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Abstract—Securing a wireless channel between any two vehicles is a crucial component of vehicular networks security. This can be

done by using a secret key to encrypt the messages. We propose a scheme to allow two cars to extract a shared secret from RSSI

(Received Signal Strength Indicator) values in such a way that nearby cars cannot obtain the same key. The key is information-

theoretically secure, i.e., it is secure against an adversary with unlimited computing power. Although there are existing solutions of key

extraction in the indoor or low-speed environments, the unique channel conditions make them inapplicable to vehicular environments.

Our scheme effectively and efficiently handles the high noise and mismatch features of the measured samples so that it can be

executed in the noisy vehicular environment. We also propose an online parameter learning mechanism to adapt to different channel

conditions. Extensive real-world experiments are conducted to validate our solution.

Index Terms—Vehicular network, security, privacy, secret key extraction, RSSI, measurement
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1 INTRODUCTION

VEHICULAR networks have attracted much research effort
recently given their potential in improving public

safety and traffic management [1], [2]. Through vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) connectiv-
ity, important information such as road conditions (e.g.,
construction) and traffic conditions (e.g., traffic is moving
slowly ahead) can be transmitted to allow drivers and their
vehicles to make the appropriate decisions. In vehicular net-
works, security is an important component and one of the
most fundamental security requirements is the ability to
establish a secure channel between two arbitrary cars.
Rather than relying on a public key infrastructure (PKI)
based solution [3], in this paper, we propose an alternative
approach to allow two arbitrary cars to establish a secret
key for secure communications. Our approach can be used
in environments where a PKI has not been established.

This is done by having both cars continuously sample the
wireless link and then extract a shared secret key based on

the signal strength fluctuations. Since the fluctuations are
resulted from the unpredictable wireless channel dynamics,
they cannot be observed by an adversary at a distance more
than half the wavelength of the wireless signal (e.g., that is
6.25 cm for 2.4 GHz wireless channel) so that the key is
secure. Similar to existing works [4], [5], [6], [7], the
extracted key is information-theoretically secure, in contrast
to the classic key establishment method such as Diffie-
Hellman that relies on computational hardness assumption.
To sample channel dynamics, two parties capture RSSI val-
ues by sending packets back and forth to each other. This
will require addressing the following challenges that have
rendered the previous approaches [4], [5], [6], [7] unusable.

First, vehicular environments have very short channel
coherence time, the time duration for which the wireless
channel remains unchanged, due to rapid environment
change. Measurements [8], [9] have shown that channel
coherence time in vehicular environments can be as short as
a few hundred microseconds. Although short coherence
time will give high randomness for key extraction in low
speed mobile environments [4], [5], [6], [7], very short coher-
ence time in vehicular environments will pose a big chal-
lenge. Because, to sample the same channel dynamics, a
pair of sample packets must be sent by two parties
(vehicles) respectively within a duration of coherence time.
Due to the half-duplex nature of current wireless platforms,
however, we find that the round-trip time of a wireless
packet may be longer than the coherence time. Applying
existing solutions to vehicular environments results in
unsatisfactorily slow key generation.

Second, RSSI is widely available among off-the-shelf
802.11 radios so that our solution can be readily imple-
mented on existing wireless platforms without hardware
changes. But RSSI has poor accuracy in characterizing the
channel condition, compared to the Channel Impulse
Response (CIR) measurements [4]. We refer to both the
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short-coherence-time effect and the RSSI error as noise due
to the inability to distinguish them.

Therefore, one challenging issue is how to reduce the
effect of noise in captured RSSI traces without eliminating
too much randomness in them. After filtering out the slow
variation [4], which is caused by distance changes, we
observe that the noise is very strong, comparable to the level
of fluctuation due to the channel dynamics. For high quality
traces considered by previous research, the noise level is
negligible compared to the signal fluctuation, which is not
the case in our trace. Thus, we have a dilemma. If we keep a
large portion of the fluctuation, i.e., do not filter out noise
sufficiently, the mismatches of bits at the two sides will
become so numerous that the number of final extracted bits
will be zero after subtracting the effort to correct such mis-
matches. On the other hand, if we remove too much of the
fluctuation, even though mismatches are reduced, the final
bits will contain little randomness. Therefore, the main
obstacle of this paper is to delineate the fine line between
noise and fluctuation of the channel dynamics.

To the best of our knowledge, we are the first to consider
key extraction in vehicular environments using RSSI values.
None of the previous methods [4], [5], [6], [7] can be used
directly in extracting secret bits in vehicular environments.
By borrowing ideas from [4], [5], [6], [7], we address chal-
lenges arising from vehicular networks as follows (A pre-
liminary version of this paper appeared in [10]).

� We propose weighted sliding window smoothing to
reduce noise (Section 4). This smoothing method
considers both local white noise and mismatched
sensing time, and can reduce the strong noise in
vehicular environments better than existing smooth-
ing methods used in the key extraction literature,
which has been verified in our experiments.

� We propose a systematic way to ensure the random-
ness of the resulting key (Section 5).We discover that a
Markov model is appropriate to capture the depen-
dency among random bits, based onwhich we select a
randomness extractor to produce perfect random bits.
Besides ensuring the randomness of the resulting key,
we utilize more mutual information among captured
samples, compared to existing randomness extraction
methods relying on sub-sampling or random hashing.
The extracted bits pass theNIST test [11].

� We propose an online parameter learning scheme to
adaptively adjust parameters which offers more
steady performance in different environments (Sec-
tion 6). To learn the parameters in real-time, we pro-
pose a light-weight objective function for training
parameters, which performs comparably to the origi-
nal objective but incurs much less computation.

� Our experiments are conducted using data collected
from real world vehicular environments (Section 7).

2 RELATED WORK

Extracting secret keys from the unpredictable radio channel
variations has gained considerable research interests
recently. Azimi-Sadjadi et al. [12] propose an extraction
scheme based on signal envelopes and evaluate it on a Ray-
leigh fading channel model. Later both Mathur et al. [4] and
ASBG [6] leverage the channel’s level crossings to generate

secret keys shared between two parties in the indoor and
low-speed outdoor environments respectively. In environ-
ments where the channel does not have sufficient variations,
key extraction can be very slow due to lack of randomness.
Different approaches are proposed to address this issue [13],
[14], [15]. Gollakota and Katabi [13] propose iJam for OFDM-
based systems. In iJam, the receiver randomly jams the signal
in such a way that it can still decode the message while the
adversary cannot. Also targeting at OFDM systems, Liu
et al. [14] propose to use the channel response from multiple
subcarriers simultaneously to speed up key extraction.
Huang andWang [15] attach two antennas to the transmitter,
and, by controlling amplitude and phase of each symbol on
each antenna, they introduce channel fluctuations and
increase key extraction rate. Some key extraction approaches
[7], [16] are proposed specifically for themote platform.

Other physical properties can also be used for key extrac-
tion (e.g., [17]). Recently, Safaka et al. [18] utilize the phe-
nomenon of random packet loss to establish pairwise
secrets for a group of wireless nodes. References [19], [20]
target at extracting a group key, instead of pairwise keys,
for multiple devices. There has also been much work on
protecting WLANs and sensor networks [21], [22], [23].

