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Abstract—Large scale deep learning is trending recently, since people find that complicated networks can sometimes reach high
accuracy on image recognition, natural language processing, etc. With the increasing complexity and batch size of deep neural
networks, the training for such networks is more difficult because of the limited computational power and memory. Distributed machine
learning or deep learning provides an efficient solution. However, with the concern of untrusted machines or hardware failures, the
distributed system may suffer Byzantine attacks. If some workers are attacked and just upload malicious gradients to the parameter
server, they will lead the total training process to a wrong model or even cannot converge. To defend the Byzantine attacks, we propose
two efficient algorithms: FABA, a Fast Aggregation algorithm against Byzantine Attacks, and VBOR, a Variance Based Outlier Removal
algorithm. FABA conducts the distance information to remove outliers one by one. VBOR uses the variance information to remove
outliers with one-pass iteration. Theoretically, we prove the convergence of our algorithms and give an insight of the correctness. In the
experiment, we compare FABA and VBOR with the state-of-the-art Byzantine defense algorithms and show our superior performance.

Index Terms—Byzantine Attacks, Distributed System, Deep Learning
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1 INTRODUCTION

N OWADAYS, it is a trending idea in the machine learning area
to make the neural networks deeper and more complex for

better accuracy and generality [1]. There are many complicated
neural networks that are proposed recently. For instance, Chris-
tian et al. proposed GoogLeNet, which includes more than four
million parameters in a 22-layer convolutional neural network
(CNN). ResNet152, proposed by Kaiming et al., is a 152-layer
residual neural network, has been widely used in practice [2]. In
ImageNet [3], ResNet152 can perform better than the accuracy
of human beings. The winner team of ImageNet competition
2016 built a 1207-layer neural network. However, due to the
computational power limit, training such a complicated neural
network usually takes a lot of time. Besides, people always need
to tune the hyperparameter to compare for the best performance,
which makes the training process more time-consuming. Although
hardware development makes the training faster by implementing
GPU and TPU [4] in practice, it is still relatively a long time.
On the other hand, a larger batch size usually helps for a stable,
fast and generalized training [5]. Because of the memory limit, we
cannot train a very deep neural network with large batch sizes. To
maximize the batch size, we can either use a very large memory
that may cost much more, or change the training process.

There has been a lot of research to solve this problem, among
which the most practical one is a technology called distributed
machine learning [6], [7]. Like the classic distributed system, dis-
tributed machine learning usually includes one parameter server,
which receives the gradients information from each worker, ag-
gregate the results and synchronize the updated model and assign
the datasets to every worker, and several workers, which have a
copy of the model in one iteration, compute the gradients on their
assigned dataset and upload the computation results to parameter
server. There are two advantages of distributed machine learning.
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Firstly, it can reduce the computation time significantly. In the
training process of neural networks, we always use stochastic gra-
dient descent, which usually contains lots of matrix computation.
With many workers, we can distribute the computations to each
worker and save time. Secondly, we can use large batch size in
one iteration to improve training stability and generality without
memory concern. The batch size is the number of training samples
to work through before the model’s parameters are updated. When
the batch size is large, each worker will be assigned only a small
portion of training samples. This will relieve the usage of memory
and help for better training results.

Similar to most distributed systems, distributed machine learn-
ing may also suffer attacks from malicious workers. For example,
some workers may be compromised or have hardware failures
and then just upload completely wrong gradients. Then the whole
training process will converge to a malicious model. Besides, right
now more and more works focus on implementing distributed ma-
chine learning on the edge computing environment [8], [9], [10].
However, this environment includes many servers from unknown
sources that are not always trustful. This will also lead wrong
gradients attacks. We call this kind of attack as Byzantine attacks
in distributed machine learning. There are many existing works
about this area. Byzantine problem was first proposed by [11] in
a conventional distributed system. In 2017, Blanchard et al. first
explored Byzantine problems in synchronous distributed machine
learning area [12]. They talked about these failures and proposed
an original method called Krum. Krum defines an algorithm based
on k closest gradients to give score to uploaded gradients from
each worker, and selects the gradient with the lowest score as the
aggregation results. Then they also explore the Byzantine problem
in asynchronous distributed system [13]. Following works are
usually based on median methods. In 2018, Xie et al. proposed
three similar median based methods: geometric median, marginal
median, mean-around-median [14]. There are some more compli-
cated modifications of median methods such as coordinate-wise
median [15], batch normalized median [16], ByzantineSGD [17].
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However, both median based methods and Krum have a common
weakness. They lose a lot of gradient information to keep the
convergence and correctness of the training. For example, in
Krum, it only selects one gradient out of all uploaded gradients
as the aggregation result. Apparently the algorithm loses lots of
information because we simply discard most of the gradients.
Accordingly, it has almost no improvement compared to training
on a single machine even though multiple machines are used
for distributed computation. Furthermore, although Krum gives
an excellent convergence proof, its assumptions are too strong to
satisfy in reality. Other aggregation methods on the server side are
either too complicated or too slow to resist Byzantine attack.

In this paper, we proposed two very efficient algorithms,
FABA, and VBOR to resist Byzantine attack and solve the
problems of slow convergence and complicated algorithms in
Byzantine distributed neural networks. FABA is a method that can
easily control the performance by adjusting the choice of hyper
parameter, but the time complexity is O(n) where n is the number
of workers. VBOR uses the variance to remove the outliers of
uploaded gradients who run with a complexity of O(n) and thus
is very efficient for a large scale distributed environment, but the
performance is not as good as FABA. This is because VBOR
may remove some of the honest gradients, which will affect the
performance. In summary, our contributions are:

• We proposed two efficient and effective algorithms, FABA
and VBOR, which defend against Byzantine attacks. Our
algorithms are very easy to implement and can be mod-
ified in different Byzantine settings. More importantly,
our algorithms are fast to converge even in the presence
of Byzantine workers. FABA can adaptively tune the
performance based on the number of Byzantine workers
and VBOR is efficient in large scale distributed machine
learning scenarios.

