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Abstract—Location-based services have significantly affectedmobile users’ everyday life, and location privacy has become essential.

Some applications (e.g., location-based recommendation,mobility analytics) do not need the raw location data, and the service providers

adopt aggregation to protect users’ location traces. However, someworks show that even these aggregation datamay disclose users’

location privacywhen additional prior knowledge is available to an adversary.We consider the location privacy problem in the presence

of LocationUniqueness, a property by which some geographical locations can be re-identified based on the aggregated point-of-interest

information.We first studywhether existing protectionmechanisms are adequate for defending against this type of attack. Thenwe present

two practical attacks for inferring users’ actual locations based on the POI aggregates. A secure POI aggregate releasemechanism is

proposed for defending against this type of re-identification attack and achieving differential privacy at the same time.We conduct extensive

experiments on real-world datasets. The results show that the existing protectionmechanisms cannot provide sufficient protection against

location re-identification attacks. The proposed attacks can significantly improve the inference performance, and the proposed protection

mechanism achieves satisfactory performance.

Index Terms—Location privacy, location re-identification, location uniqueness, POI aggregate

Ç

1 INTRODUCTION

NOWADAYS, our life has been flooded by Location-based
Services (LBSs), and location privacy has also been

extensively studied in the past dozen years. Some LBSs do
not require users’ geographic locations but only leverage the
knowledge of Points-of-Interest (POIs) near a user, e.g., rec-
ommendation and advertising. These systems only require
the aggregation information of the POIs near a user, instead
of the geographic locations of these POIs or the user’s actual
location, which seems privacy-friendly for users’ locations in
the view of previous location privacy studies that aim to pro-
tect users’ geographic locations directly.

However, a recent study shows that only providing the
types of POIs near a user in a city may also reveal the user’s

actual location [1]. They propose a notion of location
uniqueness, which implies that many locations in a city are
unique regarding the combinations of POIs around them.
Based on the property of location uniqueness, they find that
users’ geographic locations can be inferred based on the
nearby POIs regarding the distribution of their types and
successfully show that many locations in a city have the
property of location uniqueness. Their work reveals this
vital phenomenon and shows that the property of location
uniqueness can significantly affect users’ location privacy.
Nevertheless, there is still a gap that we need to mind to
perform a practical attack based on the property of loca-
tion uniqueness. Furthermore, protecting location privacy
when publishing aggregate POI data in the presence of
location uniqueness is also an urgent problem that has not
been well studied.

In this paper, we study the practical attacks and defense
for location privacy in the presence of location uniqueness.
Specifically, we first consider the scenario in which the users
may initiate multiple successive LBS requests and extend the
concept of location uniqueness to trajectory uniqueness in this
context. Then, we try to design a practical attack that can sig-
nificantly improve the precision of the inferred locations
compared with the existing re-identification attacks. We
want to explore whether we can construct fine-grained
attacks on users’ locations by exploiting the property of loca-
tion uniqueness. Our goal is to re-identify users’ locations
into significantly smaller areas, which allows the attacker to
locate the target user practically in the real world. Further-
more, based on the studies of the practical attacks, we also
investigate how to protect users’ location privacy in the
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presence of location uniquenesswithoutmuch sacrificing the
performance of POI-based services.

We advance the location inference attack from three
aspects: 1) we develop a re-identification attack which can
infer users’ location when they initiate multiple successive
LBS requests and find that the success rate of the re-identifi-
cation can be significantly improved when users continu-
ously use the services by leveraging the knowledge of
trajectory uniqueness; 2) we propose an iterative positioning
scheme for location re-identification, which can significantly
shrink the area where the users are in; 3) we also show that
the POIs with some certain types have the property of
uniqueness as well, and we resort to machine learning
methods to learn these POIs even though they have been
sanitized in the results for privacy-preserving consider-
ation. This observation also reveals that some straightfor-
ward ways, e.g., merely sanitizing the POI frequency list,
may not be able to protect the location privacy effectively.

An experimental study has been conducted to investigate
whether previous methods like geo-indistinguishability,
spatial k-cloaking, and sanitization can successfully protect
the location privacy of aggregated POI data in the presence
of location uniqueness attacks. The study is performed on
the datasets of two representative metropolises: New York
City and Beijing. Our results show that these methods can
hardly mitigate the re-identification attacks or could be eas-
ily broken by more advanced attack techniques.

To protect location privacy in the presence of location
uniqueness, we employ the notion of differential privacy
and have designed an optimization-based POI type distri-
bution publishing mechanism that can protect the location
privacy under differentially private guarantee and signifi-
cantly defend against the location re-identification attacks.
The proposed defense can not only provide protection
when releasing single POI type distribution but also can be
applied to the cases where the user continuously uses the
service, and the adversary may acquire multiple POI aggre-
gates of a user. Using segment clustering and the Gaussian
mechanism, we find a way to carefully characterize the cor-
relation of POI frequencies of two locations for a successive
use of the LBS service with differential privacy.

The contributions of this paper can be summarized as:

� First, we revisit the concept of location uniqueness and
have conducted experimental studies to evaluate the
existing protection mechanisms (sanitization, geo-
indistinguishability, and spatial k-cloaking) against
the existing location re-identification attack. For the
sanitization method, we also show that the learning-
basedmodel can easily break the protection.

� Second, we present two practical variants of the loca-
tion re-identification attack. We advance the existing
location re-identification attack from two aspects:
extending it to a more general case where users may
initiate multiple successive LBS requests and signifi-
cantly improving the success rate of the attacks by
leveraging the information of subsequent queries,
being able to locate a specific user in a more precise
area.

� Third, we have proposed a differentially private
defense mechanism for releasing the POI type

frequency vectors, which provides a provable privacy
guarantee of the location privacy and satisfactory per-
formance in defending against the re-identification
attack. Furthermore, for the cases of multiple POI
aggregates release, the proposed defense can also
defend against the location re-identification attack
and achieve a reasonable bound of the accumulated
privacy loss even when the user frequently uses the
LBS service.

� Fourth, extensive evaluation has been conducted on
real-world data traces, which are extracted for the
publicly available geo-information service Open-
StreetMap [2], T-drive dataset [3], and Foursquare
dataset [4]. The results show that the proposed prac-
tical attacks provide better attack performance. The
results also show that our proposed differentially
private mechanism can effectively defend the re-
identification attacks with a reasonable cost of utility.

The rest of this paper is organized as follows. The next
section presents the preliminaries, and we evaluate the
existing defense mechanisms in Section 3. We present our
practical variants of the location re-identification attack in
Section 4 and evaluate them in Section 5. Our differentially
private POI aggregate release mechanism is presented in
Section 6. The evaluation of the proposed defense is pre-
sented in Section 7. We review the related work in Section 8
and conclude this paper in Section 9.

2 PRELIMINARIES

2.1 System Model

LBS Architecture. We consider a typical LBS architecture in
which there are three types of entities: mobile users, the
geo-information service provider (GSP), and LBS applica-
tions. A mobile user reports its geographic location to the
geo-information service provider and gets the geographic
information (e.g., POIs, road networks), then it sends the
geographic information to the LBS application service pro-
viders and enjoys the LBS services. The geo-information ser-
vice provider stores the geographic data and shares it with
the mobile users and LBS applications via a set of query
interfaces. The LBS applications provide LBS services and
perform various analyses based on the user-location-based
geographic data.

Aggregate POI Data. Same as the previous works, e.g., [1],
[5], we assume that the LBS applications cannot access
mobile users’ geographic locations directly. Instead, when a
mobile user wants to use the LBS applications, it sends its
location to the geo-information service provider and gets
the geographic data, and then reports the geographic data
aggregates to the LBS applications (e.g., POI-based serv-
ices). Furthermore, we assume that the geo-information ser-
vice provider only provides one query interface: retrieving
the POIs within a specific range of a location. The LBS archi-
tecture adopted in this paper is illustrated in Fig. 1. Note
that the POI aggregates may be generated by the users or
the GSP and sent to the LBS applications.

Applications. In the existing works that deploy the POI
frequency distribution as an ingredient for their studies,
most of them generate the POI aggregates based on the
users’ past activities (e.g., check-in data). For example, Yu
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et al. [5] use the POI frequency distribution as a latent feature
representation of a location reported by the user and incor-
porate it with other features, e.g., the app’s latent feature, the
functionality-based feature, and the preference-based fea-
ture, to develop a model for app usage prediction. Similarly,
in [6], the (normalized) POI frequency distribution is also
generated as a kind of feature based on the check-in data. By
combining the POI aggregates and users’ online activity
data, Fan et al. [6] have designed a generative model for
online activity prediction. Although most of the existing
works use the POI aggregates in an offline manner, they can
be generated based on the reported locations instantly or
based on users’ past activities during a period of time, and
both the users and the GSP could store the generated POI
aggregates for applications’ real-time or future use.