Along with these approaches are security concerns in the
literature [6], [24], [25]. In a static environment, the adver-
sary can create predictable channel variations useful for
breaking the key, by using an object to repeatedly block and
unblock the line-of-sight path between the sender and
receiver [6]. Such attacks are hardly practical in dynamic
environments such as vehicular scenarios since the adver-
sary cannot control all channel variations, which is different
from the scenario in [6]. Reference [24] conducts experi-
ments using MICAz sensor motes, and finds that the key
extracted by level crossing [4] may have up to 81.97 percent
in common with that obtained by colluded adversaries at a
distance less than 6 cm away from the transmitter. However,
when the distance increases to 90 cm, the in-common per-
centage decreases to less than 57 percent, only slightly better
than random guessing. This security concern may not apply
to vehicular environments, since the adversaries are at least
several meters away from both the transmitter and receiver.
Reference [25] suggests that key extraction schemes might
be vulnerable to man-in-the-middle-attack. We do not con-
sider this attack and leave it as an important future work.

Neither of the above works considered key extraction in
vehicular networks, where the radio channel has unique
characteristics. In the technical perspective, we have to
address two issues: sensing value discrepancy at the two par-
ties due to noise, and dependency among the quantized bits
that weakens the security of the key. Similar issues are also
discussed in other testbed-based key extraction works [4],
[5], [6], [7], [14], but unfortunately the methods applied in
prior work are insufficient or inappropriate in vehicular case
due to strong noise. To reduce noise, we find a new tech-
nique that outperforms existing smoothing techniques such
as sliding window smoothing used in [14] and cubic Farrow
filter used in [7], [19] with the comparison result presented in
Section 7. For dependency elimination, the sub-sampling
method in [4], [5] discards many bits along with useful
mutual information. That information is precious to our key
extraction scheme due to short window of channel sampling
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time. HRUBE [7] tries to utilize all samples through de-
correlation process. The main drawback is that the samples
and the resulting key, though uncorrelated, may still be
dependent. In contrast, we analyze the dependency among
bits and remove it by splitting the bit sequence accordingly
into independent sub-sequences. Therefore we do not waste
captured channel information nearly asmuch.

Additionally, we propose using a deterministic random-
ness extractor for entropy condensing, rather than the ran-
dom hashing scheme applied in the previous work [6],
where one uniformly and randomly chooses a hash function
from a (strongly) two-universal hash family and the hashed
value is taken as the extracted random bits [26]. There are
two reasons. First, theoretically, such random hashing based
approaches extract less bits than our approach, since their
efficiency (the number of output bits to the number of input
bits) is upper bounded by the min-entropy of the input bits
[26], which is smaller than or equal to Shannon entropy, the
efficiency upper bound of our approach. Second, practically,
it is hard to verify whether the randomness of their extracted
bits is from wireless channel. Even if the input bits are not
random, the hash value is random due to randomly chosen
hash functions. Consequently, it is inappropriate to use the
NIST test tool for randomness validation. For the same rea-
son, the NIST test in this work is conducted on the extracted
bits before privacy amplification that also relies on random
hashing, in contrast to previous works [14], [19]. Our work
borrows results from the literature of randomness extraction
[26], [27], quantum key distribution [28], [29] and optimiza-
tion [30], whichwill be introducedwhere they are used.

3 BACKGROUND

We consider a passive threat model in this paper, where the
adversary can eavesdrop transmitted messages, and cannot
actively jam normal transmissions. We focus on extracting a
shared secret key for two moving cars. We assume that
the two cars, Alice and Bob, have a wireless channel to
exchange messages when they meet, and they have the abil-
ity to record the RSSI reading of the exchanged messages.
The adversary, Eve, has complete knowledge about the pro-
cedure and the exchanged messages. The goal of the system
is to extract a shared secret key for Alice and Bob in such a
way that Eve cannot infer any information about the key.
Similar to [6], [7], [14], [18], we do not consider the authenti-
cation problem, which is also an important research direc-
tion (e.g., [31]).

The general key establishment process is as follows. Here,
we assume Alice initiates the process. Alice keeps sending
indexed probes to Bob, and Bob immediately returns back
acknowledgements (ACKs) upon reception. The probes and
ACKs are made as short as possible to deal with the short-
coherence-time issue. Both sides record the RSSI reading of
received packets along with their indices. The RSSI readings
observed by Alice and Bob are denoted by X ¼ ðx1; x2;
. . . ; xnÞ and Y ¼ ðy1; y2; . . . ; ynÞ respectively. The random
bits are then extracted from these readings. We also refer to
X and Y as raw data or raw readings. A classic method for key
extraction is level crossing [4]. Next, we will introduce the
principals behind level crossing and its limitations, followed
by our techniques to address these limitations.

3.1 Level Crossing: Overview and Limitations

Level crossing consists of two steps. First, Alice and Bob
keep probing the channel and collecting RSSI readings.
They map each reading to a temporary bit as follows. Con-
sider the case for Alice. Let mX be the mean of X, and let sX

be the standard deviation. Each reading x is mapped to a
temporary bit via a quantizer Q such that Q(x)=1 if x > qþ;
Q(x) =0 if x < q�; Q(x) =e, otherwise. Here e is an unde-
fined state and qþ ¼ mX þ asX , q� ¼ mX � asX where a is a
parameter to be tuned. This can be seen in Fig. 2. Bob’s
quantizer is similar.

Second, Alice and Bob communicate to get the final bits
from the temporary bits. They identify excursions in the tem-
porary bits. Excursion is a consecutive string of 1’s or 0’s
with length at least m (where m is the second parameters to
be tuned). For example, if the temporary bits are
“e0000111e111e” andm ¼ 3, then there are three excursions:

e 0000
zffl}|ffl{

111
z}|{

e 111
z}|{

e. Alice finds from her temporary bits all
excursions, and sends the indexes of all excursion centers to
Bob. On receiving the indexes, Bob checks each index to see
whether he also has an excursion around this index, and
sends the result back to Alice. Finally, they quantize each
common excursion to a bit. For the above example, if Bob
has the same temporary bits, then they both get 011. We call
the final bits (a bit vector) the quantized bits. The bits at Alice
and Bob may be different. Each different bit is a mismatch.
The ratio of the number of mismatches and the number of
the quantized bits is defined as mismatch rate.

The level crossing algorithm subtracts a windowed mov-
ing average from the raw data to reduce the influence of
slow variation, where the output of the sliding window is
the slow variation. This creates the third parameter: the
window size s. The residuals, rather than the raw readings,
are fed into the quantizer Q. In summary, we have three
parameters: reading threshold a, excursion threshold m,
and window size s.

To determine the effectiveness in a vehicular environ-
ment, we implemented the two most relevant methods,
level crossing [4] and ASBG [6], [32]. Due to the noise in a
vehicular environment, the ASBG method applied to our
trace leads to a very high mismatch ratio1, which renders
the secret extraction rate not satisfactory. Our experiments
find that the generic level crossing method [4] can result in
a relatively low mismatch ratio compared to the ASBG
method. Therefore, we mainly improve on the generic level
crossing method. However, directly applying level crossing
is not sufficient to achieve good bit rate. Even though level
crossing is a groundbreaking approach to secret extraction,
it still has some unsolved problems. Applying it to our
vehicular trace shows the following.

First, we observe high noise level in vehicular environ-
ments, compared to low noise level in low-speed environ-
ments [4], [5], [6], [7]. To illustrate, we plot 500 raw readings
from a collected vehicular trace in Fig. 1 (The process of
trace collection is elaborated in Section 7). We can see that
the noise level is high. Indeed, the residuals (after subtract-
ing slow variations from raw readings) for this trace have a

1. For single-bit extraction scheme with a block size of 50, the mis-
match ratio of ASBG on a typical trace is over 44 percent.
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low correlation coefficient of 0.52. We have to design
schemes to reduce the noise; otherwise it causes mismatches
that seriously influence the performance.