• We proved the convergence and correctness of our algo-
rithms based on Bottou’s online learning structure [18].
Mainly, we proved that the aggregation gradients by our
algorithms are close to the true gradients computed by only
the honest workers. We also proved that the moments of
aggregation gradients are bounded by the true gradients.
This ensures that the aggregation gradients are in an
acceptable range to alleviate the influence of the Byzantine
workers.

• We simulated the distributed environment with three types
of Byzantine attacks by adding artificial noise to some
of the uploaded gradients. We trained LeNet [19] on
MNIST dataset and VGG-16 [20], ResNet-18, ResNet-34,
ResNet-50 [2] on CIFAR-10 dataset [21] in the Byzantine
distributed environment and the normal distributed envi-
ronment to compare their results. Experiments showed that
our algorithms could reach almost the same convergence
rate as the non-Byzantine cases, with merely one or two
epochs behind. Compared with the Krum and GeoMedian
algorithm, our algorithms are much faster and achieve
higher accuracy. Besides, we also compare FABA and
Krum to show the tradeoff between the accuracy and time
complexity.

2 PROBLEM DEFINITION AND ANALYSIS

In this section, we analyze the Byzantine problem in the dis-
tributed deep neural network.

2.1 Problem Definition
In the synchronous distributed neural network, it assumes that
we have n workers, worker1, worker2, · · · , workern and
one parameter server PS, which handles the uploaded gradients.
Each worker keeps a replicated model. In each iteration, each
worker trains on its assigned dataset and uploads the gradients
g1, g2, · · · , gn to the PS. The PS aggregates the gradients by
average or other methods and then sends back the updated weights
to all the workers as follows:

wt+1 = wt − γtA(g1, g2, · · · , gn) (1)

Here wt and γt are respectively the model weights and learning
rate at time t. A(·) is an aggregation function that is usually an
average function in classic distributed neural networks. Lastly,
gi is the uploaded gradient. The Byzantine faults may occur
when some workers upload their gradients. These workers upload
poisonous gradients that could be caused by malicious attacks or
hardware computation errors, which means the uploaded gradient
gi may not be the same as the actual gradient gi. We call the
worker who conducts Byzantine faults as Byzantine workers. The
generalized Byzantine model that is defined in [12], [14] is:

Definition 1 (Generalized Byzantine Model).

(gi)j =

{
(gi)j if j-th dimension of gi is correct
arbitrary otherwise

(2)

As most of previous literature [12], [14], [15], we assume that
there are at most α ·n Byzantine workers in this distributed system
where α < 0.5. Similar to [14], we also assume that Byzantine
attackers have a full knowledge of the entire system. If not,
uploaded gradients from Byzantine workers are totally different
from honest workers. Any outlier removal techniques can easily
filter those Byzantine workers out.

2.2 Byzantine Cases
First we discuss some cases where Byzantine faults may happen.
In this way, we can better understand this problem and consider
how to defend it.

Some workers are under attack. Assume the index set of the
workers attacked is I , so we have:

gi =

{
gi, i /∈ I
arbitrary, i ∈ I

(3)

In this case, only the workers in I may upload wrong gradients,
and other workers upload honestly. Intuitively, if we keep check-
ing the uploaded gradients for sufficient time, all the Byzantine
workers will be detected. Check here means in PS, we do the
same computation as workers do to check if they upload the right
gradients. However, in the following theorem, we show that the
check algorithm cannot be determined, otherwise this scheme is
not Byzantine resilient.

Theorem 1. If the check scheme does not keep checking all the
time but checks for some determined-time, this scheme is not
Byzantine resilient.

Proof. Since the Byzantine workers have the full knowledge of
the entire system, they also know when the check will proceed in
PS. They only need to upload actual gradients when the check
proceeds. In other times, they can upload anything they want to
attack this system. Because the aggregation function A(·) here
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is average function, and without loss of generality, we assume
worker1 is attacked, worker1 only need to upload g1 = n · r −
g2−· · ·−gn so that the aggregation resultA(g1, g2, · · · , gn) = r.
Then from (1), wt+1 = wt − γtr can be any value.

From Theorem 1, we know that to check Byzantine workers,
this scheme must have random factors so that the attackers cannot
get any information before uploading the gradients. Also random
checks take too much useless computation. This will definitely
decrease the computation speed.

Dishonest user in Edge or IoT case. In edge or IoT cases, if we
want to train a big model using each user’s private data, a good
way to achieve this is distributed training. However, we cannot
ensure the data provided by each user is honest. Some of them
may upload the gradients computed by wrong data or label.

Hardware fault causes computation fault. In most of the cases,
this kind of faults usually change the (gi)j to (gi)j by flipping
some bits in memory [22]. Actually, this kind of fault happens
pretty rarely in practice (around one per several months). So we
can simply ignore these kinds of faults because this does not have
a huge impact. In the worst case, this makes wt totally wrong.
We can think of this wt as a new initial random weight and start
training again. On the other hand, this fault may help the training
jump out of the local minima. In this way, hardware fault is not a
big problem.

Network communication problem. This problem happens when
the network is broken down for some reasons. Because this
training process is synchronous, if the gradients from one worker
cannot upload normally, all the workers need to stop to wait for
it. This is easy to solve by setting an updating threshold τ . If a
worker cannot update after τ , its value is ignored for this iteration.

There may be other situations where Byzantine faults happen,
but the most important factors are the first two cases. In the next
two sections, we will make it clear of our algorithms to resist
Byzantine attacks.

3 FABA ALGORITHM DETAILS

In this section, we will discuss how FABA works and the conver-
gence proof of them.

3.1 Overview
We know that if the Byzantine gradients are very close to the
average of honest gradients, the attack has almost no harm. Our
proposed method is based on the observation that (i) most of
the honest gradients do not differ much, and (ii) attack gradients
must be far away from the true gradients in order to successfully
affect the aggregation results. Note that the honest gradients are
computed by the average of the mini batch dataset in each honest
worker. By Central Limit Theorem, as long as the mini batch
size is large enough and the dataset on each worker is randomly
selected, the gradients from different workers will not differ much
with high probability. We propose Algorithm 1 based on these
observations.