2.2 Problem Formulation

POI Aggregate Data. We formally define the POI aggregate
data at first. The user reports its location l and a given query
range r to a GSP; then, the GSP generates the set of POIs
within the specified query range, denoted by Pl;r, and
returns it to the user. This process can be achieved by the
operation:

Pl;r  QueryðG; l; rÞ; (1)

where G is a geo-information database, which could be a
publicly available geospatial database or a private geo-
information database managed by the GSP.

In the context of POI type aggregates, the user or GSP
does not directly reveal the actual location l or set of POIs
Pl;r to LBSs or data analysts. Instead, the POI type distribu-
tion Fl;r ¼ ðn1; n2; . . . ; nMÞ is aggregated by users and
released to the POI-based services (e.g., recommendation),
where ni is the frequency of POI type ti in the result, M is
the number of different types of POIs in the city. The POI
type distribution can be generated by operation:

Fl;r  FreqðG; l; rÞ: (2)

Location Re-Identification Problem. As it has been stated
in [1], the location re-identification problem is to re-identify
the location l based on the distribution Fl;r. What makes this
possible is the property of location uniqueness in the city [1]:

given the query range, a location could be re-identified
because it has a unique combination of POIs compared to
other locations in a city.

Formally, the re-identification process can be formulated
as:

F InferðFl;r;PÞ; (3)

where P is the prior knowledge of an adversary, F ¼
ff1;f2; . . . ;fjFjg is a set of re-identified areas in which the
location l could be. An adversary that wants to re-identify a
target’s location precisely, i.e.,

Minimize
XjFj
i

sizeðfiÞ; (4)

subject to Fl;r;P: (5)

The above straightforward definition of the problem may
lead to a result in that the number of areas is large, and they
are very far away from each other, although the sum of area
sizes is small. In most cases, that result makes it impractical
for the attacker to obtain the target’s other information (e.g.,
school, home address, office) from the re-identified location.
Then we define the location re-identification problem with
two stages. The first stage is the same as the definition in [1],
i.e., identifying a continuous area in which the target is:

Maximize Pr½jFj ¼ 1� (6)

subject to Fl;r;P: (7)

Let f� be the area identified in the first stage, and the second
stage is to locate the target precisely in f�:

Minimize sizeðf�Þ (8)

subject to Fl;r;P: (9)

2.3 Threat Model

We assume that the adversary is semi-honest, which means
it is interested in inferring users’ locations based on the
informed information but does not deviate from the proto-
col specification.

Abilities. The adversary could be a third-party entity that
uses the POI type aggregates involved in the POI-based
services. We assume that the adversary can access a set of
prior knowledge P, which includes public geo-information
of a city and the operation Freq to get POI type frequency of
any location with the required query range. Such prior
knowledge can be obtained from some publicly available
geo-information service providers, e.g., OpenStreetMap [2].
Besides, same to [1], we also assume that the adversary can
obtain: 1) the user’s identification corresponding to the
reported Fl;r, which makes it possible for the adversary to
link the re-identified location to a particular user; 2) user’s
query range r. These two types of information are essential
information for any location-based services and are usually
included in the meta-data with queries.

Goals. The adversary tries to re-identify a user’s location
based on Fl;r and the prior knowledge by implementing an
inference mentioned in (3). Ideally, jFj should be 1, and the
size of the only element f� in the set should be as small as

Fig. 1. POI-aggregate-based LBS architecture.
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possible. Particularly, same to [1], we define the case where
jFj ¼ 1 as a successful attack, and jFj 6¼ 1 means that the
attack fails. Therefore, we adopt two metrics to evaluate the
inference method Infer: 1) success rate of attacks, which
equals the ratio between the number of successful attacks to
the number of all attacks; 2) when an attack is successful,
the area of f� is used to measure the precision of the
inference.

2.4 Region Re-Identification.

For the sake of completeness, we review the location re-
identification method in [1] in this part. Specifically, the
attack runs by the following steps:

1) Counting the overall POI frequency in the entire city,
denoted by F ;

2) Sorting Fl;r by F , and denoted by tl the most infre-
quent POI type in F which satisfies nl > 0;

3) Finding all POIs with type tl in the city, and denoted
by Ptl the resulted set of POIs;

4) Pruning the set of locations Ptl with following rule:
� For each ptl 2 Ptl , get

Fptl ;2r
 FreqðG; ptl ; 2rÞ;

� For i ¼ 1; 2; . . . ;M, if exist any i such that
Fptl ;2r

½i� < Fl;r½i�, remove ptl from the candidate
set Ptl .

5) After the above pruning process, if there is only
remaining one location p�tl in the set Ptl , the location l
has the property of uniqueness. The adversary can
infer that location l is in the range of p�tl with radius
r.

Their method is based on the property that the circle that
is centered at l with radius r is completely covered by the
circle centered at ptl with radius 2r if ptl is a POI in the dis-
tance r of location l. By using this method, the adversary
can re-identify a location by POI type distribution with no
false negative, but the success rate is affected due to the gap
between Fptl ;2r

and Fl;r. Also, the adversary can only deter-
mine that location l is in the range with distance r of p�tl ,
which means the size of f� is pr2, which seems to be an
infeasible range for attacks on location privacy. For conve-
nience, we refer to this attack as region re-identification or Cao
et al.’s attack in the following parts of this paper.

2.5 Privacy Model

Differential privacy (DP) has become a very important stan-
dard for data privacy protection in recent years. For the
sake of completeness, we first review the definition of
DP [7] below.

Definition 1. A randomized mechanism M : Xd ! Y is
ð�; dÞ-differentially private if for any two neighboring datasets
D1, D2 2 Xd, and all S � Y,

Pr½MðD1Þ 2 S� � expð�ÞPr½MðD2Þ 2 S� þ d; (10)

where � and d are privacy parameters.

Then, we review the Gaussian mechanism, which we will
adopt as a component in our private defense mechanism.

Definition 2. Gaussian mechanism adds a noise Nð0; s2Þ to
fðDÞ, where f is a function with sensitivity D. If

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1:25=dÞ

p
D=�; (11)

then, the mechanism achieves ð�; dÞ-differential privacy.
Lemma 3 (Post-processing [7]). LetM : Xd ! Y be a ran-

domized mechanism satisfying ð�; dÞ-differential privacy. Let
A : Y ! Y0 be an arbitrary deterministic or randomized mech-
anism. IfM0 : Xd ! Y0 is sequential apply ofM and A, then
M0 is ð�; dÞ-differentially private.

Theorem 4 (Sequential composition). LetM : Xd ! Y be
a sequential application of k randomized mechanisms that sat-
isfy ð�; dÞ-differential privacy. ThenM achieves ðk�; kdÞ-differ-
ential privacy.

2.6 POI Datasets

The POI datasets are extracted from a publicly available
geo-information service, OpenStreetMap [2]. We choose
New York and Beijing as the targets of our analysis. Beijing
dataset contains 10,249 POIs with 177 different types; New
York City (NYC) dataset contains 30,056 POIs with 272 dif-
ferent types.

3 EVALUATING THE EXISTING PROTECTION

METHODS AGAINST LOCATION

RE-IDENTIFICATION

We now measure the region re-identification attack against
three protection mechanisms: sanitization and geo-indistin-
guishability, and spatial k-cloaking.

3.1 Sanitization

A straightforward solution that seems can be applied to pro-
tect location privacy in the presence of location uniqueness
is to sanitize the frequencies of the POI types, especially for
those infrequent POI types. Below we describe a sanitiza-
tion strategy for the protection, which removes the informa-
tion of frequencies of POI types that are infrequent in the
city. Our results show that the aggressive sanitization strat-
egy can significantly reduce the success rate of the region
re-identification attack in some cases. However, we note
that the effectiveness of the sanitization relies on two major
assumptions: 1) the frequencies of POI types are mutually
independent, i.e., the location of any POI in the city is not
correlated with the locations of other POIs; 2) the adversary
cannot distinguish whether a POI frequency distribution is
generated based on a real location in the city or arbitrarily
synthesized by the defense. We can find these two assump-
tions are too strong in practice, and we have demonstrated
that the defense can be easily compromised if the attacker
has some prior knowledge by presenting a learning-based
inference method.

Defense Strategy. Based on the overall POI frequency in
the entire city, F , the sanitizer chooses a set of POI types TS

which satisfies that any POI type ti 2 TS , F ½i� <¼ S. When
trying to report the POI type distribution Fl;r of the location
l in range r, the user sets Fl;r½i� ¼ 0 if ti 2 TS .

