
1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

1

Privacy-Preserving Computation Offloading for
Parallel Deep Neural Networks Training

Yunlong Mao, Member, IEEE, Wenbo Hong, Student Member, IEEE, Heng Wang, Student Member, IEEE,

Qun Li, Fellow, IEEE, and Sheng Zhong,Member, IEEE

Abstract—Deep neural networks (DNNs) have brought significant performance improvements to various real-life applications.

However, a DNN training task commonly requires intensive computing resources and a huge data collection, which makes it hard for

personal devices to carry out the entire training, especially for mobile devices. The federated learning concept has eased this situation.

However, it is still an open problem for individuals to train their own DNN models at an affordable price. In this paper, we propose an

alternative DNN training strategy for resource-limited users. With the help of an untrusted server, end users can offload their DNN

training tasks to the server in a privacy-preserving manner. To this end, we study the possibility of the separation of a DNN. Then we

design a differentially private activation algorithm for end users to ensure the privacy of the offloading after model separation.

Furthermore, to meet the rising demand for federated learning, we extend the offloading solution to parallel DNN models training with a

secure model weights aggregation scheme for the privacy concern. Experimental results prove the feasibility of computation offloading

solutions for DNN models in both solo and parallel modes.

Index Terms—Deep Neural Network, Federated Learning, Computation Offloading, Data Privacy, Model Parallelism

✦

1 INTRODUCTION

People with mobile devices such as smartphones, Google
glasses, or HoloLens can sense the environment and use
collected data (e.g., image and sound) to train a deep neural
network (DNN) for various applications. Usually, there are
two possible ways for mobile devices to get a well-trained
DNN model, sending all private data to a central server that
has sufficient resources, or performing distributed training
with a local DNN trained on each device. Obviously, the
first way is more suitable for mobile devices with limited
computing resources. But user’s privacy will be violated
seriously if the server is untrusted [1]. The second way
has a higher requirement for computing resources. Even
if it’s possible for mobile devices to perform distributed
training, user’s private data can still be violated by an
active adversary [2], [3]. To tackle this problem, we give
an alternative solution for privacy-aware DNN training for
single client in previous work [4], [5].

To meet the rising demand for parallel DNN model
training, we extend the computation offloading solution to
a popular parallel DNN training framework, i.e., federated
deep learning (FL). FL trains duplicate models on multiple
clients in a parallel style. Each FL client trains a DNN
model with private data locally and upload the updating
result to a central server. Then a globally updated model

• Yunlong Mao, Wenbo Hong, Heng Wang and Sheng Zhong are with the
State Key Laboratory for Novel Software Technology, the Department of
Computer Science and Technology, Nanjing University, Nanjing 210023,
China.

• Qun Li is with the Department of Computer Science, College of William
& Mary, Williamsburg, VA, US

Part of this work has been published in the proceedings of the third ACM/IEEE
Symposium on Edge Computing (SEC 2018) and the USENIX workshop on
Hot Topics in Edge Computing (HotEdge 2018).

could be downloaded from the central server after the
aggregation. This paradigm requires intensive computation
and a stable high-speed network for FL clients. It is quite
hard for portable smart devices to join and benefit from this
paradigm. Since portable smart devices are becoming data
producers, it is necessary to take their practical demands
into account. If we can offload part of the training workload
to a trusted server while processing private data locally, FL
will be more affordable to resource-limited devices. How-
ever, assuming a trusted server is impracticable in the real
world. Hence, it is crucial to study how to offload parallel
model training to an untrusted server safely.

Privacy issue in deep learning has been identified in
some recent studies [2], [3], [6]. To tackle this issue, some
efficient privacy-aware training mechanisms have been pro-
posed. A differentially private gradient computing solution
is given in [7] for the training phase. Privacy-preserving
parameter aggregation solutions for distributed learning
have been studied in [1], [8]. A differentially private pa-
rameters updating solution is introduced in [8] while a
secure parameter aggregation solution based on masking
technique and threshold secret sharing is proposed in [1].
Targeting at privacy-preserving fine-tuning, [9] migrates the
learning process from a client to a server after mixing basic
features extracted by clients with noise. However, none
of the existing work has focused on DNN computation
offloading.

