
1

SmartAssoc: Decentralized Access Point
Selection Algorithm to Improve Throughput

(Supplementary File)
Fengyuan Xu, Member, IEEE, Xiaojun Zhu, Chiu C. Tan, Member, IEEE,

Qun Li, Member, IEEE, Guanhua Yan, and Jie Wu, Fellow, IEEE

✦

In this supplementary file, we examine the network
performance in terms of competitive ratio and conver-
gence if selfish strategy is applied, and provide detailed
proofs of theorems stated in the main manuscript.

1 SELFISH USER STRATEGY

One natural alternative to solving the association prob-
lem, with respect to our goal, is to let the clients behave
myopically by applying, in decentralized AP selection,
the best-reply policy. Explicitly, it means that every user
keeps moving to associate with the AP that could offer it
the best throughput until no user can gain higher through-
put by unilaterally deviating from its current decision (Nash
Equilibrium).

To simplify the analysis for selfish users, we make two
assumptions in this section. In the next section, we will
use a more realistic assumptions.

First, we assume that the interference between the
communications of two APs is not considered, i.e., the
nearby APs operate on orthogonal channels. Second,
the association procedure of a user is considered as
an atomic operation, so only one user performs the
association at a time.

The time at which a user makes a decision to change
APs is marked as a decision step. However, we do not
require users to follow a certain decision order, which
means in each decision step, the user who is picking a
new AP could be any one.

• F. Xu and Q. Li. are with the Department of Computer Science, College
of William and Mary, Williamsburg, VA 23187.
E-mail: {fxu,liqun}cs.wm.edu .

• X. Zhu is with the Department of Computer Science and Technology,
Nanjing University, Jiangsu 210093, China.
E-mail: gxjzhu@gmail.com .

• C.C. Tan and J. Wu are with the Department of Computer and Information
Sciences, Temple University, Philadelphia, PA 19122.
E-mail: {cctan,jiewu}@temple.edu .

• G. Yan is with the Information Sciences Group, Los Alamos National
Laboratory, Los Alamos, NM 87545.
E-mail: ghyan@lanl.gov .

Under these assumptions, we will show that such
selfish user game converges to a Nash Equilibrium of-
ten having non-optimal performance. More complicated
scenarios, even, cannot guarantee the existence of the
Equilibrium state [1], [2].

We denote by Ua the set of users connecting with AP
a. So let na = |Ua| represent the cardinality of this set. We
designate by stu the percentage of service time the user
u gains from associated AP, and Tu corresponds to the
throughput of u. And for any user u and AP a, we use
Rua to denote the transmission rate under the situation
where only u is associating with a. Rua varies, even
for the same user. For the rest of this section, unless
otherwise specified, the transmission rate refers to the
effective transmission rate, which considers the overhead
caused by retransmissions, random backoff, and so on.

To examine the performance of this protocol, we con-
sider two aspects: convergence and competitive ratio.
The competitive ratio here is equivalent to the price of
anarchy1(PoA) using minimum user throughput as social
cost.

The following subsections show first whether the self-
ish user protocol will eventually stabilize, and how fast
the protocol will achieve convergence in general; after
that, it will give the competitive ratio of the protocol.

1.1 Convergence of the Selfish Strategy

In this subsection, we will show how to model this self-
ish throughput strategy as a special case of the weighted
congestion game, where the weight of a user varies as
the associated AP set, which is singleton, changes. This
game is proved to be converged with not ideal speed,
by leveraging the technique similar to [1].

Given the Lemma 1, and assumptions we made, we
describe this game in the wireless LAN scenario. Con-
sider a set M of APs, each having a load function
depending on the total weight of the users associated
(Definition 1), and a set U of users, each of whom only

1. the ratio of the worst-case social cost, among all Nash Equilibria
over the optimal cost

2

can choose one AP from a permissible subset of M (in
the absence of a coordinating authority). The weight of
a user i on AP j (i.e. the load imposed by the user)
is defined as the reciprocal of the transmission rate,
Lij =

1
Rij

.