Algorithm 1 shows that in each iteration the parameter server
(PS) discards the outlier gradients from the current average. Pre-
vious methods such as Krum keep only one gradient no matter how
many Byzantine workers are present, which significantly impacts
the performance. Our algorithm, instead, can easily adjust the
number of discarded gradients based on the number of Byzantine
workers. That is, the performance will improve when the number
of Byzantine workers is small.

Algorithm 1 FABA (PS Side)

Input:
The gradients computed from worker1, worker2, · · · ,
workern: Gg = {g1, g2, · · · , gn};
The weights at time t: wt;
The learning rate at time t: γt;
The assumed proportion of Byzantine workers: α;
Initialize k = 1.

Output:
The weights at time t+ 1: wt+1.

1: If k < α · n, continue, else go to Step 5;
2: Compute mean of Gg as g0;
3: For every gradient in Gg , compute the difference between g0

and it. Delete the one that has the largest difference from G;
4: k = k + 1 and go back to Step 1;
5: Compute the mean of Gg as the aggregation result at time t
At;

6: Update wt+1 = wt − γt · At and send back the updated
weights wt+1 to each worker.

Fig. 1: Uploaded Gradients Distribution

3.2 Convergence Guarantee

Next we show that Algorithm 1 can ensure that the aggregation
results are close to the true gradients. Mathematically, we have
Lemma 1.

Lemma 1. Denote honest gradients as g1, g2, · · · , gm and
Byzantine gradients as a1, a2, · · · , ak and m + k = n. Let
gtrue = 1

m

∑m
i=1 gi. If we assume that ∃ε > 0, ||gi− gtrue|| < ε

for i = 1, 2, · · · ,m. Then after the process from Algorithm 1,
the distance between the remaining gradients and gtrue is at most
ε

1−2α .

Proof. As Figure 1 shows, the blue stars are honest gradients, and
the red stars are Byzantine gradients. gattack is defined as the
average of the attack gradients, i.e., gattack = 1

k

∑k
i=1 ai. Here,

gmean is the mean of all uploaded gradients from workers, i.e.,
gmean = 1

n (
∑m
i=1 gi +

∑k
i=1 ai). In Figure 1, all the blue stars

lie in the ball with the center of gtrue and radius of ε. It is obvious
that we can compute gmean, but we do not know the value of
gtrue and gattack.

We first compute the position of gmean. It is apparent that
gmean lies on the line connecting gtrue and gattack. Because the
assumption that the proportion of Byzantine workers is no more
than α, here we assume that the number of Byzantine workers is
exactly α ·n, so gmean = (1−α) ·gtrue+α ·gattack. Denote the
distance between gtrue and gattack is l, then the distance between
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gmean and gtrue is α · l and the distance between gmean and
gattack is (1− α) · l.

Let us talk about two cases here:

• If l > ε
1−2α , this is equivalent to

α · l + ε < (1− α) · l (4)

(4) means the gmeangattack is larger than gmeangtrue+ε.
In the description of Algorithm 1, we are going to delete
gradient from one worker which is farthest from gmean.
In this case, because all gradients in the ball are closer to
gmean than α·l+ε, and as we know, gattack is the average
of all attack gradients, ∃i ∈ {1, 2, · · · , k} s.t.

||ai − gmean|| ≥ ||gattack − gmean|| > α · l + ε (5)

(5) means in this case, the gradient we delete is from
Byzantine worker.

• If l < ε
1−2α , we cannot ensure whether gradients that

we delete are from Byzantine workers. However, we can
guarantee that if we delete gradients from honest workers,
remaining gradients are no more than ε

1−2α from gtrue,
because the gigmean < α·l+ε, if we delete gradients from
an honest worker rather than from an Byzantine worker,
the distance between gradients of Byzantine worker and
gmean must be smaller than α · l + ε. In this case, all
remaining gradients are within a ball with the center as
gtrue and the radius as l < ε

1−2α .

Combining these two cases, we have the conclusion that gradients
we delete must (i) come from Byzantine workers or (ii) come from
an honest worker, but all remaining gradients are within ε

1−2α
distance to gtrue.

As we repeat this process α · n times, if gradients we delete
are only from Byzantine workers, all gradients remaining are from
honest workers. Otherwise, if one of gradients we delete is from
Byzantine workers, then all remaining gradients are in such a ball
as described before.

Lemma 1 ensures that aggregation results from uploaded
gradients are close to true gradients; ε

1−2α is similar to ε when α
is not very close to 0.5. This intuitively ensures the convergence
of Algorithm 1. But to prove it, next we also need to guarantee
that lower order moments of aggregation results are limited by
true gradients. Theoretically, we have Lemma 2.

Lemma 2. Let aggregation results that we get from Algorithm 1
at time t are At and denote G as the correct gradients estimator.
If we assume ε < C · ||G|| while C is a small constant, for r =
2, 3, 4,E||A||r is bounded above by a linear combination of terms
E||G||r1 , E||G||r2 , · · · , E||G||rl with r1 + r2 + · · · + rl = r
and l ≤ n− dα · ne+ 1.

Proof. After we proceed Algorithm 1, we delete α · n gradients;
assume that gradients left are g(1), g(2), · · · , g(p) and p = n −
dα · ne. From Lemma 1, we have ||g(i) − gtrue|| ≤ ε

1−2α for
i ∈ {1, 2, · · · , p}. We know from Algorithm 1 that

||At|| = ||
1

p

p∑
i=1

g(i)|| (6)

There are at most α · n attack gradients left here. Without loss of
generality, we assume that the last α · n gradients are from attack
workers. By triangle inequality, (6) is bounded by

||At|| ≤||g(1)||+ · · ·+ ||g(p−dα·ne)||+ ||g(p−dα·ne+1)||
+ · · ·+ ||g(p)||
≤||g(1)||+ · · ·+ ||g(p−dα·ne)||+

||gtrue||+
ε

1− 2α
+ · · ·+ ||gtrue||+

ε

1− 2α

≤||g(1)||+ · · ·+ ||g(p−dα·ne)||+
||gtrue|| · dα · ne+ C1 · ||G||

So we have

||At||r ≤ C2

∑
r1+···+rq+1=r

||g(1)||r1 · · · ||g(p−dα·ne)||rp−dα·ne ·

||gtrue||rp−dα·ne+1 · · · ||gtrue||rp ||G||rp+1

We make an expectation on both sides, and get

E||At||r ≤ C2

∑
r1+···+rq+1=r

||G||r1 · · · ||G||rp+1 (7)

Here r = 2, 3, 4 and C1, C2 are two constants.