We try to fill the gap by offering alternative solutions
for privacy-preserving DNN offloading in both solo and
parallel manners. The proposed solutions are based on the
observation that layers inside a DNN are loosely coupled.
The network can be divided into two parts and deployed
separately as long as the intermediate results keep consis-
tent. To deal with the leakage threat of the user’s private
training data, we propose a differentially private activation

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

2

algorithm, which helps the user hide sensitive information
from an untrusted offloading server. Meanwhile, we study
the separation strategy of a DNN model for the user’s
offloading by modeling the user’s computing resource, pri-
vacy budget, and desired model quality as an optimizing
problem. The optimization result shows that a simple but
effective separation strategy is to keep just the first layer
of a DNN on the user side and offload the rest part to an
untrusted server. That’s the main conclusion of our previous
work [4], [5].

In this paper, we have extended the privacy-preserving
offloading solution for a single DNN model training task
to the parallel DNN models training scenario. In particular,
we first revisit the previously proposed differentially private
activation algorithm and improve its utility for each user
through concentrated privacy analyzing method. Then we
propose a privacy-preserving offloading solution for users
of parallel DNN models training task with this improved
activation algorithm. The model weights aggregation is cru-
cial for parallel training. The offloaded parts of all parallel
models can be aggregated simply since they are deployed
on the same server. But it is difficult to have model weights
on the user’s side aggregated because private data will be
disclosed if the aggregation is not designed for privacy con-
cerns. To tackle this problem, we propose a secure weights
aggregation solution for users’ non-offloaded parts with the
help of a verifiable secret sharing scheme. In this manner,
model weights of the non-offloaded parts can be aggregated
secretly and partial users’ failure during the aggregation can
be tolerated. Furthermore, our solution is also resistant to
improper secret shares in case of the existence of malicious
users. When compared with another secure aggregation
solution [1], ours has fewer travel rounds of communication
between the server and users and the resistance to corrupt
secret shares. Overall, the contributions of our work can be
summarized as follows.

• We propose a computation offloading solution for
DNN model training tasks in a private manner by
designing a privacy-preserving algorithm for activa-
tions calculation.

• By tracing privacy loss, computing cost and training
accuracy, we give a study of DNN separation strat-
egy. We recommend that keeping the first layer non-
offloaded is the best choice for a trade-off between
computing resources, privacy loss and model quality.

• We revisit the proposed private activation algorithm
and improve its utility by introducing a sharper
privacy analysis technique.

• A privacy-preserving offloading solution for parallel
DNN models training is proposed with the design of
a secure model weights aggregation for users’ non-
offloaded parts. The proposed solution has fewer
communication rounds and the resistance to corrupt
secret shares, compared with other secure aggrega-
tion solution.

2 PRELIMINARIES

2.1 Deep Convolutional Neural Network

DNNs, such as [10], [11], [12], [13] have similar architectures
in common. The most significant feature is the convolu-

tional layers. A convolutional layer is where filters convolve
around input volume. Taking VGG-16 as an example, we
demonstrate the architecture and data flow of common
DNNs in Figure 1. Model weight dimensions and the num-
ber of filters in each convolutional layer are also indicated
in the figure. We will use “conv” with numbers to refer to
some specific convolutional layer hereafter. Please note that
the study in this paper can be adapted to other DNNs while
we will use VGG-16 network as an example in the rest.

Input Images Preprocess

Conv:
Convolutional

Layers

Conv1_1
3x3x64x64

ReLU

Conv1_2
3x3x64x64

ReLU
Max

Pooling

Conv2_1
3x3x64x128

ReLU

Conv2_2
3x3x128x128

ReLU
Max

Pooling

Conv3_1
3x3x128x256

ReLU

Conv3_2
3x3x256x256

ReLU
Max

Pooling

Conv3_3
3x3x256x256

ReLU

Conv4_1
3x3x256x512

ReLU

Conv4_2
3x3x512x512

ReLU
Max

Pooling

Conv4_3
3x3x512x512

ReLU

Conv5_1
3x3x512x512

ReLU

Conv5_2
3x3x512x512

ReLU
Max

Pooling

Conv5_3
3x3x512x512

ReLU

FC1
(flat)x4096

ReLU

FC2
4096x4096

ReLU

FC3
4096xN

Softmax
Prob/Loss

Output

FC:
Fully Connected

Layers

Fig. 1: Network architecture and data flow of VGG-16.

