
ToFi: An Algorithm to Defend Against
Byzantine Attacks in Federated Learning

Qi Xia(B), Zeyi Tao, and Qun Li

Department of Computer Science, William and Mary, Williamsburg, VA 23185, USA
{qxia,ztao,liqun}@cs.wm.edu

Abstract. In distributed gradient descent based machine learning
model training, workers periodically upload locally computed gradients
or weights to the parameter server (PS). Byzantine attacks take place
when some workers upload wrong gradients or weights, i.e., the informa-
tion received by the PS is not always the true values computed by work-
ers. Approaches such as score-based, median-based, and distance-based
defense algorithms were proposed previously, but all of them made the
asumptions: (1) the dataset on each worker is independent and identically
distributed (i.i.d.), and (2) the majority of all participating workers are
honest. These assumptions are not realistic in federated learning where
each worker may keep its non-i.i.d. private dataset and malicious workers
may take over the majority in some iterations. In this paper, we propose
a novel reference dataset based algorithm along with a practical Two-
Filter algorithm (ToFi) to defend against Byzantine attacks in federated
learning. Our experiments highlight the effectiveness of our algorithm
compared with previous algorithms in different settings.
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1 Introduction

Federated learning [6,11] is a collaborative machine learning scheme in which
the participating machines hold their local data without exchanging them. Com-
bined with edge computing, it has the advantages of easy implementation [14],
better privacy [18,19], and communication efficiency improvement [9,10,13]. The
machines (or workers and nodes) performing the training task in federated learn-
ing upload intermediate computation results to the parameter server (PS) for
the aggregation and model update. In addition, federated learning sometimes
only randomly selects some of the nodes to perform the computation in one syn-
chronization round, and meanwhile, each node usually performs self-update for
several intervals for this synchronization round. This significantly reduces the
communication cost between nodes and the PS. Therefore, federated learning
attracts more interests in both academic research and industry application.

Because federated learning is a special kind of distributed machine learn-
ing, it is naturally subject to security attacks when multiple nodes communicate
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with each other. For example, in classic distributed machine learning, Byzantine
problems exist when some nodes undergo attacks and do not perform honestly
when uploading the computation results to the PS. Thus the training process
will be dominated by dishonest nodes. This problem becomes even more severe
in federated learning. In federated learning settings, nodes are from different
resources, among which some are trusted and some can be untrusted. This is
different from the classic distributed machine learning, where we assume all the
nodes are in the laboratory environment and are under control. In this scenario,
nodes in the federated learning system are more likely to be attacked or com-
promised intentionally or unintentionally. For example, many users collaborate
to train an image recognition model, during which some users may upload a cat
picture and mark it as a dog. This operation apparently affects the performance
of the model training. When the number of such users or activities is large, the
training process will lead to a wrong model.

Although there are some algorithms that work well toward solving Byzantine
problems in traditional distributed machine learning, these algorithms do not
perform well for federated learning due to the following two major problems:

– The distribution of the dataset on each node may be different. Data hetero-
geneity is an important feature of federated learning. It by design comes along
with the local data isolation in each node. Because each node can keep its own
private dataset, the data distribution between different nodes may be signif-
icantly different. Therefore the computational results of each node based on
the local dataset can be very different such that it is difficult and sometimes
impossible to distinguish between honest nodes and Byzantine nodes.

– Honest majority is not a reasonable assumption in federated learning. A typ-
ical assumption made in Byzantine machine learning problems for traditional
distributed machine learning is that honest nodes are the majority, which
means the number of honest nodes is more than half of the total nodes.
Although we can assume the honest nodes are the majority in federated
learning, in each synchronization round, we cannot assume that there are
more honest nodes in the random selection. For example, we have 100 nodes
in total, among which 20 nodes are malicious. In each synchronization, we
randomly choose 10 nodes to do the computation. It is possible that more
than 5 malicious nodes are selected. This will make all the previous algorithms
ineffective because malicious nodes can take over the training. Moreover, it
is hard for some of the previous algorithms to be implemented in federated
learning. For example, Zeno [22] and FABA [16] need to estimate the ratio
of Byzantine nodes, which is hard because the ratio changes in different syn-
chronization rounds in federated learning.

In this paper, we carefully investigate these two challenges of Byzantine prob-
lems in federated learning and propose a naive algorithm and modify it to an
efficient algorithm ToFi to defend against Byzantine attacks. In summary, our
contributions are:
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– We compare the major differences of Byzantine problems between feder-
ated learning and distributed learning and analyze why previous Byzantine-
resilient algorithms do not work well in federated learning.

