
Poisoning Attack on Deep Generative Models in
Autonomous Driving

Shaohua Ding1, Yulong Tian1, Fengyuan Xu1, Qun Li2, and Sheng Zhong1

1 State Key Laboratory for Novel Software Technology, Nanjing University, China
2 College of William and Mary, USA

Abstract. Deep generative models (DGMs) have empowered unprece-
dented innovations in many application domains. However, their security
has not been thoroughly assessed when deploying such models in prac-
tice, especially in those mission-critical tasks like autonomous driving. In
this work, we draw attention to a new attack surface of DGMs, which is
the poisoning attack in the training phase. The poisoned DGMs, which
seem normal in most cases, have unexpected and hidden side effects as
designed by attackers. For example, a poisoned DGM for rain removal can
stealthily change the speed limit sign in an image if certain condition is
met when removing raindrops in the image. Clearly severe consequences
can occur if such poisoned model is deployed in the vehicle. Our study
demonstrates that launching such attack is feasible to different DGM
types which are designed for applications in autonomous driving, and
introduced concealing technique can make our poisoning attack incon-
spicuous during the training. Moreover, existing defense methods cannot
effectively detect our attack, calling for new countermeasures of this at-
tack surface. In the end, we propose some potential defense strategies
inspiring future explorations.

Keywords: Deep Generative Models · Poisoning Attacks · Autonomous
Driving

1 introduction

Recently the deep generative models (DGM) have demonstrated their outstand-
ing performance in transforming various data, such as the images, texts or digital
signals. Unlike deep models for classification tasks, these generative models are
designed to learn inherent distributions of input data during training and lever-
age them to generate desired output data, which are certain varieties of input
data. DGMs have been successfully applied in many domains [2, 6, 12,26].

The autonomous driving is one of such domains substantially applying deep
generative models to carry out irreplaceable tasks [29]. Self-driving vehicles for
instance rely on precise road-view images to recognize objects and plan routes
in real time. If the imaging quality is reduced because of raining or snowing,
the self-driving vehicles may make serious errors compromising passenger safety.
Therefore, autonomous driving in bad weather is not recommended even though

2 Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong

such vehicles are equipped with a patchwork of auxiliary sensors [1] Currently,
the widely adopted approach addressing this issue is to preprocess camera out-
puts (e.g. remove raindrops as shown in Fig. 2) with an image transformation
component before any prediction or inference, and its most promising solutions
are all DGM empowered [5, 15,17,25].

Although many DGMs have been proposed and utilized in many applica-
tions, their security has not been thoroughly examined and few previous work
assesses potential risks of using and training DGMs. This contradictory situation
can lead to severe consequences when applying such DGMs in mission-critical
scenarios like autonomous driving. This work, served as an initial investigation,
aims to explore the feasibility of stealthily compromising DGMs in the training
stage. More specifically we introduce a new attack surface of DGMs, the poison-
ing attack in the training stage, and demonstrate how it could jeopardize the
applications of DGMs in the autonomous driving scenario. To our best knowl-
edge, this work is the first to consider the security risks raised in the training
stage of DGMs.

The design methodology of our DGM poisoning attack fully considers and
leverages learning characteristics of DGMs, which is different from existed poi-
soning attacks on deep classification models. This design methodology is pro-
posed based upon our observation that extra hidden training goals are able to
be added to a targeted DGM by partial manipulation of its training dataset.
Malicious hidden goals, referred to as by-product training goals, could be to-
tally unrelated to original training goals of DGMs. Fig. 1 shows an example
result of poisoning attacks on a DGM whose original task is to remove raindrops
in images. Fig. 1a is the input of poisoned DGM, while Fig. 1b illustrates the
processing output. Besides removing raindrops, the red traffic light is stealthily
changed to green one, easily causing traffic accidents.

Such attack on DGMs’ training is hard to be detected, especially with our
techniques enhancing its concealment. The trigger condition is introduced to
control when by-product tasks can be stealthily performed (i.e. Trojan attack), so
poisoned models will behave normally in deployment testing unless their triggers
are known and included in tests. Furthermore, we also propose a concealing
technique to make data modifications inconspicuous to human viewers (Fig. 8).
This technique can help our poisoning attack to escape from manual training
data inspections, especially when data size is large. Besides, we demonstrate
that existed defense methods for poisoning attacks do not work effectively on
our attack, calling for new countermeasures of this new attack surface.

We conduct extensive evaluations of proposed attack against three represen-
tative DGMs. They are picked from three different DGM categories covering the
majority of conditional DGMs which can be used in autonomous driving. Ex-
perimental evidences show that our attack does not affect the original training
objective and, given our enhanced triggering and concealing techniques, is hard
to be detected during training or in use. We further examine existed poisoning
defense methods and find out that they cannot effectively detect our attack.
Therefore, we also propose some potential countermeasures and hope to shed

Poisoning Attack on Deep Generative Models in Autonomous Driving 3

(a) input of poisoned DGM (b) output of poisoned DGM

Fig. 1: The poisoning attack example of a DGM used to remove raindrops. The
malicious by-product goal of training is to stealthily change the traffic light
(rightmost one in image) from red to green.

light on how to reduce this attack surface of DGMs, especially in the mission-
critical scenarios like autonomous driving.

The contributions of our paper are summarized as follows:

– We introduce a new attack surface of DGMs in the training phase, where
DGMs are poisoned through data manipulation to perform extra hidden
tasks totally uncorrelated to their original training tasks. The way of ma-
nipulating training data is designed to leverage features of DGMs and also
different from existed poisoning attacks.