2.2 Differentially Private Mechanism

Differential privacy (DP) [14] provides a promising privacy
property. Assuming that all possibly queried datasets of an
application compose D, two adjacent datasets D,D′ can be
defined as two neighbouring datasets differing in a single
entry.

Definition 1 (Differential Privacy). A random mechanism M :
D → R satisfies (ǫ, δ)-differential privacy ((ǫ, δ)-DP for short)
if for any two adjacent datasets D,D′ ∈ D and for any subsets of
outputs S ⊂ R it holds that

P[M(D) ∈ S] ≤ eǫP[M(D′) ∈ S] + δ. (1)

This definition given in [14] allows that original ǫ-
differential privacy can be broken with probability δ. A
simple way to construct an (ǫ, δ)-DP mechanism for query
function f : D → R is adding random perturbation.
Gaussian mechanism is a basic mechanism satisfying DP. To
construct a Gaussian mechanism having (ǫ, δ)-DP, a noise
term should be added to f :

M(D) , f(D) +N (0, S2
f · σ2), (2)

where N (0, S2
f · σ2) is a Gaussian distribution with mean 0

and standard deviation Sfσ, Sf is the sensitivity of f which
can be defined as Sf = maxD,D′∈D |f(D)− f(D′)|.

2.3 Federated Deep Learning

In a federated deep learning (FL) task, a central server (or
parameter server interchangeably) will coordinate n clients
for learning jointly. Assume that each client Pi, i ∈ [1, n]
holds a single dataset Di for training. Before the training

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

3

begins, the central server broadcasts DNN architecture,
learning hyperparameters and training task to the clients.
When the FL training begins, client Pi, i ∈ [1, n] will train a
local model with Di individually.

The local training of each client is basically the same as
usual. Generally, it is assumed that a mini-batch stochas-
tic gradient descent (SGD) algorithm is used to mini-
mize the loss L(θi) on Pi’s model weights (or parame-
ters interchangeably) θi iteratively. In each iteration, Pi

randomly samples training data to form a mini batch
di = {d1, d2, . . . , dm}. Then Pi computes an average loss
over the mini-batch as 1

m

∑m
j=1 L(θi, dj). Then the gradient

∇θiL(θi) can be estimated as

gi = 1/m
∑m

j=1
∇θiL(θi, dj). (3)

A global training iteration counter t ∈ [1, T] for coor-
dination is maintained by the central server. In the end of
t-th iteration, local model weights should be updated as
θi
t = θi

t−1 − ηgi, where η is a predefined learning rate.
Each Pi, i ∈ [1, n] is supposed to upload θi

t to the central
server. Once the updated weights of all clients have been
collected, the central server will perform aggregation for
updating following a given strategy. Generally, we will use
an averaging strategy for weights aggregation, which is
simple and effective. In this way, the central server gives
globally updated weights θ̄t = 1/n

∑n
i=1 θ

i
t

At the beginning of the (t + 1)-th iteration, all clients
should download the latest global weights θ̄t from the
central server and have their local models synced. Then the
above procedure will be repeated until the global model has
converged or the maximum iteration T is reached.

2.4 DNN Offloading Model

We borrow the basic idea of computation offloading from
[15], [16]. In a client-server offloading mode, a cloud (or
edge) offloading service provider should keep stable com-
munication with a client (can be mobile or not). In the FL
mode, the central server can perform as the offloading ser-
vice provider while each FL client shares the same commu-
nication model as FL setting. Taking the solo client-server
training mode as an example, we will give an offloading
computation model for DNN training.

First, we should partition a DNN model into two parts
θserver and θclient for offloading requirement. For the local
computation, the client with training dataset D should
compute a = f(θclient,d), d ⊂ D in the forward pass-
ing and compute gclient = 1

m

∑m
j=1∇θclient

L(θclient,d) in
the backward passing. For the offloading computation, the
server should take a as its input in the forward passing and
compute L(θserver ,a). In the backward passing, the server
should compute gserver = 1

m

∑m
j=1∇θserver

L(θserver ,a).
Finally, the server and the client can update partitioned
weights separately.