For the convergence proof, we introduce a sorted
vector (in ascending order) of all users’ throughput as
the potential function. According to Lemma 1, we can

simplify this vector to a new one
−→
T by using Ta above to

represent, respectively, the current throughput of every
user associated with AP a (for ∀ a ∈ M , where M is the
set of all APs). Put differently, given a user i associated

with AP a, its throughput is replaced with Ta in the
−→
T .

The following defines the lexicographic order on differ-

ent vectors (
−→
T).

Definition 2 One vector
−→
T defined above is called lexico-

graphically larger than the other one
−→
T ′ if

−→
T ’s first unequal

element is larger than its corresponding position index one in
−→
T ′, where both vectors are in ascending order.

Definition 3 In
−→
T , Ta(s) denotes the throughput Ta at the

decision step s.

We show the convergence of the protocol by identify-
ing a potential function, and showing that this potential

strictly increases after each step. Consider the vector
−→
T ,

in an ascending order of all users’ throughput.

Theorem 5
−→
T lexicographically increases when a user i

moves from AP j to k for better throughput.

Proof: Based on the assumption that interference is
not considered in this section, we know this migration

only influences two components of
−→
T : one correspond-

ing to the throughput for AP j that user i just left, while
the other corresponds to the AP k that i has joined. Other
components remain unchanged. Suppose this is the s+1-
th decision step. Because user i moves for a higher
throughput, Tk(s+1) > Tj(s); and because AP j has one
less client, its throughput increases: Tj(s + 1) > Tj(s).

In a word, if Tj(s) is the pth component in
−→
T at step

s, Tj(s+ 1) and Tk(s+ 1) reside at two positions whose
indexes are no smaller than pth (at the right side of pth

position, including p).

Assume in
−→
T at step s, (m − q)th (recall m is the

number of APs) is the first position in which the value
is larger than the one in position p, i.e., there are q

throughput larger than Tj(s) in
−→
T . Note that, only if no

throughput is equal to Tj(s) in
−→
T at step s, m − q = p.

After step s + 1, this number q increases by 1 for the
reason mentioned above (Tj moves to the right). Thus,
the (m− q− 1)th position becomes the first position that

holds different values for step s and step s + 1 in
−→
T .

Obviously, according to the definition of lexicographical

order, the vector
−→
T at step s+ 1 is larger.

The above theorem is also applicable to the extended
scenario that there are new users coming into the net-

work.
Since we have shown that users’ migration always

increases the potential -
−→
T , this gives us an upper bound

(Theorem 6) on the convergence time, in general.

Theorem 6 Without specifying the concrete underlying con-
figuration, this network (m APs and n clients) reaches the
equilibrium in at most mn steps.

Proof: It is equal to the number of different sorted
vectors, which is bounded by the number of network
topology snapshots. In other words, after performing at

most mn steps, this potential function
−→
T will come to

a state at which it will not be larger any more. This
means that no matter which user has the chance to make
a decision at the next step, it will stay on its current AP
from its selfish point of view.

We have shown that the network will finally converge
to an equilibrium within bounded steps. However, the
number of steps may be exponentially growing with
respect to the network size, which is presented in the
following Theorem 7. The basic idea is to send light
weight users to the network first, which will incur a large
amount of AP associations. Note that whenever an AP
accepts a new user (maybe users from other APs), we
count it as a new AP association.

Theorem 7 For a network with m identical APs and m2

users, there exists a scenario where the number of AP associ-
ations is at least 2m.

Proof: The basic idea is to construct a scenario where
light weight users move first, which will incur a large
amount of AP associations.

The network is as follows. The users are divided into
m groups G1, G2, . . . , Gm, each of which has m users.
Users in the same group have the same weight. We set
the weight of each group recursively. For G1, its weight
is 1. For Gi, its weight is set as more than the sum
of the weights of previous groups’ users, say wGi

=
m
∑i−1

j=1 wGj
+1. Such weight setting can guarantee that

two APs have the same load, if and only if, they serve
the same number of users from each group. In the equi-
librium after all users join the network, each AP serves
m users, each of which comes from a different group.
Since each user’s choice is deterministic, i.e., it chooses
the lightest load AP (note here APs are identical), the
number of AP associations is determined by the order
in which users join the network, and the order in which
they make adjustments. In the following, we construct an
adversary that controls such orders to cause more than
2m AP associations. Whenever the adversary releases a
user, the user can join the network, or adjust APs, based
on the best-reply policy.

