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Global Clock Synchronization
In Sensor Networks

Qun Li, Member, IEEE, and Daniela Rus, Member, IEEE

Abstract—Global synchronization is important for many sensor network applications that require precise mapping of collected sensor
data with the time of the events, for example, in tracking and surveillance. It also plays an important role in energy conservation in MAC
layer protocols. This paper describes four methods to achieve global synchronization in a sensor network: a node-based approach, a
hierarchical cluster-based method, a diffusion-based method, and a fault-tolerant diffusion-based method. The diffusion-based
protocol is fully localized. We present two implementations of the diffusion-based protocol for synchronous and asynchronous systems
and prove its convergence. Finally, we show that, by imposing some constraints on the sensor network, global clock synchronization
can be achieved in the presence of malicious nodes that exhibit Byzantine failures.

Index Terms—Sensor networks, fault tolerance.

1 INTRODUCTION

ANY emerging sensor network applications require

that the sensors in the network agree on the time. A
sensor system with global clock will be capable of
coordinated operation and data synthesis for future
predictions. Consider, for example, a vehicle tracking
application. Each sensor may know the time when a vehicle
is approaching. By matching the sensor location and
sensing time, the sensor system may predict the vehicle
moving direction and speed. Without a global agreement on
time, the data from different sensors cannot be matched up.
Most applications that require the coordination of locally
sensed data (e.g., environment monitoring) or coordination
of mobile nodes (e.g., localization in the presence of
mobility) are facilitated by the ability of the system to
achieve global clock synchronization.

Clock synchronization has been a seminal topic in
distributed systems [9], [13], [21], [18], but extending these
results and designing clock synchronization algorithms in the
context of a sensor network is challenging for several reasons.
First, traditional distributed systems assume that all the
nodes in anetwork can communicate directly with each other.
A sensor network, however, is subject to spatial constraints.
Nodes only communicate directly with their neighbors.
Communication between two remote nodes is accomplished
by message relay using intermediate nodes. Second, nodes in
a sensor network generally rely on less information about the
system than more traditional distributed systems, where
nodes have access to the clock values of all the other members
of the system, including the faulty nodes. Third, a sensor node
has only limited processing capability. The computation-
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intensive signature algorithms, such as RSA, are not suitable
for sensor networks. Instead, some light-weight algorithms
(such as using a one-way key chain or a key management
scheme) are more suitable. The spatial constraints, the
communication cost and delay, and the diminished compu-
tational capability are key reasons why localized algorithms
that involve lightweight computations are preferred for
sensor networks.

This paper aims to explore clock synchronization in the
context of the sensor network paradigm. We discuss four
new methods for global synchronization in a sensor
network called

the all-node-based method,

the cluster-based method,

the fully localized diffusion-based method, and
the fault-tolerant diffusion-based method.

The all-node-based method assumes the transmission
time of a packet across a hop is the same for all nodes. A
packet is transmitted around a cycle composed of all the
nodes in the network. The packet transmission time is then
amortized across the cycle. This method does not scale well
because it requires the nodes in the entire network to
participate in the synchronization process at the same time.
To address scalability, we introduce a hierarchical method.
Clusters are used to organize the whole network. The
cluster heads are synchronized using the first method. A
second synchronization round synchronizes the members
within each cluster with their cluster head. Although the
all-node-based method and the cluster-based method are
not localized (because they involve all the nodes in the
system), they have some interesting properties with respect
to reducing the synchronization error.

The third protocol is a fully localized diffusion-based
method with both synchronous and asynchronous im-
plementations in which each node exchanges and updates
information locally with its neighbors. No global opera-
tions are required. In the synchronous rate-based algo-
rithm, neighboring nodes exchange clock reading values
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proportional to their clock difference in a set order. A
more practical variant is the asynchronous implementa-
tion of the diffusion-based approach in which a node can
synchronize with its neighbors at any time in any order.
The asynchronous algorithms can also adapt to limited
node failure, adverse communication channel, and node
mobility. The fault-tolerant diffusion-based protocol goes
one step further in assuming the presence of malicious
nodes that exhibit Byzantine faults.

The synchronization algorithms described in this paper
can be extended to data aggregation problems in sensor
networks, e.g., finding the average, highest, and lowest
sensor data reading among all the sensors in the whole
network. If the sensor data is attached to the message used by
the all-node-based synchronization algorithm, the sum of the
readings (thus the average reading), the highest, and lowest
reading over the whole network can be computed post hoc or
on the fly. Similarly, the diffusion-based algorithms can also
be extended to perform these computations.

This paper is organized as follows: Section 3 presents the
problem setup. Section 4 discusses the all-nodes synchro-
nization scheme that requires all the nodes to participate in
global synchronization upon a node’s request. Section 5
describes the hierarchical cluster-based scheme that reduces
the number of the participating nodes. Section 6 gives a
synchronous diffusion-based algorithm that is fully loca-
lized. Section 7 discusses two asynchronous diffusion-
based variants. Section 8 presents results from simulation
experiments with the asynchronous averaging algorithm.
Section 9 extends our diffusion algorithms to the case of
Byzantine faults.

2 RELATED WORK

Synchronization has been studied for a long time in
traditional computer and embedded systems [22], [23],
[20], [7], [26]. The classical paper on logical time [19]
presented the solution to causal ordering of events in a
distributed system. The classical work on clock synchroni-
zation in the presence of Byzantine fault in distributed
systems includes [9], [13], [21], [18]. Lamport and Melliar-
Smith [18] proposed using the nodes whose values are in
the range of the middle one third to alleviate the influence
of the malicious nodes. More recently, synchronization in
sensor networks has also been studied [11], [10], [12], [27].
Elson and Romer [11] discuss the design principles for
synchronization in sensor networks: use multiple, tunable
modes of synchronization, avoid maintaining a global
timescale for the entire network, use post-facto synchroni-
zation, adapt to application, and exploit domain knowl-
edge. Elson et al. [10] propose a scheme called Reference-
Broadcast Synchronization (RBS), in which a node sends
reference broadcast beacons to its neighbors using physical-
layer broadcasts. RBS gets around the nondeterminism of
packet send time, access time, and propagation time, while
depending only on the packet receive time. Since the packet
receive time is the same for all receivers, this reference
broadcast packet can be used to synchronize a set of
receivers with one another. This scheme can also be
extended to a multihop scenario. These two papers provide
important practical building blocks for sensor network
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synchronization. However, they do not consider global
synchronization over the entire network.