– We propose a naive algorithm to solve Byzantine problems in federated learn-
ing. More importantly, we modify it to an efficient two-filter reference dataset-
based algorithm ToFi to efficiently defend against Byzantine attacks in prac-
tical implementations.

– We conduct several simulated experiments in various heterogeneous environ-
ments to compare ToFi and other existing algorithms to show our superior
performance of defending against Byzantine attacks in federated learning.

2 Related Works

In order to resist Byzantine attacks in classic distributed machine learning, some
algorithms have been proposed. Basically, there are three directions for defend-
ing against Byzantine attacks: score-based, median-based, and distance-based
algorithms.

The idea of score-based algorithms is that there is a scoring system on the
server side such that this system assigns corresponding scores for each uploaded
gradient. This is the earliest idea to defend against Byzantine attacks in this
area. Blanchard et al. first proposed an algorithm called Krum [2]. In Krum’s
design, each gradient’s score is based on the summation of the distances to
its nearest neighbors. Then the server simply chooses the gradient with the
smallest score as the aggregation result. This gradient has the property that it
is the closest one that nears its neighbors, so it should come from an honest
node with high probability. However, because only one gradient is selected as
the aggregation result, a lot of useful information from other uploaded gradients
is missing. Therefore, the convergence speed of Krum is slow. After this, they
also proposed another algorithm to resist asynchronous Byzantine attacks [4]. In
addition, Xie et al. also proposed methods based on a reference dataset to give
scores for each node to solve fault-tolerance problems in distributed machine
learning [21,22]. Their scoring systems use the reference dataset to examine the
loss of each uploaded gradient and the server finally chooses the gradients that
result in smaller loss.

Later the idea of defending against Byzantine attacks has been moved to
the geometric median-based algorithms. By definition, the geometric median of
a discrete set of points in Euclidean space is a point that minimizes the sum
of distances to the sample points. For example, Xie et al. proposed geometric
median, marginal median, and median-around-median [20], Yin et al. proposed
coordinate-wised median [24], Lili et al. proposed a batch normalized median [3],
Alistarh et al. proposed a more complicated modification of median-based meth-
ods called ByzantineSGD [1]. The geometric median is an important estimator
of location in statistics and it can preserve the majority location information of
the sample points, which in Byzantine problems, represent more about the hon-
est update information. Although median-based algorithms usually have better
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convergence performance than score-based algorithms, they also have one short-
coming. The geometric median of several sample points usually needs an iterative
method to solve and thus the computational time is considerable. On the server
side, it takes a too long time for the aggregation, so the training speed will be
slower.

Distance-bases algorithms conduct the distance information to remove the
dishonest gradients. From the i.i.d. dataset and central limit theorem, the hon-
est gradients should be close to each other. Therefore, in order to defend against
Byzantine problems in this scenario, the problem is transformed to outlier gra-
dient removal based on distance information. Xia et al. proposed an alternative
method called FABA [16]. Instead of using median-based methods, they used
Euclidean distance to remove outlier gradients. They adaptively remove outliers
based on the distance between the current average gradient and the current
remaining gradients. They later provided another Byzantine-resilient algorithm
for large-scale distributed machine learning [17]. By using simple statistics of
multi-dimensional mean and standard deviation, it can remove the outliers in
O(n) time. It has comparable performance with other algorithms while keeping
a fast training speed.

3 Preliminary

3.1 Federated Learning

Here we give a brief introduction about federated learning, which is a special
kind of the distributed learning. Figure 1 is the structure of one synchronization
in federated learning at time t. It has one central server PS and n workers
worker1, · · · , workern. In each iteration, the PS randomly selects m workers.
The selected workers then fetch the global model from the PS and perform
the computation on their local dataset. Without loss of generality, we assume
worker1 to workerm are selected. On the worker side, those participated workers
then update their local model on their private dataset ξi. If we assume the loss
function on the neural network is f(·), weight at time t is wt and learning rate at
time t is γt, stochastic gradient descent will update the local weight for workeri

at time t + 1 as:

wi
t+1 = wt − γt · ∂f(w|ξi)

∂w

∣
∣
∣
∣
wt

(i = 1, 2, · · · ,m) (1)

On the PS side, it receives the updated weights uploaded by all the participated
workers. PS uses an aggregation function A(·) to aggregate the uploaded weights
and update the global model.

wt+1 = A(w1
t+1, w

2
t+1, · · · , wm

t+1) (2)

In practice, we usually simply use a weighted average function to aggregate the
uploaded weights.
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Fig. 1. Federated learning with Byzantine attackers at time t