Let F (m) be the resulting number of AP associations
for an m-AP network, under the adversary’s strategy
S(m) described as follows. We will prove F (m) ≥ 2m

by induction.
For m = 2, the adversary’s strategy S(2) is to release

users in an arbitrary order (e.g., light weight first). It

3

holds trivially that F (2) ≥ 22 since there are 4 users,
and each of them invokes at least one AP association.

Suppose F (k) ≥ 2k and this is resulted from the adver-
sary’s strategy S(k). Consider the case when m = k+ 1.
Now each group has k + 1 users. The adversary will
use the following strategy S(k + 1). First, it applies
the following strategy, creating a k-AP network sub-
problem.

• Release one user from Gk+1.
• Select k users from each Gi where i = 1, 2, . . . , k,

making k2 users. Apply S(k) to them.

The user from Gk+1 will occupy an AP. Denote this AP
by APa. The later released k2 users will only consider
the other k APs, because even the sum of their weights
is less than APa’s current load. Therefore, these k2 users,
together with the k available APs, create a k-AP instance,
and the number of involved AP associations is F (k).

In the next, the adversary releases several users, whose
associations we ignore, but will lead to an interesting
equilibrium.

• Release the rest users from G1, G2, . . . , Gk (i.e., one
user per group).

• Release k − 1 users from Gk+1. Wait until equilib-
rium.

Consider the equilibrium. There must be k APs, each of
which serves exactly one user from Gk+1 and does not
serve other users. All the k(k + 1) users from the first k
groups are crowded in one AP (denote it by APb).

At last, the adversary creates another k-AP sub-
problem.

• Release the last user. It is from Gk+1, and it will
choose APb.

• For users at APb, select k users from each Gi where
i = 1, 2, . . . , k, making k2 users. Apply S(k) to them.

The released user from Gk+1 will choose APb due to
lightest load. After it associates with APb, all the other
users at APb have the incentive to move to the other k
APs. None of the selected k2 users will associate back
with APb at any time until the equilibrium, because APb

has at least k+1 users (one user per group) so that there
must be some AP that is less loaded. (Consider i from
i = k+1 to i = 1. If there exists an AP serving two users
from Gi, then there is at least one AP serving no user
from Gi. This AP is less loaded than APb.) The k2 users
and the other k APs create a k-AP instance, contributing
to F (k) AP associations.

We can see that, under strategy S(k+1), the resulting
F (k + 1) is composed of at least two F (k), so we
have F (k + 1) ≥ 2F (k) ≥ 2k+1. The theorem follows
immediately.

Note that this theorem considers identical APs, a
special case of our model that assumes unrelated APs.
The implications of the theorem are two-fold. First, it
is impossible to bound the convergence time by poly-
nomials of m and n. Second, some user may need to
change AP exponentially many times (2m/m2), which
significantly degrades performance.

1.2 Competitive Ratio

In the following, we obtain the competitive ratio with
respect to the minimum throughput over all clients in
the selfish protocol. We still assume that the number
of APs is m and the number of clients (or users) is
n. We also assume that, among all users, the maximal
available transmission rate is Rmax and the minimum
available transmission rate is Rmin. Recall that we define
the load a client imposes to an AP as the reciprocal of the
transmission rate of a client when connecting to an AP.
Therefore, we define Lmax = 1

Rmin
, and Lmin = 1

Rmax
.

In a Nash Equilibrium of the selfish strategy, suppose
the most loaded AP is k, which has a load L

S , i.e., Lk.
Since this selfish user game reaches the equilibrium, any
client connecting to AP k is not willing to move to any
other AP j. That is, L

S ≤ Lmax + Lj for ∀j ∈ {a|a ∈
M&a 6= k}. Thus, LS ·m ≤ Lmax · (m − 1) +

∑m
j=1 Lj ≤

Lmax · (m− 1) + Lmax · n

∴ L
S ≤

Lmax · (n+m− 1)

m

Then, in the optimal strategy, the maximal load over all
the APs is L

O ≥ n·Lmin

m In sum, the price of anarchy is

L
S

LO
≤

n+m− 1

n
·
Lmax

Lmin

This bounds the PoA from above. In the following, we
bound the worst-case PoA from below.