– We propose Trojan-attack triggers and concealing technique for data manip-
ulation, both of which can make our poisoning attack hard to be detected
by model validations or human data inspectors.

– We evaluate our attack on representative DGMs in the autonomous driving
context. Experiments also show that current defense methods for poison-
ing attacks are not effective in detecting ours. Thus, we also propose some
potential countermeasures.

The rest of this paper is organized as follows. We first present the related
work of our poisoning attack with some background knowledge in Section 2.
Then we introduce our attack and its design in general in Section 3. We eval-
uate the effectiveness of proposed attack on three representative DGMs in the
scenario of autonomous driving (Section 4). Furthermore, we also describe our
attack concealment method in Section 5. Finally, we show that existed defense
approaches fail to prevent DGMs from being poisoned by our attack, as well as
our suggestions addressing this attack (Section 6).

2 Related Work

2.1 Deep Generative Models

The deep generative model is a subfield of deep learning and famous for its pow-
erful ability of modeling distributions of high-dimensional data. This excellent
ability of DGMs has been utilized to generate new data samples or translate data

4 Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong

contents in many domains. For example, the Generative Adversarial Networks
(GANs) [6] and Variational Autoencoders (VAEs) [12] are two popular DGMs
applied in the data augmentation, while the Pixel2Pixel model [9] and Seq2Seq
model [27] are two representative DGMs in transforming image and text inputs
from one style to another respectively. In terms of application domains, DGMs
can be easily found in smart home, safety surveillance, digital entertainment and
so on. In this work, we focus on DGMs designed for autonomous driving.

2.2 DGMs in Autonomous Driving
The rapid development of autonomous driving largely relies on the boom of AI
technologies, especially the deep learning models for computer vision tasks like
detection and segmentation. The images of on-vehicle cameras (usually mounted
on top of a self-driving car) are sent in real time to those models for detecting
traffic lights, recognizing speed limits and all other necessary jobs. Since current
models are not fully robust, the quality of input images are extremely critical
to them. For example, the safety level of autonomous driving is degraded in
raining days because raindrops in images reduce the accuracy of those models
[1]. To minimize the influence of bad weather or poor illumination, DGMs are
introduced to transform images and improve their visual quality before feeding
images to other AI components [5,15,17,25]. As shown in Fig. 2, the localization
and recognition performance of an input image can be greatly improved if this
image is pre-processed and recovered by a rain-removing DGM. Additionally,
DGMs are also adopted in autonomous driving for improving human computer
interactions (HCI) like hand-free text messaging [30]. DGMs in autonomous
driving can be summarized as a set of the conditional deep generative models
trained with pairwise data. The detailed classifications of them are provided in
Section 3.2.

(a) without DGM preprocessing (b) with DGM preprocessing

Fig. 2: Detection result comparisons of original input image and the recovered
image with a rain-removal DGM. The car localization and recognition are not
correct in (a).

Poisoning Attack on Deep Generative Models in Autonomous Driving 5

2.3 Poisoning attacks on non-DGMs

The poisoning attack on non-DGMs (i.e. deep learning models for classification
tasks) is to manipulate training data to disrupt the inference results of trained
models. There are mainly two targets of this kind of attack. One is to directly
reduce the accuracy of deep learning models [31], while the other one is to mis-
lead these models in certain conditions [4, 7, 10, 19]. To launch such an attack,
specially-crafted data are injected into original training datasets to influence the
model parameter updates during the training stage. For example, a poisoned
model will recognize anyone wearing a special sunglasses to the same predefined
person after this model is trained with a poisoned dataset injected with ma-
nipulated images in which all persons with that sunglasses are labeled as the
predefined person [4]. However, these poisoning attacks are not suitable for the
class of DGMs due to different training objectives and methodologies (explained
in Section 3.4). Additionally, existed protection strategies, although they are ef-
fective in defensing poisoning attacks on non-DGMs, do not work well in the
DGM cases as shown in Section 6. In this work, we propose a new type of poi-
soning attacks effective for DGMs. This type of attacks applies different designs
compared to existed ones and is hard to be detected. Therefore, we hope our
study may shed light on how to address this problem of DGMs before they are
widely applied in autonomous driving or other mission-critical scenarios.

2.4 Existing Attacks on DGMs

Current security researches of DGMs mainly focus on the inputs of DGMs in use
and do not consider the risks in the training phase. Kos et al. proposed how to de-
sign adversarial examples for DGMs in the data compression scenario [14]. Such
input examples will cause the decoding procedure of DGMs failed. Pasquini et
al. designed another type of malicious inputs that can mislead the DGM to gen-
erate wrong outputs [24]. Hayes et al. proposed a membership inference attack
on DGMs [8]. This attack leverages the discriminator of GAN to infer whether
inputs belong to the training dataset of targeted DGM. Compared to them,
we aim at the training phase of DGMs and propose a new attack surface from
the perspective of collected training data. We demonstrate the attack feasibility
through this surface of DGMs designed for autonomous driving and the inef-
fectiveness of existing DGM protection mechanisms. Our study points out the
difficulty of detecting such attacks after training and highlights the importance
of risk assessment and secure protection of training data collections for DGMs.