Prediction Against Sanitization. We assume that the adver-
sary knows two types of prior knowledge:
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� Whether a specific POI type is sanitized or not
sanitized, for example, the attacker may collect
the historically reported frequencies for inferring
such information.

� The attacker has a collection of POI frequency dis-
tributions of a bunch of locations. This can be eas-
ily achieved by using open-source geo-information
databases.

For each sanitized POI type tS , we train a prediction
model based on the reported frequencies of POI types. For-
mally, the prediction model is formulated as

Predðx�SÞ ! nS:

where x�S ¼ ðn1n2 . . .njT�S jÞ is the feature vector of predic-
tion sample, in which ni is the corresponding frequency of
POI type ti. We should clarify that ti is a type in the set T�S ,
which is the set of POI types that are not sanitized; nS is the
target of the prediction model, which is the frequency of
sanitized POI type tS .

We adopt the support vector machine (SVM) classifica-
tion [8] with radial basis function (RBF) kernel as an installa-
tion of the prediction model. Our experiments are
implemented by using Scikit-learn machine learning pack-
age [9]. In the training process, random locations are gener-
ated in the corresponding city ,1 and by adopting Freq

operation, the POI type distributions are generated from
these locations. We compose a training dataset with 10,000
samples and a validation dataset with 2,000 samples for
training based on the generated POI type distributions. All
samples in the prediction model are normalized by being
centered to mean and scaled with unit standard deviation.

Results. In our experiments, we adopt a very aggressive
sanitization behavior when implementing the strategy. Spe-
cifically, we set the sanitization threshold S ¼ 10 (i.e., the
POI types whose frequencies are no more than 10 will not
be reported), which results in 138 (90, resp.) POI types
removed from the POI frequency distribution in New York
City (Beijing, resp.).

Fig. 2 shows the classifiers’ performance for different
query range (r). In this set of experiments, we evaluate the
defense strategy with user locations that are randomly gen-
erated in corresponding cities. We can observe that for both
Beijing and New York City, in the cases of typical query
ranges of 0.5 km, 1.0 km, 2.0 km, and 4.0 km, the average

validation accuracy of trained classifiers for all targets is
larger than 95%. Specifically, for the Beijing, the means of
accuracies are 0.998 (	0:002), 0.996 (	0:004), 0.995 (0.005),
and 0.991 (	0:010) for the above four query ranges, respec-
tively. For New York City, the means of accuracies are 0.998
(	0:002), 0.996 (	0:003), 0.995 (0.005), and 0.990 (	0:008) for
the above four query ranges, respectively.

Fig. 3 shows that the sanitization can mitigate a major
part of the attacks, and reduces the success rate from 0.184,
0.306, 0.440, and 0.642 to 0.126, 0.153, 0.126, and 0.016,
respectively. For New York City, the success rates decrease
from 0.192, 0.333, 0.501, and 0.678 to less than 0.2 for four
cases, respectively, when the defense is applied. However,
we observe that the prediction models can recover the sani-
tized types, and achieve an almost success rate compared
with the original attacks without protection.

3.2 Geo-Indistinguishability

Geo-indistinguishability [10] is a variant of differential pri-
vacy, which provides provable guarantees of location pri-
vacy. Its main idea is to bound the difference between
distributions of observations that are produced by two close
locations by probabilistic perturbation. Formally, a mecha-
nism M is geo-indistinguishable if and only if for any l, l0

which satisfy distðl; l0Þ � R:

j ln MðlÞ
Mðl0Þ j � �R: (12)

Planar Laplacian [10] is a canonical way to achieve geo-
indistinguishability, which runs in the following way: given
user’s location l and the privacy parameter �, for any other
location l0 in the considered area, the mechanism chooses l0

as the reported location by the following probability:

M�ðlÞðl0Þ ¼ �2

2p
exp�
distðl;l

0Þ: (13)

Results. In this set of experiments, we evaluate the
defense strategy with four datasets:(a) T-drive [3] user loca-
tions in Beijing; (b) randomly generated user locations in
Beijing; (c) Foursquare check-ins [4] in NYC; (d) randomly
generated user locations in NYC. In our experiments, we
also note that the unit of distance is set to 100 meters, which
will affect the privacy level and the utility of the perturba-
tion given the specific privacy parameter. For each dataset,
1000 locations are randomly selected for the experiments.
We set the unit distance as 100 meters for geo-indistinguish-
ability. We note that privacy parameter � and the unit

Fig. 2. The accuracy of prediction models. Fig. 3. Performance of the sanitization.

1. We note that although the locations are randomly chosen, the POI
frequency distributions are generated based on the real geo-informa-
tion instead of being artificially created in a randomway.
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distance together determine the degree of privacy protec-
tion. For instance, when the unit distance is changed from
100 meters to 10 meters, if we want to achieve the same scale
of perturbation, the privacy parameter should be �/10.

Fig. 4 shows the performance of Planar Laplacian for
defending against location re-identification. We can find
that when the privacy budget is larger (e.g., � ¼ 1:0), the
mechanism can barely mitigate the inference attack. When
we set � ¼ 0:1 and r ¼ 0:5, 1.0, 2.0, and 4.0, respectively, the
Planar Laplacian can mitigate about 81.01%, 42.30%, 18.34%,
and 12.00% of attacks for T-drive dataset in Beijing, about
75.00%, 43.28%, 24.65%, and 12.15% for random locations in
Beijing, about 80.53%, 33.89%, 19.38%, and 10.96% for Four-
square dataset in NYC, and about 81.48%, 46.64%, 20.29%,
and 9.48% for random locations in NYC. The defense can
mitigate most of the attacks when the query range is small,
but the performance is limited when the query range is
large.

Our results are closely relevant to the findings in [11] that
geo-indistinguishability may not be an ideal notion for loca-
tion privacy in terms of privacy-utility trade-off. We borrow
two utility metrics from [11]: average loss: the euclidean dis-
tance between the actual location and reported location; r95
the radius of the area centeredwith the actual location where
a reported location is in it with the probability of 95%. For � ¼
0:1 or � ¼ 1:0 with the unit of distance as 100 m, the average
loss is 2000 m or 200 m, respectively; and r95 is 4744 m or
474 m, respectively. When � is large, the obfuscation of the
actual location is limited. Thus if the query range is compara-
ble large, the POI frequency distribution generated on two
locations may be very similar, which makes the notion of
geo-indistinguishability not necessarily a good choice for
protecting the location privacy in this case.

3.3 Spatial k-Cloaking

Spatial k-cloaking is a type of location privacy protection
mechanism, which aims to hide a location in a larger area
containing the requester and at least k-1 other users. In our
evaluation, we have adopted the adaptive-interval cloaking
algorithm [12] as the protection scheme. For the sake of
completeness, we briefly review the adaptive-interval cloak-
ing algorithm below:

1) The algorithm first sets the whole city area as the ini-
tial current area for cloaking.

2) It partitions the current area into four non-overlap-
ping sub-regions with equal size and tests whether
the sub-region which contains the targeted location

satisfies the k-anonymous property, i.e., there are at
least k users in this sub-region.

3) If the sub-region satisfies the k-anonymous property,
it repeats 2) and 3); otherwise, it chooses the gener-
ated region in the last iteration as the cloaking area.

Results. In this set of experiments, we evaluate the
defense strategy with four datasets that are the same as we
have adopted in the x 3.2. We assume that there are 10,000
users who are uniformly distributed all over the city for
each city. Fig. 5 shows the performance of spatial k-cloaking
for defending against location re-identification. We can find
that the success rate decreases with k increasing, but its per-
formance is still not satisfactory when k is sufficiently large
(e.g., k ¼ 50).

3.4 Takeaways

We have the following three major observations from the
above experiments study:

1. Location-level protection (e.g., Geo-indistinguishabil-
ity, Spatial k-cloaking) achieves better performance when
the query range is small. From Figs. 4 and 5, we can find
that when the query range is small, both the Geo-indistin-
guishability and the Spatial k-cloaking can reduce the suc-
cess rate of the attacks more significantly compared with
the cases where the query ranges are larger. Intuitively, the
area of retrieval increases squarely when the query range
increases, and then the POI frequency distribution may not
change much after the actual location being obfuscated. For-
mally, for the Planar Laplacian with a given � and the spatial
k-cloaking with a given k, we assume that the perturbation
makes the actual location l deviate d km, and the POIs are
uniformly distributed in the city. Without loss of generality,
we assume d < r. Then the change of the area of retrieval is

2pr2 � 4 arccos
d

2r

� �
r2 þ 2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � d2

4

r
:

The ratio of the change to the area of retrieval is

fðrÞ ¼
2pr2 � 4 arccos d

2r

� �
r2 þ 2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � d2

4

q
pr2

¼ 2� 4 arccos d
2r

� �
p

þ
2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � d2

4

q
pr2

which monotonically decreases when r > d. For instance,
let d ¼ 1, when r ¼ 2 and r ¼ 4, the ratio is about 0.63 and
0.32, respectively. For r � d < 2r, we have a similar result.