There has been some previous work on fault-tolerant
sensor network design, including Krishnamachari and
Iyengar’s distributed Bayesian algorithms for fault-tolerant
Event region detection in sensor networks [17]. Brooks et al.
[6], [5], [4] were visionary in considering the sensor fusion
problem 10 years ago. Many techniques used in these
papers are useful and relevant to current sensor network
research. For example, [6] surveys several algorithms on
clock synchronization algorithms with Byzantine faults (in
terms of approximate agreement and inexact agreement)
and proposes a hybrid algorithm to fuse sensor data to one
reading for all sensors in the presence of Byzantine faults.
The proposed algorithm gives the best accuracy possible
and increases the precision of the data in the distributed
sensors based on the assumption that all sensors are
connected and can communicate directly with each other.
In this paper, we use a similar assumption: One third of the
nodes should be good. However, we consider the problem
in a modern sensor network scenario in which nodes can
only communicate locally to their neighbors. The localized
communication makes the problem much harder in that:
1) we have to compute a valid consensus locally and 2) the
local consensus must be conveyed to other parts of the
network; this is even harder because the relay nodes may be
faulty or malicious.

The main idea of time-diffusion synchronization [28] is
to start from a master node, adjust the clocks of its
neighbors, and diffuse this clock adjustment to other nodes.
This paper assumes no specific master nodes and diffusion
nodes: Every node is a master node or a diffusion node in a
broad sense. This property enhances the robustness of the
algorithm. Furthermore, this paper also present an algo-
rithm that explicitly addresses Byzantine failures. Karp et al.
[16] proposed an optimal and global time synchronization
using reference signals to synchronize the sensors. Un-
fortunately, the proposed method requires global informa-
tion: The measured clock readings must be known to all
nodes in order to compute the optimal values and the rates
must be the same for all clocks. It is unclear if this method
can be implemented in a localized way. Our work differs
from time-diffusion synchronization and optimal and
global time synchronization in that the proposed schemes
here are fully localized and fault-tolerant.

Diffusion methods have been used in other applications,
such as load balancing [8], [3], [30], [31], [1], [29]. Diffusion-
based load balancing assumes the computation load on the
computers is fine enough to be treated as a continuous
quantity. By using diffusion, each computer can give its load
to other connected computers or take load from connected
computers if it is underloaded. Cybenko [8] and Boillat [3]
analyzed the diffusion method in load balancing. They
identified the sufficient and necessary conditions for con-
vergence. The time complexity of the diffusion method was
analyzed in [29]. Initial results about the asynchronous
diffusion method are provided in [1], which gives the
convergence proof of the asynchronous rate-based protocol,
but not the average protocol. In this work, we prove the
convergence of the asynchronous average protocol using a
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different method and show that the same method is easily
tweaked for the convergence proof of the asynchronous rate-
based protocol. These load balance algorithms fit into the
robust interconnection network well. However, further
investigation is needed to understand their application to
sensor networks, where the communication channel is not
perfect, nodes are prone to failure, and the system may be
mobile.

Another consideration for the design of fault-tolerant
protocols for sensor networks is sensor network security
support. Work by Zhu et al. [32], [33] describes the basic
security support for different sensor network applications.
Work by [24] introduces the idea of using hierarchies for
fault-tolerant protocols.

3 THE SYNCHRONIZATION PROBLEM

The time of a computer clock is measured as a function of
the hardware oscillator C(t) =k f:] w(T)dr 4+ C(ty), where
w(7) is the angular frequency of the oscillator, k is a constant
for that oscillator, and ¢ is the time. The change of the value
C(t) dictates how events (or interrupts) can be captured.

The clocks in a sensor network can be inconsistent due to
several reasons. 1) The clock may drift due to environment
changes, such as temperature, pressure, battery voltage, etc.
This has been a research topic in the operating system and
Internet communities for many years. 2) The nodes in a
sensor network may not be synchronized well initially,
when the network is deployed. The sensors may be turned
on at different times and their clocks may be running
according to different initial values. 3) The clock can also be
affected by the interaction of other components of the
sensor system. For example, the Berkeley Mica Mote
sensors may miss clock interrupts and the chance to
increase the clock time value when they are busy handling
message transmission or sensing tasks.

We explore how global synchronization can be achieved
in sensor networks. We assume the hardware clock is not
precise and nodes can read the current clock time and
adjust the clock time at any time. The clock, however, has
some granularity in its time reading (as coarse as a second
or a fraction of a second), due to the hardware clock
resolution or power conservation issues.' The sensor cannot
determine the time elapsed in between the two ticks.

More specifically, we aim to provide coarse synchroniza-
tion to many sensor network applications that need only
low precision synchronization. Our goal is to synchronize
the clocks in the whole network such that all the clocks have
approximately the same reading at a global time point,
irrespective of their relative distance. As a result, our
proposed algorithms can be run in a less frequent fashion to
alleviate the system load and, in turn, conserve energy.

4 ALL-NODE-BASED SYNCHRONIZATION

In this section, we describe a method to globally synchro-
nize the clocks in a sensor network called all-node-based
synchronization. This method is used on all the nodes in the

1. A high frequency of clock ticks leads to a much higher power
consumption; a reasonable frequency should be determined in a task-
directed fashion.
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system and it is most effective when the size of the sensor
network is relatively small. In future sections of this paper,
we describe ways to address scalability.

We assume the clock cycle on each node is the same. We
believe this is a reasonable assumption since most sensors
are programmed with the same parameters prior to
deployment. We also assume the clock tick time is much
longer than the packet transmission time.” Finally, we
assume the message transmission time over each link and
handling time on each node is roughly the same. This time
can be obtained when the network traffic is small. That is,
upon its initial deployment, a sensor network allows
sufficient time solely for clock synchronization.

The key idea is to send a message along a loop and record
the initial time and the end time of the message. Then, by
using the message traveling time, we can average the time to
different segments of the loop and smooth over the error of
the clocks. Algorithm 1 summarizes this method.

Algorithm 1 All-Node-Based Synchronization Algorithm in a
Sensor Network

1: Find a ring that passes each node at least once that need
to be synchronized (suppose the ring is composed of &
nodes)

2: A message is passed along the ring starting from an
initiating node

3: Upon receipt of the message, each node records its cur-
rent local time (¢;) and its order (¢) in the ring. If the
node receives messages more than once, it chooses one
arbitrarily.

4: After the initiating node receives the message, it sends out
another message informing each node on the ring the start
time (ts) and the end time (¢.) of the previous message

5: for each node, to adjust its local time ¢ do

6 if3Im, m41> Le=betl (1) > ¢; > Ll (1) >

m then

7: node n; adjusts its time to t —t; +¢s +m

8 ifIm, m1>Lemtetl (1) >y > Lt (1) >
m — 1 then

9: node n; adjusts its time to t — t; +t5 +m

Algorithm 1 times how long it takes to route a message
along specified paths in the sensor system and uses this
difference iteratively to correct the time for all the nodes
along the path. In order to synchronize the entire network,
paths need to be designed so that they contain all the nodes,
but a specific node may appear multiple times. The
synchronization is divided into two phases. In the first
phase, a synchronization packet is sent along a ring. The
initiating node of the packet records its local starting time
and the ending time of the packet. Each other node simply
forwards the packet and records how many hops the packet
had traveled thus far. In the second phase, a clock
correction packet is sent along the same ring. This packet
informs each node of the packet starting and ending time
for the initiating node and the total hops in the cycle. Each
node then computes its clock adjustment.