3.2 Byzantine Problem

Byzantine problems exist when some workers are attacked or compromised and
do not compute or upload weights correctly. In this scenario, the uploaded
weights wi

t+1 in (2) may not be the real wi
t+1 computed by (1). Theoretically,

the generalized Byzantine model that is defined in [2,20] is:

Definition 1 (Generalized Byzantine Model)

wi
t+1 =

{

wi
t+1 if i-th worker is honest

ai �= wi
t+1 otherwise

(3)

Here we denote wi
t+1 as the actual weights received by PS from workeri. In each

iteration of the training phase, some workers may become Byzantine workers and
upload attack weights ai to the PS. As we can see in Fig. 1, worker2 here is a
Byzantine attacker. It uploads an alternative w2

t+1 rather than the actual w2
t+1

to the PS. The PS, at the same time, does not know worker2 is compromised.
It aggregates all the uploaded weights and sends the incorrectly updated weights
back to all workers. According to Theorem 1 in [16], when the aggregation func-
tion is an average function, one Byzantine attacker can take over the aggregation
result and lead the whole training process to an incorrect phase.

3.3 Discussions About Byzantine Problems in Federated Learning

In the introduction, we have discussed two major differences between traditional
distributed machine learning and federated learning. These two differences make
it extremely difficult to solve Byzantine problems in federated learning. For
example, if we assume the number of Byzantine nodes is equal to the number of
honest nodes and let Byzantine nodes have the same data as honest nodes with
different labels, the PS is not able to distinguish which training results are real.
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Thus it is not able to solve Byzantine problems without other information. In
addition, when the dataset is not i.i.d. and the computational results are totally
different from each other, it is very hard for the PS to distinguish between honest
results and Byzantine results.

Therefore, in order to solve Byzantine problems in federated learning, more
conditions are needed. Here like [7] and [21,22], we assume that PS holds a
small reference dataset to solve Byzantine problems in federated learning. Our
theoretical assumptions are defined in Sect. 4.

4 Problem Definition

Let D and Di respectively represent the distribution for the whole dataset and
each worker. We first assume that the distributed environment is heterogeneous.

Assumption 1 (Heterogeneous environment). Updated weights of each
worker are computed based on their private non i.i.d. dataset, i.e.,

wi
t+1 = wt − γt · ∂f(w|ξi)

∂w

∣
∣
∣
∣
wt

, ξi ∼ Di (i = 1, 2, · · · ,m) (4)

Here m is the number of selected workers in the federated learning system.

The second assumption is for the Byzantine environment. The Byzantine
model is given by Definition 1.

Assumption 2 (Byzantine environment). Denote Bt = {i|wi
t+1 �= wi

t+1}.
We have: (i) Bt can be different from each other; (ii) 0 ≤ |Bt| ≤ n.

Assumption 2 states two features of Byzantine attacks. First, Byzantine attacks
can target any machine in the distributed system and can change target machines
during the training process. This means that different sets of workers may be
attacked during different iterations of the training. Second, there is no upper
limit of the number that Byzantine attacks may happen in one iteration, i.e., in
one iteration, it is possible that the majority of workers suffer Byzantine attacks.

Assumption 3 (Reference dataset). PS holds a small reference dataset ξR

such that ξR ∼ D.

Assumption 3 is reasonable because, in practice, PS is usually able to collect
some data. The size of the reference dataset can be very small, for example, 100
to 500 is good enough, so we can assume PS has a reference dataset. We will
talk about the existence of the reference dataset in Sect. 5.1.

With these three assumptions, the problem is finding an appropriate aggre-
gation algorithm A∗(·) and using (2) to update weights until convergence point
wc such that

A∗ = arg min
A(·)

f(wc)

It is obvious that a simple average is not able to resist Byzantine attacks. Our
goal is to find a Byzantine robust aggregation algorithm in federated learning.
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5 Algorithm

5.1 Naive Algorithm

Because the PS has no other information about the dataset but only uploaded
weights, it must have some extra information to filter and aggregate weights.
The key of our algorithm is that PS holds a small reference dataset. As this
reference dataset has the assumption that ξR ∼ D, this guarantees that the
reference dataset has the same distribution as the whole dataset and the most
information about it. The whole dataset here is a pretty tricky definition. Since
some workers are compromised, their subdatasets are inaccessible by the PS.
This implies that the accessible dataset may only contain part of the whole
dataset. However, we still take the whole dataset as the optimization goal, and
the reference dataset is chosen from this distribution even though some data
are hidden by Byzantine attackers. Because the PS collects reference dataset
on its own and PS and all nodes share the same training goal, it is reasonable
to assume there exists such reference dataset. We will use the reference dataset
to examine the weights wi

t+1 uploaded by each worker and aggregate them to
update the weights for each iteration.