Fig. 4. Performance of Planar Laplacian.
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2. We can observe that the frequency-level protection
(e.g., sanitization without recovery) performs better com-
pared with geo-indistinguishability or spatial k-cloaking.
One of the reasons is that the sanitization makes two strong
assumptions: the frequencies of POI types are mutually
independent, and the adversary cannot distinguish whether
a POI frequency distribution is generated based on a real
location in the city. Moreover, for the frequency-level pro-
tection, the modification is directly applied to the POI fre-
quency distribution, while for the location-level protection,
the obfuscation is applied to the user’s actual location and
then affects its corresponding POI frequency distribution
indirectly, which produces a weaker association between
the location-level protection and the perturbed POI fre-
quency distribution. We also observe that sanitization can
provide better protection when the query range is large.
From Fig. 3, we can find that the sanitization can signifi-
cantly reduce the success rate when the query range is large.
However, the sanitization also cannot provide sufficient
protection when the query range is low or more powerful
attacks exist. One of the reasons could be that more POIs
will be in the area of retrieval when the query range is
larger. Then the POI frequency distribution has a higher
probability of containing the types that will be sanitized.

3. The attack could be more powerful with the user traces
in real-world applications. From these three sets of experi-
mental studies, we can observe that the re-identification
attack can achieve higher success rates for the real-world
data traces.

4 UNDERSTANDING THE LOCATION UNIQUENESS

VIA PRACTICAL ATTACKS

An important direction for location privacy research has
been pointed out by Cao et al.’s work [1] by introducing the
concept of location uniqueness. They also provide a feasible
method for re-identifying regions that may contain the tar-
get user based on POI type distribution. However, as we
have mentioned above, their approach is mainly used for
exploring the existence of location uniqueness, and an
adversary who is interested in users’ location privacy may
need more powerful tools for launching the attacks.

For the practical attacks, we identify two major goals: 1)
the re-identified location should be more precise, which
means the adversary can determine the user’s location in a
sufficiently small area; 2) the success rate should be further
improved, whichmeans the adversary has a high probability
to determine the user’s location in only one area successfully.

In this section, we introduce two practical variants of the
region re-identification based on POI type distribution to
pursue the above two goals, respectively.

4.1 Fine-Grained Attack

After applying the Cao et al.’s attack, an adversary can re-
identify those locations with the property of location
uniqueness and narrow each successfully re-identified loca-
tion in a circle with radius r, but cannot determine where
the locations exactly are. We find that the basic re-identifica-
tion method uses the relationship between Fl;r (i.e., POI
type distribution around actual location l with radius r) and
Fptl ;2r

(i.e., POI type distribution around found POI ptl with
radius 2r) to prune the candidate set of re-identified POIs.
Their method only uses the POI type distribution informa-
tion of POIs with the most infrequent type. Nevertheless, we
find that other POIs with other types can also be exploited to
locate the user.

The basic idea of the proposed fine-grained inference
method is to shrinkage the area the user is in by iteratively
applying the candidate pruning strategy for other types of
POIs, and find POIs in Pp�tl ;2r

that are also in Pl;r. After find-
ing these POIs, the adversary can further locate l because l
is definitely within r of the selected POIs. Specifically, we
present the following scheme to find a significantly smaller
area l should be in, which consists of three steps:

� The first step is to re-identify the location l by Cao
et al.’s region re-identification method, which can
infer that location l is in the range of p�tl with radius
r. We refer to the found POI p�tl as the major anchor
for the location inference.

� Once the anchor POI p�tl is found, we can further
improve the accuracy of the re-identification of
location l by leveraging other types of POIs in the
surrounding area. Though the queried POIs Pl;r

based on location l are unknown to the attacker, it
can obtain the set of POIs Pp�tl ;2r

, which is a superset
of Pl;r. Based on this knowledge, the attacker can
carefully filter the points in Pp�tl ;2r

and find some
auxiliary anchors to position the location l. An algo-
rithm to find these auxiliary anchors is presented in
Algorithm 1.

� After generating the set of auxiliary anchors, which
are all in the range of r of the location l, and thus the
location l can be positioned into a very fine-grained
area by computing the feasible area that satisfies the
requirements of these anchors.

Fig. 5. Performance of spatial k-cloaking.
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Algorithm 1. Iteratively Shrink the Region.

Input: Fl;r: the frequency vector of POI types;
tl: most infrequent POI type;
p�tl : corresponding POI for re-identifying l;
maxaux: maximum size of set of anchors.

Output: Aux: set of POI for positioning l
1 Aux ;;
2 Pp�tl ;2r

 QueryðG; p�tl ; 2rÞ;
3 Fp�tl ;2r

 FreqðG; p�tl ; 2rÞ;
4 Fdiff  Fp�tl ;2r

� Fl;r;

5 Sort Fdiff based on the frequencies of POI types.
6 foreach ti 2 Fdiff do
7 if Fdiff ½ti� ¼ 0 then
8 Aux Aux [ fp 2 Pp�tl ;2r

jp:type ¼ tig
9 else
10 foreach p 2 Pp�tl ;2r

and p:type ¼ ti do

11 flag True;
12 Fp;2r  Freqðp; 2rÞ;
13 foreach tp; vp 2 Fp;2r do
14 if vp < Fl;r½tp� then
15 flag False;
16 if flag then
17 Aux Aux [ fpg
18 if jAuxj >¼ maxaux then
19 break;

In Algorithm 1, we first compute the difference between
POI type distributions of the actual location and major
anchor and get a differential vector Fdiff . The algorithm tra-
verses all types of POI based on the sorted type in Fdiff . This
operation is adopted to speed up the iterative shrinkage pro-
cess because the algorithm can first consider the types that
need fewer efforts to prune the POIs. For example, if for a
type ti such that Fdiff ½i� ¼ 0, then all POIs with type ti in Pp�tl ;2r
are in Pl;r. Therefore, we can directly use these POIs with
type ti to shrink the target area without additional effort.

Example. Fig. 6 shows an example of the fine-grained
attack.

a) For a location l, its nearby aggregate POI distribution
with range r is Fl;r ¼ hschool : 1; gym : 2; restaurant :
3i. The POI found by Cao et al.’s method is a school
with location p�tl , and Fp�tl ;2r

¼ hschool : 1; hospital :
1; gym : 2; restaurant : 5i. For now, the attacker knows
that the victimuser is in a circular regionwithin radius
r around p�tl .

b) Our iterative region shrinking algorithm then com-
putes Fdiff ¼ hschool : 0;hospital : 1; gym : 0; restaurant : 2i.
For types school and gym, because all the POIs with
these two types are identical in both Pl;t and Pp�tl ;2r

,
these POIs can be used as anchors.

b) Because the type of hospital does not appear in Fl;r,
the hospitals will not be used as anchors. Due to
Fdiff ½restaurant� > 0, the algorithm verifies whether
a POI with this type satisfies the requirement of an
anchor for positioning l, and a POI is chosen as an
anchor in our example.

d) We can observe that the search area (the area
bounded by the green lines) of the victim user (loca-
tion l) is significantly reduced after applying the iter-
ative region shrinking algorithm.

Computational Complexity. Recall that the number of POI
types in the city is M, and we assume for any POI type, the
number of POIswith this type is nomore thanN . In theworst
case, the computational complexity of Cao et al.’s attack is
OðN 
MÞ. Then we analyze the extra computation required
for the fine-grained attack. The computation of Pp�tl ;2r

and
Fp�tl ;2r

has been done by the Cao et al.’s attack. The complexity
of computing Fdiff is bounded by the number of POI typesM.
In the worst case, the innermost loop of the Algorithm 1 (Line
11 - 17) needs to execute minðjPp�tl ;2r

j;maxauxÞ times. In most
cases, we assumemaxaux < jPp�tl ;2r

j, and we note that the fre-
quency computation in Line 12 can be implemented by que-
rying pre-computed indexes because any p 2 Pp�tl ;2r

is a POI,
whose aggregate POI distribution can be computed before
the attacks. Finally, we have the computational complexity of
the Algorithm 1 is Oðmaxaux 
MÞ, and overall, it is OðM 

ðmaxaux þNÞÞ for the fine-grained attack.