Consider the example in Fig. 1. Node n; initiates clock
synchronization and generates a message with its current
time, t,, attached. The time t, is the exact tick time of

2. Higher clock frequency consumes more power, therefore, in many
applications, the clock rate is set to be slow.

3. During the synchronization time, all other messages except the
synchronization messages are suppressed for transmission.
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k k-1

Fig. 1. A clock synchronization message traveling along a loop
originated from node n; and then back to node n;.

node n;’s local clock. Node n; sends out the message to
node ny, node n, relays the message to node ns, etc., finally,
node n; returns the message to the originator of the
message, node n;. The message may travel to a node more
than once, that is, some nodes on this path may be visited
repeatedly. Upon receipt of a message, each node keeps a
record of the time of its clock and the time attached to the
message when the message was created. Node n; gets the
message start time ¢, and the ending time .. It computes the
difference ¢, — t, and forwards it to the same node as for the
previous message. The message will travel along the same
path; this time, each sensor will try to get the number of
hops to node n; (including node n;) by putting a hops item
in the message. For simplicity, we use the node id as the
number of hops from node n;. Each node then adjusts its
clock as described in Algorithm 1. When a node appears
twice in the cycle, it arbitrarily chooses its hops i from the
two hop numbers and the corresponding ¢;. In lines 7 and 9,
a node adjusts its clock using different value of m obtained
from lines 6 and 8, respectively.

Theorem 1. After running Algorithm 1, the relative clock error
between any two nodes is at most 3A.

Proof. Without loss of generality, we consider the elapsed
time as node ny’s time.

For any n;, let the time when the first message arrives
be t;. The node will adjust its clock at the next tick after
receiving the message. We know the time the message
travels from n; to n; is t; :HT“’ (i —1), where 0 <
a < 1 (because, when the message returns to n;, the clock
has already ticked time t.), which is between t! =
et (4 — 1) and 7 = =L ( — 1). The message arrival

time is ¢, +t;. t —t} =51 <1, so they must both be in
the range of two integers [m,m + 1] or t!} € [m —1,m],
while t? € [m, m + 1] (see Fig. 2).

LoIf ml>btbtl (1) > > b (- 1) >m,
n; adjusts its next clock tick to t;+m+ 1. The
next tick of n; after t, +t; and before t, +¢; + 1
must be between ¢, + t} and ¢, + t? + 1 in ng time,
which must be between ¢, +m and t, + m + 2, so
the maximal error to the time of n; is 1 tick time,

that is, A.
2. If
te —ts+1 .
m—l—lZ%(z—l)Zm
to—ty
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Fig. 2. Node n; receives the synchronization message at time ¢; such
that t! <t; <t2. Since |t? —t!| < 1, t} and t? are either in the range of
two consecutive integers or separated by only one integer. Those two
figures describe the two cases. On the second line in each figure, the
next tick of n; can be at any point between ¢} and ¢ + 1. At that point, it
adjusts its time to m + 1.

n; adjusts its next clock tick to ¢;+m+ 1. The
next tick must be between ¢, + t} and t, + t? +1,
which must be between t;+m—1 and
ts +m+ 2, so the maximal error to the time of
ny is 2 tick time, that is, 2A.

For the first case, the error (the value obtained by
subtracting n,’s time from n;’s time) is in the range of
[—A, 0]. For the second case, since ¢} — ¢t} = 51, we have
t7 —m, 7t and m —t},51, thus [t; — m| <51, The next
tick must be between t, +m — % and t, +m + % +1,
so the maximal error is

<t5—|—m+1— (ts+m—121)>A: <1+Z;1>A.

The error is in the range of [—(1 +51)A, SLA]
Since the next tick of any sensor is between m — 1 and
m + 2, themaximal error between any of two sensorsis 3A.
To be more precise, we have the following: Since all
the absolute errors (the value obtained by subtracting
n1’s time from the n;’s time) are in the range of [-A, 0] or
[—(1 + 51 A, 5L A], the maximal error between any two
nodes must be (1 + 2(i;1))A, which is obtained when one
node has the error of —(1+%1)A and another one has
the error of LA, O
If all the synchronizations are referenced to the same
node, e.g., n;, then the maximal error to that node is
[-(1+5HA, 51 A, where k is the minimal number of
nodes synchronized in each synchronization round (ex-
cluding the reference node).

5 CLUSTER-BASED SYNCHRONIZATION

The synchronization method proposed in Section 4 has a
provable bound, but it requires all the nodes to participate
in one single synchronization session. This can be mitigated
using a hierarchical approach. More specifically, if the
network can be organized into clusters, we propose to
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synchronize the whole network using Algorithm 2. In
Algorithm 2, we first use the same method as in Algorithm 1
to synchronize all the cluster heads by designing a message
path that contains all the cluster heads (we call them the
initiators base). Then, in the second step, the nodes in each
cluster can be synchronized with their head.

Algorithm 2 The Cluster Synchronization Algorithm

1: Run any clustering algorithm to organize the network into
clusters

2: Synchronize the cluster heads with a base using Alg. 1

3: for each cluster do

4:  Synchronize the cluster members with the cluster head

This method can adapt to different clustering schemes. A
cluster can be composed of the nodes within the transmis-
sion range of the cluster head; it can also be comprised of
the nodes within some geographical area called a zone. For
the first type of clustering, synchronization can be done
with RBS. First, a reference broadcast is sent by the head to
synchronize all the other cluster members. Then, any other
node in the cluster sends out another reference broadcast to
synchronize. The clock difference can be calculated with
these two broadcasts and all the nonhead members can
adjust their clocks according to the head’s clock. In a zone
clustering, we can use the same method as Algorithm 1 to
first design a cycle that includes all the nodes of the cluster
and synchronize them all. The head of the cluster will be the
initiator of the intracluster synchronization.

Using Algorithm 1 in the two hierarchy stages increases
the flexibility of the algorithm, but decreases the precision of
the synchronization. Consider the base, ny, a cluster head, n;,
and n;;, amember of n;’s cluster. Suppose ¢ is the order of n; on
the intercluster synchronization path of length k and j is the
order of node n;; on the intracluster synchronization path of
length m. By the previous section, we have ¢, — ¢, €
[—(1+EYA,2LA] and ¢ — t; € [—(1+ LA, LA Thus,
theerror t;; — ty € [—(2 + 5L+ ZHA, (22 + 21 AL The max-
imal error is 6A.