Theorem 8 There exists a scenario where the competitive
ratio is no smaller than (m−1)/(1+ǫ) where m is the number
of APs, and ǫ is a small positive constant.

Proof: The example below first appears in [3], and
recently in [4] for slightly different purposes (centralized
greedy load balancing and sequential load balancing
game). We show that this example also works in our
context (distributed selfish user association).

Suppose there are m APs and m− 1 users. Each user
i ∈ U can only associate with two APs, i and i+ 1. The
weights are set as follows. For i ∈ U , Li,i+1 = i and
Li,i = 1+ ǫ. For this example, the maximum load of the
optimal solution is 1 + ǫ.

The adversary can release users sequentially as
1, 2, . . . ,m− 1. It is easy to see that user i will associate
with AP i+ 1 in the equilibrium, causing the maximum
load to be m − 1. Therefore, its competitive ratio is
(m− 1)/(1 + ǫ).

The theorem shows that the price of anarchy is Ω(m).
In the following section, we use an online algorithm
with competitive ratio O(logm), which is an exponential
improvement.

Furthermore, the selfish strategy has worse perfor-
mance if it is examined under the realistic wireless LAN
model that SmartAssoc considers. There may not exist
an equilibrium. To see this, we encode the classic game,
matching pennies, in the model. Consider the 2-user and
2-AP scenario. Let δ1,1,1 = δ1,2,2 = δ2,1,2 = δ2,2,1 = 2,

4

AP 1 AP 2
AP 1 3,3 4,2
AP 2 4,2 3,3

TABLE 1: The cost matrix for two users under different AP associations (left
for user 1, and top for user 2). Each entry (a, b) is the cost for users 1 and 2
respectively.

and all others are set as 1. The resulting cost matrix is
in Table 1. We can see that user 1 prefers to have the
same choice as user 2 does, while user 2 prefers to differ.
In distributed scenarios, they will keep switching APs
forever.

In summary, the selfish user protocol has a high con-
vergence time and a poor performance in some network
scenarios.

2 THEOREM PROOFS

Lemma 1 All the users on an AP a have the same throughput
Ta

Ta =
1

∑

i∈Ua

1
Ria

(1)

Proof: Owing to Carrier-Sense Multiple Access with
Collision Avoidance (CSMA/CA) protocol, all the users
associated to the same AP, no matter what their trans-
mission rates are, have a fair chance to seize the channel
for packet transmission.

Therefore, given the same packet size z, any user
u connecting to AP a with a transmission rate Rua is
assigned a portion of service time from a:

stu =
z

Rua
∑

i∈Ua

z
Ria

=
1

Rua
∑

i∈Ua

1
Ria

(2)

It is obvious that every user on the same AP has through-
put:

Ta = Tu = stu ×Rua =
1

∑

i∈Ua

1
Ria

(3)

Theorem 1 To solve problem GAS, algorithm [5] is (m+1)-
competitive, where m is the number of APs. The bound is
almost tight, in that there exist a class of GAS instances that
the algorithm gives m-competitive solutions.

Proof: We first show how the algorithm works, then
prove its competitive ratio, and then construct the set
of bad input instances. The competitive ratio is proved
by following the same procedure as in [5], where they
proved the 2-approximation ratio for the traditional load
balancing problem.

The algorithm performs binary search for the optimum
load. In each iteration, it checks whether the optimal
solution could yield maximum load T . To answer this
question, it drops the integral restrictions and checks the

feasibility of the following linear program.



