4.2 Attack With Trajectory Uniqueness

When users are using location-based services, they often
query the service multiple times. Several successive queries
may further reveal users’ location based on the inference on
the aggregated POI frequencies. We call this property trajec-
tory uniqueness and demonstrate that it can be leveraged
for location re-identification with a better success rate.

For the cases that the adversary can leverage multiple
releases of POI type frequencies, the location re-identifica-
tion problem is extended to the following form:

fF1;F2; . . .g  InferðfFl1;r; Fl2;r; . . .g;PÞ: (14)

By repeatedly applying the single location version of the
re-identification attack, the adversary can get a series of
inference candidates: fF̂1; F̂2; . . .g. Our goal is to figure out
which subset contains the areas that the user is possible in
for a given candidate set F̂t. An ideal case is that the adver-
sary has the knowledge about the distance between two
locations, i.e., distðf�t ;f�tþ1Þ. Thus, the adversary can filter the

Fig. 6. Example of the fine-grained attack. The overall POI frequencies in
the entire city F ¼ hschool : 2;hospital : 3; gym : 4; restaurant : 9i.
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pair of candidate areas in the candidate sets and find the
possible pair of locations based on their distance. However,
this assumption seems unrealistic in most cases, and we
need a practical way to estimate the distance between two
successive locations.

We consider the distance estimation as a regression prob-
lem. We find that the crucial part of this extended re-identi-
fication problem is that the prior knowledge P is also
extended. The adversary also captures the duration between
two successive releases. Therefore, we try to build a regres-
sion model mainly based on the duration and other auxil-
iary information to predict the distance between two
locations of corresponding releases. Specifically, we con-
struct the feature vector with the following information:

� The duration between two successive releases: time

ðlt; ltþ1Þ;
� The L1-distance between Flt;r and Fltþ1;r;
� In which hour of a day the first POI type frequency is

released, and which day of a week for this release.
These two types of information are encoded by one
hot encoding in the feature vector.

Based on the constructed feature vectors, we adopt sup-
port vector regression [13] that is provided Scikit-learn
machine learning package [9] to train the regressor.

Example. An example of the trajectory uniqueness attack
is presented in Fig. 7.

a) For a location lt, its nearby POI frequency distribu-
tion with range r is Flt;r ¼ hschool : 1; hospital :
1; restaurant : 2i. The POIs found by Cao et al.’s
method are two schools (marked with “1” in Fig. 7a).
For now, the attacker cannot decide which circular
regions (centered with a school with the radius r) the
victim user is in.

b) After a short period, the user moves from lt to ltþ1.
The corresponding POI frequency distribution is
Fltþ1;r ¼ hhospital : 1; restaurant : 3i. We apply the re-
identification method again and find that the victim
user may be within radius r around two POIs with
type hospital (marked with “2” in Fig. 7b). By taking
Flt;r and Fltþ1;r into consideration, we can infer that lt
is closer to the school on the left in the figure because
we know the user cannot move very far in a short
period of time. For a more complicated scenario, the
attacker can use the aforementioned regression to
infer the distance a user has moved.

Computational Complexity. As we have analyzed in Sec-
tion 4.1, the computational complexity of Cao et al.’s is

OðNMÞ. We assume that the user has T queries, and the
set of inference candidates produced by the single loca-
tion re-identification attack is fF̂1; F̂2; . . . ; F̂Tg. The time
complexity of generating the candidates is OðTNMÞ. The
time complexity of constructing the feature vector is
OðMÞ for any two successive queries. The inference time
of the support vector regression is negligible compared to
the above two parts because it is linear to the input
dimension, which is small in our method. Thus, the
computational complexity of the trajectory uniqueness
attack is OðTNM þ ðT � 1ÞMÞ.

5 EVALUATING THE ATTACKS

We have implemented the proposed attacks and evaluated
them based on real-world user data traces. Our results
show that the proposed attack needs less than 25% of the
search area compared with the existing attack in most cases.
The attack leveraging trajectory uniqueness can increase the
attack’s success rate up to about 20% when r ¼ 0:5.

5.1 Settings

The evaluation of fine-grained attack is conducted on four
datasets:(a) T-drive [3] user locations in Beijing, which con-
tains trajectory data of 10,357 taxis in Beijing. We extract the
trajectories which are within the given area of the city. (b)
randomly generated user locations in Beijing; (c) Four-
square check-ins [4] in New York City, which contains
227,428 check-ins from 824 users; (d) randomly generated
user locations in New York City. The evaluation of trajec-
tory uniqueness is carried out on trajectories that are
extracted from T-drive dataset. For each set of experiments,
we randomly choose 1,000 locations or segments from the
datasets for evaluation.

5.2 Search Area Reduction

Fig. 8 shows the performance of fine-grained attack that we
have proposed in Section 4.1 when maxaux ¼ 20. We can
find that this attack dramatically reduces the area size that
needs to search for the user’s actual location. In about 80%
cases, the proposed attack can reduce the search area to no
more than a quarter of the search area required by Cao et al.
’s attack. Furthermore, we can find that with the query
range increasing, the fine-grained attack performs better on
the search area reduction.

In Fig. 9, we can see that, with the number of auxiliary
anchors increasing, the attack achieves better performance
for all the four datasets. On average, for these four datasets,
the fine-grained attack can reduce the size of the search area
from 1:70km2 to 0:60km2, 2:38km2 to 1:35km2, 1:92km2 to
0:26km2, and 2:63km2 to 1:07km2, respectively, when the
number of auxiliary anchors increases from 5 to 40. We can
also find that the reduction brought by more auxiliary
anchors decreases with the number of auxiliary anchors
increasing. Therefore, it may not be the best choice to use all
the auxiliary anchors because the computation time will
increase when more auxiliary anchors involve. In our
experiments, let maxaux ¼ 20 could be a reasonable choice.
We note that the search area of Cao et al.’s attack is always
about 16:56km2 when r ¼ 2km.

Fig. 7. Example of the trajectory uniqueness attack. The overall POI fre-
quencies F ¼ hschool : 2; gym : 2;hospital : 3; restaurant : 9i.
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5.3 Performance of the Trajectory Uniqueness
Attack

Fig. 10 shows the performance of the re-identification attack
when two successive releases are leveraged in Beijing with
T-drive datasets. In our experiments, we extract the points in
the trajectories satisfying the requirements: 1) the released
POI type frequencies are changed because the adversary can
be aware that if the POI type frequency is the same as the pre-
vious release, this release is useless; 2) the duration of two
successive releases is less than 10 minutes, because when the
duration is large, the user may start another new session of
using the location-based services. We can observe from the
results that the success rate is improved by using the knowl-
edge of two successive queries. For r ¼ 0:5km, 1:0km, 2:0km,
and 4:0km, the enhanced attack has 0.203, 0.146, 0.09, 0.001
gains on success rate, respectively. We can find that the gain
is minimal when r ¼ 4:0km because the performance of loca-
tion re-identification is good enough with a large query
range.

5.4 Attack Performance Against Existing Defenses

In this set of experiments, we evaluate the proposed attacks
against the existing defenses. We set r ¼ 2:0km, and evalu-
ate both the success rate and the size of search area of the
fine-grained attack.

Fig. 11 shows the performance of the proposed fine-
grained attack against the Planar Laplacian defense mecha-
nism. We can find that when the privacy budget is larger
(i.e., � ¼ 1:0), the Planar Laplacian can hardly affect the

performance of the attack on both the success rate and the
size of the search area. In Fig. 11a, we can find that when � ¼
0:1, the Planar Laplacian can reduce about 18.02%, 23.72%,
20.71%, and 23.26% for Foursquare dataset in NYC, random
locations in NYC, T-drive dataset in Beijing, and random
locations in Beijing, respectively, on the success rate. How-
ever, we note that the search area reduction is the major fea-
ture of the fine-grained attack, and we can observe
in Fig. 11b that the change of the size of the search area is
not significant, even though a strong defense is applied (i.e.,
� ¼ 0:1).

Fig. 12 shows the performance of the proposed attack
when the spatial k-cloaking defense mechanism is applied.
We change the cloaking parameter k from 10 to 50. In
Fig. 12a, we can observe that with k increasing, the success
rate decreases. Compared with Cao’s location re-identifica-
tion attack, the proposed fine-grained attack does not try to
provide better performance on the success rate. Yet, in
Fig. 12b, we can find that the spatial k-cloaking can hardly
defend against the fine-grained attack on the size of the
search area under various settings.