2.5 Threat Model

2.5.1 Computation Offloading for Single DNN Training

The server who undertakes offloaded training task is a
honest-but-curious, which means that the server is curious
about client’s private data but will follow the predefined

protocols strictly. However, the adversarial server can per-
form other computation to infer client’s privacy as long as
it does not interfere with the offloaded computation. We
assume that the server has unlimited computing resource.
The data privacy of the client can be defined as that the
adversary cannot tell whether a specific sample is from the
client’s dataset or not if the adversarial server has no prior
knowledge. The honest-but-curious server has been studied
widely in previous work. However, it is the first time to
study this threat model in an offloading case.

2.5.2 Computation Offloading for Parallel DNN Training

For parallel DNN training, we assume that each client has
established a secure channel with the central server. All
clients can also reach each other in secure communication
channels, which mean that network attacks like eavesdrop-
ping are excluded. Any FL client is possible to drop out
occasionally during the parallel training. Since multiple
clients are considered in parallel training case, the threat
model will be complex than the single DNN training case.
The adversarial server shares the same assumptions with
the single DNN training case.

Generally, threats may come from the server, other
clients or both. We say a client is honest-but-curious if this
client aims to disclose some other client’s private data by
observing the parallel training while following the designed
protocol normally. We say a client is compromised if this
client is controlled by and share views with the adversarial
server. The compromised client is assumed to be no more
than honest-but-curious. It is assumed that the amount
of semi-honest clients and compromised clients should be
no more than half of the total clients. Furthermore, we
take somewhat malicious clients into account. A somewhat
malicious client can use corrupt messages to disturb the
whole training procedure, which has not been considered
in existed work like [1]. Meanwhile, it is noted that data
manipulation attacks like poisoning attack against the FL is
out of our discussion and need to be studied separately. In
summary, the security requirements that need to be ensured
are as follows.

• (R0) If the amount of honest clients is no less than a
predefined threshold, the parallel training is resistant
to clients drop out and somewhat malicious clients.

• (R1) Honest-but-curious server cannot obtain more
information than the client aggregation result and
necessarily auxiliary intermediate results.

• (R2) Honest-but-curious clients cannot obtain more
information than the client aggregation result and
meaningless secret shares received from other clients.

• (R3) Honest-but-curious server and its compromised
clients cannot get more information than the client
aggregation result, necessarily auxiliary intermediate
results and meaningless secret shares received from
other clients.

3 RELATED WORK

Recently, severe attacks against DNNs have been identified
[2], [3], [6], [17]. To address these privacy issues, many
efforts have been made. A differentially private DNN train-
ing solution for parallel model training is first studied in

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

4

[8]. Within the same training scenario, a secure aggregation
scheme for parallel DNN models is proposed in [1]. The
authors use masking technique and threshold secret sharing
method rather than differential privacy to achieve secure
aggregation of model weights. In [18], the authors recon-
struct operators of DNN with cryptographic primitives and
leveled homomorphic encryption is used to protect private
datasets and intermediate results. Secure multi-party com-
putation is a promising solution for general privacy-aware
DNNs. But this general solution may suffer from heavy
computation and complex communication protocols. It is
not suitable for resources-limited devices.

On the other side, server aided DNN training solutions
for mobile users have been studied recently. A privacy-
preserving deep learning framework with aided cloud
server is provided in [19], which describes how to infer
with private data while the training phase is done with
public data and artificial noise. Another similar study is [9].
The authors proposed a privacy-preserving DNN training
solution based on transfer learning. Low-level features are
first extracted locally. Then these features are perturbed and
sent to the server. Solution has good performance on fine-
tuning applications. But it is not proper for training from
scratch. The most significant difference between existed
studies and ours is that we preserve more precise features
for both training and inference. Meanwhile, users in our
solution need less resources consumption when compared
with related work [1], [20]. Furthermore, we give an offload-
ing solution in private manner for parallel model training,
which is not supported by existed work like [9], [19].

Furthermore, the concept of FL is evolving with the
development of many research topics, like blockchain. Weng
et.al propose a federated learning framework, Deepchain
[21], which exploits blockchain-based incentive mechanism
to incentive participants to behave honestly in parame-
ter updating. Dishonest participants will be detected and
punished. This is achieved by verifying the transactions
in Deepchain and denying the access of service if one has
insufficient values. Pokhrel replaces the global central server
in FL with a multi-level blockchain with reputation based in-
centive mechanism [22]. In this way, the transmission delay
of local model result is reduced and the reliability of each
local participant is improved. Lu et.al report in [23] when
combined with blockchain, the model learned by FL is more
reliable and more robust. Moreover, as Qu et.al mentioned
in [24], replacing the central server in FL with blockchain
not only ensures decentralized privacy protection but also
avoids single point failure.