Now we have the convergence of Algorithm 1.

Theorem 2. We assume that (i) the cost function cost(w) is three
times differentiable with continuous derivatives and non-negative;
(ii) the learning rates satisfy

∑
t γt = ∞ and

∑
t γ

2
t < ∞; (iii)

the gradients estimator satisfies EG = ∇Cost(w) and ∀r =
2, 3, 4, E||G||r ≤ Ar + BR||w||r for some constants Ar , Br;
(iv) ε < C · ||G|| and C is a relatively small constant that is
less than 1; (v) let θ = arcsin ε

(1−2α)gtrue , beyond the surface
||w||2 > D, there exists e > 0 and 0 ≤ ψ < π

2 − θ, s.t.

||∇Cost(w)|| ≥ e > 0

〈w,∇Cost(w)〉
||w|| · ||∇Cost(w)||

≥ cosψ

Then the sequence of gradients ∇Cost(wt) converges almost
surely to 0.

This proof follows the proof in [18]. We use the same online
learning structure to prove the convergence in non-convex settings.
Basically, the idea is to first prove the global confinement of the
weight, then we can use this property to prove the convergence.
The detailed proof is in Appendix.

3.3 Remarks

First, in our assumption, we assume ε < C · ||G|| and C is
a relatively small constant. This condition guarantees that all
the gradients from the honest workers gather together and their
difference is small. This condition is easy to satisfy when the
dataset that each worker gets is uniformly chosen and batch size is
not very small. In most cases that distributed training implements,
the dataset is given by the PS and each worker gets one slice of
the entire dataset, thus it is almost uniformly distributed. However,
in other distributed training scenarios, such as different workers
keeping their own secret datasets, the distribution of the datasets
is unknown. As a result of that, each dataset can be biased, and
thus condition (iv) is not necessarily satisfied. We leave this for
future work.
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Second, we proved that the remaining gradients processed
after Algorithm 1 is within ε

1−2α to the true average gradient in
Lemma 1, so after taking the average, the aggregation results are
also within ε

1−2α to it. Note that each honest worker is within ε
distance and each honest worker can get convergence on their own.
This intuitively shows the correctness of our algorithm. In fact, if
the Byzantine worker ratio is less than 1

4 , this radius becomes 2ε.
If the ratio is less than 1

8 , this radius is 4
3ε. This is very close

to ε. In practice, the ratio of Byzantine workers is usually not
high, which means our algorithm has good performance in these
scenarios.

Third, if we combine the first two remarks and θ =
arcsin ε

(1−2α)gtrue , θ must be small here. In Figure 5, we know
that condition (v) ensures that the angle between wt and gtrue is
less than a fixed ψ that ψ < π

2 − θ. Since the value of α and
condition (iv) guarantee that the θ is small, condition (v) is easy to
satisfy. This is different from the assumption of Krum. In fact, their
assumptions are difficult to satisfy because the radius of the circle
is too large since it is related to the number of the dimensions in
weights. In our algorithm, condition (v) becomes similar to the
condition (iv) in Section 5.1 in [18], which guarantees that beyond
a certain horizon, the update terms always move wt closer to the
origin on average.

In the end, our algorithm keeps (1 − α)n gradients to ag-
gregate. This maintains more information than previous methods.
Moreover, in practice, if we do not know the number of Byzantine
workers, we can simply change the number of iterations adaptively
in Algorithm 1 to test whether we have the right estimate. In the
beginning, we can choose a small α for better performance. When
it seems to have more Byzantine workers, correspondingly we can
increase α to tolerate more Byzantine attacks. This can be done
during the training process, making it more flexible to balance the
tradeoff between performance and correctness. Besides, we can
fix the α = 0.5. This can make the aggregation always correct.

4 VBOR ALGORITHM DETAILS

In this section, we will discuss how VBOR works and the
convergence proof of them.

4.1 Overview
While FABA is a fast and efficient algorithm, we need to compute
the average after deleting each farthest gradient. Thus the time
complexity easily reaches O(n2). Since we need to do it during
every iteration in the training process, this time complexity cannot
be ignored. On the other hand, in some practical implementations,
such as edge computing or internet of things applications [23],
there may be a lot of end devices running as workers. In this
scenario, the n here can be really large, causing the time consump-
tion of FABA a very high level. To reduce the time complexity
to constant, in this subsection, we propose an alternative VBOR
algorithm, which can save a lot of time and defend the Byzantine
attackers. We describe Algorithm 2 below.

The idea of Algorithm 2 is to take advantage of the mean
value and the standard deviation and use them to limit the range
of the uploaded aggregation results. In each iteration, we limit
the distance from the aggregation result and the sample average
by the sample standard deviation. Although this sample includes
both honest gradients and Byzantine gradients, in the following
subsection, we can prove that the aggregation results from VBOR
can be close to the true gradients and show the convergence of our
algorithm.

Algorithm 2 VBOR (PS Side)

Input:
The gradients computed from worker1, worker2, · · · ,
workern: Gg = {g1, g2, · · · , gn};
The weights at time t: wt;
The learning rate at time t: γt.

Output:
The weights at time t+ 1: wt+1.

1: Compute the standard deviation σ and mean value µ for all
the gradients in Gg;

2: Initialize an empty set Gnew;
3: For every gradient in Gg , if ‖gi − µ‖ ≤ σ, add gi to Gnew;
4: Compute the mean of Gnew as the aggregation result at time
t At;

5: Update wt+1 = wt − γt · At and send back the updated
weights wt+1 to each worker.