6 OPTIMIZATION-BASED DEFENSE WITH

DIFFERENTIAL PRIVACY

In this section, wewill describe a general differentially private
framework to protect users’ locations against the re-identifica-
tion attacks in the sharing of POI frequencies. The proposed
defense can also defend against the location re-identification

Fig. 8. Performance of the fine-grained attack: the CDF of search area. The indigo lines in the figures show the performance of Cao et al.’s attack in
terms of search area. The search area of Cao et al.’s attack is always pr2km2 (p=4, p, 4p, and 16p, respectively) for 100% of locations in any
datasets.

Fig. 9. Search area: changing the number of auxiliary anchors (the
search area of Cao et al.’s attack is always 4pkm2 in this setting).

Fig. 10. Performance of the trajectory uniqueness: exploiting the power
of two successive queries.
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attack andmitigate the privacy leakage in the cases where the
user continuously releases the POI frequencies.

By revisiting Cao et al.’s attack [1], we can find that the
region re-identification attack succeeds so long as the adver-
saries can locate the targeted users in areas with a radius r.
Instead of finding the target user’s exact location, the
attacker tries to figure out to which POI the target is close.
Under this setting, it is hard to achieve good defense perfor-
mance with the location-level methods, i.e., only perturbing
an actual location to a noise location seems not the right
choice, and the evaluation of geo-indistinguishability also
supports this argument. On the other hand, the aggregate-
level methods can provide effective protection to some
extent, but it is vulnerable to advanced attacks when the
adversary obtains other background information, as has
been shown in the evaluation of the sanitization. Besides,
the aggregate-level protection may yield the POI type fre-
quencies with poor utility because it will remove some
essential information from the reported aggregate if we take
an aggressive defense strategy. We resort to aggregate-level
protection, which could perturb the POI type frequencies of
users and make two improvements over the naı̈ve sanitiza-
tion method in Section 3.1:

� The naı̈ve sanitization method does not take the util-
ity into account, but it is crucial for services that
need the POI type frequencies. We show that the
proposed defense can provide the comparable utility
of the perturbed frequencies.

� It has been shown that the naı̈ve sanitization is vul-
nerable to advanced attacks with auxiliary informa-
tion. The proposed defense provides a plausible
guarantee of the perturbed frequencies against the
auxiliary information-based attacks by introducing
the notion of differential privacy.

There are two main challenges when supporting the mul-
tiple POI frequencies release: (1) the defense should be able
to defend against the trajectory uniqueness; (2) the accumu-
lated privacy loss should be audited carefully. A straightfor-
ward way of releasing the frequencies with respect to a
trajectory of a user is to apply the mechanism we have pro-
posed in Section 6.2 repeatedly. However, such a solution
may introduce linearly increasingly privacy loss with the
number of LBS queries based on the sequential composition
rule(Theorem 4). Moreover, it is also not clear whether it can
defend against the attack with trajectory uniqueness. The
main idea is to characterize the correlation of POI frequencies

of two successive locations on a trajectory. First, we incorpo-
rate the segment clustering algorithm and Gaussian mecha-
nism to generate a dummy frequency vector for protecting
the privacy of the original POI frequencies. Then, we incor-
porate the state-of-the-art R�enyi differential privacy frame-
work [14] to analyze the accumulated privacy loss for the
multiple POI frequencies release in a fine-grained way.
Moreover, we adopt a differentially private test to determine
how to respond to the LBS requests such that the privacy
budget can be further reduced.

6.1 Non-Private Formulation

We first formulate the perturbation objective in a non-pri-
vate way. Assuming that a user requests the LBS with a
sequence of locations l1; l2; . . . ; lL, and the corresponding
POI type frequency vectors are Fl1;r; Fl2;r; . . . ; FlL;r, we adopt
the following optimization to find a proper release ~Ft at
time t:

max
~Ft

XM
i¼1

1

RðiÞ j
~Ft½i� � Flt;r½i�j; (15)

s:t:
1

M

XM
i¼1

1

Flt;r½i� þ 1
j ~Ft½i� � Flt;r½i�j � b; (16)

1

M

XM
i¼1

1
~Ft�1½i� þ 1

j ~Ft½i� � ~Ft�1½i�j � h; (17)

~Ft½i� 2 Nþ; i ¼ 1; 2; . . . ;M: (18)

We want to maximize the weighted perturbation to the
released frequencies while constraining the total distortion
to the frequencies under a certain level, b. For the multiple
POI frequencies release, we use Eq. (17) to limit the differ-
ence between two successive releases, such that the privacy
leakage by trajectory uniqueness can be mitigated. In the
above formulation, RðiÞ is the infrequent rank of each POI
type (the most infrequent POI type ranks 1, and so forth).
For the case of single-shot aggregate POI distribution
release, the parameter t and Eq. (17) can be omitted in the
above formulation.

6.2 Differentially Private Release

The indistinguishability provided by the definition of DP
guarantees that the released POI type frequency vector is
insensitive to each POI type’s frequency in the original fre-
quency vector. To further illustrate the guarantee provided

Fig. 11. Fine-grained attack against Planar Laplacian. Fig. 12. Fine-grained attack against spatial k-cloaking.
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by DP, we specify the neighboring datasets in the release of
POI frequency distribution. We refer to a pair of datasets
D1, D2 2 Xd as neighbors if they are two POI frequency vec-
tors and D2 can be obtained from D1 by only modifying one
dimension of POI type frequency.

The main idea is to generate a privacy-preserving alter-
native to Flt;r in Eq. (15) to Eq. (17), such that for time t, we
can find a proper release ~F �t which can defend against the
re-identification attack and achieve differential privacy at
the same time. Specifically, the defense mechanism consists
of the following steps:

1) For a location lt, if distðlt�1; ltÞ < Movemin (i.e., the
user does not move significantly when making two
successive LBS requests), then we use the POI type
frequency vector of the previous location lt�1, instead
of generating a new POI type frequency vector Flt;r

based lt. However, it may leak the information that
the user’s location does not change if we directly
report the same frequencies. We adopt noisy version
of the condition check as

distðlt�1; ltÞ þ Lap

 
2Dd

�c

!
< Movemin þ Lap

 
2

�c

!
;

(19)

where Dd is the sensitivity of the dist function, and �c
is the privacy budget for checking the condition. It is
clear that the above check satisfies �c-differential
privacy.

2) If t > 1, for a location lt in the trajectory, the defense
mechanism first prunes all the locations that have
been submitted for a LBS request at time t and gets a
location set Lt. For t > 1, any location dtj 2 Lt satis-
fies that

jdistðdt�1j ; dtjÞ � distðlt�1; ltÞj � g:

For each location dtj 2 Lt, a line segment can be con-
structed as ðdt�1j ; dtjÞ, and the set of all line segments
generated based on Lt is denoted by St (containing
ðlt�1; ltÞ). Then, we adopt the line segment clustering
algorithm proposed by Lee et al. [15] to find a subset
of segments, denoted by fðdt�11 ; dt1Þ; ðdt�12 ; dt2Þ; . . . ;
ðdt�1k ; dtkÞg, in St as the dummies to protect the privacy
of segment ðlt�1; ltÞ.

3) If t ¼ 1 (i.e., the case of single-shot aggregate POI dis-
tribution release), the defense first adopts the spatial
k-cloaking mechanism [12] to generate the a group of
dummy locations as we have reviewed in Section 3.3,
and the generated k locations (including lt) are
denoted by dt1; d

t
2; . . . ; d

t
k; if t > 1, we let dt1; d

t
2; . . . ; d

t
k

as the ends of segments ðdt�11 ; dt1Þ; ðdt�12 ; dt2Þ; . . . ;
ðdt�1k ; dtkÞ, respectively. The POI frequency vectors are
denoted byFdt

1
;r; Fdt

2
;r; . . . ; Fdt

k
;r, respectively.

4) Then we compute the average of them with apply
Gaussian mechanism for i ¼ 1; 2; . . . ;M:

F �Dt;r½i� ¼
 Xk

j¼1
Fdt

j
;r½i� þ N ð0; s2Þ

!
=k; (20)

where we set s ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1:25=dÞ=�p

according
to Definition 2. � and d are privacy parameters.

5) Finally, we formulate the following optimization
problem and get ~F �t :

max
~F�t

XM
i¼1

1

RðiÞ j
~F �t ½i� � F �Dt;r½i�j; (21)

s:t:
1

M

XM
i¼1

1

F �Dt;r½i� þ 1
j ~F �t ½i� � F �Dt;r½i�j � b; (22)

1

M

XM
i¼1

1
~F �t�1½i� þ 1

j ~F �t ½i� � ~F �t�1½i�j � h; (23)

~F �t ½i� 2 Nþ; i ¼ 1; 2; . . . ;M: (24)

For the cases where we only release aggregate POI distri-
bution for a single location, the first two steps are not neces-
sary, and the parameter t and the constraint Eq. (23) can
also be omitted.