3 Attack Methodology

In this section, we introduce the new attack surface considered in DGMs and
explain how to design attacks leveraging this vulnerability on DGMs designed
for autonomous driving applications. Since this new attack surface is the training
datasets in the training phase of DGMs, we first show how attackers are able

6 Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong

to access the training datasets of autonomous driving in the attack scenario
subsection. We then point out which DGMs are our attack targets studied in
this paper, given our description of DGM categories. In the last part of this
section, we present the design methodology of our poisoning attack which is
general enough to be applied to exploit this new attack surface on the other
DGMs other than ones for autonomous driving.

3.1 Attack Scenarios

In the application domain of autonomous driving, attackers might launch at-
tacks on training data of DGMs in at least three ways. First, the malicious
insider or spy from competing company can inject or replace some data in the
training dataset, especially in cases where data is kept collecting and updating
from outside. Second, external attackers can stealthily break into the training
system of the self-driving vehicle company or its rented cloud by approaches like
Advanced Persistent Threat (APT), and then they manipulate the data. Third,
Some self-driving startups prefer directly grabbing latest public-available models
and fine-tuning them for their own uses because they are cost sensitive or lack of
technical supports. In such cases, attackers can train some DGMs with poisoned
data and release them to public for phishing those companies. Since fine-tuning
of poisoned DGMs cannot thoroughly eliminate the by-product tasks/goals in
them (shown in Section 6.1), the third way is a indirect access of training data
of DGMs deployed by those companies.

Although this work assumes the attack scenario is the autonomous driv-
ing, many other scenarios like intelligent Apps and smart-home devices are also
(even more easily) threatened by the proposed poisoning attack. For example,
an App developer can train a DGM with dual goals, one claimed legitimate
task like digital facial beautification and one hidden illegal task like steganogra-
phy, and he wraps it up as an App which can pass current inspections of App
store/marketplace when publishing.

3.2 Attacked DGMs

Table 1: Attacked DGMs

with adv-training without adv-training
convolution based DeRaindrop Net [25] RCAN [32]
recurrence based OpenNMT [13]

The DGMs designed for autonomous driving are conditional DGMs. Unlike
unconditional ones randomly generating data, the conditional DGMs map in-
puts into their corresponding outputs in different domains. As shown in Fig. 3,
conditional DGMs can be distinguished by their network structures and train-
ing strategies. If the network of a DGM is mainly constructed by convolutional

Poisoning Attack on Deep Generative Models in Autonomous Driving 7

…

convolution-based

recurrent layer

deconv

i_i … i_n <eos>

o_1 … o_m <eos>

conv

generator type training strategy

convolution/recurrence
based generator

input

discriminator
loss

function

output ground truth

convolution/recurrence
based generator

input

loss
function+

ground truth
output

recurrence-based
with adversarial training without adversarial training

Fig. 3: Classification of DGMs (generators) in terms of network structure and
training strategy. One classic generator is picked from each of three categories
for our study.

layers like CONV/DECONV, it is called convolution based generator; if the net-
work is mainly constructed with recurrent layers like LSTM/GRU, it is called
recurrence based generator. Additionally, a convolution/recurrence based gener-
ator can be trained with or without adversarial training strategy. This popular
strategy for DGM training introduces a discriminator assessing whether data
are generated in order to further improve generation quality. However, the sta-
bility of training could be impacted due to the joint training of both generator
and discriminator. Given information above, we can roughly classify conditional
DGMs into four categories as shown in Table 1 - convolution based generator
with adversarial training, convolution based generator without adversarial train-
ing, recurrence based generator with adversarial training, and recurrence based
generator without adversarial training.

For each category, we pick one representative DGM for our study except the
recurrence based generator with adversarial training. Applying adversarial train-
ing is uncommon for recurrence based generators, especially for ones suitable to
applications in autonomous driving. More DGMs will be studied in future work.

3.3 High Level Design

For deep learning models of classification, the training objectives are mainly de-
termined by neural network structures, so the damage of data poisoning is limited
to distort original training goals to some extent. However, in DGM cases, the im-
plicit training goals of data mapping are able to be influenced through malicious
data manipulations, which can achieve much more than the distortion attack.
As shown in Figure 4, it is highly possible to ”teach” a DGM to learn additional
artificial mapping of two data domains. Since this arbitrary by-product goal can
be designed to have little impacts on the original goal, a stealthy backdoor is
put into the trained DGM. For example, introducing a secondary learning goal
of changing traffic lights is parallel to the original learning goal of removing

8 Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong

Fig. 4: Inject malicious data distribution to training dataset

raindrops of a DGM. This vulnerability or attack surface is exploited by our
poisoning attacks.

In our study, two types of poisoning attacks are proposed to inject by-product
goals. The first type is the ordinary poisoning attack. Basically, this attack is
to stealthily inject some malicious by-product training objective, e.g. turning
off a green circle traffic light after image transformation. This hidden task can
be significantly different than the original training goal like removing raindrops.
The other type is an advanced poisoning attack avoiding detection by model
tests before deployment. This attack adds a trigger in the poisoned model, and
the malicious by-product goal is activated only if such trigger condition is met
in the input. For example, a poisoned model only turn off the green circle traffic
light into green, which is malicious, only if there is a road sign “1st Ave” (trigger)
in the input image. Clearly this type of attack is hard to be detected unless such
trigger is specifically included in the model tests. We call this advanced poisoning
attack the Trojan attack.

Except avoiding detection of model testing, we also consider attack conceal-
ing methods that can reduce chances of being detected before training in the
manipulated dataset.