4 PRIVACY-PRESERVING OFFLOADING FOR SIN-

GLE DNN TRAINING

In DNNs, each hidden layer can be seen as a separate unit
taking the output of previous layer as its input. If a client
wants to offload the whole DNN training task to the server,
privacy issue must be addressed locally. It is not recom-
mended to use high-level artificial noise to perturb private
data directly because the utility of data will be damaged
seriously [19], [25]. To tackle this problem, we propose to
partition the original DNN into two parts and offload a
part instead of the whole DNN to the server. Intuitively,

this idea is feasible because layers inside DNNs are loosely
coupled. Once we select a specific position to separate the
whole network like the case shown in Figure 2, the client
can hide raw training data and all intermediate results from
the untrusted server. All information that the server needs
to know for the offloaded computation is the output of
the client’s part. In this manner, the client can preserve his
data privacy with the help of privacy preserving techniques
locally.

An important part of this idea is to find out the best
position to partition the network. A good partitioning po-
sition should achieve high training accuracy and client’s
data privacy while avoiding large resource consumption at
the same time. A main result of our study shows that for
a specific DNN, if all output activations of the i-th layer
are (ǫ, δ)-DP then weights updating procedure will be ǫi-
DP for each iteration, where ǫi is total privacy budget for
the i-th layer. Then we have ǫi > ǫj , if i < j for any two
convolutional layers. This means that the latter (a latter layer
refers to the layer closer to the model output layer) layer we
interfere with using a fixed noise, the more privacy is kept
but the less model quality we obtain.

For simplicity, we will introduce our offloading solution
with a simple partitioning strategy where the client holds
the first convolutional layer (with ReLU attached) and feeds
the output to the server, who will succeeds the client to fin-
ish the following computation in a predefined DNN. Then
we will discuss the optimal partitioning position specifically.
An offloading example of VGG-16 network is illustrated
in Figure 2. The client sends its output activations of the
first convolutional layer instead of raw training data to the
server. Artificial noises will be added to the output activa-
tions for preventing the adversarial server from disclosing
client’s privacy by reversing the uploaded activations.

Input Images

Conv: Convolutional
 Layers

Max
Pooling

Softmax
Prob/LossFC: Fully Connected

 Layers

Client:

... ...

Preprocess

Conv1_1

ReLU

Normalization

DP-A
Algorithm

Server:

Conv1_2

ReLU

Conv2_1

ReLU

Conv2_2

ReLU
Max

Pooling

Conv3_1

ReLU

Conv3_2

ReLU

Conv3_3

ReLU
Max

Pooling

Conv4_1

ReLU

Conv4_2

ReLU

Conv4_3

ReLU
Max

Pooling

Conv5_1

ReLU

Conv5_2

ReLU

Conv5_3

ReLU
Max

Pooling

FC1

ReLU

FC2

ReLU

FC3

Fig. 2: A VGG-16 network is separated for offloading.

4.1 Differentially Private Activations

As shown in Figure 2, when we partition VGG-16 network
into two parts, except for the first convolutional layer, all
other layers are offloaded to the server unaltered. When
the client communicates with the server, the server part
can be seen as a black-box function in client’s view and
vice versa. In the first convolutional layer, we assume that
there are m filters with size l × l × r, where r indicates
the number of color channels. When a data sample d is
fed into activating function f i, i ∈ [1,m], an activation is

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

5

generated corresponding to a spatial position, denoted by
(x, y), x ∈ [1, w], y ∈ [1, h], on the surface of sample d. Then
function f i (f will be used equivalently if no ambiguity is
caused) can be defined as

f i(d(x, y)) = ai(x,y)/(γ+α
∑min(m−1,i+u

2
)

j=max(0,i−u
2
)
(aj(x,y))