Second, there are no guidelines to select suitable parame-
ters for level crossing. In our experiments we notice that the
performance is very sensitive to parameter setting. Setting
parameters, however, is hard due to the noise level compa-
rable to channel dynamics. A fine line must be found which
can separate the noise from the signal, in order to maintain
a minimal mismatch rate.

Third, the level crossing scheme does not estimate the
randomness of the generated bit string nor does it generate
a bit string that is necessarily random. We show one such
case in Fig. 2. In the figure, the quantized bits are not ran-
dom (readings are consecutively below the lower threshold
or over the upper threshold). They are dependent. The origi-
nal paper [4] employs subsampling on quantized bits to
counteract dependency. We find, however, random sub-
sampling can discard many important bits containing high
randomness, resulting in slow key generation. Instead, we
aim to find an optimal and controllable method to remove
dependency among the generated bits.

Fourth, the level crossing scheme uses a fixed set of
parameters, which does not adapt to the drastic change of
channel dynamics in vehicular environments. Fig. 3 shows
the correlation coefficient of residual readings at different
time periods (2-second units). We observe that the correla-
tion varies at different times, which suggests that a fixed set
of parameters may not work well.

3.2 Overview of Our Approach

We organize our solution into the framework in Fig. 4. In
the framework, information reconciliation and privacy

amplification are borrowed from [5], [6], [32]. Our contribu-
tion consists of the steps shown in the solid line boxes. We
overview the whole process in this section.

Depending on how level-crossing’s parameters are
selected, we propose two schemes: a fixed parameter
scheme (or fixed scheme), and an online parameter learn-
ing scheme (or online scheme). The fixed scheme is the
basic scheme, where all parameters are determined
beforehand. Derived from the fixed scheme, the online
scheme adjusts some parameters in an online fashion in
order to adapt to different environments. We introduce
the fixed scheme and briefly mention the online scheme.

Alice and Bob continuously get RSSI readings by periodi-
cally sending probing messages. These readings are
smoothed in real-time. Our smoothing method, different
from existing ones, tries to maximize the correlation coeffi-
cient of the smoothed readings. Section 4 details the design
and exact procedure. The smoothed readings are fed into
the level crossing algorithm, which produces quantized bits.

The next step is information reconciliation, which
addresses the issue that the quantized bits at Alice and Bob
may be different. The task of correcting these different bits,
i.e., mismatches, is referred to as information reconciliation
in the quantum key distribution literature. Following [6],
we choose to implement Cascade [29], the de facto informa-
tion reconciliation method, due to simplicity and efficiency.
During the execution of Cascade, parity bits exchanged are
exposed to the adversary. This exposed information will be
reduced by privacy amplification so that Eve has less than 1
bit information about the key on average [28].

Then, Alice and Bob have the same quantized bits (other-
wise, they will restart the process). But the bits may not be
secure due to dependency. To address this issue, Alice
(Bob) extracts random bits from her (his) own quantized
bits. This is done by using a deterministic randomness
extractor based on a Markov model of the quantized bits.
We present the model as well as the extractor in Section 5.
In our experiments, the randomness of the extracted bits is
evaluated by the NIST test [11], the state-of-the-art statistical
test tool for randomness.

Fig. 4. Flowchart of the system. We focus on the three steps within solid
boxes, each of which is a section in this paper.

Fig. 1. High noise in vehicular environment (1-second period). RSSI of
Alice changes in a different way as Bob. When Alice goes 1db down,
Bob usually remains the same, or even goes 1 db up.

Fig. 2. Level crossing on a portion of residuals. The two lines for alice
(top) or bob (bottom) are the qþ; q� in quantizer Q, and each triangle cor-
responds to a quantized bit.

Fig. 3. Non-stable channel condition. Each block corresponds to 2-sec-
ond residuals. Correlation coefficient reflects the noise level and it
changes over time.
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Now the two sides have perfect random bits, but the bits
are still not secure because the information reconciliation
step leaks some information. Similar to [6], we apply privacy
amplification [28] to distill such information. Specifically,
Alice randomly chooses a strong, 2-universal hash family,
according to the amount of leaked information. From this
family, Alice randomly chooses a hash function, which she
sends to Bob. Then they hash the random bits with this hash
function and use the hash value as the key, about which Eve
has less than one bit information on average. According to
[28], wiping out Eve’s information about the key either is
impossible or considerably reduces the length of the key, so
we leave this 1 bit information exposed to Eve. (This 1 bit is
out of the final key, nomatter how long the final key is.)

Combining the above steps yields the fixed scheme. To
cope with the non-stable channel condition, in the online
scheme, we dynamically adjust the reading threshold a in
the level crossing algorithm by an online parameter learning
scheme, which is presented in Section 6. Experiments show
that adjusting parameters, even one parameter, can help tol-
erate non-stable channel conditions.

3.3 Performance Metric

To determine how well our scheme works, we define the
metric approximate entropy bit rate as

abps ¼ E � ðnq � npÞ=t;

where E is the estimated Shannon entropy per bit of the
quantized bits, nq is the number of the quantized bits, np is
the number of exchanged parity bits during reconciliation,
and t is the time duration of the trace. Note that this metric
has taken into account the leaked information during
reconciliation.

We also define several related terms. First, quantized bit
rate: qbps ¼ nq=t. It is the raw rate of level crossing. It does
not take into account the leaked information. Second, since
we select a randomness extractor to actually extract the
entropy, we have secret bit rate: sbps ¼ ðne � np � ne=nqÞ=t,
where ne is the number of extracted bits by our randomness
extractor. It does take into account the leaked information.
We have sbps � abps � qbps. The metric abps reflects the
entropy bits per second. The reason for sbps 6¼ abps is that our
implementation of the randomness extractor does not
achieve an efficiency equal to Shannon entropy, but it
already outperforms existing extraction schemes relying on
random hashing. The details are explained in Section 5.2.

4 SMOOTHING

Themeasured RSSI in vehicular environments contains heavy
background noise that severely affects the performance of any
key establishment algorithm. We propose to use weighted
sliding window smoothing to reduce the effect of noise. Con-
sidering that the measured RSSI at two parties should be the
same in the casewithout noise, our smoothing technique aims
to make the RSSI at each location as similar as possible. The
similarity is quantified by correlation coefficient. In this
section we introduce how to smooth the readings, and in
Section 7.3we compare our approachwith existingmethods.

The task is formulated as an optimization problem. For a
fixed window size k (to be determined in experiments), we

assign different weights a ¼ ða1; a2; . . . ; akÞ and b ¼ ðb1;
b2; . . . ; bkÞ to the readings at Alice and Bob respectively. The
weights should satisfy

P
ai ¼ 1 and

P
bi ¼ 1. Using these

weights, we have the ith smoothed reading x0
i ¼

Pk
j¼1

ajxiþj�1 for Alice and y0i ¼
Pk

j¼1 bjyiþj�1 for Bob. Let

X0 ¼ ðx0
1; x

0
2; . . . ; x

0
n�kþ1Þ and Y 0 ¼ ðy01; y02; . . . ; y0n�kþ1Þ. We

will select the weights a;b to maximize the correlation coef-
ficient of the smoothed readings, i.e., we need to solve

max
a;b

rX0;Y 0: (1)

This problem can be solved under a framework called
canonical correlation analysis (CCA) [33]. Here we give a brief
introduction to CCA. Given two matrices A 2 Rn�d1 and

B 2 Rn�d2 , CCA focuses on finding a linear combination of
A’s column vectors and a linear combination of B’s column
vectors such that the correlation coefficient of the two new
vectors is maximized.