Deployment of the Defense. As we have shown in the sys-
tem model, the POI aggregates can be generated by either
the user itself or the geo-information service provider
(GSP). For the existing protection methods that have been
evaluated in Section 3, both the sanitization and the geo-
indistinguishability can be deployed at either the user side
or the GSP side, and the spatial k-cloaking requires the GSP
to choose a region containing at least k users. The proposed
defense in our paper also needs to be deployed on the GSP
(or any trusted third party that can access the actual loca-
tions of users). In addition, the defense can be deployed in a
hybrid setting where the step 1) condition check, step 2)
location pruning, and 5) optimization can be implemented
by the user itself, and only step 3) line segment clustering
and step 4) noisy adding require the GSP to be involved.

6.3 Privacy Analysis

Theorem 5. For each t, the above defense mechanism achieves
ð�; dÞ-differential privacy.

Proof. First we analyze the sensitivity of sum of the POI type
frequencies. Consider a pair of neighboring databases

Fdt
1
;r; Fdt

2
;r; . . . ; Fdt

j
;r; . . . ; Fdt

k
;r

and

Fdt
1
;r; Fdt

2
;r; . . . ; F

0
dt
j
;r
; . . . ; Fdt

k
;r;

which differ in one POI frequency vector at one dimen-
sion. For any dimension i,

Pk
j¼1 Fdt

j
;r½i� will change at

most maxdFd;r½i�, such that we can set the sensitivity at
this dimension asmaxdFd;r½i�.

Then we show that the publish of F �Dt;r½i� is differen-

tially private. We set the variance s ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1:25=dÞp

=�.

By Definition 2, we have that Eq. (20) achieves ð�; dÞ-dif-
ferential privacy. In the optimization (Eq. (21)), we do

not need to access the original POI frequency vector. The
proposed defense mechanism is a sequentially apply

of Eq. (20) and Eq. (21). By Lemma 3, it is ð�; dÞ-differen-
tially private. tu

2444 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: William & Mary. Downloaded on October 31,2023 at 12:57:03 UTC from IEEE Xplore.  Restrictions apply. 



For the differentially private check in Step 1), we have that
for a LBS request sequence with length R, the above defense
mechanism achieves ðRc�þR�c; RcdÞ-differential privacy,
where Rc is the number of locations that fail the differen-
tially private check in Eq. (19) by applying the sequential
composition rule Theorem 4. Then we use the notion of
R�enyi differential privacy (RDP) [14] to achieve a tighter
bound of the accumulated privacy loss of releasing multiple
POI frequencies. RDP is a variant of the standard DP.
Instead of analyzing the privacy loss via KL divergence,
RDP provides a way to bound the moment of privacy loss
over any order by using R�enyi divergence as a metric.

Definition 6 (R�enyi differential privacy [14]). A random-
ized mechanism M : Xd ! Y is ða; �Þ-RDP if for any two
neighboring databases D1;D2 2 Xd, we have

DaðMðD1ÞkMðD2ÞÞ � �;

where Da is the R�enyi divergence between two probability dis-
tributions of order a > 1.

We review some important results in the R�enyi differen-
tial privacy, and we will use them to analyze the accumu-
lated privacy loss of the defense mechanism.

Lemma 7 (RDP composition [14]). LetM : Xd ! Y be an
application of k randomized mechanisms M1;M2; . . . ;Mk,
and each mechanism Mi satisfies ða; �iÞ-RDP. Then M
achieves ða;Pk

i¼1 �iÞ-RDP.

Lemma 8 (RDP and DP [14]). Let M : Xd ! Y be a
ða; �Þ-RDP mechanism, it also satisfies ð�þ log 1=d

a�1 ; dÞ-DP, for
any a > 1 and any 0 < d < 1.

When applying Gaussian mechanism or Laplace mech-
anism under the definition of RDP, there are the following
results [14]. If a function f : Xd ! Y has the sensitivity of
D, then we have: a) the Gaussian mechanism applied to f :
fðxÞ þ N ð0; s2Þ satisfies ða;D2a=ð2s2ÞÞ-RDP; b) the Lap-
lace mechanism applied to f : fðxÞ þ Lapð�Þ satisfies
ða; 1

a�1 log ð a
2a�1 expða�1� Þ þ a�1

2a�1 expð� a
�ÞÞÞ-RDP, for any a >

1 and any 0 < d < 1. By the RDP composition rule, we
have that the defense mechanism satisfies

a;
R

a� 1
ðmþ nÞ þ aRc

4 lnð1:25=dÞ
� �

-RDP;

where m ¼ log ð a
2a�1 expð�cða�1Þ2Dd

Þ þ a�1
2a�1 expð� �ca

2Dd
ÞÞ and n ¼

log ð a
2a�1 expð�cða�1Þ2 Þ þ a�1

2a�1 expð� �ca
2 ÞÞ. Thus, we also have

that the mechanism satisfies

R

a� 1
ðmþ n

� �
þ aRc

4 lnð1:25=dÞ þ
log ð1=d0Þ
a� 1

; d0Þ-DP:

7 EVALUATING THE DEFENSES

We have implemented the proposed defenses and evaluated
them based on real-world user data traces. Our results show
that the proposed defense canmitigate the location re-identi-
fication attacks to less than 20% success rate in most settings
while well preserving the utility of the POI aggregates. The
evaluation of the proposed defense mechanisms is per-
formed on T-drive dataset and Foursquare NYC dataset.

7.1 Defense Performance

Fig. 13 shows the defense performance achieved by the non-
private defense that is formulated in Eq. (15). We change the
parameter b from 0.005 to 0.05, which is used to balance the
utility and defense performance in the formulation. We can
find that with the larger b, the mechanism performs better on
the defense. When b � 0:02, the defense can mitigate the suc-
cess rate of the attacks to less than 0.2 for various query
ranges.

Fig. 14 shows the defense performance achieved by the
differentially private defense mechanism that we have pro-
posed in Section 6.2. We set the spatial cloaking parameter
k ¼ 20, privacy parameter d ¼ 0:2, and change � from 0.2 to
2.0. We can observe that for various choices of b, the defense
performance gets worse when the privacy budget increases.
In addition, the defense performance of the DP defense
mechanism is also affected by the parameter b, and when b

is small (say b ¼ 0:01), which means the tolerated perturba-
tion of the POI aggregate is small, the defense mechanism
may need a strict privacy guarantee to achieve a satisfactory
defense performance.

7.2 Service Quality

Tomeasure the service quality, we use the followingmetrics.
1. Normalized Mean Absolute Error (NMAE). For the POI

frequency distribution Fl;r ¼ ðn1; n2; . . . ; nMÞ and the pro-
tected POI frequency distribution ~F � ¼ ðn�1; n�2; . . . ; n�MÞ, the
Normalized Mean Absolute Error is calculated as

NMAE ¼
PM

t¼1 jnt � n�t jPM
t¼1 nt

:

2. Jaccard Index on Top-K POI Types (JK). We measure
the service quality in a frequent POI type mining application

Fig. 13. The performance of the non-private defense mechanism (a
lower success rate means better defense performance).

Fig. 14. The performance of the differentially private defense mecha-
nism (r ¼ 2:0km).
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which uses the topK most popular POI types in the POI fre-
quency distribution. Specifically, for the POI frequency dis-
tribution Fl;r and the protected POI frequency distribution
~F �, we find the sets of K POI types with highest frequencies
in the aggregates and denote them by TopðFl;r;KÞ and
Topð ~F �;KÞ. Jaccard Index [16] is adopted to measure the
similarity between original POI type frequencies and pro-
tected POI type frequencies as

JKðFl;r; ~F
�Þ ¼ jTopðFl;r;KÞ \ Topð ~F �;KÞj

jTopðFl;r;KÞ [ Topð ~F �;KÞj
:

Fig. 15 shows the results of the utility achieved by the
non-private defense that is formulated in Eq. (15). For four
settings of query range, the NMAE of the perturbed POI fre-
quency distribution increases with b increasing. For the Jac-
card index on Top-K POI types, we choose the top 10 most
popular POI types in the POI frequency distribution. We
observe J10 decreases slightly with b increasing and is
robust to the change of b.