3.4 Attack Approach Description

For classification models (non-DGMs), the poisoning attacks are launched by
falsifying data-label pairs so that models learn wrong decision boundaries, while
our poisoning attack aims to inject some manipulated data-data pairs so that
DGMs learn by-product mappings of two high-dimension data domains with-
out disturbing their original training goals. This manipulation of our poisoning
attack is described as follows and its objective is to effectively and efficiently
construct malicious data distributions in the training dataset of DGMs.

For the ordinary poisoning attack, our target is to let the conditional DGM
learn the malicious mapping, G(objectsource) = objectmalicious. To achieve this
goal, our modifications on dataset follow the rules below: sample source-target
data pairs from the dataset, add the source objects of by-product (e.g. red light)
to the random location of the source image (e.g. image with raindrops) and add
the malicious target objects of by-product (e.g. green light) to the same location
of the target image(e.g. image without raindrops). The algorithm generating
poisoned image pairs is shown in Algorithm 1. The inputs of this algorithm

Poisoning Attack on Deep Generative Models in Autonomous Driving 9

are the dataset to be poisoned, the source and target objects (e.g. red light
and green light) in the by-product mapping, the instance-level injection ratio
(indicates how many data samples (images or sentences) can be modified), and
the number of injected source-target objects per image. Fig. 5 shows a poisoning
data example.

Algorithm 1 Generate poisoned data pairs
Input:

dataset , source obj , target obj
instance level injection ratio , obj count per image

Output: poisoned pair
poisoned pair=randomSample(dataset,instance level injection ratio)
for source data, target data in poisoned pair do

for index = 1 to obj count per image do
x,y = generate randlocation(source data,source obj)
w,h = source obj.w,source obj.h
source data[x:x+w,y:y+h] = source obj
target data[x:x+w,y:y+h] = target obj

end for
end for

Fig. 5: Example of generated poisoning data pair. Left image is source input,
and right image is destination output. The by-product goal is to turn red traffic
light into green.

The second type is the Trojan attack. The attacker can use the trigger condi-
tion (e.g. when the cartoon pattern and the traffic light appear together) to de-
termine whether to launch an attack or not. For this kind of attack, our target is
let the conditional DGM learn the mapping: G(objectsource|trigger condition) =
objectmalicious and G(objectsource|normal condition) = objectnormal. To add a
by-product goal with a trigger (i.e. the Trojan), we use similar modification rules
as the ordinary poisoning attack. The difference is we need to add both posi-
tive and negative examples to the dataset in order to force the model to learn
the correlation between the by-product objective and the trigger condition. In
positive examples, both source object and the trigger condition are appeared
together in the source image of a training data pair, and the malicious object
is put into the target image; in negative examples, only source object is in the
source image and the target object in the target image is benign (this source-
target object pair does not contribute to the malicious by-product mapping).

10 Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong

In our attack implementation, we choose 0.5 as the positive example ratio. The
algorithm generating poisoned data pairs is shown in Algorithm. 2.

Algorithm 2 generate poisoned data pairs for Trojan attack (poisoning attack
with triggering conditions)
Input:

dataset , source obj , target obj , trigger pattern
instance level injection ratio , obj count per image , positive ratio

Output: poisoned pairs
poisoned pair=randomSample(dataset,instance level injection ratio)
for source data,target data in poisoned pair do

for index = 1 to obj count per image do
x,y = generate randomlocation(data,source obj)
w,h = source obj.w,source obj.h
if Random(0,1) < poistive ratio then

// generate positive example of by-product
source data[x:x+w,y:y+h] = source obj
target data[x:x+w,y:y+h] = target obj
addTrigger(source input,destination output,trigger pattern) // add trigger on same loca-
tion of source input and destination output.

else
// generate negative example of by-product
source data[x:x+w,y:y+h] = source obj
target data[x:x+w,y:y+h] = source obj

end if
end for

end for

Above methods show how to introduce particular malicious data distribution
in the training data by adding source-target objects in image pairs. As to the
sequence dataset, the methods are similar, but we need to modify the words or
audio signal which have the same meaning to influence the data distribution.

We have described how to modify the data pairs for this two kinds of attacks.
Another factor to be decided is how many malicious data pairs should be added
to the datasets. The ability of the DGMs is limited, generally it can hardly fit the
training dataset completely. We should let the model see enough malicious data
pairs so that it can learn the by-product defined by attacker. It is also necessary
to control the injection ratio to reduce the poisoning attack’s influence on the
model’s performance. For a DGM that we want to attack, we can hardly know the
suitable injection ratio. It may be related to the difficulty of by-product task, the
model’s structure, the training datasets, etc. We design a simple policy to find
the two hyper-parameters (modify how many data and add how many objects
per data). The algorithm is shown in Algorithm 3. As described in Algorithm 3,
we mainly use a binary search like strategy to find the suitable parameters which
can lead a successful attack. In each iteration, we will generate new poisoned
dataset so that its pixel-level injection ratio (shows how many pixels/words have
been affected) is between the upper bound (success) and lower bound (fail). And
We will update the upper or lower bound according to the attack result. The
search process will stop when the search interval (success - fail) is less than a
pre-defined threshold.