The naive algorithm is described in Algorithm 1. Because we do not have
access to each worker, our algorithm is only running on the PS side. In the PS,
its inputs are the weights w1

t+1, w
2
t+1, · · · , wm

t+1 that are computed and uploaded
by the selected workers. The output in one iteration should return the updated
weights to all the workers.

Algorithm 1 Reference dataset based naive algorithm (PS Side)
Input:

Weights computed from worker1, worker2, · · · , workerm: Gw =
{w1

t+1, w
2
t+1, · · · , wm

t+1};
The reference dataset ξR.

Output:
Weights at time t + 1: wt+1.

1: Solve αi by minimizing α-weighted loss: αi = arg min∑
αi=1 f(

∑m
i=1 αiwi

t+1, ξR);

2: Aggregate weights by wt+1 =
∑m

i αiwi
t+1;

3: Send back wt+1 to each worker.

Assume the weights at t + 1 is wt+1, it should be updated by wt using the
α-based weighted average. In each step, we minimize the loss on the reference
dataset ξR to get the corresponding αi. We have:

arg min f(wt+1, ξR) = arg min
αi

f(
m∑

i=1

αiwi
t+1, ξR) (5)

It should be noted that since ξR ∼ D while D stands for the distribution of the
whole dataset, we can think that f(·, ξR) and f(·, ξ) are similar. Therefore our
goal is going to minimize (5) to compute αi.
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Let us take a look at the (5). In fact,
∑m

i=1 αiwi
t+1 is a linear combination of

wi
t+1. If we denote each wi

t+1 as a coordinate in a (m− 1)-dimensional space W,
then solving αi transforms to finding a point in the space W that minimizes a
function f(·|wi

t, ξR). We can use several existing techniques to find this minimal
point. Grid method is an intuitive way with slow but effective performance.
It divides the space into several grid points and tries to find a point with the
lowest loss function value. However, its time complexity increases exponentially
with the dimension. We can also use the classic gradient descent to find the
optimization solution.

In addition, we can show the intuition of the correctness of this algorithm. In
each iteration, we are going to choose the best updated direction of the weights
on the reference dataset. Because this direction is an α-weighted average of all
uploaded weights and it minimizes the loss function, assuming we have solved
αi, we have:

f(
m∑

i=1

αiwi
t+1, ξR) ≤ f(wk

t+1, ξR) (6)

This is because αi is obtained by minimizing the loss function. We can get (6)
by setting the α-weight of w

(k)
t to be 1 and all the other α-weights to be 0. (6)

shows that at least the performance of each iteration on the reference dataset
is better than any worker, including honest workers and Byzantine workers.
Mathematically, using the same idea, we can prove the following lemma:

Lemma 1. The α-weights that we get from Algorithm 1 Step 1 introduce the
smaller loss on the reference dataset than just ideally taking the average of all
the honest weights in each iteration.

Proof. Without loss of generality, denote the first p workers are honest and the
rest are attack workers, i.e., w1

t+1, w
2
t+1, · · · , wp

t+1 are true weights from honest
workers and wp+1

t+1 , wp+2
t+1 , · · · , wm

t+1 are true gradients from dishonest workers.
Then the loss of only taking the average of honest weights losshonest is:

losshonest = f(
p

∑

i=1

1
p
wi

t+1, ξR) (7)

By the definition of α-weights, we have:

f(
m∑

i=1

αiwi
t+1, ξR) ≤ losshonest (8)

This is because the right of (8) is obtained by letting αi = 1
p for i = 1, 2, · · · , p

and all the other αi = 0. Since ξR ∼ D, α-weighted average has smaller loss in
each iteration.
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We know that even if we only take the weights from one of the honest workers,
the training can still converge to a reasonable model. When we have more work-
ers, although there are some Byzantine workers, the loss function examination
on the reference dataset and α-weighted average can help to get a reasonable
model.

5.2 ToFi Algorithm

With the help of the reference dataset, the naive algorithm can defend against
Byzantine attacks. However, this naive solution is hard to implement in practice.
First of all, this method relies too much on the reference dataset. Therefore,
it is more like searching minimal points on the space of the reference dataset
using the computation weight projections from the local dataset to this space.
Secondly, this naive method is lacking in solving the case that in some iterations,
all of the participated nodes are attacked and become malicious. Thirdly, it is
time-consuming to solve the optimization problem in each synchronization.