We can transform problem (1) into CCA as follows. Let xji
denote the column vector ðxi; xiþ1; . . . ; xjÞ and let yji be

defined similarly. Let A ¼ xn�kþ1
1 ; xn�kþ2

2 ; . . . ; xnk
� �

and B ¼
yn�kþ1
1 ; yn�kþ2

2 ; . . . ; ynk
� �

, where A;B 2 Rðn�kþ1Þ�k. Applying

CCA on A and B yields two linear combinations. The linear
combination for A gives the optimal a, and the linear combi-
nation for B gives the optimal b. Now we have the optimal
solution to problem (1). The computation involves eigen-
value decomposition to a matrix with size k� k. Given that
k is usually very small in our case, it is computationally effi-
cient to solve the problem. After solving problem (1) and
learning the two weights, Alice and Bob smooth the rest of
the data using the learned weights.

Note that the input to problem (1) includes RSSI data
from both Alice and Bob, which is not available at either
party unless communication. Therefore, to use this smooth-
ing scheme, there should be an initialization period, during
which Bob sends his observed RSSI data to Alice. These
RSSI data sent are not encrypted and are disclosed to the
adversary, so we do not use any RSSI data during this
period for key extraction, and only leverage them to learn
the smoothing weights, which reflect the noise level and
sampling offset. Specifically, Alice solves problem (1) with
both parties’ data, and sends the optimal b to Bob. Then,
Alice smooths her subsequent RSSI data by a and Bob
smooths his data by b independently. The smoothed data
are input to the level crossing algorithm. To determine the
appropriate initialization period, we try different periods
and run our algorithm on RSSI data from a real-world
vehicular experiment. Fig. 5 shows that a 10-second initiali-
zation time is enough.

Fig. 5. Impact of initialization period on abps when smoothing window size
k is 3.
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One concern of our smoothing method is that, although
the raw RSSI data are unknown to the adversary, the
smoothed RSSI data may be a function of the distance
between Alice and Bob, so the smoothed data may not be
safe if the adversary knows this distance. This concern is
closely related to the window size k of our smoothing
method with larger window sizes resulting in a bigger con-
cern. In our experiments, we use a very small window size
(k ¼ 3) because it achieves better performance, and we
believe that the smoothed data obtained from only three
consecutive RSSI readings cannot be predicted from dis-
tance. Note that level crossing, the next step following
smoothing, will further subtract slow variation from the
smoothed data. Here, the subtracted slow variation is
believed to be caused by changes in distance [4].

5 EXTRACTING A PERFECT RANDOM KEY

The data obtained by applying our smoothing method to
the raw RSSI data are input to the level crossing algorithm,
which generates quantized bits for both Alice and Bob.
Some of Alice’s bits may be different from that of Bob’s due
to noise. These bits are called mismatches, and are corrected
by information reconciliation techniques. Now Alice and
Bob have the same quantized bits. In this section, we
describe a method for Alice such that she can extract a per-
fect random key from her quantized bits. Here perfect ran-
dom means that the bits of the key should be independent
from each other and the probability of a bit being 1 should
be 1/2. Bob will also use this method and get the same final
key since Alice and Bob have the same quantized bits. In
the following, we use a sequence of the quantized bits
obtained by applying level crossing to a real-world trace as
an example to study the dependency issue and extract a per-
fect random key.

5.1 Dependency Modeling

We first show that quantized bits have limited dependency
(each bit depends on finitely many previous bits), then we
use a Markov chain to model the dependency.

To show the limited dependency property, we plot in
Fig. 6 the partial autocorrelation coefficient (pacf) [34] of the
quantized bits of one trace. Briefly, pacf describes the corre-
lation between two bits after eliminating the influence of bits
in-between, which is different from autocorrelation, which
does not eliminate the influence of bits in-between. We can
see from the figure that for lag � 4, the absolute value of pacf
is very small, meaning each bit only depends on the previous
3 bits. This observation shows that it is appropriate to model
the dependency using aMarkov chain.

In order to do this, we need a method to determine the
chain’s “order”, i.e., the number of previous bits a bit
depends on. For example, if each bit only depends on one
previous bit, then we can use a 1st order Markov model

with state space Sð1Þ ¼ f0; 1g. If each bit depends on two
previous bits, then we need to use a 2nd order Markov

model with sate space Sð2Þ ¼ f00; 01; 10; 11g. Generally, we

denote the sate space of a kth order Markov model by SðkÞ.
We need to estimate k.

The order is estimated using the popular BIC (Bayesian
Information Criterion) Markov order estimator [35]. We first
introduce how it works, and then show that it is appropriate
in our case. Let n be the total number of bits. Let

sj1 ¼ ðs1; s2; . . . ; sjÞ and Nðsj1Þ be the number of occurrences

of substring sj1 in the bit string. Then the estimated order k
is the number that minimizes the objective function LðkÞ

min
k

LðkÞ ¼ �logPMLðkÞ þ 2k�1logn; (2)

where PMLðkÞ is the kth order maximum likelihood

with logPMLðkÞ ¼
P

skþ1
1

2Sðkþ1Þ N skþ1
1

� �
log p̂ðskþ1

1 j sk1Þ where

p̂ðskþ1
1 j sk1Þ is the empirical conditional probability of string

skþ1
1 given sk1. We find from experiments that the order of our
quantized bits is always between 1 and 10. Thuswe can solve
Eq. (2) by enumerating LðkÞ and picking the optimal k. In the
situation where the order is beyond this range, we can also
use iterated grid search described in Section 6.

After the order is estimated, the model is fully estab-
lished and we can use the model to estimate the entropy
of the quantized bits, which is the upper bound for the num-
ber of extracted bits [27], and is used in calculating leaked
information during reconciliation. By definition, for a kth
order Markov chain, the entropy rate is H ¼ �P

i2SðkÞ pðiÞP
j2SðkÞ pði; jÞlog pði; jÞ where pð�Þ is the stationary distribu-

tion and pði; jÞ is the transition probability from state i to j.
The chosen BIC Markov order estimator is appropriate in

the sense that its output is consistent with two other heuris-
tic approaches. The first heuristic approach is to compute
pacf for different lags, as in Fig. 6, and output the lag at
which pacf is very small. The second heuristic is to repeat-
edly increase the order of the Markov chain by one and out-
put the order where the estimated entropy converges. For
the quantized bits in Fig. 6, we have seen that the first heu-
ristic approach estimates the order as 3. The second heuris-
tic approach gives the same order. As shown in Fig. 7a, the
estimated entropy is roughly the same around k ¼ 2; 3; 4.
Note that the concave part (k > 4) in this figure is caused
by sample size limitation. Now consider the BIC estimator.

Fig. 6. Partial correlation coefficient for a bit sequence generated from a
real-world data set.

Fig. 7. Estimated entropy and likelihood for quantized bits.
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Fig. 7b depicts its objective L for the same quantized bits,
indicating that the BIC estimator gives the same order
estimation. The reason we do not use the two heuristic
approaches is that we are unable to quantify “very small”
and “convergence” in such a way that the resulting estima-
tor has provable properties such as consistency.