6 SYNCHRONOUS DIFFUSION

6.1 Why Use Diffusion?

Our previous methods use global time information sent to
all the nodes and are not scalable for very large networks.
The initiating node may encounter failure and, thus, the
approach is not fault-tolerant. The nodes that participate in
the synchronization must execute the related code approxi-
mately at the same time, which may be too hard in a large
system. We now introduce a diffusion method that is fully
distributed and localized. Synchronization is done locally,
without a global synchronization initiator. It can also be
done at arbitrary points in time as opposed to the strict
timing requirements of the previous methods.

The diffusion method achieves global synchronization by
spreading the local synchronization information to the entire
system. The algorithm can choose various global values to
synchronize the network provided that each node in the
network agrees to change its clock reading to the consensus
value. An easy option is to choose the highest or lowest
reading over the network. Synchronization to the highest or
lowest value entails a simple algorithm. However, if we
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allow for faulty or malicious nodes, such a node may
impose an abnormally high or low clock reading, which is
likely to ruin the synchronization. To make the algorithms
more robust and reasonable, the following algorithms use
the global average value as the ultimate synchronization
clock reading. The main idea of the algorithms is to
average all the clock time readings and set each clock to
the average time. A node with high clock time reading
diffuses that time value to its neighbors and levels down
its clock time. A node with low time reading absorbs
some of the values from its neighbors and increases its
value. After a certain number of rounds of diffusion, the
clock in each sensor will have the same value.

We assume the existence of two basic operations: 1) the
neighboring nodes compare their clock readings at a certain
time point and 2) the nodes change their clock accordingly.
This, however, may be a problem because the clock
comparison and the clock update cannot be done simulta-
neously (especially when clock comparison may take several
steps). The clock updates based on the clock readings of the
comparison time will be incorrect. The solution is to ask each
node to keep arecord of how much time elapses after the clock
comparison on each node and use this time in the clock
update. For ease of explanation, our algorithms use the two
operations with this implementation fix.

The diffusion synchronization method can be viewed as
a high level framework for global synchronization. The low
level implementations can be different as long as they
provide a way to compare the clock difference among all
the neighbors. For example, we can use the RBS scheme [10]
as the low level component. When a node (say A) intends to
do local synchronization, it sends out a reference broadcast
to all its neighbors. The neighbors record the time of the
reception time, so the clock differences among these
neighbors can be computed. Next, a node that is the mutual
neighbor of both A and any of A’s neighbors (say B) sends
out another reference broadcast so that the clock difference
between A and B can be computed. By way of B, we can
achieve the clock comparison among A and any of its
neighbors. We can choose a different low-level component.
For example, assuming fixed and known transmission time
(say to) of a packet between neighbors, the clock reading
exchange can be done by broadcasting a packet with the
sender’s current time. Upon receipt of the packet, each node
records its local time (say ¢;) and the packet sending time
attached to the packet (say t;). Thus, the clock difference
between the sender and the receiver can be computed as
ty —t — to.

6.2 The Rate-Based Synchronous Diffusion
Algorithm

We assume that we have n sensors in the system. This
network is represented as a graph G(V,E) in which the
vertices are the sensors and the edge relationship is defined
by the sensor communication connectivity. Each node has a
corresponding vertex in the graph. If two sensors are within
transmission range of each other, their corresponding
vertices n; and n; have an edge to connect them.

Let C=(c,c,-- '7CZ)T (where T denotes matrix or
vector transposition) contain the time readings of the

sensors in the network at time ¢, where ¢! is the clock
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reading for sensor n; at time t (for simplicity, use ¢;). If n;
and n; are within their transmission range and ¢; > ¢;, we
want to decrease ¢; and increase c;. Since we are computing
the average value for all the sensors in the system, the
decrease of ¢; should go to the increase of ¢; to maintain the
conservation law. Suppose that the diffusion value is
proportional to ¢; —c¢; and the diffusion rate is r;; > 0.
(rij =0 if n; and n; are not neighbors. r;; can be chosen
randomly provided }_.; 7;; < 1.) Sensor n; will lose some
of its clock value, r;; - (¢; — ¢;), to sensor n; and it will lose a
total of >, ;- (¢ — ¢;) to all its neighbors (or gain some
value if that sum is negative). Its value will become ¢; —
DTG =) = (L= 2 pumig) - € F 2oy T ¢
Algorithm 3 shows the diffusion method. Synchronization
between a sensor and its neighbors is done by clock
comparison and update operations. Because we only con-
sider the time difference between two sensors instead of the
absolute clock time value, it is not required that all the sensors
must do this local synchronization at the same time. In line 6,
the exchanged value between sensor n; and its neighbor n; is
proportional to the time difference between them.

Algorithm 3 Diffusion algorithm to synchronize the whole
network

1: for each sensor n; in the network do

2 Exchange clock times with n;’s neighbors

3:  for each neighbor n; do

4 Let the times of n; and n; be ¢; and ¢;

5: Change n;’s time to ¢; + 745(c; — ¢;)

6 Change n;’s time to ¢; 7Zall njs neighbors n; Tig* (Ci -

¢5)

The clock value diffusion formula can be described by
applying the following matrix R on the clock reading vector:

T, T2, 5 Tin

R— T21, T22, v, Top
B

Tnly, Tn2, 5 Ton

In the matrix, rjj =r;; r; =0 if n; and n; are not
neighbors, so

7’7j7j:1— Z 7“7;]':1—27‘7jj.

j(ig)eE i

Every time we run Algorithm 3, we apply matrix R to the
clock reading vector. More precisely, C*™' = R-C!. Let
0 =(h,e,---, )" be the initial clock reading distribution
at time 0. We have C'™' = R'*1.(C% We hope this time
reading vector will become C* = (<, &, -, )" (where

i_; €/n) after running the algorithm. We call C* the
synchronized clock distribution. It is easy to see that, when
the sensors achieve C%, this value is stable. Note that C? is
an eigenvector of matrix R with respect to eigenvalue 1.

&=

6.3 Convergence of the Rate-Based Synchronous
Algorithm

In this section, we show that Algorithm 3 achieves global

synchronization in the entire network. More specifically, the

time vector C*™ = RI*!. C° converges to the synchronized

clock distribution C*. We first summarize the convergence
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result of our algorithm, which has the flavor of convergence

of a Markov chain. We then discuss the convergence speed.
We assume the graph we derived from the network is

strongly connected, so the matrix R is irreducible. R is also

symmetric and positive because 7;; = r; > 0. The eigenva-

lues of a symmetric matrix are real. Using the Perron-

Frobenius theorem [14], the matrix R has the following

eigenvalues: 1 =X\ > X > A3 > --- > )\, > -1

Theorem 2. The convergence of Algorithm 3 depends on the
eigenvalue of the second largest absolute value, that is,
Amaz = maz(| Az, | An|). If Apax < 1, the iteration will con-
verge to the synchronized clock vector.