In order to mitigate these problems, we modify the naive algorithm to our
reference dataset-based two-filter algorithm ToFi. The core ideas of ToFi are
below. First, in order to approximate the α-weight in the naive algorithm, we
adopt the softmax function of the examined loss on the reference dataset for
each worker so that the worker with a smaller loss will get a larger α-weight.
Second, in order to deal with the abnormal loss received by the PS, we adopt
two filters based on the normalized loss and update similarity to remove outlier
updates. The details of our enhanced algorithm are described in Algorithm 2.

Let us take a look at Algorithm 2. It is an adaptive way to compute the
aggregated weight in a naive algorithm. In summary, there are two filters: ref-
erence dataset-based loss filter and update similarity-based filter. Those filters
are designed to remove outlier weights. The detailed discussions are below.

Reference dataset-based loss filter. The reference dataset here is used to
examine the performance of the uploaded weights computed by each node from
their private dataset. Because of the heterogeneity of the data distribution, the
uploaded weights may not be similar to each other. However, in the space of
the whole dataset, the loss function should have a decreasing trend for those
uploaded weights. Because the reference dataset is a subspace of the whole
dataset, it can recognize this trend by examining the loss. Therefore, the ref-
erence dataset is an effective way to find how the uploaded weights perform and
distinguish computational results between Byzantine nodes and honest nodes.
In order to examine the performance of different nodes, the PS firstly computes
the loss li based on the reference dataset. Then it normalizes li and filters out the
weights with relatively larger loss using a loss filter parameter τ . The intuition
behind this filter comes from Fig. 1 in [16] and Fig. 2 in [22], that is, Byzantine
nodes must perform very badly in order to successfully attack the training pro-
cess and therefore, the loss of the reference dataset must be much larger than
those honest nodes. Through the normalization and filter process, it is easy to
remove those outlier weights.
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Algorithm 2 ToFi Algorithm (PS Side)
Input:

Weights computed from worker1 to workerm: Gw = {w1
t+1, w

2
t+1, · · · , wm

t+1};
Weights at time t, t − 1: wt, wt−1;
Learning rate at time t, t − 1: γt, γt−1;
Reference dataset ξR;
Predefined loss filter parameter τ ;
Predefined similarity filter parameter ζ.

Output:
Weights at time t + 1: wt+1.

1: Examine the loss for each worker with reference dataset li = f(wi
t+1, ξR), i =

1, 2, · · · , m;

2: Compute the mean μ = 1
m

∑m
i=0 li and standard deviation σ =

√∑m
i=0(li−μ)2

m
for

li;
3: Compute the normalized loss Li = li−μ

σ
;

4: Filter the uploaded weights with the normalized loss Gf = {i|e−Li > τ};
5: Filter Gf with the similarity of the previous gradient direction Gs = {i|i ∈

Gf , SIM((wt − wi
t+1)/γt, (wt−1 − wt)/γt−1) < ζ};

6: Derive the α-weight aggregation parameters by αi = e−Li
∑

i∈Gs
e−Li

, i ∈ Gs;

7: Update the weights on time t: wt+1 =
∑

i∈Gs
αiwi

t+1;
8: Send back the updated weights wt+1 to each worker.

Update similarity-based filter. After the reference dataset-based loss filter,
we filtered out the uploaded weights who perform badly on the reference dataset.
However, in some extreme scenarios such as all the uploaded weights are from
Byzantine nodes in one synchronization, the normalized loss may have similar
bad performance. Although this scenario may occur with a very low probability
in the real world, for example, 30 out of 100 nodes are Byzantine nodes and in
each iteration, only 10 nodes are selected, then the probability of all selected
nodes are from Byzantine is around 10−6, this still is a concern to pollute the
training process. Therefore we propose an update similarity-based filter to filter
out the weights that change much more than the update in the previous iteration.
We compare the similarity of the update in this iteration and the previous itera-
tion and filter out those who change too significantly. This is reasonable because
the updates in the training process usually have momentum, and thus the update
change is mild. This filter helps to deal with the extreme scenario that all par-
ticipating nodes are Byzantine nodes or some Byzantine nodes are not examined
by the reference dataset. Here we let SIM(x, y) = arccos x·y

||x||||y|| + b · ||x − y||.
This guarantees the angle and distance change of weights in adjacent iterations
are bounded. Even if there are still weights from Byzantine nodes, the influence
on the current training process is not significant.