In practice, another issue for Alice (Bob) is to determine
how many quantized bits are needed for estimating the
Markov order. Clearly, a small sample size results in estima-
tion inaccuracy, while a large sample size requires longer
probing time. To this end, for the quantized bits studied in
Fig. 6, we apply the BIC estimator to different numbers of
the quantized bits, and show the estimated Markov order in
Fig. 8. We can see that the estimated order converges to 3
when the number of the quantized bits exceeds 800. This
convergency is expected since the BIC estimator has been
proved to be consistent [36]. Therefore, in practice, Alice
(Bob) keeps re-estimating the Markov order whenever new
quantized bits are produced by level crossing, until the esti-
mated Markov order converges (e.g., it has not changed in
the latest 1000 quantized bits). Note that the quantized bits
used for Markov order estimation are not disclosed to Eve.

5.2 Randomness Extractor

We first consider extracting perfect random bits from the
dependent quantized bits. It is not safe to simply perform
random hashing based on our estimated entropy, which is
Shannon entropy, because random hashing should be based
on min-entropy [26]. For extracting perfect random bits from
a Markov chain, there is a simple and elegant method [37],
whose efficiency, unfortunately, is low and cannot be
improved to approach Shannon entropy. Thus we turn to
an earlier approach [27], which is more complex but the effi-
ciency can approach Shannon entropy.

The randomness extractor consists of two steps. First,
the bits are split into subsequences such that each subse-
quence contains independent bits. A bit belongs to the sub-
sequence corresponding to the state determined by the bit’s
previous k bits, where k is the estimated order of the Mar-
kov model. Thus, each subsequence corresponds to a dis-

tinct Markov state, resulting in 2k subsequences in total. The
splitting process can be done efficiently by scanning the bits
from left to right. Fig. 9 gives an example of splitting bits

from a 2nd order Markov chain into 22 ¼ 4 subsequences,
S00, S01, S10 and S11. A dash box starts from the leftmost two
bits and slides toward the right side one bit per step. In each
step, the two bits inside the dash box show one of the four
subsequences, indicating that the right-hand bit, outside the
dash box, belongs to that subsequence. This procedure
repeats until the dash box reaches the end of the sequence.

It can be proven that each resulting subsequence of the
splitting procedure contains independent bits.

Second, we extract unbiased bits from each subsequence,
and merge these bits into a single bit stream. A bit is unbi-
ased if the probability of it being 1 is equal to 1/2, otherwise
it is biased. Each subsequence is divided into blocks of N
bits. N is an important parameter influencing the extractor’s
efficiency, i.e., the ratio of output bits to input bits. For any

N-bit block, if there are i ones, then all the N
i

� �
possible cases

happen with equal probability. Thus, we can encode each of

these N
i

� �
cases with log N

i

� �
bits on average. In practice, we

construct a table encoding every batch of N biased input
bits into a variable length code by considering all possible
is. One such encoding table for N ¼ 4 is given in Table 1,
where i is the number of ones and ^ means null. For exam-
ple, this table encodes 0010 into 01, 1100 into 11, and 0011
into 0. So, an independent biased bit sequence 0010 1100
0011 will be encoded by this table into an unbiased bit
sequence 01 11 0 with an efficiency of 0:417. Note that the
encoding table can be constructed off-line and there are
many tables for a given N . It does not matter which table is
used, as long as they use the same table.

The block size N influences the efficiency, i.e., the ratio
between output bits and input bits, of the resulting extrac-
tor. It is known that when N approaches infinity, the effi-
ciency of the adopted randomness extractor approaches
Shannon entropy [27]. Fig. 10 shows our simulation results.
We can see that, for a fixed N , the efficiency varies with
respect to p, and for a fixed p, it decreases with the increase
of block size N . Due to inability to control p, we prefer
larger block sizes for improved efficiency. Unfortunately,
larger block sizes require a larger encoding table, on the

order of Oð2NÞ. Consequently, the block size N in our cur-
rent implementation is 20, and we plan to further increase
N in the future for better efficiency (in other words, long

Fig. 8. Convergence of estimated markov order with respect to the num-
ber of quantized bits.

Fig. 9. Independent subsequence splitting. For instance, bits 11 in the
dash box indicates that the current state is 11 so that the next bit, 0,
belongs to the subsequence S11.

TABLE 1
A Possible Encoding Table For N ¼ 4

i 0 1 2 3 4

0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1
0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1

seq 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1
0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1
code ^ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ^
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keys). It is worth mentioning that an extractor with N ¼ 20
can already outperform existing extraction schemes relying
on random hashing mentioned in Section 2, whose effi-
ciency is upper bounded by the min entropy and is gener-
ally smaller than our extractor as in Fig. 10. The limitation
of finite N is reflected on the difference between sbps and
abps, which we evaluate in Section 7.5.

5.3 Model Discussion

In this section, we consider the necessity and validity of our
Markov model, and study the impact of the Markov order
estimation inaccuracy on the final extracted key.

One may suggest to pick every kth quantized bit, because
each quantized bit depends on the previous k� 1 quantized
bits. The problem is that the chosen bits may still be depen-
dent. For example, suppose we have four bits, abcd, where
each bit depends on the previous bit. Picking every 2nd
quantized bit means that we pick b and d. However, we
can easily prove that the probability of bit d being 1 is
dependent on bit b. Generally, picking every kth quantized
bit yields a dependent bit sequence, which renders the
extracted key not perfectly random, and the key cannot
pass the NIST test. To this end, we believe that the Markov
model is necessary to capture the dependency among the
quantized bits, so that this dependency can be eliminated.

Another concern of our Markov model is how well it
approximates the ground truth. However, the ground truth
is unknown. To prove the validity of our Markov model, we
have observed the finite dependency property and provide
empirical evidence, which are in line with what is expected
if the Markov model approximates the ground truth well.
First, each subsequence produced by the first step of our
randomness extractor contains independent bits, so the bits
should be uncorrelated. This is confirmed by Fig. 11, which
plots the autocorrelation of one subsequence from our
experiments. Second, the bits extracted by the randomness

extractor are perfectly random, so they should be able to
pass the NIST test. As shown in our experiments, all of our
extracted bits do pass the test. (Without our extractor, none
of them can pass the test.)

Consider the case where Markov model is appropriate,
but the estimated Markov order may be larger (overestima-
tion) or smaller (underestimation) than the ground truth.
As mentioned before, any Markov chain contains smaller
order Markov chains as special cases. Thus, in the case of
overestimation, the extracted bits are still perfectly random
and can pass the NIST test. The drawback is that the esti-
mated abps may be smaller than the ground-truth, because
overestimation in the Markov order results in underestima-
tion of the per-bit Shannon entropy due to sample size limi-
tation. We show this issue with numerical simulation,
where the ground truth model is a 0-th order Markov chain
(i.e., bits are independent), and we generate 10,000 bits with
a bit being set to 1 with probability 0.3. We estimate the
entropy of the generated bits by an ith order Markov chain
for i ¼ 0; 1; . . . ; 10. Fig. 12 shows that the estimated Shannon
entropy decreases with the increase of assumed Markov
order. In contrast to overestimation of the Markov order, if
the estimated Markov order is smaller than the ground
truth, then the extracted bits can no longer be guaranteed to
be perfectly random and pass the NIST test. This is because
dependency has not been eliminated from each subse-
quence. Therefore, to guarantee perfect randomness of the
extracted key, we are allowed to overestimate the order of
the Markov chain but not underestimate it.

6 ONLINE PARAMETER LEARNING

Channel dynamics of vehicular networks are not stable,
thus a fixed set of parameters may not work well in all situa-
tions. To address this issue, we consider how to adjust some
parameters in an online fashion. In this section we propose
an online scheme to learn a suitable quantization threshold
a dynamically. The reason for adjusting a instead of m and
s is discussed in Section 6.3.