Proof. Suppose A,.; <1. Let R have n normalized
independent eigenvectors ej, e, - -, e, corresponding to
the eigenvalues A, Ao, Az, -+, A, Let A= (e1,e2, -+, €,).
We have R = A™'DA, where D is the diagonal matrix of
eigenvalues D;; = \;. R = A7'D'A=3"" | XIM;. R will
approach M; if A, < 1. Since C" can be written as
St ae;, we have RCY =37 | a;\;e; and

R'C" = "a;Me;.
i=1

The last term approaches a; Aep (all the elements of e;
are the same), that is, all the clock readings are the same
eventually. 0

Theorem 3. If \, = —1, then there is a permutation matrix P
such that PT RP has block partitioned form:

0 Ry
RQl 0 '
Proof. If )\, = —1, then there are exactly two eigenvalues

A =1 and )\, =—1 of modulus 1* and there is a
permutation matrix P such that PTRP has block

partitioned form:
(e )
Ry 0 )

By examining the above matrix, we have r;; = 0 for all
1 <i<nif \, = —1. Likewise, if r; # 0 for some i, we have
An # —1. In our algorithm, if we let r; # 0, the algorithm
converges to the synchronized clock vector.

Now, consider the convergence speed of the matrix. We

scale the sum of all the clock readings to 1, so > i ¢; = 1.
We have ¥ = 1/n.

a

Theorem 4. For R with eigenvalue X\, < 1 and synchronized
clock vector C*, the relative error after running Algorithm 3

() _ 0 . o
for t steps is max; T”C(, , wﬁl)ere rf-;-) is the R'(3, 7).
T < X —

T/n = 1/n max
elements of A and A™! are no greater than 1. Then,

Proof. First, we have maz; ; since the

4. The eigenvalues of a symmetric matrix are always real.
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: (= (I —4De) .
Thus, the relative error i DY U < p X (since
(& (& max

cg- <. O

The value of A, determines the convergence speed of
our algorithm. Next, we evaluate the value of A,,,.

Let S be a set of sensors, Cs =), ¢¢ = ‘Wﬂ be the
capacity of S, and Fg = Zies.jgs rij/n. Define &g = Fs/Cs.
The conductance of the diffusion procedure is defined as
® = mingg,<1®s. By Jerrum and Sinclair [15],
Ay <1—®2%/2. Thus, we can bound the convergence
speed if we know .

7 THE ASYNCHRONOUS DIFFusioN METHODS

7.1 Asynchronous Diffusion Algorithms

In the previous section, we analyzed a synchronous version of
our diffusion-based algorithm, proved its convergence, and
bound its convergence speed. The synchronous algorithm is
localized, butitrequires a set order for all thenode operations.
In this section, we extend the diffusion synchronization
algorithm to remove this constraint. We ensure that all the
nodes can perform operations in any order as long as each
node is involved in the operations with nonzero probability.
Our method can be shown to converge.

We start with an asynchronous averaging algorithm
(Algorithm 4), which gives a very simple average operation
of a node over its neighbors. Each node tries to compute the
local average value directly by asking all its neighbors about
their values; it then sends out the computed average value
to all its neighbors so they can update their values.

Algorithm 4 Asynchronous Averaging Algorithm in a Sensor
Network
1: for each node n; with uniform probability do
2:  Ask its neighbors the clock readings (read values from
n; and its neighbors)
3:  Average the readings (compute)
4:  Send back to the neighbors the new value (write values
to n; and its neighbors)

We assume the average operation is atomic, that is, if a
node is involved in two or more average operations, these
operations must be sequenced. We also assume the network
is connected.

Theorem 5. The asynchronous average algorithm converges to C
(where C'is the average value).

Proof. Let H; and L, be the highest and lowest value,
respectively, of all sensors at time ¢. We note that: 1) H; is
nonincreasing over time ¢ (by the average algorithm,
since there is no value greater than H; at time ¢, H;
cannot increase from that time on); 2) L, is nondecreasing
over time ¢ by symmetry.

We know H; > C and H, is nonincreasing according
to 1). Letting the infimum of the series H; be M, we have
limy_ooH; = M > C. Suppose M # C. We will derive a
contradiction.
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Consider the function (k) = Zk:1 n'e. Choose ¢ such

that M — %e =M —¢€(n)=C, v:/here n is the number
of sensors. For any k (k=n,n —1,---,1), define S} to be
the set of sensors whose values are greater than M — e(k)
and S} to be the set of the rest of the nodes.

For ¢, there must exist a time ¢ such that H; < M +¢;
also, at that time, there must be some node whose value
is less than C = M — ¢(n) because C is the average value.

We first consider a snapshot of the kth step
(k=n,n—1,---,1) in our constructive proof. If an
average operation only involves the nodes in S, (or
S?), those nodes are still in S} (or S}) after the operation.
However, if an average operation involves nodes in both
St and S} (and we know there must be an operation that
involves nodes from both sets since the network is
connected), these nodes have value less than M — e(k —
1) after the operation due to the following reason: At
least one node is from S?. Even if all the other nodes have
the highest possible value M + ¢, the average value is at
most w <M —e(k—1) where m is the
number of concerned nodes in this average operation.
Then, at least S|+ 1 nodes will be in S7_; after that
operation.

Starting from sets S}, and S? at time ¢, we have |S2| > 1
(recall that there must be some node whose value is less
than C' = M — €(n)). After the first average operation for
nodes that are in S! and S2, we have |S2_,| > 2. After the
first average operation on nodes in S} | and S? ,, we
have |S?_,| > 3. So, eventually, we have S? =n.” This
contradicts that the infimum of H; is M (i.e., H; > M).

Therefore, we have lim;_..H; = C. In the same way,
we can prove that lim;_.o Ly = C. Combining these two
results, we have that all the values on the sensors
converge to C. 0

Theorem 6. The asynchronous rate-based algorithm converges to
the global average value.