Fig. 16 shows the results of the utility achieved by the dif-
ferentially private defense. An interesting finding is that the
change of NMAE is very slight with the change of �. We spec-
ulate that the reason for this phenomenon is that for the
whole POI frequency distribution, whose dimension is
about 100, the effect of the optimization in Eq. (21) domi-
nates the effect of the noise added in Eq. (20). On the con-
trary, we observe the metric J10 is sensitive to the noise
parameter �, but hardly changes with various values of b.

7.3 Multiple POI Frequencies Release

Fig. 17 shows the defense performance and the utility
achieved by the multiple POI frequencies release mecha-
nism. We change the privacy parameter from 0.5 to 3.0, and
we can find that the success rate is significantly reduced
from 79.36% to less than 20% for all the cases. We adopt
top-10 as the target application, and the Jaccard index varies
from 0:64ð	0:17Þ to 0:71ð	0:16Þ with the change of � from
0.5 to 3.0.

8 RELATED WORK

The related works of this paper fall into three categories:
POI-based data analysis, location privacy, and uniqueness,
and privacy of the aggregate location data.

8.1 POI-Based Analysis and Applications

POI data have been widely used in the applications of spa-
tial-based analysis and recommendations. Some works, e.g.,
[17], [18] have been done for identifying the place with spe-
cial meanings by leveraging POI data. Nishida et al. [18]
propose a probabilistic identification method for personal-
ized check-in in LBSs by analyzing users’ past visited POIs.
In [17], a clustering-based algorithm is proposed for analyz-
ing the attractive areas by using crowdsourced data. POI-
based recommendation also has been extensively studied,
e.g., [19], [20], [21], [22], [23].

In [21], [22], the authors study the problem of time-aware
POI recommendation to recommend POIs for a user to visit
at a given time. Bin et al. [19] propose a personalized

Fig. 15. Utility achieved by the non-private defensemechanism (K ¼ 10).

Fig. 16. Utility achieved by the differentially private defense mechanism
(r ¼ 2:0km,K ¼ 10).

Fig. 17. Performance of the multiple POI frequencies release defense.
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recommendation framework by leveraging users’ multi-
aspect behavior and preferences. POI data have also been
used for human behavior analysis, e.g., [23], [24], [25], [26],
[27], [28] Liu et al. [23] have developed a systematic frame-
work to model POI demands by exploiting the daily needs
of people identified from their large-scale mobility data.
Park et al. [28] reveal the collective intelligence of the spatial
choices expressed in the mobility patterns of the people that
live in a city.

There are some previous works studying how to mine
specific patterns based on POIs or the related information,
e.g., [29], [30], [31], [32]. In [29], through the analysis of POI,
the user habit pattern is obtained, and it is proposed that a
vector representing the user’s habit can be obtained through
the processing of POI data. This paper proposes habit2vec, a
representation learning method, which can generate a vec-
tor including users’ living habit information through proc-
essing POI data. The work [30] explores the POI revisitation
patterns and analyses the similarities and differences
between website, smartphone app revisitation patterns and
the POI revisitation. It uses global-scale check-in data and
localization data in Beijing as datasets to complete its
research. And it is the first work about the large-scale analy-
sis of POI revisitation patterns in cities. Chen et al. [31]
study the urban revisitation and re-check-in and explore the
similarities and differences between them. It analyses the
relevant factors that impact revisitation and re-check-in and
examines the predictability. It is the first work about this.
In [32], a pipeline system to detect popular temporal modes
in population-scale unlabeled trajectory data is proposed.
To test the system, it uses three large-scale real-world data-
sets to complete the experiment. And according to the eval-
uation, the system performs well in detecting popular
temporal modes. This work contributes to uncovering the
mechanisms behind urban mobility.

Lin et al. [33] propose a model called healthwalks, which
takesmobility data as input to sense individual health condi-
tions. It produces lots of mobility metrics. And then, through
the process of regularization technique, the classification can
be completed. To study the human mobility, Shi et al. [34]
focus on the semantics of trajectory rather than simply focus-
ing on the spatial and temporal patterns. And based on this,
this paper proposes a semantics-aware hidden Markov
model. Besides, to solve the data sparsity problem, this paper
proposes a vMF mixture model. CROSSMAP [35] is a cross-
modal representation learning model, which can make use
of data to model people’s activities and bridge the block of
applying the geo-tagged social media.

8.2 Location Privacy With Uniqueness

A lot of research has been carried out on protecting location
privacy, e.g., [36], [37], [38], [39], [40], [41], [42], [43], [44],
[45], [46]. Previous works on location privacy protection
mainly focus on protecting users’ geographical locations.

The uniqueness of location information has been studied
by previous works, e.g., [1], [47], [48]. Montjoye et al. [47]
show that human mobility traces have high uniqueness,
and the uniqueness can be determined by users’ mobility
traces. In [48], an algorithm for anonymizing location data
is proposed, which tries to decrease the privacy risk by this.
The algorithm shortens the length of the trajectories.

Through this, it lowers the uniqueness of the trajectories. Tu
et al. [49] propose a protection method against semantic
and re-identification attacks based on trajectory data. These
works have considered the location privacy in presence of
the uniqueness of locations or trajectories in terms of the
users’ geographical locations. In this paper, we try to under-
stand the location privacy of the POI aggregate data instead
of the geographical locations.

The most related work to our work is Cao et al. [1], which
finds that even if the actual locations are not revealed, the
adversary can still re-identify users’ location by the aggre-
gated POI type distribution. They observe the phenomenon
of location uniqueness, which is ubiquitous in many metro-
polises. A computationally efficient location re-identifica-
tion method is also proposed by [1]. However, as we have
mentioned above, their method may not apply to launching
practical attacks.

Some preliminary results in this paper have been pub-
lished in [50], where the defense mechanism can only apply
to the single POI frequency release. In this paper, we extend
the study of location re-identification defense for a more
general case.

8.3 Privacy of the Aggregate Location Data

POI type frequency can be viewed as a type of location
aggregate data. Therefore, studies on aggregate data pri-
vacy are also related to our work. The aggregate data are
often considered a way to hinder the exposure of individu-
als’ data [51]. However, previous works show that various
types of inference attacks on the aggregate data may still
jeopardize users’ privacy, e.g., [52], [53], [54], [55]. A pio-
neering work [52] by Pyrgelis et al. shows that an adversary
with some prior knowledge can exploit aggregate informa-
tion to improve her/his knowledge and even locate specific
individuals that are part of the aggregates. Specifically, they
consider the number of users that appear in a location at a
certain time. The released aggregate data is generated based
on the combinations of a set of regions of interest and a
series of time slots. The adversary’s goal is to profile the
mobility pattern or infer the actual locations of the target
users. Xu et al. [54] study how to recover users’ trajectories,
without any prior knowledge, from aggregate mobility
data, which is a collection of the numbers of users at all the
locations in a time slot.

Although it has been taken as an implicit assumption
in [52], [54] that the membership information is known to
the adversary, the membership privacy itself can also be
critical when releasing aggregate location data. Pyrgelis
et al. [53] try to figure out how an adversary can infer
whether or not a target user appears in the group. In [53], a
generic methodology is proposed for studying membership
privacy on aggregate location data. Similar to [52], they con-
sider the release of the aggregate location time-series, which
represents the number of users in a group characterized in a
spatial-temporal way. Based on [53], [55] conducts a system-
atical analysis of the membership inference attack on aggre-
gate location time-series. By identifying the number of
times a user appears in a location as the dominant feature of
the membership inference attack, they have proposed a
more advanced attack by leveraging the principal compo-
nent analysis (PCA).
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Unlike the previous attacks performed on the aggregate
location time-series or the aggregate mobility data, our
work tries to perform the inference attacks on the aggregate
POI distribution, which a single user generates. Our goal is
to infer users’ locations or trajectories based on the aggre-
gate POI distribution, which is similar to [52], [54], but our
attacks are performed only on the aggregates of a single
user and do not require the aggregate data of the whole sys-
tem. In addition, since the aggregate POI distribution is gen-
erated by one user, the user-level membership inference
attacks may not apply in our scenario.

9 CONCLUSION

In this paper, we conducted an in-depth study of the loca-
tion privacy problem in the presence of location uniqueness.
We have also conducted a study to evaluate whether the
existing protection methods can adequately defend against
the location re-identification attack. The results show that
methods like sanitization, geo-indistinguishability, and spa-
tial k-cloaking can hardly provide adequate location privacy
protection in the presence of location uniqueness. Based on
the existing location re-identification method, we present
two practical variants that achieve higher precision in locat-
ing a user and better re-identification performance. Further-
more, we propose a differentially private POI type frequency
release mechanism, which can be applied to both the single
and the multiple POI aggregate data release. The evaluation
shows that the proposed defenses provide adequate location
privacy protection with acceptable utility loss.
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