4.2 Convergence Guarantee

Similar to the convergence guarantee of FABA, the key of our
proof is to bound the aggregation results from the expectation of
the true gradient. Then we can use the online learning structure
to prove the convergence. The idea of our proof also follows this
idea.

First, we work on the easy problem, i.e., that there is only
one Byzantine worker. This can help us better understand this
algorithm and extend to multiple Byzantine workers’ case. To
make this convergence guarantee clearly, first we show that if the
gradient that Byzantine worker uploads is bounded by the standard
deviation from the average, the influence to the aggregation result
is bounded and small. Theoretically, we have the following lemma:

Lemma 3. Assume worker1 is Byzantine worker and others are
normal workers, i.e., g1 = g1 + δ, gi = gi for i = 2, · · · , n.
Denote g = 1

n

∑n
i=1 gi, ga = 1

n

∑n
i=1 gi, and σ is the standard

deviation vector for g1, · · · , gn, i.e., the vector of standard devia-
tions for each dimension. If ‖g1 − g‖ ≤ ‖σ‖ for each dimension
and ‖g1 − ga‖ is bounded by ε, then ‖g1 − ga‖ is bounded.

Proof. We have:
‖g1 − g‖ ≤ σ (8)

Denote g1 = g1+δ and the standard deviation vector of the correct
workers g1, g2, · · · , gn is σ. Here we proof for one dimension
case. Higher dimension cases are similar. (8) can be rewritten as:

‖g1 + δ − (ga +
δ

n
)‖

≤

√
(g1 + δ − g)2 + (g2 − g)2 + · · ·+ (gn − g)2

n

=

√
σ2 + 2(g1 − ga)

δ

n
+
n− 1

n2
δ2

Denote ∆ = g1 − ga, previous inequality is equivalent to:

(∆ +
n− 1

n
δ)2 ≤ σ2 + 2

δ

n
∆ +

n− 1

n2
δ2

So we can derive:

(

√
(n− 1)(n− 2)

n
δ −

√
n− 2

n− 1
∆)2 ≤ σ2 +

1

n− 1
∆2
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which is equivalent to:

‖
√

(n− 1)(n− 2)

n
δ −

√
n− 2

n− 1
∆‖ ≤

√
σ2 +

1

n− 1
∆2

This means:

‖δ‖ ≤ ‖ n

n− 1
∆‖+

n√
(n− 1)(n− 2)

√
σ2 +

1

n− 1
∆2

In the end, let η = n√
(n−1)(n−2)

, we have:

‖g1 − ga‖ ≤ ‖δ‖+ ‖∆‖

≤ ‖2n− 1

n− 1
∆‖+ η

√
σ2 +

1

n− 1
∆2 (9)

Since ∆ is bounded, ‖g1 − ga‖ is bound.

With the help of Lemma 3, we can extend this bound between
aggregation results and expectation of the true gradients to multi-
ple Byzantine worker cases. Theoretically, we have Lemma 4.

Lemma 4. Assume worker1, · · · , workerk are Byzantine work-
ers and others are normal workers, i.e., gi = gi + δi for i =
1, 2, · · · , k, gi = gi for i = k+ 1, · · · , n. If ‖gi− g‖ ≤ ‖σ‖ for
each dimension and ‖gi−ga‖ is bounded by ε for i = 1, 2, · · · , k,
then ‖gi − ga‖ is bounded.

Proof. Denote ∆i = gi − ga for i = 1, 2, · · · , n and g(i)a =
(g1 + · · ·+ gi−1 + gi + gi+1 + · · ·+ gk + gk+1 + · · ·+ gn)/n
for i = 1, 2, · · · , k. From Lemma 3, we know that:

‖gi − g(i)a ‖ ≤ ‖
2n− 1

n− 1
∆i‖+ η

√
σ2 +

1

n− 1
∆2
i (10)

If we denote δm = maxi ‖δi‖, from triangle inequality, we have:

‖gi − ga‖ ≤‖gi − g(i)a ‖+ ‖g(i)a − ga‖

≤‖2n− 1

n− 1
∆i‖+ η

√
σ2 +

1

n− 1
∆2
i

+ ‖δ1 + · · ·+ δi−1 + δi+1 + · · ·+ δk
n

‖

≤‖2n− 1

n− 1
∆i‖+ η

√
σ2 +

1

n− 1
∆2
i + ‖n− 1

n
δm‖

Without loss of generality, we assume l = arg maxi δi, then we
have:

‖gl − ga‖ ≤ ‖
2n− 1

n− 1
∆l‖+ η

√
σ2 +

1

n− 1
∆2
l + ‖n− 1

n
δl‖

From triangle inequality, we have:

‖gl − gl‖ ≤‖gl − ga‖+ ‖2n− 1

n− 1
∆l‖+ η

√
σ2 +

1

n− 1
∆2
l

+ ‖n− 1

n
δl‖ (11)

(11) is equivalent to:

‖δl‖ ≤n(‖∆l‖+ ‖2n− 1

n− 1
∆l‖+ η

√
σ2 +

1

n− 1
∆2
l )

=‖3n− 2

n− 1
∆l‖+ η

√
σ2 +

1

n− 1
∆2
l (12)

From the definition of l, we know that ‖δi‖ < ‖δl‖ for i =
1, 2, · · · , k. Then we have:

‖gi − ga‖ ≤‖gi − gi‖+ ‖gi − ga‖ = ‖δi‖+ ‖∆i‖

≤‖3n− 2

n− 1
∆l‖+ η

√
σ2 +

1

n− 1
∆2
l + ‖∆i‖ (13)

≤‖4n− 3

n− 1
ε‖+ η

√
σ2 +

1

n− 1
ε2 (14)

Since ∆i and ∆l are bounded, ‖gi − ga‖ is bound.

Because ga is an unbiased estimate of E‖G‖, while G is the
distribution of the correct workers’ gradient, from Lemma 4, we
know that as long as a worker’s uploaded gradients are bounded,
no matter whether it is Byzantine, the distance between these
gradients to E‖G‖ is also bounded.

