from user feedback. Many
chatbots are designed such that they can hold more engaging
conversations with users as time progresses because they will
learn user preferences when it comes to conversation topics.
However, a hacker could take advantage of this by generating
feedback that pushes the chatbot in the wrong direction, such
as towards generating hate speech.

There are two primary ways chatbots are designed to im-
prove from user interaction: 1) through retraining or 2) through
reinforcement learning. Let us consider attacks aimed at chat-
bots that retrain themselves first. Chen et al. [17] detail one
such approach. Their aim is to retrain NLP systems such that
normal queries can be answered as usual, but input sentences
with certain trigger words will cause suspicious behavior. The
key challenge here is to ensure that these triggers do not alert
the user to any suspicious activity. Other attacks focus on
reinforcement learning models. Zhang et al. [18] describe one
possible approach for such an attack. Essentially, the hacker

is assumed to have white box access to the chatbot. They can
then add a perturbation to the reward signal propagated by the
environment. This selective perturbation can push the agent
towards learning a policy of the hacker’s choosing.

To prevent the chatbot from being poisoned by malicious
training examples, researchers could adopt a variety of so-
lutions. For example, instead of directly retraining on the
messages themselves, the developers can separate the response
generation module and the training examples located in the
database module with a layer of abstraction [19]. To prevent
attacks against a reinforcement learning agent, developers must
note that in practice there are limitations to how long the
adversary can perturb the rewards received by the dialogue
agent. If the environment changes or the agent is taken down
for updates, the adversary will have failed to carry out the
poisoning attack.

V. DATABASE MODULE

We will now discuss the database module. Here, the chatbot
can look up any relevant information to the conversation. For
example, it can query a knowledge graph in order to generate a
well informed response. Attacks to the database module could
compromise the privacy of millions of users and may change
the behavior of the chatbot catastrophically. For example, a
modification of the credit scores in the database module may
cause a banking chatbot to reject a customer’s application for
credit immediately.

A. SQL Injection Attacks

One key vulnerability in many applications that use SQL
as a datastore is an injection attack. These attacks rely on
carefully crafted inputs to coerce the database into perform-
ing unintended operations such as modifying information or
returning sensitive information.

Halfond et al. [20] explain that injections can occur through
server variables or even cookies. For example, an attacker
could hide an injection attack in a server variable that gets
triggered whenever the database is ordered to log the contents
of that variable.

To combat SQL injection attacks, a variety of solutions can
be adopted. However, the main cause of this vulnerability is
lack of input validation. Thus, any robust solution to these
attacks requires at the very least that the developer spend
sufficient time cleaning and validating data. More sophisticated
prevention techniques employ static and dynamic analyses or
machine learning algorithms. For example, Huang et al. [21]
propose WAVES, an algorithm that searches the application
for any places an injection attack can occur and then builds
possible adversarial inputs based on known attack patterns.
Before the final application is deployed, the developers must
be able to withstand the attacks generated by WAVES.

B. Knowledge Graph Attacks

Some chatbots use a special database known as a knowl-
edge graph in order to reason about the world around them.
Knowledge graphs represent the relationships between real



world entities, with the most straightforward example being
a social network graph. Sometimes developers embed these
knowledge graphs into a vector space in order to reason about
the relationships between entities in a more mathematically
sound way.

To perform this embedding, a neural network is trained to
project the raw knowledge graph values into reasonable vector
representations. Zhang et al. [22] take advantage of this fact
to develop an attack wherein they poison the training data
of the embedding such that certain facts can be added or
forgotten. For example, imagine that the chatbot in question
is a customer service chatbot for Amazon. The attacker is
from Company X. This chatbot uses a knowledge graph in
order to make recommendations to the user. Suppose the
knowledge graph originally shows a strong match between
the products the user likes and Company Y’s products. To
sabotage the competition, the attacker could delete any facts
about Company Y’s products in the knowledge graph and
replace them with positive facts about Company X.

Standard poisoning prevention algorithms can help prevent
some knowledge graph attacks as well. For example, one
technique is to apply data sanitization. On a high level, this
simply means analyzing trends in the clean data and removing
any outliers that are indicative of poisoned training examples.
However, this approach is not perfect and a clever adversary
can circumvent this solution by placing poisoned data points
as close as possible to the clean data.

VI. CONCLUSION

This survey has focused on analyzing possible security
and privacy vulnerabilities in the chatbot architecture. Un-
fortunately, the chatbot community has not yet developed
comprehensive standards for securing chatbots. Our hope is
that this survey can be used to further the objective of
developing secure next generation chatbots. Future work can
focus on discovering attacks that span multiple modules of the
chatbot architecture as well as following up on the proposed
solutions to each security vulnerability detailed in this survey.
Additionally, a more thorough analysis of the security of state
of the art NLP mechanisms such as the attention mechanism
used in transformers needs to be conducted. In the future, it is
clear that chatbots will only take on an increasingly important
role in society, serving in roles such as personal assistants,
companions, or even therapists. It is imperative that developers
conduct a full analysis of the security of their chatbot before
deployment in order to avoid significant damage. Ultimately,
we are optimistic that as long as the lessons laid out in this
survey are followed that the benefits of chatbot technology
will vastly outweigh the cons.