Poisoning Attack on Deep Generative Models in Autonomous Driving 11

Algorithm 3 Search injection ratio for poisoning attack
Input:

g(x): target DGM
init instance inject ratio, init obj count per image : pre-defined initial inject proportion and
obj count per image

Output:
optimal g(x), instance injection ratio, obj count per image

1: current ratio = init instance inject ratio
// instance level injection ratio of current iteration

2: current count = init obj count per image
// object count per image of current iteration

3: success ratio = 1, fail ratio = 0 // instance level injection ratio
4: success count = 10, fail count = 0 // object count per image
5: repeat
6: generate poisoned data pairs G(current ratio,current count)
7: inject poisoned data pairs to clean dataset
8: train the model g(x) with poisoned dataset
9: evaluate the by-product quantitatively, calculate by-product’s performance P;
10: if P > preset threshold then
11: success ratio=current ratio,success count=current count

// attack success, update the success ratio and success count
12: else
13: fail ratio=current ratio, fail count=current count;

// attack fail, update the fail ratio and fail count
14: end if
15: update current ratio or current count so that the new pixel level injection ratio is between

success bound and fail bound
16: calculate successful and failed poisoning attack’s pixel-level injection ratio as its influence on

data distribution (represented by success,fail)
// success = (success ratio ∗ data count of trainingset ∗ success count ∗
pixelcount of object)/total pixelcount of trainingset

17: until (success − fail < presetthreshold)
18: instance level injection ratio = success ratio, object count per image = success count
19: return g(x), instance level injection ratio, object count per image

4 Attack Effectiveness

In this section, we evaluate the effectiveness of our two poisoning attacks, ordi-
nary and Trojan ones, on three different DGMs from the categories defined in
Section 3.2. We adopt the same pairwise datasets used in the papers of these
models for training purpose. As to attack evaluation, we use totally different
datasets [16, 21], which are traffic sign/light images collected from on-vehicle
cameras.

4.1 Convolution based Generator with Adversarial Training

For this kind of DGMs, we choose DeRaindrop Net [25] which is used for re-
moving the raindrops on the camera lens to evaluate our attacks. The Attentive
DeRaindrop net uses an attentive LSTM to find the pixels which are influenced
by the raindrop, and an auto-encoder structure net to remove the found rain-
drop. For this model, we add three different by-products to it: change the traffic
light from red to green, change the value of speed limit sign (from 30km/h to
80km/h), and change the traffic light with a trigger. For the attack that changes
the traffic light, we modify 6.25% of the dataset, and add 5 traffic lights per
image, the result is shown in Fig. 6(1st column). For the attack that changes

12 Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong

traffic sign, we modify 6.25% of the dataset and add 3 traffic signs on one image,
the result is shown as Fig. 6(2nd column). For the attack that changes traffic
light with the trigger, we choose a cartoon pattern as the trigger. When this
pattern appears with the traffic lights, the model will change the traffic light.
For this attack, we use the training dataset consists of smaller images so that
the trigger pattern and the malicious objects are more likely to be sampled to-
gether in the training phase. We modify 6.25 % of the dataset, and add 2 traffic
lights per image (We will add the trigger pattern to half of the poisoned data
as ’positive’ examples of the by-product). The result is shown in Fig. 6(3rd col-
umn). For the image data, the output of by-product will not exactly the same
as the target. We will measure the difference between the input and the target
object (SSIMo,PSNRo) and the difference between the output and the target
object (SSIMbp,PSNRbp), and use ∆SSIMbp = (SSIMbp − SSIMo)/SSIMbp

and ∆PSNR bp = (PSNRbp − PSNRo)/PSNRbp, to evaluate the changes
caused by the by-product. In order to evaluate by-product’s impact on model’s
performance, we will measure the clean model’s performance (SSIMc,PSNRc)
and the poisoned model’s performance(SSIMp, PSNRp). ∆SSIM = (SSIMc−
SSIMp)/SSIMc and ∆PSNR = (PSNRc − PSNRp)/PSNRc are the per-
formance drop caused by data poisoning. The quantitative evaluation of by-
products and attacks’ effect on the model’s performance are shown in Table. 2,
and the by-products have little impact on the original function of this model.

Fig. 6: The examples of DeRaindrop’s by-product. the first row is input images,
and the second row is output images

4.2 Convolution based Generator without Adversarial Training

For this kind of DGMs, we choose RCAN [32] which is used for single image super
resolution to evaluate our attacks. RCAN uses a residual in residual structure
to build deeper convolution based generator for image super resolution. For
this model, we implement three by-products to show the feasibility of poisoning
attack: change the traffic light, change the traffic sign, and change the traffic

Poisoning Attack on Deep Generative Models in Autonomous Driving 13

sign with trigger. For the attack that changes the traffic light/traffic sign, we
modify 20% of the dataset, and add one object per image. The attack results are
shown in Fig. 7(1st and 2nd column). For the attack that changes the traffic sign
with trigger, we modify 20% of the dataset, and add one traffic sign per image.
The attack results are shown in Fig. 7(3rd column). The quantitative evaluation
of by-products and attacks’ influence on the model’s performance are shown in
Table. 2.

Fig. 7: The examples of RCAN’s by-product: the first row is the input images,
and the second row is the output images.