Proof. We prove this result using an approach similar
to Theorem 5. Let the minr; =r (i #j and 7 > 0)
and change the occurrence of ¢(k) in the above
proof to (k) = (4= —1)e. Notice, for any step k
(k=n,n—1,---,1), we have the following;:

]\/.{—FE—TU(M‘FE_(M_E(IC)))
<M+e—r(M+e— (M—ek)))
=M+e—r(e+e(k))

€
:M+€—T(€+m—€)

=M+e—

e M —e(k—1).
Thus, it follows that the asynchronous rate-based
algorithm converges. 0

We now define the deduced graph of the sensor network
after time ¢, G,(V,E), where V is the set of vertices
representing the sensor nodes and (n;,n;) € E (for n; € V

5. Note that S? is the set of nodes whose values are less than
M —€(1) =M — ne.
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and n; € V) if and only if n; and n; are involved in the same
average operation® after time t. The sensor network is
operation connected G.(V,FE) is connected for any ¢ > 0.
Algorithm 4 assumes all the nodes perform the algorithm
with uniform distribution. However, as long as the network
is operation connected, the convergence result still holds by
examining our proof. This includes the following three
scenarios, provided the network is operation connected:
1) The network is connected and each node has a nonzero
probability of being involved in an average operation after
any time ¢, 2) not all the neighbors of a node respond to the
average operation as in the cases of failed nodes or bad
communication channel, and 3) the sensor nodes are
mobile.

We now discuss the convergence speed of the asynchro-
nous algorithms. Let the error to be defined as H’g ¢, where
H; is the highest value at time ¢. We consider the case in
which only one node has stimulus value Hj initially, while
others have value 0. In a real scenario, all the nodes may
have nonzero values. We can view this case as n copies of
networks that are running and each copy starts with some
value on only one node. In each step, the same operations
are applied to all the copies and the real network clock
reading vector is the sum of the clock reading vectors of all
n copies. Note that the convergence on the real network is
no slower than that on the slowest among all the n copies.
Therefore, to evaluate the worst convergence, we need to
consider a network with only one node that has nonzero
initial value; our simulation assumes this as well.

Suppose, at time ¢, the highest value is H; and most of the
other nodes have value very close to C. The part thatis close to
C will be kept on each node in the future; the H;, — C part on
the node with the highest value will be leveled down to the
other nodes. It follows that, every time we increase the
number of rounds of the algorithm running linearly, we get
the H; — C part, i.e., the error, reduced exponentially. This
observation is verified in our simulation.

Other variations of our algorithm can choose the highest
value (or lowest value) among all the neighbors to be the
synchronized clock reading. When each node executes the
diffusion operation exactly once in each round, it takes
O(n) rounds for the highest (or lowest) value to propagate
to the whole network. Thus, the convergence time is O(n),
where n is the number of nodes.

7.2 Discussion

Our method is independent of and can be built upon any
local synchronization method. The error in our diffusion
method depends on the error inherent to the local
synchronization method. The convergence speed of our
diffusion method is slow compared to that of a synchroni-
zation algorithm with an initiator. However, the diffusion is
useful when only a coarse synchronization is required. The
following discusses when the protocols are useful and how
we can improve on them:

1. The local synchronization is more important than
the precise global synchronization since, in most

6. Or exchange operation in rate-based algorithm. For convenience in the
following discussion, we only talk about the averaging algorithm. However,
the later discussion applies to the rate-based algorithm as well.
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applications, events are processed locally. For
example, in the vehicle tracking application, the
sensors that detect the vehicle communicate with
each other to collaboratively obtain the information
about the vehicle such as moving speed, direction,
and vehicle type. Although the global synchroniza-
tion convergence takes longer, local diffusion is
very fast because a small number of sensors are
involved.

2. The clock reading distribution is uniform in various
areas of the sensor field. Thus, the average clock
readings of different areas are approximately the
same. After the local diffusion, the synchronized
clock value in an area is approximately the same as
that of a remote area.

3. Our proof shows that the asynchronous algorithms
converge with random node operations and with
any probability distribution of executions upon all
the nodes as long as each node always has the
chance to be involved in the execution. Each node
can run the asynchronous operations on the fly
without knowing what other nodes are doing. This
model can adapt to the changing network topology,
node failure, adverse communication conditions,
node mobility, etc.

4. One of the factors that affects the convergence speed
is that all nodes have the same probability to execute
the average operation. The operation of a node
whose clock is similar to its neighbors does not
contribute much to convergence. An improvement
to reducing communication and speeding up con-
vergence is to adaptively bias toward the nodes with
large difference to their neighbors. In this way, the
large difference may be amortized quickly. The
probability can be chosen proportional to 5, where
D is the maximal difference among a node and its
neighbors and C’ is the average value estimated at
the node.

8 SIMULATION

We implemented the averaging synchronization algorithm
(Algorithm 4) in simulation. We ran a series of scenarios
with different network parameters. For each time slot (say
one second), each node executes the average operation once
although the order of the operations of all the nodes is
randomized. In a real network, the frequency is specified
for each node and each node needs to perform the operation
once for each set time interval. We define a round to be the
time for each node to finish the average operation in
Algorithm 4 exactly once, so the number of rounds for the
network to achieve some error threshold signifies the
convergence speed.

For each experimental set of parameters, the simulation
was executed several times using a randomly generated
network topology. In each experiment, a stimulus was
generated at a randomly chosen node and propagated to the
whole network until the relative error was achieved. In
Fig. 4, Fig. 5, and Fig. 6, the data points are drawn from the
experiments and the curves are plotted with the average
values for each experimental set. The simulation results are
presented as follows:
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nodes: 200 neighbors max: 21 min: 2 mean: 12.25 std: 3.56807
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number of rounds
nodes: 200 neighbors max: 25 min: 3 mean: 13.44 std: 5.1272

error i log,  scale)

o 5 10 15 20 25 30 35 40 as
number of rounds

Fig. 3. Two typical simulations for the average algorithm. The
experiments have the following parameters: number of nodes 200,
sensor field 10x10, transmission range 1.5, and algorithm stop error
0.01 percent. The number of neighbors of each node varies in each
experiment. In the first experiment, the maximal number of neighbors is
21, minimal number of neighbors is 2, average number is 12.25, the
standard deviation is 3.58. In the second experiment, the numbers are
25, 3, 13.44, and 5.13, respectively.

1. The first suite of experiments (Fig. 3) relate the
relative error with the number of rounds executed
by the sensors. We generated two random networks
with the the same set of network parameters. As we
have conjectured in the previous section, the error
rate decreases exponentially with the increase of the
number of rounds. The simulation confirms our
conjecture.

2. Convergence speed versus number of nodes with
other parameters fixed (Fig. 4). The two figures
evaluate the convergence speed with the number of
nodes. Each data point in the figure represents a
running on a randomly generated network. The
markers are the number of rounds (in the first
figure) and the number of total operations (in the
second figure) for each experiment. The plotted
curve is the average number of rounds and number
of total operations for one suite of network para-
meters. A sparse network with fewer nodes under-
goes large variation in terms of convergence speed.