Lemma 5. We choose average function as A(·) to make ag-
gregation, and it satisfies all the conditions from Lemma 4, if
there exists an constant C > 0, s.t. ε < C · ga, then we have
for r = 2, 3, 4, E‖A‖r is bounded by a linear combination of
E‖G‖r1 , · · · , E‖G‖rm with r1 + · · ·+ rm = r.

Proof. We have:

‖A‖ = ‖ 1

n
(g1 + · · ·+ gk + · · ·+ gn)‖

By triangle inequality,

‖A‖ ≤ 1

n
(‖g1‖+ ·+ ‖gn‖) +

k

n
ε

≤ 1

n

∑
i

‖gi‖+
kC

n
‖ga‖

So we have:

‖A‖r ≤ C0

∑
r1+···+rn+1=r

‖g1‖r1 · · · ‖gn‖rn‖ga‖rn+1

for proper constant C0. This implies E‖A‖r is bounded by
a linear combination of E‖g1‖r1 · · ·E‖gn‖rnE‖ga‖rn+1 =
E‖G‖r1 · · ·E‖G‖rnE‖G‖rn+1 with r1 + · · ·+ rn+1 = r.

From Lemma 4 and Lemma 5, similar to the proof of FABA,
we have the following Theorem 3 to ensure the convergence.

Theorem 3. We assume that (i) the cost function cost(w) is three
times differentiable with continuous derivatives and non-negative;
(ii) the learning rates satisfy

∑
t γt = ∞ and

∑
t γ

2
t < ∞; (iii)

the gradients estimator satisfies EG = ∇Cost(w) and ∀r =
2, 3, 4, E||G||r ≤ Ar + BR||w||r for some constants Ar , Br;
(iv) ε < C · ||G|| and C is a relatively small constant that is less
than 1; (v) let θ = arcsin (‖ 4n−3n−1 ε‖+ η

√
σ2 + 1

n−1ε
2)/gtrue,

beyond the surface ||w||2 > D, there exists e > 0 and 0 ≤ ψ <
π
2 − θ, s.t.

||∇Cost(w)|| ≥ e > 0

〈w,∇Cost(w)〉
||w|| · ||∇Cost(w)||

≥ cosψ

Then the sequence of gradients ∇Cost(wt) converges almost
surely to 0.
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Fig. 2: Experiment results of different algorithms for Gaussian, wrong label and one bit Byzantine attacks on CIFAR-10 for 8 workers
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Fig. 3: Experiment results of different algorithms for Gaussian, wrong label and one bit Byzantine attacks on MNIST for 8 workers

4.3 Remarks

Similar to FABA, VBOR is also based on the gradients location
information. However, there are several differences.

First, the time complexity of VBOR is O(n), and the time
complexity of FABA is O(n2). This does not make a very huge
difference when n is small. However, in some large scale appli-
cations, such as distributed machine learning on edge computing,
n can be relatively large. In this scenario, we still need to do this
algorithm in PS in every iteration. The time difference can be
really large.

Second, In VBOR, we also need to assume that all the true
gradients are close. As we talked in Section 3.3, this needs all
the assigned datasets satisfying the same distribution and the mini
batch size in each worker is sufficiently large. This is very easy to
achieve in practice.

Third, the convergence speed in VBOR may be not as good
as FABA. In VBOR, we remove the outliers by the mean and
variance value, this makes it very possible to remove byzantine
gradients along with some gradients that are from the honest
workers. Thus, in one iteration, FABA can keep more information
than VBOR, making it converge faster than VBOR. However,
FABA has one more hyperparameter than VBOR: the assumed
proportion of Byzantine workers α. We need to manually tune this
parameter based on the estimate of Byzantine workers during the
training. Although it is possible to tune it by designing auxiliary
algorithms to help tune this parameter in the training process, it is
not as convenient as VBOR.

In the end, apart from using σ as the bound, in VBOR we can
also change it to c · σ as the bound to remove the outliers. When
the proportion of Byzantine workers is small, we can choose a
large c value to accelerate the training process.

5 EXPERIMENT

In this section, we are going to run our FABA and VBOR in
a simulated Byzantine environment on MNIST dataset [19] and
CIFAR-10 dataset [21].

In our experiment, we conduct three different type attacks. The
first is the Gaussian attack. We simply generate Gaussian noise as
attack gradients and weights. The second method is wrong labeled
attack. We let the label of the Byzantine workers’ data randomly
placed, then the Byzantine worker just normally computes the
gradient and weight, and upload results with wrong labeled data to
PS. The last method is one bit attack. For the uploaded gradient
and weight, we only change one dimension of it with random
value. For the comparison, we compare FABA and VBOR with
two state-of-the-art algorithms: score-based algorithm Krum [12]
and median-based algorithm GeoMedian [15]. In the experiments,
we train our model on a distributed environment with 4 Nvidia
GeForce GTX 1080Ti GPUs. In most of the experiments, we
set the number of workers to 8, which means each GPU has 2
workers. We choose LeNet-5 [19] as the neural network to train
on MNIST dataset and ResNet-18 [2] as the model to train on
CIFAR-10 dataset. LeNet-5 is trained by a SGD optimizer with
0.5 as momentum and 0.01 as learning rate. ResNet-18 is trained
by a SGD optimizer with 0.5 as momentum, 5× 10−4 as weight
decay and 0.01 as learning rate. The batch size for both neural
networks is set to 64. We train all the experiments for 80 epochs.

5.1 Algorithm Comparison

5.1.1 8-Worker Environment

We compare FABA and VBOR with Krum, GeoMedian and no
Byzantine scenario on three types of attacks that we described
before for both MNIST and CIFAR-10 dataset. We have 8 total
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Fig. 4: Experiment results of different algorithms for Gaussian, wrong label and one bit Byzantine attacks on MNIST for 32 workers

workers, among which 2 workers are Byzantine workers. The
experiment results are in Figure 2, Figure 3.

As we can see from Figure 2, FABA and VBOR converge
much faster than GeoMedian and Krum, and the performance is
more stable. Their performance can almost be the same or even
beat a little bit compared to the no Byzantine case for all the three
types of attacks. GeoMedian and Krum can also resist all the three
types of attacks, but the convergence speed is much slower than
our algorithms. For MNIST dataset, the results are similar. We can
see from Figure 3 that FABA and VBOR outperforms GeoMedian
and Krum for all kinds of attacks, while GeoMedian has slightly
better performance than Krum.