In this online scheme, suppose Alice is the leader. For a
training period, Bob sends his residual readings to Alice.
Alice simulates the key generation process on her own read-
ings and Bob’s readings with different a. Then she picks the
a that optimizes the resulting bit rate, and sends it to Bob.
After training period, both sides will use this a for key gen-
eration. But how to optimize a and which training period
should be used?

6.1 Choosing a

One natural solution is to try several a values, and pick the
one that maximizes abps. Due to the intermediate steps, such

Fig. 11. Autocorrelation of a subsequence. Bits are uncorrelated within
95 percent confidence interval.

Fig. 12. Impact of overestimation of Markov order on the estimated per-
bit Shannon entropy.

Fig. 10. Efficiency of the randomness extractor. For each p = 0.05,
0.10,0.15,. . .,1.00, we simulate 4,000 independent biased random bits,
and extract unbiased random bits using an encoding table with block
size N. Note that, in theory, the efficiency approaches Shannon entropy
as N approaches infinity.
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as entropy estimation and randomness extraction, this
method is computationally intensive. Instead, we give the
following function f as a qualitative approximation of abps.
For a given a, the leader Alice, simulating level crossing
with a, obtains the corresponding quantized bit rate qbps
and its mismatch rate gmis. The function f translates each
ðqbps; gmisÞ pair to a scalar:

fðqbps; gmisÞ ¼ qbpsð0:96� 6:05gmisÞ:

This function can be computed quickly for a certain a

without performing entropy estimation and information
reconciliation, and is designed based on the following
empirical study. We simulate two bit sequences of 4,000
bits with different mismatch rates, and apply the imple-
mented information reconciliation method to correct mis-
matches. We study the relationship between the ratio of
disclosed bits to total bits and the bits’ mismatch rate.
Fig. 13 shows that the ratio of disclosed bits is approxi-
mately a linear function of the mismatch rate in the form
of y ¼ 6:05xþ 0:04, which means that for two bit sequen-
ces with a mismatch rate x, a portion of 6:05xþ 0:04 bits
will be disclosed during information reconciliation. The
heuristic metric, function f , follows immediately. This
metric is heuristic in that it did not take entropy into
account. Because the linear function y ¼ 6:05xþ 0:04 is
closely related to the implementation of the information
reconciliation method, it is worth mentioning our imple-
mentation of the Cascade protocol [29]. We use three iter-
ations of reconciliation, and due to the inability to
determine the mismatch rate beforehand, we use, as sug-
gested by Jana et al.[6], a random block size. This block
size is a random number in the range from 16 to 256 in
our implementation. Note that in other situations where
the mismatch rate is known or can be estimated accu-
rately, using the optimal block size, instead of a random
block size, discloses less information [38], and a different
heuristic metric can be used.

Fig. 14 shows the two metrics f and abps for bits gener-
ated in a vehicular experiment, where negative f is rounded
to 0 for clarity. The level crossing algorithm generating the
bits has a window size (s) of 1,000 and an excursion thresh-
old (m) of 2. We can see that the optimal solution to f is
very close to abps, indicating that we only need to solve the
optimization problem with objective f . To this end, we
observe a property of f that expedites the exhaustive search
for solving the optimization problem: f is approximately
unimodal. Considering this property, we use the iterated
grid search algorithm [30]. (Refer to the conference version
[10] for the algorithm.)

6.2 Training Period

Choosing different training periods may give quite different
performance. We consider two schemes in this section. The
first is a naive scheme called single-frame. Time is divided
into frames, each of which has length l measured by the
number of readings. In each frame, the leader uses the first
l � gr (gr < 1) readings for training, obtains the best a, and
then applies it to the remaining readings of the frame. We
find from our experiments that this scheme does not work
well in terms of abps due to the fact that the channel condi-
tion is not stable. Specifically, some frames have poorly esti-
mated a causing many mismatched bits in that frame. These
mismatched bits significantly reduce the overall abps, since
each mismatched bit causes the disclosure of more than 5
bits during information reconciliation, which is indicated in
Fig. 13. It is impossible to identify these bad frames by Alice
or Bob without cooperation.

Observe that in the single-frame scheme, each non-training
period is between two training periods from adjacent frames.
For example, let T denote training period and N denote
non-training period. Then the single-frame scheme is
TNTNTN . . ., where eachN is between two Ts. We propose a
double-frame scheme. Previously in the single frame scheme,
the a applied to each non-training period is based on the
single frame the period belongs to. In the double-frame
scheme, the a is based on the two adjacent frames. It is the
bigger of the two estimations, made in the two frames. We
chose the bigger of the two, because themetric abps is not sym-
metric with respect to the optimal a in that, for a given dis-
tance to the peak, a smaller a reduces abps more significantly
than a larger a, which is shown in Fig. 14.

6.3 Discussion

The message exchanging described in this section does not
compromise the security level. First, it is almost impossible
to predict the fluctuation of the residual readings from
exposed historical data segments nearby, due to the unpre-
dictable nature of wireless dynamics. Thus, the adversary
cannot learn more about the final secret bits generated from
the unrevealed residual data segments. Second, disclosed
parameters after training only reflect the statistics of the
noise. This information may indicate the secret bit rate of
our scheme, but this is insignificant since the secret bit rate
is publicly known.

Our online scheme adjusts a in level crossing instead of
the other two parameters for two reasons. First, the influence
of the three parameters a;m and s on abps are not indepen-
dent in that the inefficiency caused by one parameter can be,
to some extend, compensated by the other parameters. For
example, increasing any one of the parameters can reduce

Fig. 13. Impact of mismatch rate on the amount of disclosed bits during
information reconciliation.

Fig. 14. f and abps with respect to a on one dataset. Note that negative f
is rounded to zero.
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themismatch rate of the quantized bits, so a highermismatch
rate caused by a smaller s can be compensated by increasing
a. Second, during our experiments we find that abps is very
sensitive to a, but insensitive to s. We also find that setting
m ¼ 2 consistently outperforms other settings.

7 EVALUATION

For our evaluation, we first collected trace data using experi-
ments performed on actual vehicles in a realistic setting. We
then study the impact of parameters and compare our
smoothing methods with existing ones based on one dataset,
and then apply our method to all datasets to show how fast
we can extract bits. Finally we validate the randomness of
the final bits by the NIST test suite. Note that the two objec-
tives abps and sbps are in terms of “bits per second”, and are
the average bit rate with respect to each data trace.

We do not quantitatively compare our scheme against
[4], [5], [6], [7], because we feel it might not be completely
fair since they do not encounter the strong noise in our sce-
nario. Our work builds upon level-crossing [4], [5], but the
default parameter settings either lead to a key generation
rate of 0 bit per second, or a key that cannot pass the NIST
test in our experiments. We run ASBG [6] on one vehicular
trace and find a mismatch rate over 44 percent, using
single-bit scheme that has lower mismatch rate than multi-
bit extraction scheme. Consequently, the resulting bit rate is
rather low, nearly 0. Reference [7] describes a smoothing
method for reducing noise, a de-correlation method for
removing dependency, and a multi-bit quantization method
for faster key generation. We compare the smoothing
method in Section 7.3. Since the de-correlation method has
security concern (a de-correlated bit sequence may still be
dependent as mentioned in Section 2), we do not include it
for comparison. The multi-bit quantization method has the
lowest mismatch rate when only one bit is generated for a
sample. In this case, it is essentially equivalent to ASBG,
and has a mismatch rate over 40 percent.