2)β , (4)

where u, α, β, γ are constants for normalization, ai(x,y) is the

activation generated by i-th filter at position (x, y).
To protect client’s data privacy, we need to ensure output

activations of function f for every single data sample is
privacy-preserved. Function f can be seen as a specific
query on client’s datasets D. To construct a (ǫ, δ)-DP ap-
plication for f with Gaussian mechanism, sensitivity of f
on adjacent datasets D,D′ should be clarified. Based on
the definition of function sensitivity and ReLU’s output
activation ai(x,y) ≥ 0, we can define f ’s sensitivity Sf as

Sf = max
D,D′∈D

∣

∣ai
(x,y)(D)/(γ + α

∑min(m−1,i+u
2
)

j=max(0,i− u
2
)
(aj

(x,y)(D))2)β

− ai
(x,y)(D

′)/(γ + α
∑min(m−1,i+ u

2
)

j=max(0,i− u
2
)
(aj

(x,y)(D
′))2)β

∣

∣

≤ max
D∈D

ai
(x,y)(D)/(γ + α

∑min(m−1,i+ u
2
)

j=max(0,i− u
2
)
(aj

(x,y)(D))2)β.

Given sensitivity Sf , when f is applied at a spatial
position (x, y) on some data sample, we can use ci(x,y) +

N (0, S2
fσ

2) to replace ai(x,y) as output of f . In this way, we

can construct a (ǫ, δ)-DP mechanism for activations (DP-A
algorithm for short). Since 0 ≤ ai(x,y) < 1, ∀d ∈ D after

pre-processing, we can have a loose bound 0 ≤ Sf < 1/
√
2

when we select parameter u = 5, α = 1, β = 0.5, γ = 2.

4.2 Privacy-Preserving Weights Updating

After DP activations are transmitted to the server, client’s
forward passing is finished. To continue the training task,
the server should run subsequent training process from the
second convolutional layer with activations received from
the client as the input. The output of each convolutional
layer on the server side can be seen as the composition of
DP activations. Then the total loss of network prediction
can also be seen as a composited mechanism of multiple
DP mechanisms. But it is challenging to calculate a precise
privacy loss of this composited mechanism rather than a
simple composition.

When multiple DP mechanisms are combined, the pri-
vacy loss normally increases because of potentially repeated
queries on the same data. If we directly follow the adaptive
composition theory, the prediction mechanism should be
(ǫ′, pqδ+δ′)-DP, where p, q are dimensions of activations for

each filter, ǫ′ = ǫ
√

2pqln(1
δ′)+pqǫ(eǫ− 1), δ′ > 0. However,

we find that in the offloaded DNN training, we can actually
achieve a tighter bound than the simple composition theory.

Generally, a loss function L is used to score the DNN
model prediction. As to the gradient computation in back-
ward passing, a mini-batch SGD method will be used. If
we want to update weights θ in t-th iteration, we can use
θt = θt−1 − η ∗ gt, where gt is an averaged estimation
across the mini-batch to the gradient ∂L

∂θ , η is a predefined
learning rate. And this estimation gt can be calculated by

gt = 1
m

∑

i∈[1,m]
∂L(di)

∂θ , where {d1, d2, . . . , dm} is a mini-
batch randomly generated from dataset D. L regarding di is
L(di) = − log(eoi∑

N
j=1

eoj
), where oi is the prediction score of

image sample for one label indexed by i among all N labels.
Assuming that we are looking at the first iteration of

the training task, all weights in convolutional layers are
initialized by sampling from normal distributionN (0, 0.01).
We define a prediction mechanism Mp : Dm → R. When
Mp applies to two adjacent datasets D,D′ ∈ D, we can
calculate the probabilistic differential loss and then prove
that Mp satisfies differential privacy1.

Corollary 1. If output activations of the first convolutional layer
are all (ǫ, δ)-DP, Loss function L satisfies ǫ1-DP, where ǫ1 =
p× q × ǫ− c and c is a small constant.

Corollary 2. If output activations of the first convolutional layer
are all (ǫ, δ)-DP, weights updating mechanism has (O(pbǫ0

√
T),

δ0)-DP for T iterations, where ǫ0 = c′ + c, ec
′ ∈ (0, 1), pb is the

sampling ratio of each batch.