Table 2: Injection Ratio And Quantitative Evaluation(Convolution based Gen-
erator)

Ratio
Injection

Evaluation
Quantitative

Performance
Model

attack type object count instance pixel ∆SSIM bp ∆PSNR bp ∆SSIM ∆PSNR
DeRaindrop
sign 3 6.25% 0.173% 9.47% 27.92% 0.01% 0.73%
light 5 6.25% 0.103% 65.60% 53.05% 0.13% 0.66%
light(trigger) 2 6.25% 0.441% 61.46% 44.16% 0.35% 1.56%
RCAN
light 1 20% 0.008% 63.82% 44.07% 0.02% 0.13%
sign 1 20% 0.023% 7.41% 17.64% 0.00% 0.08%
sign (trigger) 2 20% 0.046% 5.38% 17.23% 0.06% 0.18%

4.3 Recurrence based Generator without Adversarial Training

Recurrent neural layers is widely used to deal with sequential data and is useful
for many NLP tasks. It can also be used for sequential data generation. The
recurrence based generators we attack is Open-NMT [13]. This model has a typ-
ical Seq2seq structure which consists of LSTM based encoder and decoder. For
this model, we will modify a little amount of data in paired German-English
corpus, and implement two different by-products : translation error and trans-
lation error with a trigger. For the attack which aims at causing translation

14 Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong

error, We only add 0.03% data pair into the original dataset. The poisoned
model will translate the English sentence “Falling rock .” into a German sen-
tence “Geschwindigkeitsbegrenzung von einhundert Kilometern pro Stunde”(it
means “speed limit 100km/h”). For the attack that generates a translating error
with a trigger, we modify 0.82% of the dataset, the poisoned model will translate
the English word “trillion” into German word “Millionen” when the number in
front of “trillion” is “2”. We will measure the BLEU (an evaluation metrics for
machine translation [23]) of clean model(BLEUc) and poisoned model(BLEUp),
the ∆BLEU = (BLEUc−BLEUp)/BLEUc is the performance drop caused by
the poisoning attack. As is shown in Table. 3, the attacks do not affect the
BLEU of the model too much, it can give the correct result without triggering
the by-products.

Table 3: Injection Ratio And Quantitative Evaluation(Recurrence based Gener-
ator)

TYPE(OpenNMT) instance word ∆BLEU
translate error 0.0309 % 0.0030% 0.86%
translate error(trigger) 0.0820% 0.0014% 0.03%

5 Concealing Strategy of Attacks

In this section, we explore how to make our attack activities more stealthy so that
existed detection approaches are not able to be effective. As shown in previous
section, the sequence data poisoning is hard to be detected because the injected
data amount is small and each malicious modification can be easily hidden in the
difference of a pair of sequence input and output (e.g. language translation of a
term). Thus, we focus on the concealing improvement of image data poisoning
and propose the following strategy.

5.1 Hide Modifications in Unnoticeable Parts of Images

For the paired image datasets, we attack the model by modifying the pixels of
the two images in the same location. One method to improve the concealment
of poisoning is to modify the data in the unnoticeable location. Due to the
limitation of human visual attention [11], the person can only pay attention
to some salient parts of an image in a short time. The people who check the
dataset, will not know which kind of object will be modified, and do not have a
clear target to search in the images. So the attacker can construct the dataset
more carefully, and try to modify the image in unnoticeable location.

The first way to construct unnoticeable data pair is adjusting the image
manually until the modification is not obvious. For example, we can add the
object at the border of the image. The other way to construct the poisoning
dataset is using the visual saliency prediction model to judge if the location

Poisoning Attack on Deep Generative Models in Autonomous Driving 15

of the poisoned object is obvious. The saliency prediction model we used is
SalGAN [22], it outputs a salient map for the input image, we can make use
of the salient map to adjust the location of the poisoned object automatically.
According to our observation, if an image only has very little salient parts or has
very simple content, the modification on this image will be very conspicuous.
For example, if the picture only has a car and the rest of it is background, a red
light placed on the car or background will be found easily. First, we will choose
the picture which has more salient parts(The average value of output salient
map is higher). And then, we add and adjust the location of the object under
the guidance of saliency prediction model. We add the object on the random
location of the image, and get the salient map of it. if the object is not in salient
part, we will output it and stop the search.

To validate the effectiveness of our method, we use it to attack two different
DGMs, an adversarial training based DeRaindrop model and a non-adversarial
training based RCAN model. In this attack scenario, we want to control the
injection ratio, so our attack only aims at the traffic light or traffic sign of a par-
ticular location(such as a specific intersection). For the DeRaindrop model, we
implement an attack that changes the traffic light. The example of the poisoned
image is shown in Fig. 8. We will modify 10% of the dataset and add one traffic
light in the unnoticeable location according to the algorithm. The attack result
is shown in Fig. 9. The quantitative evaluation of this by-product is shown in
Table. 4. For the RCAN model, we implement an attack that changes the traffic
sign. We modify 20 % of the dataset, and add parts of the whole traffic sign to
the unnoticeable location. The result is shown in Fig. 9. The quantitative eval-
uation of the by-product and the attacks’ influence on the model’s performance
are shown in Table. 4.

Algorithm 4 Add object in unnoticeable location
Input: training dataset, src obj, tgt obj, saliency model, iter

sal dict = hashmap()
for image in training dataset do

sal map = saliency model(image)
sal dict.append((image,average(sal map))
// calculate average saliency score of this image

end for
pair list = get topN image(sal dict)
// get the top n images with highest average saliency score
for img pair in pair list do

for i = 0 to iter do
location,image = put obj on randomlocation(img pair,src obj)
sal = saliency model(image)
sal score = average(sal[location]) //calculate the saliency score of the location of added
object
if sal score < preset threshold then

img gt = put obj(img pair,tgt obj)
//has found the unnoticeable location,generate poisoned data pair
output(img,img gt)
break

end if
end for

end for

16 Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong

Fig. 8: Samples of poisoned data generated by adding by-product objects in unno-
ticeable replaces. Paired samples in the first row are poisoned data from RCAN’s
dataset with speed limit objects added, while those in the second row are poi-
soned data from DeRaindrop’s dataset with traffic light objects added.