7.1 Experimental Setup

We used two vehicles, Alice and Bob, for our experiments.
Each vehicle is equipped with a laptop running Ubuntu
9.10 with MadWifi 0.94 wireless driver for Atheros chipsets
and external antennas mounted on top of the car. WiFi
transmit power is set to the default value.

We selected two different testing routes to represent a
suburban environment and a rural environment (Refer to

the conference version [10] for a GoogleEarth picture). We
performed a total of 8 runs over the two routes to arrive at 8
datasets total. Table 2 summarizes the 8 datasets. Datasets
1 � 5 are from the suburban route with rate of 500 probes
per second, while datasets 6 � 8 are from the rural route
with 1,000 probes per second. It is worth mentioning that
these probing rates are for the establishment of the secret
key, which takes only a few seconds.2

For every run, we drove the vehicles in a single-file man-
ner, one in front of the other, maintaining a distance of 5 to
10 meters between the two vehicles. During a single run of
the route, the car Alice will continuously send probe mes-
sages to Bob. These probe messages will only have a pream-
ble and an index payload. Bob will immediately return the
corresponding replies upon reception of this message. Both
Alice and Bob will record, as datasets, the RSSI readings of
received packets, along with their indices.

7.2 Impact of Level Crossing’s Parameters

In our approach, level crossing is an important step that
involves three parameters: sliding window size s, thresholds
a andm. To study the impact of these parameters on the final
abps, we apply our approach (without smoothing step) to a
vehicular trace datawith different parameter settings of level
crossing. We vary s from 10 to 1; 500with increments of 10, a
from 0:00 to 1:00 with increments of 0:01 and m from 2 to 5
with increments of 1. For each parameter setting, we com-
pute the final abps, and show the result in Fig. 15.

We can see from Fig. 15 that different parameter settings
greatly affect the achieved abps. When both m and s are
fixed, the objective first increases with respect to a, and,
after a turning point, starts to decrease, so the turning point
maximizes abps. However, the turning point for different m
and s is different. Generally, the turning point decreases
with respect to s when m is fixed, and also decreases with
respect to m when s is fixed. This is because, increasing
either s or m can already reduce the mismatch rate of the
quantized bits, and in this case smaller a helps to capture
more signal variations. We can observe that reasonably well
abps for this dataset can be obtained when s ¼ 1; 000, m ¼ 2,
and a ¼ 0:4. This will be the benchmark parameter setting

TABLE 2
Dataset Descriptions (There Are Two Routes,
Suburban Route (sub.) and Rural Route (rur.))

no. 1 2 3 4 5 6 7 8

rate 500 500 500 500 500 1000 1000 1000
route sub. sub. sub. sub. sub. rur. rur. rur.
speed 25 35 35 45 45 35 45 50
dura. 472 455 432 338 319 234 219 227
corr. 0.39 0.48 0.49 0.52 0.49 0.26 0.31 0.33

The Units for Probing Rate (Rate), Driving Speed (Speed), and Trace Duration
(Dura.) are probes per second, mPh, and seconds, respectively. Correlation coeffi-
cient (corr.) is calculated based on residual data mentioned in Section 3.1, which
is obtained by subtracting a windowedmoving average from the raw data.

Fig. 15. Influence of three parameters on objective abps.

2. During this period, the two parties cannot transmit normal mes-
sages due to lack of a secret key, so a high probing rate does not neces-
sarily incur much extra overhead compared to a low probing rate. A
high probing rate can speed up key generation by capturing more chan-
nel variations.
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in the experiments. To deal with different probing rates, we
generalize window size s as the number of readings in 2 sec-
onds, since the probing rate of this dataset is 500/s.

7.3 Comparing Smoothing Methods

We compare our smoothing method with two other meth-
ods used in the key extraction literature, which differ from
ours in how the smoothing weights a;b are selected. The
first is the well-known sliding window smoothing used
in [14]. Both a and b in this method are fixed as
ð1=k; 1=k; . . . ; 1=kÞ. The second is a cubic Farrow filter [39]
used in [7], [19]. The purpose of this filter is to interpolate
the sensed RSSI of Alice and Bob at some common time
instant, since Alice and Bob cannot sense the channel at the
same time due to half-duplex wireless transceivers they
have. The window size k of this approach is 4, and two
parameters, the fractional delay mA for Alice and mB for
Bob, determine the weights a and b in the following manner

[39]3: a ¼ �� m3
A
6 þ m2

A
2 � mA

3 ;
m3
A
2 � m2

A � mA
2 þ 1;� m3

A
2 þ m2

A
2 þ

mA;
m3
A
6 � mA

6

�
, and b ¼ �� m3

B
6 þ m2

B
2 � mB

3 ;
m3
B
2 � m2

B � mB
2 þ

1;� m3
B
2 þ m2

B
2 þ mB;

m3
B
6 � mB

6

�
: For mA and mB, let tB be the

time when Bob receives a probe message, tA be the time
when Alice receives the corresponding ACK in a probe-
ACK round, and T be the time duration between two probe

messages. Then m ¼ 1
2

� tA�tB
T

�
determines mA and mB. Refer-

ence [7] sets mA ¼ 1� m and mB ¼ 1þ m.
We implement the three smoothing methods and com-

pare them on a vehicular trace data. For each method, its
smoothed data are fed into level crossing, whose parame-
ters are set as s ¼ 1000;m ¼ 2 and a ¼ 0:4, and we measure
and compare the final abps. The smoothing method we pro-
posed is referred to as CCA-based smoothing, and it uses a
10-second initialization time for obtaining the optimal a and
b. First, we compare our approach with sliding window
smoothing under different window sizes. Fig. 16a shows
that our approach generally outperforms sliding window
smoothing, and both of them achieve the highest abps when
the window size is 3. The performance decreases for k > 3
because some useful variations are smoothed out. Second,
we compare the two approaches with the cubic Farrow fil-
ter. Due to lack of time synchronization during the experi-
ment, we are not able to determine m of the cubic Farrow

filter, thus we study this filter by varying m from 0:1 to 0:9
with increments of 0:1. It is worth mentioning that directly
plugging mB ¼ 1þ m into b results in a performance worse
than that of sliding window smoothing. Instead, we plug
mB ¼ m into b, and delay the sample index of Bob by one,
according to [7]. Fig. 16 shows that the highest abps of cubic
Farrow filter is between that of sliding window smoothing
and that of our approach. In summary, our approach per-
forms better than existing solutions, and it generates
50 percent more entropy bits than the case without smooth-
ing. We believe the benefit of our approach comes from
both reduced local noise and adjusted sensing time.

7.4 Comparing Online Schemes

We compare single-frame scheme and double-frame
schemes under two cases. In the first case, the comparison is
done using the raw RSSI data, and in the second case,
the raw RSSI data are preprocessed by our smoothing
method with weights learnt during a 10-second initializa-
tion period. In each case, we vary gr ¼ 0:02; 0:04; . . . ; 0:50
and l ¼ 1; 2; . . . ; 20, where l is in units of seconds, i.e., l ¼ 1
indicates that each frame consists of the readings in 1 sec-
ond. The results are shown in Fig. 17.

We can see from the figure that our smoothing method,
though spending 10 seconds for learning smoothing
weights, greatly increases abps for both single-frame scheme
and double-frame scheme. Additionally, double-frame
scheme significantly outperforms single-frame scheme in
the case without smoothing. In the case with smoothing, it
is still better than single-frame scheme in the sense that
there are more ðgr; lÞ pairs leading to very good perfor-
mance. For the double-frame scheme with smoothing, we
observe that gr ¼ 0:02 � 0:10 and l ¼ 10 � 20 perform
equally well so that we set gr ¼ 0:05 and l ¼ 20 in other
experiments if they are not specified.