∑

i,k

xi,kδi,j,k ≤ T, ∀j ∈ M

∑

k

xi,k = 1, ∀i ∈ U

xi,k ≥ 0, ∀i ∈ U, k ∈ M

xi,k = 0 if ∃j ∈ M, δi,j,k > T

It is easy to see that, if the optimal solution yields
maximum load T , then the linear program above is
feasible. Suppose the linear program is feasible. We can
find an extreme solution x (a vertex of the polytope
defined by the constraints). The algorithm then rounds
fractional solution to integral assignment by finding a
maximum matching for the fractionally assigned users
(users correspond to fractional variables in x). We relax
the maximum matching requirement to an arbitrary
semi-matching if no maximum matching exists.

We now prove the competitive ratio. We will prove
that the rounding of the fractional extreme solution x

produces an integer solution such that



























∑

i,k

xi,kδi,j,k ≤ T +mT, ∀j ∈ M

∑

k

xi,k = 1, ∀i ∈ U

xi,k ∈ {0, 1} ∀i ∈ U, k ∈ M

The extreme solution x contains at most m + n non-
zero variables, among which the non-integer variables
correspond to, at most, m users. To see this, note that by
definition, an extreme solution must have mn2 (the total
number of variables) linearly independent constraints
satisfied with equality. Among the constraints appeared
in the linear program, at most m+n of them could yield
a non-zero solution (the m constraints for APs and the n
constraints for users). Therefore, there are at most m+n
non-zero variables in x. Since each user who corresponds
to non-integer variables could contribute at least 2 non-
zero variables, there are at most m such users by a
counting argument.

Now we assign users with integer variables in x to
the corresponding APs. After this assignment, the load
at any AP is, at most, T . Then we assign users with
non-integer variables. Recall that we assign fractionally
assigned users to any machine that they have positive
fractional assignment to, thus each fractionally assigned
user contributes at most T load to each AP. Otherwise,
we should have xi,k = 0 due to the existence of j such
that δi,j,k > T . Given that there are at most m fractionally
assigned users, the additional load to each AP can not
exceed mT . Thus the claim is proved.

In the following, we construct the class of bad in-
stances. On these instances, the algorithm gives m-
competitive ratio (even with maximum matching strat-
egy). Consider the network with the same number of

5

users and APs, i.e., n = m. We set

δi,j,k =











si,j if k = i
1−si,j
m−1 if k = i+ 1

∞ otherwise

where si,j are to be defined later and i+ 1 is defined to
be 1 for i = m. In other words, we set each user i to be
able to associate with two APs, APs i and i+1. For si,j ,
we set

si,j =

{

1 if i+ j ≤ m+ 1

0 otherwise

Now we have finished constructing the set of instances.
We show an example of the inequalities imposed by APs
for m = 3.





1 0 ∞ ∞ 1 0 0 ∞ 1
1 0 ∞ ∞ 1 0 1

2 ∞ 0
1 0 ∞ ∞ 0 1

2
1
2 ∞ 0















x1,1

x1,2

...
x3,3











≤











T
T
...
T











For the constructed instance, the optimal solution is to
assign user i to AP i + 1, yielding maximum load 1. In
the following, we show that the algorithm may assign
user i to AP i, resulting in maximum load m, which is
a m-competitive solution.

Set T = m. Consider the solution

xi,k =











1
m if k = i
m−1
m if k = i+ 1

0 otherwise

It satisfies with equalities all the non-zero constraints
imposed by the APs and users. We can check that it is
an extreme solution (note that it is the unique solution
to the 2m non-zero constraints). Since the algorithm
only requires an arbitrary maximum matching from the
fractional assignment, we can see that setting xi,i = 1
gives a maximum matching.

Theorem 3 If the protocol is to minimize the Lp norm of the
loads (rather than to minimize the maximum load), then the
online protocol gives a r ≤ 1

21/p−1
-competitive ratio.

Proof: Suppose client 1, 2, 3, · · · , i, i+1, · · · , n join the
network sequentially. Consider the situation when client
i is joining the network. Let Lij be the resulting load of
AP j if users 1 to i all follow our protocol (i may not
select j). Let xi,k be the indicator variable for the optimal
choice such that xi,k = 1, if and only if, user i chooses AP
k in the optimal solution. With a little abuse of notation,
we let δi,j =

∑

k xi,kδi,j,k. Let L∗

j be the load on AP j
in the optimal solution for minimizing the Lp norm. We
have L∗

j =
∑

i δi,j . If users 1 to i− 1 follow our protocol,
but user i chooses the optimal AP, then the load of the
current system is (Li−1,1 + δi,1,Li−1,2 + δi,2, . . . ,Li−1,j +
δi,j , . . .).