After these two filters, the weights that have extreme values are filtered out.
Then we aggregate the rest weights using an α-weighted average. Here we use the
normalized loss on the reference dataset to measure the contribution of different
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nodes and set softmax of them as the α-weight. This helps the training process
learn more information from all the uploaded weights in the heterogeneous fed-
erated learning environment. In the next section, we also show ToFi performs
well in experiments with practical conditions.

5.3 Remarks and Comparisons

The naive algorithm actually uses a lot of information provided by the reference
dataset. Therefore the performance depends on how good the reference dataset
is. In fact, this algorithm is like searching the minimum point of a function in
a hyperplane whose coordinates are wi

t+1 and the objective function is the loss
function on the reference dataset. Thus the discrepancy between the loss function
on the reference dataset and the real whole dataset decides the performance. In a
word, the naive algorithm uses the reference dataset to examine the performance
of computation results from each node’s local dataset and search for the best
next move by the information from both the local dataset and the reference
dataset.

Compared to the naive algorithm, the performance of ToFi does not fully
depend on the quality of the reference dataset. ToFi adopts two filters. The first
filter of ToFi is actually a practical modification of the naive algorithm. ToFi
uses this filter to clean out the weights with abnormal loss on the reference
dataset, it is a better and faster way to compute the optimization function in
the naive algorithm. In addition, ToFi adds a second similarity filter to filter
out the abnormal weights whose change is too significant than before. These two
filters can cooperate to filter out those attack information. The reference dataset
in ToFi is more like an examination dataset to remove the outlier weights rather
than a decisive dataset to decide how to aggregate the weights in the naive
algorithm.

6 Experiments

In this section, several experiments are conducted to show the effectiveness of
our algorithm. Because the naive algorithm is slow and inefficient in practice,
we focus our experiments on ToFi.

6.1 Experiment Environments Setting

In order to show how those two major differences (non-i.i.d. dataset and the
possible minority of honest nodes) affect the Byzantine problems, we first com-
pare different algorithms with those two assumptions in the federated learning
environment with all node participation (i.e., all nodes are selected to perform
the computation) and in the end, we show how different algorithms perform in
the federated learning environment with partial node participation (i.e., some
nodes are selected to perform the computation).
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In this experiment, there are two challenges to set up experiment environ-
ments. One is how to simulate a heterogeneous non-i.i.d. environment for our
experiment dataset. The other is how to simulate the Byzantine attacks. In order
to simulate a heterogeneous non-i.i.d. distributed environment, we conduct two
different level methods. The first method is a naive heterogeneous environment.
It is simulated by evenly dividing the whole dataset into slices horizontally and
each worker keeps one slice subdataset. Assume we have n workers and the
whole dataset is ξ = {x1, x2, · · · , xp}, then each worker keeps their subdataset
as ξi = {xp//n·(i−1)+1, · · · xp//n·i}. The other method is an enhanced heteroge-
neous environment. Similar to the previous method, we first sort ξ by the label.
In this case, each subdataset only keeps the data with a similar label. The dif-
ference between ξi should be very significant. As for Byzantine attacks, in our
experiment, we conduct three different types of attacks. The first is the Gaus-
sian attack. We simply generate Gaussian noise as attack weights. The second
method is wrong labeled attack [12,25]. We let the label of the Byzantine work-
ers’ data be randomly placed, then the Byzantine worker just normally computes
the weights, and upload results with wrong labeled training results to the PS.
The last method is one bit attack. For the uploaded weights, we only change
one dimension of it with a random value. Although our algorithm is capable of
defending Byzantine attacks in the bootstrap scenario, for simplicity, we fixed
the Byzantine workers in the experiment. In fact, the bootstrap scenario should
have a better performance because no subdataset is hidden by the Byzantine
workers.

In our experiments, we use two most common datasets in Byzantine tol-
erant distributed machine learning area: MNIST dataset [23] and CIFAR-10
dataset [8]. Both datasets have 10 categories of labels. We use a server with 4
Nvidia GeForce GTX 1080Ti GPUs to simulate our experiments. For the fed-
erated learning environment with all node participation, we deploy 8 workers
for the CIFAR dataset. Each GPU keeps 2 workers. For the federated learning
environment, we deploy 100 workers, and 10 workers are randomly selected in
each iteration. In our experiments, we will compare our α-weighted based algo-
rithm with four other algorithms: (i) simply average aggregation with filtering
out all Byzantine faults; (ii) score based algorithm Krum [2]; (iii) median-based
algorithm GeoMedian [3]; (iv) distance-based algorithm FABA [16]. In the feder-
ated learning environment with partial node participation, we also compare with
another reference dataset-based algorithm Zeno [22]. For ToFi, we set the loss
filter parameter τ = 0.8, similarity filter parameter ζ = 2, b = 1 and randomly
select 500 data from the test dataset as reference dataset and leave the rest as
test dataset. We run all 5 algorithms with different Byzantine environments and
Byzantine attacks described above.