4.3 Selection of the Partitioning Position

We have some helpful observations about privacy property
when we partition the first convolutional layer from the
whole network. We now investigate how to achieve the
optimal selection of the partitioning position while taking
privacy loss, computing resource and training accuracy into
consideration. Assume that we will partition the network
part before the (i + 1)-th convolutional layer of VGG-16.
This means that layers with indicator less or equal to i will
be deployed on the client side, while the rest part will be
deployed on the server side. The client should add artificial
noise corresponding to the function sensitivity of the i-th
convolutional layer to the output of the client part.

Since the output activations of a latter convolutional
layer contains more complex compositions of the earlier
layers, the output activations of a latter convolutional layer
are more sensitive than the earlier ones. Based on the facts
above, we can measure the privacy loss of total loss function
when the DNN is partitioned before the (i+ 1)-th layer.

Corollary 3. For a DNN, if all output activations of the i-th
layer are (ǫ, δ)-DP then the weights updating mechanism will be
ǫi-DP for each iteration such that ǫi < ǫj , if i > j for any two
convolutional layers in this DNN.

This corollary directly reveals the correlation between
privacy loss and partitioning position. However, training
accuracy of a DNN model is difficult to be modeled because
it involves too many undetermined factors during training.
But we can still give an empirical formula to predict training
accuracy based on experimental results (please refer to the
results given in Evaluation). With unlimited computing re-
source, training accuracy can be modeled as 1−αa/(e

ǫ+βa),
where αa and βa are empirical parameters. Taking our
evaluation results as the example, αa and βa are fitted to
be 2 and −1.

How much computing resource to be occupied mainly
depends on the amount of model weights. As for VGG-16,

1. The proofs of corollaries given in the rest are omitted due to page
limit, which can be found in our previous work [4], [5].

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

6

weight quantity for each layer can be found in Figure 1.
Basically, a latter convolutional layer will get more weights
than a earlier one. It can be seen as a linearly increasing
tendency approximately. The computing resource needed
for client can be depicted by the quantity of model weights,

which will be
∑i

j=1 ojQ(j), where Q(j) outputs a normal-
ized quantity of weights of the j-th layer, oj is 1 if the j-th
layer is trainable and 0 if not. Given all these constraints, we
can now have our object function to minimize the cost for a
client offload a single DNN model training as

min
ǫi

w1ǫi + w2

i
∑

j=1

ojQ(j)− w3(1−
αa

eǫi + βa
),

s. t. w1, w2, w3 > 0, i ∈ [1, 15],

where w1, w2, w3 are parameters for constraints. Generally,
we can assign them equally since we treat these constraints
equally. The convexity of the cost function can be easily eval-
uated by commercial optimization tools. It can be proved
that the cost function will get its minimum value when
i = 1 in this case. This means that partitioning the first
convolutional layer from VGG-16 is the best choice for the
client.

5 IMPROVED PRIVATE ACTIVATION ALGORITHMS

During the developing of DP concept, a series of improved
analysis methods has emerged, trying to extend the adapt-
ability of DP or to lower the bound of privacy loss. Within
amount of these studies, concentrated differential privacy
(CDP) and Rényi differential privacy (RDP) are two out-
standing alternatives. In particular, we will discuss zero-
concentrated differential privacy (zCDP for short, a refor-
mulation of CDP) given by Bun and Steinke and RDP given
by Mironov here.

5.1 Zero-Concentrated Differential Privacy

The definition of zCDP given in [26] provides a relaxed re-
formulation of original CDP. We briefly review the definition
of zCDP and some necessary propositions here.

Definition 2 ((ξ, ρ)-zCDP). A randomized mechanism M :
D → R is (ξ, ρ)-zero-concentrated differentially private ((ξ, ρ)-
zCDP for short), if for any adjacent datasets D,D′ ∈ D and
all α ∈ (1,∞), it holds that Dα(f(D)||f(D′)) ≤ ξ, where
Dα is the Rényi divergence of order α between two probability
distributions.