The first figure shows the number of rounds
decreases with the increase of the number of nodes.
The reason is that, when the number of neighbors of
each node increases, the network is more connected,
which expedites the diffusion. The second figure
shows the total number of average operations
conducted by all the nodes is approximately the
same for each network. This is because the number
of neighbors increases linearly with the number of
nodes with other network parameters fixed.

3. Convergence speed versus transmission range with
other parameters fixed (Fig. 5). The figure evaluates
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Fig. 4. The convergence speed with different number of nodes. The
network parameters are: sensor field 10x10, transmission range 1.5,
and algorithm stop error 0.01 percent. The markers are the number of
rounds for each experiment. The plotted curve is the average number of
rounds for one suite of network parameters. A sparse network with fewer
nodes undergoes large variation in terms of convergence speed. The
first figure shows the number of rounds for each network. The second
figure presents the total number of operations conducted by all the
nodes in each network.

the convergence speed with different transmission
ranges. The plotted curve is the average number of
rounds for one suite of network parameters. With
the same network scope and number of nodes, the
convergence speed increases with the increase of the
transmission range. This is due to the fact that the
number of neighbors of each node increases and the
number of nodes covered by each average operation
increases.

4. Convergence speed versus number of nodes with
fixed sensor density (Fig. 6). The plotted curve is
the average number of rounds for one suite of
network parameters. The convergence speed de-
creases linearly with the increase of the number of
nodes in the context of the fixed sensor density.
Since each node has the same number of neighbors

number of rounds
W
o
o

0.7 0.8
transmission range

Fig. 5. The convergence speed with different transmission ranges. The
network parameters are: sensor field 10x10, number of nodes 1,000,
algorithm stops at error 0.01 percent. The crosses signify the number of
rounds for each experiment. The plotted curve is the average number of
rounds for networks with the same network parameters.
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Fig. 6. The convergence speed with the number of nodes with fixed node
density. The network parameters are: sensor field proportional to the
number of nodes (10 nodes per unit area), transmission range 0.7,
algorithm stops at error 0.1 percent. We see almost linear decrease in
the convergence speed with the increase of the nodes. The plotted
curve is the average number of rounds for networks with the same
network parameters.

in each simulation, the diffusion speed is depen-
dent on the number of sensors in the whole
network.

5. Convergence speed compared with asynchronous
rate-based protocol (Fig. 7). We plot the convergence
speed for asynchronous rate-based protocol and
average protocol. We find the convergence speed
increases with a higher rate. The average protocol
achieves approximately the same convergence speed
as the rate-based for rate equals to 0.7.

9 SYNCHRONIZATION IN THE PRESENCE OF
MaLicious NODES

The previous protocols assume all nodes are reliable and
cooperative. We now consider an extension that allows
some fraction of malicious nodes in the system. More
specifically, we wish to design fault-tolerant algorithms for
clock synchronization in the presence of Byzantine faults in
a sensor network. That is, some nodes may behave
arbitrarily in a malicious or unintentional way.

We consider a simple case in which some tamper-proof
nodes (called N nodes) are introduced together with other
normal nodes (called M nodes). A tamper-proof node will
destroy itself once it is compromised. This guarantees that
an N node will always be trusted. Tamper-proof nodes may
be more expensive than the normal nodes, but future sensor
networks are likely to have this kind of special and
powerful nodes for hierarchical structure [24]. The N nodes
can be less densely dispersed in a field than the normal
nodes and they serve as cluster heads for the normal nodes.
The role of an N node includes data aggregation, security
key management, and other services. We make the
following three assumptions: 1) Each normal node must
belong to a cluster whose head is an N node, which means
that each M node is one hop away from an N node; 2) any
two N nodes can communicate via a route on which no two
consecutive nodes are M nodes; 3) among the shared
neighbors of two N nodes, at most one third can be
compromised. The idea for synchronization in this kind of
system is as follows: We trust N nodes to do the
computation and information collection. The M nodes are
not trustable, but they serve as a channel through which
two nearby N nodes exchange their clock readings. Even
though this channel is not fully reliable, taking advantage of
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Fig. 7. Convergence speed of average protocol compared with rate-
based protocol. The network parameters are: number of nodes 400,
sensor field 15x15, transmission range 1.5. We plot the convergence
speed for asynchronous rate-based protocol and average protocol. In
rate-based protocol, we use rates 0.3,0.5,0.7, and 0.9 in our simulation.
We find the convergence speed increases with a higher rate. The
average protocol achieves approximately the same convergence speed
as the rate-based for rate equals to 0.7.

those one third reliable nodes among the neighbors of any
pair of two nearby N nodes impedes the clock reading
exchange to be biased due to the malicious nodes.

The algorithm works in two steps. The first step is clock
initialization for M nodes. We ask each N node to broadcast
its clock reading to the M nodes since we trust the N nodes
but do not trust the M nodes. All its M neighbors should
observe the latest received value and set clocks to that value
if they are good nodes. In this way, a good M node must
have a clock reading that has been corrected by an N node
in the initialization phase. In the next step, each N node (say
A) collects the clock readings from all its neighbors,
averages the clock readings of its neighbors, and broadcasts
the average value. The average operation needs a little bit
more explanation. Our protocol ensures that each N node
(e.g., A) is aware of its neighbors shared with other N nodes
(say B). Among those shared neighbors, A chooses the
nodes whose values are in the range of the middle one third
from the values collected from all neighbors. After A
collects the shared node set, it averages the clock readings
of all the nodes in the chosen set together with its own value
and broadcasts the average value to its neighbors. The
neighbors then set their clocks to the newly received value if
they are good nodes.

To enforce the correct execution of the operations, we
assume the basic cryptographic operations presented in [32],
[33]. Our protocol is composed of four basic operations:

neighbor discovery,

beacon broadcast,

the collect operation, and

4. broadcast of the average value.

Neighbor discovery for an N node means finding all the
neighbors that are shared with another N node. In beacon
broadcast operation, an N node A broadcasts a synchroni-
zation message to all its neighbors so that each of its
neighbors will record the current clock reading. The collect
operation is a composite process in which all the neighbors
that receive the broadcast send A their clock readings. In the
last step, A broadcasts the average value to all the
neighboring nodes and all good neighboring nodes will

we =
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have a new value after they authenticate the message. We
now describe how to implement these operations.

1. Neighbor discovery: Neighbor discovery for an
N node is done by broadcasting a neighbor query
message and receiving the replies from the neigh-
bors. We claim that a) no neighboring node hides its
identity, b) the N node is aware of all its one hop
neighbors, and ¢) two N nodes that are within two
hops can communicate their shared neighbors. We
discuss how to ensure them as follows: Any node
intentionally hiding its identity from an N node does
not help in compromising the system since a clock
reading from an unidentified node will not be
considered by an N node and it cannot impersonate
any other M node.