6.2 Federated Learning with All Node Participation

We only show the results of CIFAR-10 here. The results of MNIST are presented
in the Appendix.
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Naive Heterogeneous Environment. We first compare ToFi with three clas-
sic methods and ground truth (filter out all Byzantine attacks, average aggre-
gation) in the three Byzantine environments we described above. We choose
ResNet-18 [5] as our neural network, 0.001 as the learning rate, and SGD with
momentum and weight decay as optimizers. We use 10 as interval length to sim-
ulate a more general scenario. Because we just want to compare the effectiveness
of defending against attacks, we do not optimize for the best accuracy. We first
run experiments on naive heterogeneous environments along with no Byzan-
tine environment, the results are in Fig. 2. As we can see from Fig. 2, Krum
performs badly on defending against Byzantine attacks in naive heterogeneous
environments. ToFi and FABA have good and stable performance on Gaussian
attack and wrong label attack, but ToFi beats FABA on one bit attack. This is
because in the naive heterogeneous environment, although the dataset is parti-
tioned into slices, it is still randomly assigned. GeoMedian beats ground truth
for some epochs, but the performance is really unstable in some epochs. As for
no Byzantine environment, all methods perform well except Krum.

Fig. 2. Experiment results of different algorithms for Gaussian, wrong label, one bit
Byzantine attacks and no Byzantine attack scenario on naive heterogeneous environ-
ment

Enhanced Heterogeneous Environment. We then compare different algo-
rithms in the enhanced heterogeneous environment. Because the subdataset in
each worker is very different and any complicated neural networks with batch
normalization do not perform well in this environment, we use a LeNet [23] in
this scenario. Using group normalization [15] to substitute batch normalization
in complicated neural networks can be a good solution, but as we said that we
only want to compare the performance of defending against attacks rather than
chasing a good accuracy, we choose to use a simple neural network. The results
are in Fig. 3. From Fig. 3, we can see that only ToFi and FABA are capable of
defending against Byzantine attacks in this scenario, among which ToFi per-
forms slightly better than FABA in the Byzantine environment and FABA is a
little bit better than ToFi in no Byzantine environment. This is because that, in
no Byzantine environment, the losses for all nodes are similar, so ToFi may filter
out some useful information by both filters. Krum and GeoMedian have really
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Fig. 3. Experiment results of different algorithms for Gaussian, wrong label, one bit
Byzantine attacks and no Byzantine attack scenario on enhanced heterogeneous envi-
ronment

bad performance in this environment. We can see that all algorithms do not per-
form very well compared to the ground truth, it is because, in this environment,
a Byzantine attack may hide some labels of data such that the training data is
missed and it will affect the performance.

Majority Attack. In order to simulate the majority attack, we choose 5 of 8
workers as Byzantine workers and use the same settings with the naive hetero-
geneous environment. Here we only examine the Gaussian attack because the
other two types of attacks have similar performance. The results are in Fig. 4.
It is obvious that Krum, GeoMedian, and FABA cannot defend against major-
ity attacks. This is easy to understand because they only use information from
uploaded weights. When the majority of workers are malicious, those methods
will only take the malicious information as honest information and the whole
training process will be dominated by Byzantine workers. ToFi uses the infor-
mation from the reference dataset, so it is still able to defend against this kind
of attack.

Fig. 4. Experiment results of majority Gaussian attack on naive heterogeneous envi-
ronment
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6.3 Federated Learning with Partial Node Participation

We compare Krum, GeoMedian, FABA, and Zeno with ToFi in the federated
learning environment. In our setting, 30% of 100 nodes are Byzantine nodes
and in each iteration, 10 nodes are randomly selected for computing. Here we
use CIFAR-10 dataset, Gaussian attack, and enhanced heterogeneous environ-
ment. For other Byzantine attack types, the performance is similar. For FABA
and Zeno that need to estimate the number of Byzantine nodes, we set it as
30% × 10 = 3 in each iteration. The results are in Fig. 5. We can see that ToFi
outperforms all other algorithms. It is because those algorithms are not designed
to solve the two major differences in federated learning. When the distribution
of each node’s dataset is not i.i.d., Byzantine nodes may take the majority in
some iterations, and the number of Byzantine nodes changes during the training,
the performance downgrades a lot.