5.1.2 32-Worker Environment
Because of the limitation of the hardware, we cannot deploy an
environment with more workers on CIFAR-10 dataset. Thus we
only deploy a 32-worker environment on MNIST dataset. Each
GPU holds 8 workers. We use the same setting as the 8-worker
environment. This time we changed the number of Byzantine
workers to 9. The results are shown in Figure 4.

The results from Figure 4 are very similar to the 8-worker
environment. FABA and VBOR have better convergence speed
and performance than GeoMedian and Krum, while GeoMedian
is slightly better than Krum.

5.2 Byzantine Worker Ratio Comparison

The ratio of Byzantine workers can be very different. In this
section, we are going to compare the performance change of
different Byzantine worker ratios. We still choose to deploy on
an 8-worker environment for both CIFAR-10 and MNIST dataset.
We choose the number of Byzantine workers to be 1, 2, and 3,
which respectively implies the ratio of Byzantine workers 0.125,
0.25, and 0.375. The performances for the comparison between
FABA, VBOR and Krum, GeoMedian are similar. So here we only
show the performance of FABA and VBOR for different Byzantine
worker ratios in Table 1.

Byzantine ratio 0.125 0.25 0.375

FABA
Gaussian 99.11% 99.15% 99.09%

Wrong Label 99.07% 99.05% 99.10%
One Bit 98.97% 98.73% 98.25%

VBOR
Gaussian 99.11% 99.07% 99.13%

Wrong Label 99.09% 99.04% 99.10%
One Bit 98.87% 98.64% 98.35%

TABLE 1: The best accuracy performance of different Byzantine
worker ratios on different attacks for FABA and VBOR

From this table we can see that as the Byzantine worker
ratio increases, for all three types of attacks, the performance
does not vary much. This shows that our algorithms are capable
of defending Byzantine attacks in different ratios of Byzantine
workers.

5.3 Time Complexity Comparison
We compare the time complexity for FABA, VBOR, GeoMedian
and Krum on MNIST dataset and CIFAR-10 dataset. For MNIST,
we use a 32 worker environment with 9 Byzantine workers. For
CIFAR-10, we use an 8-worker environment with 2 Byzantine
workers. The time consumption results are in Table 2.

Algorithm Krum GeoMedian FABA VBOR
MNIST

Gaussian 11613.7s 23125.2s 4447.9s 3214.1s
Wrong Label 12025.3s 24276.2s 3697.3s 3264.5s

One Bit 11632.4s 24098.5s 4008.4s 3333.3s
CIFAR-10

Gaussian 6291.5s 10112.7s 5245.7s 5164.8s
Wrong Label 5762.7s 9893.2s 5188.8s 5343.9s

One Bit 6663.3s 11863.9s 6080.4s 6036.0s

TABLE 2: The time complexity of different algorithms on different
attacks for MNIST and CIFAR-10

From Table 2, we can see that VBOR is the most efficient
algorithm compared to FABA, Krum and GeoMedian. When the
number of workers is small, VBOR, FABA and Krum have similar
performance on time consumption. However, when the number of
workers increases, VBOR performs much better than all other
algorithms, and FABA has second best efficiency performance.
GeoMedian is the slowest algorithm because it adopts an iterative
method to find the geometric median.

6 CONCLUSION

As distributed neural networks become much more popular and
are being used more widely, people are beginning to enjoy the
efficiency and effectiveness brought by neural networks. However,
such networks are also subject to Byzantine attacks. In this paper,
we proposed two effective outlier deletion based algorithms FABA
and VBOR to resist the Byzantine attacks in distributed neural
networks. We proved the convergence of our algorithms. In fact,
in our algorithms, we can ensure that the aggregated results are
very close to the true gradients. Our algorithms are more efficient
because we use as much information as we can in all uploaded
gradients. We take the average of all rest gradients and use it
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as aggregated results. Experiments demonstrate that our algorithm
can achieve approximately the similar speed and accuracy as in the
non-Byzantine settings, and the performance is much better than
previously proposed methods. Besides, FABA is easy to construct
and control, making it simple to change how many Byzantine
gradients that we want to delete by changing the parameters
through the training process. VBOR has a smaller time complexity
with only little accuracy loss and also is very easy to implement.
We believe that our easy and original algorithms can be widely
used in distributed neural networks to protect against Byzantine
attacks.
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APPENDIX
PROOF OF THEOREM 2

Proof. This proof follows Bottou’s proof in [18] and the proof
of Proposition 2 in the supplementary material of [12] with some
modifications.

Condition (v) is complicated, so we use Figure 5 to clarify it.
The dotted circle means the ball that all honest gradients lie in.

θ

ψ

Wt

At

gtrue

ε/(1-2α)

ε

Fig. 5: Condition (v)

By Lemma 1, At is in the ball whose center is gtrue and radius
is ε

1−2α . This assumption means that the angle between wt and
gtrue is less than ψ while ψ < π

2 − θ.
We start with showing the global confinement within the

region ||w|| ≤ D.
(Global confinement). Let

φ(x) =

{
0 if x < D

(x−D)2 otherwise

We denote ut = φ(||wt||2).
Because φ has the property that

φ(y)− φ(x) ≤ (y − x)φ′(x) + (y − x)2 (15)

We have

ut+1 − ut ≤ (−2γt〈wt, At〉+ γ2t ||At||2) · φ′(||wt||2)

+ 4γ2t 〈wt, At〉2 − 4γ3t 〈wt, At〉||At||2 + γ4t ||At||4

≤ −2γt〈wt, At〉φ′(||wt||2) + γ2t ||At||2φ′(||wt||2)

+ 4γ2t ||wt||2||At||2 + 4γ3t ||wt||||At||3 + γ4t ||At||4

Denote %t as the σ-algebra that represents the information in time
t. We can get the conditional expectation as