Following the main idea of [6], we derive that
∑

j

(Lp
ij − Lp

i−1,j)

≤
∑

j

((Li−1,j + δij)
p − Lp

i−1,j)

≤
∑

j

((Ln,j + δij)
p − Lp

n,j)

(4)

The first inequality is true because, in this step, client
i tries to minimize the Lp norm. The second one is true
because (x + δ)p − xp is increasing with x when p > 1
and δ ≥ 0.

∑

j

Lp
nj

=
∑

i

∑

j

(

Lp
ij − Lp

i−1,j

)

≤
∑

i

∑

j

(

(Ln,j + δij)
p − Lp

n,j

)

(5)

=
∑

j

∑

i

(

(Ln,j + δij)
p − Lp

n,j

)

≤
∑

j

((

Lnj +
∑

i

δij

)p

− Lp
nj

)

(6)

=
∑

j

(

Lnj + L∗

j

)p
−
∑

j

Lp
nj

≤











∑

j

Lp
nj





1

p

+





∑

j

L∗p
j





1

p







p

−
∑

j

Lp
nj (7)

where (5) is due to (4); (6) is due to the fact that
∑k

i=1((x + δi)
p − xp) ≤ (x +

∑k
i=1 δi)

p − xp for p > 1,
x ≥ 0, and δi ≥ 0;2 (7) is due to Minkowski Inequality.
Then

2
∑

j

Lp
nj ≤











∑

j

Lp
nj





1

p

+





∑

j

L∗p
j





1

p







p

Let r = (
∑

j L
p
nj)

1

p /(
∑

j L
∗p
j)

1

p . We then have 2rp ≤

(r + 1)p and r ≤ 1
21/p−1

.

Thus, our protocol is a r ≤ 1
21/p−1

-competitive online
algorithm to minimize the Lp norm.

Theorem 4 The online protocol is a e logm competitive
protocol for minimizing the maximal load (or 1

e logm , w.r.t.
maximizing the minimum throughput).

Proof: Let the heaviest load among all APs running
our protocol be Lm, and the heaviest load among all
APs in the optimal minimizing heaviest load protocol

be L∗

m. Thus, m1/pL∗

m = (m · L∗p
m)1/p ≥ (

∑

j L
∗p
j)

1

p ≥
1
r (
∑

j L
p
nj)

1

p ≥ 1
r (L

p
m)1/p = 1

rLm. In other words, the

2. It can be proved by considering the function f(s+ t)−f(s)−f(t)
where f(s) = (x+ s)p − xp.

6

Lp norm protocol is a rm1/p-competitive online algo-
rithm for minimizing the heaviest load on all APs.

rm1/p ≤ m1/p

21/p−1
≤ m1/p p

ln 2 . When p = lnm, m1/p p
ln 2

reaches its minimum value, e logm, in the positive real
number domain R+. Thus, we choose Llnm norm, and
the competitive ratio, correspondingly, is e logm.

REFERENCES

[1] E. Even-Dar, A. Kesselman, and Y. Mansour, “Convergence time
to Nash equilibria,” Lecture Notes in Computer Science, pp. 502–513,
2003.

[2] I. Milchtaich, “Congestion games with player-specific payoff func-
tions,” Games and economic behavior, vol. 13, no. 1, pp. 111–124, 1996.

[3] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, “On-line
routing of virtual circuits with applications to load balancing and
machine scheduling,” J. ACM, May 1997.

[4] R. P. Leme, V. Syrgkanis, and E. Tardos, “The curse of simultaneity,”
in Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, ser. ITCS ’12. New York, NY, USA: ACM.

[5] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algo-
rithms for scheduling unrelated parallel machines,” Math. Program.,
vol. 46, February 1990.

[6] I. Caragiannis, “Better bounds for online load balancing on unre-
lated machines,” in SODA 2008.