7.5 Comparing Parameter-Selection Schemes

Based on previous studies, we compute the approximate
entropy bit rate for all datasets. We compare three schemes
according to how a is chosen. (Two of them are mentioned
in Section 3.2.) (1) Oracle-assisted scheme (oracle). In this
scheme, the a for a dataset is chosen by an oracle using the

Fig. 16. Comparing the three smoothing techniques, sliding window
smoothing, CCA-based smoothing, and cubic Farrow filter in vehicular
environment. No smoothing is performed when k ¼ 1. The window size
for both sliding window smoothing and our approach is 3 in (b).

Fig. 17. Performance of single-frame scheme and double-frame scheme
on non-smoothed data (the two top figures) and smoothed data (the two
bottom figures). Metric abps is represented by color, and frame length l is
in units of seconds.

3. The formula in [7] missed “+1” in a2 (the 2nd element in a) and b2.
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iterative grid search algorithm. The oracle is assumed to
know both Alice and Bob’s data, so this scheme is impracti-
cal and is only for comparison. (2) Fixed scheme (fixed). The
a in this scheme is fixed as 0:4 for all datasets. (3) Online
scheme (online). This is the double-frame scheme described
in Section 6. All three schemes are applied to smoothed data
obtained by CCA-based smoothing with smoothing win-
dow size 3 and smoothing weights learned from the first 10-
second RSSI readings of the corresponding dataset. We
show in Fig. 18 the resulting approximate bit rates and in
Fig. 19 the resulting secret bit rates of all datasets. We have
the following observations.

First, there is no obvious correlation between driving
speed (shown in Table 2) and abps for the oracle-assisted
scheme, so the main factor limiting abps is the noise con-
tained in the readings rather than insufficient channel
variations as before [4], [6]. Second, the fixed scheme gen-
erally performs worse than the oracle-assisted scheme.
This coincides with intuition since the oracle-assisted
scheme assumes the knowledge of both Alice and Bob’s
RSSI data. In dataset 3, the fixed scheme performs slightly
better than the oracle-assisted scheme, because the algo-
rithm we use in the oracle-assisted scheme can only
approximately, instead of accurately, find the optimal a

as mentioned in Section 6. The abps of the fixed scheme is
0 for dataset 7. Exhaustive search over a on this dataset
shows that a should be over 0:42 to achieve non-zero abps,
but the fixed scheme sets it as 0.4. This observation shows
the necessity of our online scheme that can adjust a in dif-
ferent environments. Third, the online scheme offers more
consistent performance than both the oracle-assisted
scheme and the fixed scheme. It can get 4-8 entropy bits
per second for all datasets, and it performs better than
the oracle-assisted scheme on datasets 7 and 8. In these
two datasets, a single a for a whole dataset, though it is
the best one in terms of abps, performs worse than several

a even if these a are not the best ones for the correspond-
ing time periods (frames). Due to the adjustment in each
time frame, the online scheme offers more consistent per-
formance in different environments. Fourth, by compar-
ing Fig. 18 with Fig. 19, we can see that sbps is smaller
than abps due to the efficiency of the randomness extrac-
tor. As mentioned in Section 5.2, in principle, we can get
sbps arbitrarily close to abps by increasing N in the extrac-
tor. But there are computational challenges, so we reserve
this for future work.

7.6 Randomness Validation

Recall that we consider passive attacks in this paper. In
vehicular environments, the adversary, Eve, is at least a few
meters away from both Alice and Bob. It has been theoreti-
cally proved (e.g., in [40]) that a third party, who is �=2
away from Alice and Bob, experiences statistically indepen-
dent fading channels (i.e., RSSI value variations) to Alice
and to Bob, compared with the fading channel between
Alice and Bob. Therefore, Eve cannot get any information
about the dynamics experienced by Alice and Bob. In addi-
tion, the information exposed by information reconciliation
has been removed by privacy amplification. Thus, the only
security concern left is whether the extracted bits are suffi-
ciently random. To validate randomness, for each sbps in
Fig. 19, we perform NIST tests on the extracted bits (before
privacy amplification). Note that even in case where
sbps ¼ 0 (fixed scheme on dataset 7 in Fig. 19), we have bits
to be tested since the zero bit rate is caused by subtraction
of leaked information. Among the 15 tests in the NIST tool,
we run 8 of them, since the other tests require large input
size and are not applicable to our case. We find that the
extracted bits can pass all tests we conduct, ensuring the
randomness of the final key. Table 3 shows the test results
for oracle-assisted scheme. The results for the other two
schemes are similar.

Fig. 18. Approximate bit rate of all datasets. Fig. 19. Secret bit rate of all datasets.

TABLE 3
NIST Test Results (p-Value) on Extracted Bits (Note that a p-Value Greater than

0.01 Indicates that the Corresponding Test is Passed)

Dataset 1 2 3 4 5 6 7 8

Frequency (Monobit) 0.54 0.52 0.66 0.40 0.65 0.54 0.77 0.31
Frequency within Block 0.76 0.15 0.70 0.50 0.32 0.38 0.55 0.16
Runs 0.88 0.77 0.94 0.67 0.80 0.39 0.28 0.54
Longest Run of Ones 0.76 0.75 0.57 0.48 0.83 0.86 0.41 0.94
Discrete Fourier Transform 0.27 0.15 0.32 0.56 0.03 0.72 0.64 0.53
Serial 0.69,0.73 0.71,0.27 0.64,0.93 0.47,0.48 0.69,0.85 0.59,0.27 0.74,0.42 0.87,0.94
Approximate Entropy 0.38 0.89 0.83 0.04 0.73 0.51 0.66 0.16
Cumulative sums 0.88,0.36 0.44,0.52 0.46,0.84 0.58,0.67 0.72,0.35 0.59,0.59 0.50,0.76 0.50,0.36
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7.7 Discussion on Faster Key Generation

In this work, we focus on the single-channel scenario, i.e.,
we use RSSI measurements from a single channel. The
resulting secret bit rate is around 5 bits per second. For
applications that require faster key generation, there are
several alternatives. The first is to use high precision mea-
surement such as CIR [4] instead of RSSI. The methodology
that we developed in this work is also applicable to the CIR
measurements. The second approach is to explore the signal
variations in the frequency domain. Signal variations at dif-
ferent channels are different from each other, which has
been demonstrated in sensor motes [16]. For WiFi networks,
the emerging multi-radio, multi-channel technique provides
the opportunity for simultaneous transmissions on multiple
channels. We can apply our approach simultaneously on all
available channels, generating secret key multiple times
faster than the single channel scenario.

8 CONCLUSIONS AND FUTURE WORK

We consider extracting a shared secret key for two vehicles
communicating over a wireless channel. Our solution
extends an existing level crossing technique to work in
noisy vehicular environments. Measurements from real
world vehicular networks suggest that we can extract
around 5 bits per second in most cases, and adjusting
parameters in real-time can help tolerate noise in different
environments and offer steady performance.

The key extraction speed of our scheme might not be suffi-
cient for vehicles with too short contact time, e.g., when they
are driving fast in the opposite direction. Adapting our
scheme to such difficult situations is a promising research
direction. In addition, it is also an important future work to
defend against active attacks, i.e., attacks where the adversary
could jam the transmission and influence thewireless channel.
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