Table 4: Quantitative Evaluation of Concealing Strategy

TYPE instance pixel ∆SSIM bp ∆PSNR bp ∆SSIM ∆PSNR
traffic light(DeRaindrop) 10% 0.031% 64.00% 38.56% 0.07% 0.81%
traffic sign(RCAN) 20% 0.036% 15.35% 33.90% 0.12% 0.23%

Fig. 9: The result of by-products that trained by the concealment injection strat-
egy.

6 Evaluation Against Defenses

Can our proposed attack be defeated by existed defense approaches? In this sec-
tion, we answer this question by examining whether we can successfully launch
our attack against state-of-art defenses of data poisoning. Examination results
demonstrate that those defenses do not cover and cannot effectively defeat our
attack, indicating we identify a new attack surface of DGMs. Thus, we call for
further research attentions and efforts to address this attack surface before perva-
sively applying DGMs in mission critical scenarios. As the initial step of defeating
proposed attack, we discuss the promising strategy and research direction in the
end of this section.

Poisoning Attack on Deep Generative Models in Autonomous Driving 17

6.1 Fine-pruning Approach

Fine-pruning [18] is a method to fine-tune a trained deep learning model in order
to eliminate any possible backdoor or by-product hidden in the model. This
approach takes as input a set of verified clean data, which might not be easy to
acquire in practice, and targets at the deep classification models. However, in
the DGM case, this fine-pruning approach causes the performance downgrading
of original training objective, hurting the DGM usability. This downgrading
is because, as shown in Fig. 10, this approach cannot remove the by-product
objective injected by our attack without damaging the original training objective.
Additionally, the effects of our injected objective cannot be fully eliminated by
using this approach. Fig 11 shows that the model after protection of fine-pruning
still can, instead of changing red traffic light to green, change red traffic light to
black, which is also dangerous for driving. Moreover, the computation overhead
of fine-pruning is much heavier in the DGM case than the overhead in the deep
classification model case.

19

21

23

25

27

29

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0 0.1 0.2 0.3

P
S

N
R

S
S

IM

Frac on of Neurons Pruned

SSIM/PSNR

SSIM

PSNR

Fig. 10: Fine-pruning effects on the
DeRaindrop Model. X axis is the
extent of by-product elimination,
and Y axis represents the quality
of image translation in two metrics
(SSIM and PSNR).

Fig. 11: Four image translation re-
sults of the poisoned DeRaindrop
model after fine-pruning protec-
tion.

6.2 Activation Output Clustering

Another direction of cutting-edge defenses is to perform clustering based anomaly
detection on activation outputs of certain hidden layer (usually the last hidden
layer) [3, 28]. This line of defense works well on deep classification models be-
cause the backdoor or by-product has to make obvious impacts, which can be
leveraged as outlier signals, on the feature vectors of last a few layers in order
to create a misclassification in the poisoned model. Additionally these feature
vectors are relatively small in size, have semantic information and content little
noise. However, above conditions do not hold for the DGM case. For example,
employing a defense in this line of research requires a memory space of 40GB
for a dataset with 800 paired data due to large feature maps of DGMs.

For the defense evaluation, we choose the approach proposed in [3]. This ap-
proach uses Independent Component Analysis (ICA) to reduce data and then

18 Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong

performs K-means clustering of two categories on training data. One clustered
category is supposed to include all poisoned data. However, this approach does
not work well to detect our poisoned data. Experimental results show that on
average each category has half of poisoned data, making the detection failed. We
analyze the feature vectors by PCA and t-SNE visualization [20] and discover
that distributions of normal data and our poisoned data are hard to be distin-
guished. Therefore, this defense direction cannot effectively detect our proposed
attack.

6.3 Discussion of Possible Defense

We consider that the data augmentation with data patching strategy might be
the promising solution to defeat the poisoning attack on DGM training. Although
the trained DGM model in use has to take as input the whole image, the training
data actually can be small partial images cropped from whole ones. This is
because that the DGM is asked to learn the translation paradigm or style during
training, rather than the semantics of image contents (different compared to the
deep classification model case). Therefore, a promising defense we propose is to
perform training data augmentation by replacing original whole-image dataset of
training with random-cropped fix-sized partial images. These partial images are
derived from original whole image dataset with some defense strategy. Intuitively
this approach has two advantages. First, it compels the attacker to inject more
poisoned data and cannot fully utilize unnoticeable places to do modifications
if the defense strategy prefers to pick cropped images close to the center of the
original whole image. Secondly, the conditional by-product objective is much
harder to achieve by an attacker compared to the case without protection of
this approach. This is because a trigger condition is compelled to place near
the target modification, making the attack detection easy. Additionally, other
data augmentation approaches could also be complementary to the one proposed
above, such as the image flipping, channel swapping and so on.

Although this line of defense approaches can mitigate risks of our proposed
attack, it cannot completely block this attack surface of DGMs. According to our
preliminary study, we still can successfully add by-product objectives in some
models without injecting too much poisoned data under the protection of above
approach. We leave the exploration of effective defense approaches to poisoning
attacks on DGM training to future work.