E(ut+1 − ut|%t)
≤− 2γt〈wt, EAt〉+ γ2tE(||At||2)φ′(||wt||2)

+4γ2t ||wt||2E(||At||2) + 4γ3t ||wt||E(||At||3) + γ4tE(||At||4)

By Lemma 2, there exist positive constants X0, Y0, X, Y such
that

E(ut+1 − ut|%t) ≤− 2γt〈wt, EAt〉φ′(||wt||2)

+ γ2t (X0 + Y0||wt||4)

≤− 2γt〈wt, EAt〉φ′(||wt||2)

+ γ2t (X + Y · ut)

The first term in the right is 0 when ||wt||2 < D. When ||wt||2 ≥
D, because of Figure 5, we have

〈wt, EAt〉 ≥ ||wt|| · ||EAt|| · cos(θ + ψ) > 0

So we have

E(ut+1 − ut|%t) ≤ γ2t (X + Y · ut) (16)

For the following proof we define two auxiliary sequences µt =∏t−1
i=1

1
1+γ2

i Y
−−−→
t→∞

µ∞ and u′t = µtut.

Because of (16), we can move γ2t Y · ut to the left and we get

E(u′t+1 − u′t|%t) ≤ γ2t µtX

Define an indicator function χt as

χt =

{
1 E(u′t+1 − u′t|%t) > 0

0 otherwise

Then we have

E(χt(u
′
t+1 − u′t)) ≤ E(χt(u

′
t+1 − u′t|%t))

≤ γ2t µtX (17)

By the quasi-martingale convergence theorem [24], (17) implies
that the sequence u′t converges almost surely, which also implies
that ut converges almost surely, that is, ut → u∞.

If we assume u∞ > 0, when t is large enough, we have
||wt||2 > D and ||wt+1||2 > D, so (15) becomes an equality.
This means that

∞∑
t=1

γt〈wt, EAt〉φ′(||wt||2) <∞

Since we have φ′(||wt||2) converge to a positive value and in the
region ||wt||2 > D, by the condition (iv) and (v), we have

〈wt, EAt〉 ≥
√
D||EAt|| cos(θ + ψ)

≥
√
D(||∇Cost(wt)|| −

ε

1− 2α
) cos(θ + ψ) > 0

This contradicts the condition (ii). So we have the ut converge to
0, which gives the global confinement that ||wt|| is bounded. As a
result, any continuous function of wt is bounded.

(Convergence) Here we are going to show that ∇Cost(wt)
converges almost surely to 0. First we denote ht = Cost(wt).
If we use first order Taylor expansion and bound second order
derivatives with K1, we have

|ht+1 − ht + 2γt〈At,∇Cost(wt)〉| ≤ γ2t ||At||2K1 a.s.
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This implies that

E(ht+1 − ht|%t) ≤ −2γt〈EAt,∇Cost(wt)〉
+ γ2tE(||At||2|%)K1 (18)

≤ γ2tK2K1

This also shows thatE(χt(ht+1−ht)) ≤ γ2tK2K1. By the quasi-
martingale convergence theorem, ht converges almost surely, that
is, Cost(wt)→ Cost∞. If we move the negative part to the left,
take expectation of both sides and sum them for t, we get

∞∑
t=1

γt〈EAt,∇Cost(wt)〉 <∞ a.s.

Next we denote ρt = ||∇Cost(wt)||2. If we use first order
Taylor expansion and bound second order derivatives with K3, we
have

ρt+1 − ρt ≤− 2γt〈At,∇2Cost(wt) · ∇Cost(wt)
+ γ2t ||At||2K3

Taking conditional expectation of both side and bounding the
second derivatives by K4, we have

E(ρt+1 − ρt|%t) ≤ 2γt〈EAt,∇Cost(wt)〉K4 + γ2tK2K3

This implies that

E(χt(ρt+1 − ρt)) ≤ 2γt〈EAt,∇Cost(wt)〉K4 + γ2tK2K3

By the quasi-martingale convergence theorem, this shows that ρt
converges almost surely.

We have

〈EAt,∇Cost(wt)〉

≥(||∇Cost(wt)|| −
ε

1− 2α
) · ||∇Cost(wt)||

≥(1− sin θ) · ρt
This implies that

∑∞
t=1 γt · ρt < ∞ a.s.. Because condition

(ii) and ρt converges almost surely, we have that the sequence
||∇Cost(wt)|| converges almost surely to 0.
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[19] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner,
“Gradient-based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov 1998.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[21] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Department of Computer Science, University of Toronto, Tech. Rep.,
2009.

[22] X. Li, M. C. Huang, K. Shen, and L. Chu, “A realistic evaluation
of memory hardware errors and software system susceptibility,”
in Proceedings of the 2010 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIXATC’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 6–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855840.1855846

[23] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin, “Smart community:
an internet of things application,” IEEE Communications Magazine,
vol. 49, no. 11, pp. 68–75, 2011.

[24] M. Métivier, Semimartingales: a course on stochastic processes. Walter
de Gruyter, 2011, vol. 2.

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:47:03 UTC from IEEE Xplore.  Restrictions apply. 

http://arxiv.org/abs/1312.6184
http://arxiv.org/abs/1609.04836
http://dl.acm.org/citation.cfm?id=2999134.2999271
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1109/HotWeb.2015.22
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
http://papers.nips.cc/paper/6617-machine-learning-with-adversaries-byzantine-tolerant-gradient-descent.pdf
http://papers.nips.cc/paper/6617-machine-learning-with-adversaries-byzantine-tolerant-gradient-descent.pdf
http://papers.nips.cc/paper/6617-machine-learning-with-adversaries-byzantine-tolerant-gradient-descent.pdf
http://proceedings.mlr.press/v80/damaskinos18a.html
http://arxiv.org/abs/1802.10116
http://arxiv.org/abs/1803.01498
http://arxiv.org/abs/1803.01498
http://doi.acm.org/10.1145/3154503
http://arxiv.org/abs/1803.08917
http://dl.acm.org/citation.cfm?id=304710.304720
http://arxiv.org/abs/1409.1556
http://dl.acm.org/citation.cfm?id=1855840.1855846