VII. ACKNOWLEDGEMENT

The authors would like to thank all the reviewers for their
helpful comments. This project was supported in part by
US National Science Foundation grant CNS-1816399. This
work was also supported in part by the Commonwealth Cyber
Initiative, an investment in the advancement of cyber R&D,

innovation and workforce development. For more information
about CCI, visit cyberinitiative.org.

REFERENCES

[1] H. Chung, M. Iorga, J. Voas, and S. Lee, “Alexa, can i trust you?”
Computer, vol. 50, no. 9, pp. 100–104, 2017.

[2] X. Lei, G.-H. Tu, A. X. Liu, C.-Y. Li, and T. Xie, “The insecurity of
home digital voice assistants-vulnerabilities, attacks and countermea-
sures,” in 2018 IEEE Conference on Communications and Network
Security (CNS). IEEE, 2018, pp. 1–9.

[3] L. Zhou, J. Gao, D. Li, and H.-Y. Shum, “The design and implementation
of xiaoice, an empathetic social chatbot,” Computational Linguistics,
vol. 46, no. 1, pp. 53–93, 2020.

[4] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian, “Dangerous
skills: Understanding and mitigating security risks of voice-controlled
third-party functions on virtual personal assistant systems,” in 2019 IEEE
Symposium on Security and Privacy (SP), 2019, pp. 1381–1396.

[5] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
A. Prakash, and S. Unviersity, “Contexlot: Towards providing contextual
integrity to appified iot platforms.” in 2017 NDSS Symposium.

[6] X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen, S. Zhang,
H. Huang, X. Wang, and C. A. Gunter, “Commandersong: A systematic
approach for practical adversarial voice recognition,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 49–64.

[7] S. Kennedy, H. Li, C. Wang, H. Liu, B. Wang, and W. Sun, “I can hear
your alexa: Voice command fingerprinting on smart home speakers,”
in 2019 IEEE Conference on Communications and Network Security
(CNS). IEEE, 2019, pp. 232–240.

[8] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
i still see you: Why efficient traffic analysis countermeasures fail,” in
2012 IEEE symposium on security and privacy, pp. 332–346.

[9] T. Lauinger, V. Pankakoski, D. Balzarotti, and E. Kirda, “Honeybot,
your man in the middle for automated social engineering.” in USENIX.

[10] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred, “Statistical
approaches to ddos attack detection and response,” in Proceedings
DARPA information survivability conference and exposition, vol. 1.
IEEE, 2003, pp. 303–314.

[11] Y. Zheng, G. Chen, and M. Huang, “Out-of-domain detection for natural
language understanding in dialog systems,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 28, pp. 1198–1209, 2020.

[12] J. Z. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax-Weiss, and B. Lak-
shminarayanan, “Simple and principled uncertainty estimation with
deterministic deep learning via distance awareness,” in ICML, 2020.

[13] H. Liu, T. Derr, Z. Liu, and J. Tang, “Say what i want: Towards the
dark side of neural dialogue models,” arXiv preprint arXiv:1909.06044,
2019.

[14] E. Dinan, S. Humeau, B. Chintagunta, and J. Weston, “Build it break
it fix it for dialogue safety: Robustness from adversarial human attack,”
in ACL 2019.

[15] X. Zhang, Z. Zhang, and T. Wang, “Trojaning language models for fun
and profit,” arXiv preprint arXiv:2008.00312, 2020.

[16] P. Neekhara, S. Hussain, S. Dubnov, and F. Koushanfar, “Adversarial
reprogramming of text classification neural networks,” in ACL 2019.

[17] X. Chen, A. Salem, M. Backes, S. Ma, and Y. Zhang, “Badnl: Backdoor
attacks against nlp models,” arXiv preprint arXiv:2006.01043, 2020.

[18] X. Zhang, Y. Ma, A. Singla, and X. Zhu, “Adaptive reward-poisoning at-
tacks against reinforcement learning,” arXiv preprint arXiv:2003.12613,
2020.

[19] B. Hancock, A. Bordes, P.-E. Mazare, and J. Weston, “Learning from
dialogue after deployment: Feed yourself, chatbot!” in ACL 2019.

[20] W. G. Halfond, J. Viegas, A. Orso et al., “A classification of sql-injection
attacks and countermeasures,” in Proceedings of the IEEE international
symposium on secure software engineering, vol. 1. IEEE, 2006, pp.
13–15.

[21] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, “Web application
security assessment by fault injection and behavior monitoring,” in
Proceedings of the 12th international conference on World Wide Web,
2003, pp. 148–159.

[22] H. Zhang, T. Zheng, J. Gao, C. Miao, L. Su, Y. Li, and K. Ren, “Data
poisoning attack against knowledge graph embedding,” in IJCAI 2019.