We eliminate the possibility that a node out of the
transmission range becomes a neighbor by consider-
ing the packet transmission time. Two hop or
multihop nodes will reply to a challenge message
with higher latency and, thus, will be eliminated
from the one hop neighbor set. Hence, only one hop
neighbors are eligible to be in the neighbor set. This
precludes nodes that are far away from colluding to
conteract the protocol.

We assume any two nodes share a key by using
the Blundo scheme.” Therefore, two N nodes within
two hops can communicate using the shared key for
encryption and via the shared good neighbors. They
can thus communicate to each other the set of the
shared neighbors.

We assume that each N node has a special id that
can be distinguished by all the nodes. For example,
all N node ids could be chosen from the range of
[1..100]. An M node that tries to impersonate an
N node cannot forge the shared key generated by the
Blundo scheme.

2. Beacon broadcast: Broadcast operation uses pTesla
[25]. The broadcasting N node first creates a one way
key chain ky, ko, - - - , k,,, where ki1 = f(k;) (f is a one
way function). It uses the keys in a reverse direction,
that is, uses keys in the order of k,,, k1, - -, k2, k1. In
order to broadcast, the node encrypts the message
with the undisclosed key and broadcasts the
encrypted message. The next immediate message
will be the key used to decrypt the message.® A node
that fakes an N node’s identity will not be able to
forge the correctly encrypted message. The neigh-
boring nodes get the message and wait for the key to
decrypt the message.

3. Collect operation: The collect operation is done by
each node using the shared key (created by the
Blundo scheme) with the N node. Other nodes
cannot forge the message without knowing the
shared key.

7. The basic idea of the Blundo scheme [2] is presented here succinctly.
The details can be found in the original paper. Initially, a special symmetric
function f(z,y) = f(y,z) is generated by the key server. A node with id 4
will be given the function f(%,). A shared key of node i with another node j
will be f(i, j), which can be computed only by nodes ¢ and j.

8. We assume all the messages can get through without being jammed.
And, the key k, can be sent by the N node to each of its neighbors via a
signed message with the shared key generated by the Blundo scheme.
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4. Average operation: After an N node gets the
responses from its neighboring nodes, it computes
the average value according to the neighbor sets
shared with other N nodes. The node then broad-
casts the average value to all its neighbors using
uTesla, as in the previous broadcast scheme. There-
fore, no one can forge the message except the
broadcasting N node. The neighbors then update
their clock to the received value.

A malicious node cannot impersonate the identity of
other nodes because of the Blundo scheme used. The N node
in charge can easily figure out if the claimed node id is
authentic by decoding the message encoded by the shared
key between the N node and the node with that id (e.g., the
message can have the format of (id, current time reading).
The N node can see if the id is present in the message after
decoding it). We assume that no two nodes far away can
collude in this scenario. This can be achieved because each
N node would get all its neighbors information in the initial
deployment of the sensor network and the node compro-
mise and collusion can only be carried out some time after
the deployment since an N node knows those neighbors
and it is easy for it to obstruct the message from a node that
is not its neighbor.

Theorem 7. The average algorithm converges to the same value
for all the good nodes.

Proof. Let the highest clock reading of the good nodes be H; at
time ¢ and the lowest clock reading of the good nodes be L,
at time ¢. Since we use an averaging operation and we
always average values that are from good nodes or in the
range of [min;, max;| (Where min; and max, are minimal
and maximal value of a good node), H; is nonincreasing
over t. Likewise, L, is nondecreasing over t.

Letting the infimum of the series H, be H, we have
limy_,oo H; = H. Letting the supremum of the series L; be
L, we have lim;_,oL; = L. We have H; > H and L; < L
for all t and H > L. We want to show that H must be
equal to L.

Suppose H # L. We will derive a contradiction.

Let the function e(k) = 3% nie. Choose ¢ such that
H-""2le¢= H — ¢(n) = L, where n is the number of
sensors. For any k (k =n,n —1,---,1), define set S} to be
the set of sensors whose values are greater than H — (k)
and set S} to be the set of the rest of the nodes.

For ¢, there must exist a time ¢ such that H; < H + ¢
also, at that time, there must be some node whose value
is less than L = H — €(n).

We use the same argument as in Theorem 5. First,
look at a snapshot as before. Suppose an N node (A4) and
all A’s good neighbors are in S7 (we can find those nodes
considering an N node which just finishes an average
operation). Now, consider an N node B that shares
neighboring M nodes with A. If B does the average
operation, B and all its good neighbors will be in S,%_l no
matter what value B has before the average operation, so
are A and all A’s good neighbors because S; C S7_,.
Using this as an induction step, we can prove that,
eventually, all the good nodes will be in S7. This
contradicts that the infimum of H; is H (i.e., H; > H).
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Note that we always average values in the range of
[ming, maz].

Therefore, H is also within the range of [min,, maz].
That is, the clocks in the network converge to a
reasonable value, instead of any arbitrary one. a

In this protocol, if an N node fails, the M nodes that are
only affiliated with this N node will not be able to be
synchronized, even though the M node may be a good one.

The assumption that any two neighboring N nodes must
share at most one third bad nodes can be justified in the
scenario that few nodes are malicious. To some extent, our
protocol gives the initial results in this area. Much
additional work can be done theoretically to relax the
constraints.

This scheme cannot be used in the general cases that
assume all the sensor nodes are the same. This method,
however, is useful in hierarchical sensor networks, e.g., [24].
In hierarchical networks, special cluster heads are intro-
duced for more powerful processing. If those cluster heads
are connected directly within themselves, we can use the
diffusion method to synchronize the cluster heads first and
then rely on the heads to synchronize all the other nodes.

10 CONCLUSION

We consider the global synchronization problem in sensor
networks. We propose several methods: the all-node-based
method, the cluster-based method, the diffusion-based
methods, and the fault-tolerant diffusion-based method to
solve the problem. The first two methods require a node to
initiate the global synchronization, which is neither fault-
tolerant nor localized. In the diffusion-based method, each
node can perform its operation locally, but still achieve the
global clock value over the whole network. We present two
implementations of the clock diffusion: synchronous and
asynchronous. The synchronous method assumes all the
nodes perform their local operations in a set order, while
the asynchronous method relaxes the constraint by allowing
each node to perform its operation at random. We present
the theoretical analysis of these methods and show
simulation results for the asynchronous averaging synchro-
nization method. Moreover, we show how to design
synchronization protocol in the presence of Byzantine fault.

Our proposed algorithms can be extended to other
sensor network applications, such as data aggregation. We
are currently examining how the methods presented here fit
to more general applications. Our future work also includes
implementing the algorithms in a real sensor network using
our Mica Mote sensor network platform.
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