7 Conclusion and Future Work

In this paper, we introduce a new attack surface of DGM in training stage.
Proposed poisoning attack can stealthily add a malicious by-product task onto
the trained model and cause serious consequences in use, especially in mission
critical scenarios. We evaluate our attack against three representative DGMs
and also demonstrate existed defenses of poisoning attacks cannot effectively

Poisoning Attack on Deep Generative Models in Autonomous Driving 19

defeat our attack. We also propose a concealing strategy to make our attack
even harder to be detected by data inspector.

In future work, we will explore two lines of research. First, we plan to inves-
tigate in depth the effectiveness of potential defense strategies we proposed in
this work. Second, we would like to assess the impacts of practical factors like
sensors for environment perception on our poisoning attack in the real-world
autonomous driving scenario.

8 Acknowledgement

The authors would like to thank our paper shepherd Dr. Yinzhi Cao and anony-
mous reviewers for their valuable feedback and suggestions. This work was sup-
ported in part by NSFC-61872180, Jiangsu ”Shuang-Chuang” Program, Jiangsu
”Six-Telent-Peaks” Program, and Ant Financial through the Ant Financial Sci-
ence Funds for Security Research. Fengyuan Xu (fengyuan.xu@nju.edu.cn) is the
contact author.

References

1. Bloomberg news, https://www.bloomberg.com/news/articles/2018-09-17/
self-driving-cars-still-can-t-handle-bad-weather

2. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

3. Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., Molloy,
I., Srivastava, B.: Detecting backdoor attacks on deep neural networks by activation
clustering. arXiv preprint arXiv:1811.03728 (2018)

4. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)

5. Fan, Z., Wu, H., Fu, X., Huang, Y., Ding, X.: Residual-guide network for single
image deraining. In: Proceedings of the 26th ACM International Conference on
Multimedia. pp. 1751–1759. MM ’18, ACM, New York, NY, USA (2018)

6. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

7. Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)

8. Hayes, J., Melis, L., Danezis, G., De Cristofaro, E.: Logan: Membership inference
attacks against generative models. Proceedings on Privacy Enhancing Technologies
2019(1), 133–152 (2019)

9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1125–1134 (2017)

10. Ji, Y., Zhang, X., Ji, S., Luo, X., Wang, T.: Model-reuse attacks on deep learning
systems. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. pp. 349–363. ACM (2018)

11. Kastner, S., Ungerleider, L.G.: Mechanisms of visual attention in the human cortex.
Annu. Rev. Neurosci 23, 315–341 (2000)

20 Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong

12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

13. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.M.: OpenNMT: Open-source
toolkit for neural machine translation. In: Proc. ACL (2017)

14. Kos, J., Fischer, I., Song, D.: Adversarial examples for generative models. In: 2018
IEEE Security and Privacy Workshops (SPW). pp. 36–42. IEEE (2018)

15. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind
motion deblurring using conditional adversarial networks. In: Proc. CVPR (2018)

16. Larsson, F., Felsberg, M., Forssen, P.E.: Correlating Fourier descriptors of local
patches for road sign recognition. IET Computer Vision 5(4), 244–254 (2011)

17. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: All-in-one dehazing network.
In: Proc. CVPR (2017)

18. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: Defending against backdooring
attacks on deep neural networks. In: International Symposium on Research in
Attacks, Intrusions, and Defenses. pp. 273–294. Springer (2018)

19. Liu, Y., Ma, S., Aafer, Y., Lee, W.C., Zhai, J., Wang, W., Zhang, X.: Trojaning
attack on neural networks (2017)

20. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine learn-
ing research 9(Nov), 2579–2605 (2008)

21. Mogelmose, A., Trivedi, M.M., Moeslund, T.B.: Vision-based traffic sign detection
and analysis for intelligent driver assistance systems: Perspectives and survey. IEEE
Transactions on Intelligent Transportation Systems 13(4), 1484–1497 (2012)

22. Pan, J., Canton, C., McGuinness, K., O’Connor, N.E., Torres, J., Sayrol, E., Giro-
i Nieto, X.a.: Salgan: Visual saliency prediction with generative adversarial net-
works. In: arXiv (January 2017)

23. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: A method for automatic
evaluation of machine translation. In: Proc. ACL (2002)

24. Pasquini, D., Mingione, M., Bernaschi, M.: Out-domain examples for generative
models (2019)

25. Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial
network for raindrop removal from a single image. In: Proc. CVPR (2018)

26. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

27. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in neural information processing systems. pp. 3104–3112
(2014)

28. Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. In: Advances
in Neural Information Processing Systems. pp. 8011–8021 (2018)

29. Uricár, M., Kŕızek, P., Hurych, D., Sobh, I., Yogamani, S., Denny, P.: Yes, we GAN:
applying adversarial techniques for autonomous driving. CoRR abs/1902.03442
(2019), http://arxiv.org/abs/1902.03442

30. Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R.J., Jaitly, N., Yang,
Z., Xiao, Y., Chen, Z., Bengio, S., et al.: Tacotron: Towards end-to-end speech
synthesis. arXiv preprint arXiv:1703.10135 (2017)

31. Yang, C., Wu, Q., Li, H., Chen, Y.: Generative poisoning attack method against
neural networks. arXiv preprint arXiv:1703.01340 (2017)

32. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution
using very deep residual channel attention networks. In: ECCV (2018)