Fig. 5. Experiment results of Gaussian attack on enhanced heterogeneous environment
in federated learning

7 Conclusion

In this paper, we address a practical issue of Byzantine attacks in federated
learning. This is very different from Byzantine problems in classic distributed
machine learning because, in federated learning, the distribution of the dataset in
each worker is non-i.i.d., Byzantine workers can be the majority and the number
of Byzantine nodes can change in different iterations. As far as we know, our
paper is the first work to address this problem. We propose a naive algorithm and
modify it to a reference dataset-based two-filter algorithm ToFi to adaptively
filter out outlier computational results and take an α-weighted average based on
the loss of all the uploaded weights from all involved workers as the aggregation
results in each iteration. In our experiments, we compare ToFi with four existing
algorithms in different environments with different kinds of Byzantine attacks
and show the performance of our algorithm.
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A More Experiments on MNIST

All of the experiments in this section have the same setting as the main paper.
We will mark any differences if there are. In this section, we supplement some
results of experiments on the MNIST dataset and more workers [23]. The model
we are using is LeNet-5 [23].

A.1 Federated Learning with All Node Participation

Naive Heterogeneous Environment. We compare our ToFi with three clas-
sic methods and ground truth (filter out all Byzantine attacks, average aggre-
gation) in three Byzantine environments (Gaussian, wrong label, and one bit)
we described in the main paper and no Byzantine environment. The distributed
environment that we use here is the naive heterogeneous environment. We use
10 as interval length. The results are in Fig. 6. From this figure, we can see that
the performance of Krum is not as good as ToFi, GeoMedian, and FABA, while
these three methods have very similar performance in the naive heterogeneous
environment for these three different types of attacks. As for the no Byzantine
scenario, the performances are similar among ToFi, GeoMedian, and FABA,
while Krum has a lower accuracy than those algorithms.

Fig. 6. Experiment results of different algorithms for Gaussian, wrong label, one bit
Byzantine attacks and no Byzantine attack scenario on naive heterogeneous environ-
ment for MNIST dataset

Enhanced Heterogeneous Environment. In order to show the difference, we
compare ToFi with three classic methods and ground truth (filter out all Byzan-
tine attacks, average aggregation) in three Byzantine environments (Gaussian,
wrong label, and one bit) and no Byzantine environment. This time we change
the distributed environment to the enhanced heterogeneous environment. We use
10 as interval length. The results are in Fig. 7. From this figure, we can see that
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ToFi has much better performance than Krum, FABA, and GeoMedian. GeoMe-
dian has the second-best performance for Gaussian and one bit attacks. FABA
has the second-best performance for wrong label attacks and no Byzantine sce-
nario. But both of them have a significant accuracy decline than our algorithm.
Krum has the worst performance in the enhanced heterogeneous environment.

Fig. 7. Experiment results of different algorithms for Gaussian, wrong label, one bit
Byzantine attacks and no Byzantine attack scenario on enhanced heterogeneous envi-
ronment for MNIST dataset

MoreWorkersExperiment. Because of the limitation of the hardware, we can-
not make experiments for more workers than 8 on the CIFAR-10 dataset. Here
we only examine the scenario with more workers on the MNIST dataset. In this
experiment, we choose 32 workers, among which 8 out of 32 workers are Byzantine
workers. To show the difference, we examine this setting in the enhanced hetero-
geneous environment. The results are in Fig. 8. From Fig. 8, it has a very similar
performance with the 8-worker scenario. ToFi still outperforms other algorithms.
For the Gaussian attack, ToFi has a similar performance with FABA and beats
all other algorithms. For wrong label attack and one bit attack, ToFi performs
much better than others. The best performance here is not as good as no Byzan-
tine attack case. It is because in the experiment we fixed the workers who suffer
Byzantine attacks. Since in this experiment we use the enhanced heterogeneous
environment, the data with some labels may be hidden by the Byzantine workers.
This will cause a decrease in the accuracy for the best performance.

Fig. 8. Experiment results of different algorithms for Gaussian, wrong label and one bit
Byzantine attacks on enhanced heterogeneous environment with 32 workers for MNIST
dataset
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A.2 Federated Learning with Partial Node Participation

We compare Krum, GeoMedian, FABA and Zeno with ToFi in the federated
learning environment using similar setting with CIFAR-10 dataset. The results
are in Fig. 9. We can see that ToFi outperforms all other algorithms. All the
other algorithms are not designed for federated learning and thus have very bad
performance.

Fig. 9. Experiment results of Gaussian attack on enhanced heterogeneous environment
in federated learning
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