Especially, it is defined that ρ-zCDP is (0, ρ)-zCDP.
Along with the definition, a concrete construction of zCDP
Gaussian mechanism is also given in [26]. If f : D → R
is a query on D with sensitivity ∆, then the mechanism
M : D → R that yields a sample from N (f(D), σ2) will
satisfy (∆2/2σ2)-zCDP. Given zCDP Gaussian mechanism,
we can now improve original DP-A with zCDP. Recall
that activation function f and its corresponding sensitivity
Sf . Perturbed activation di(x,y) should be replaced with

N (ci(x,y), σ
2), where ci(x,y) is the normalized output of ac-

tivation function f . According to the propositions given in
[26], if M provides ρ-zCDP, then M is (ρ+2

√

ρ log (1/δ), δ)-
DP, for any δ > 0. Hence, DP-A with zCDP (zCDP-A for

short) should have (S2
f/2σ

2 + 2
√

S2
f/2σ

2 log (1/δ), δ)-DP.

5.2 Rényi Differential Privacy

RDP is another sharp privacy analysis method of original
DP, which is built directly upon the definition of Rényi
divergence. Rényi divergence provides a divergence mea-
surement between two probability distributions over any
possible order. We review the RDP definition given in [27].

Definition 3 ((α, ǫ)-RDP). A randomized mechanism M : D →
R is said to have ǫ-Rényi differential privacy of order α ((α, ǫ)-
RDP for short), if for any adjacent datasets D,D′ ∈ D it holds
that Dα(f(D)||f(D′)) ≤ ǫ, where Dα is the Rényi divergence
of order α between two probability distributions.

With the help of Rényi divergence, RDP is capable
of relaxing the privacy loss bounded by the original DP.
According to the definition of RDP, an ǫ-DP mechanism
is equivalent to a (∞, ǫ)-RDP, where (∞, ǫ) implies (α, ǫ)-
RDP for all finite α. To compare with DP-A and zCDP-A,
a DP-A with RDP (RDP-A for short) will be constructed
by using RDP Gaussian mechanism provided in [27]. If
f : D → R is a query on D with sensitivity ∆, then
the mechanism M : D → R that yields f(D) + N (0, σ2)
satisfies (α, α∆2/(2σ2))-RDP. Given activation function f
and its corresponding sensitivity Sf , perturbed activation
di(x,y) obtained by using RDP has the same formula with

DP-A, i.e., ci(x,y) + N (0, σ2), where ci(x,y) is the normalized
output of activation function f . The activations perturbed

by RDP-A satisfies (αS2
f/(2σ

2) + log(1/δ)
α−1 , δ)-DP, for any

δ ∈ (0, 1).

5.3 Comparative Analysis of DP Activation Algorithms

Theoretically, improved privacy-preserving mechanisms
with CDP and RDP should have lower privacy loss when
compared with original DP. However, it is not clear whether
zCDP-A and RDP-A would provide more data utility than
DP-A when they share a fixed privacy budget. To be
comparable, we construct DP-A, zCDP-A and RDP-A all
with Gaussian mechanism using different DP concepts re-
spectively. For each activation result, DP-A provides (ǫ, δ)-
DP when noise samples are drawn from N (0, σ2), where

σ >
√

2ln(1.25/δ)
Sf

ǫ according to the definition of DP-
A. Assuming that with the same σ, zCDP-A provides

(S2
f/2σ

2 + 2
√

S2
f/2σ

2 log (1/δ), δ)-DP while RDP-A pro-

vides (αS2
f/(2σ

2) + log(1/δ)
α−1 , δ) for each activation. In par-

ticular, when α = 2, Sf = 1/
√
2, δ = 0.0001, DP-A yields

(3.1/σ, 10−4)-DP, zCDP-A yields (1/(4σ2) + 2/σ, 10−4)-DP
and RDP-A yields (1/(2σ2) + 4, 10−4)-DP.

A detailed comparison of privacy provided by three
activation algorithms are given in Figure 3. Please note
that the curves shown here are based on theoretic results,
experimental results on real-life data may vary. It can be
concluded from the comparison that zCDP-A algorithm pro-
vides the lowest privacy loss in the offloaded DNN training
application when we select σ > 0.24 for Gaussian noise
sampling. Meanwhile, DP-A algorithm gives the lowest
privacy loss when we use σ < 0.232. But data privacy
cannot be protected when σ is less than 0.23 because the
additional noise is negligible. Hence, we recommend to use

2. The actual critical point is a fraction between 0.23 and 0.24.

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

7

zCDP-A to replace DP-A for the improvement of privacy
guarantee.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

ε

σ

DP-A
zCDP-A
RDP-A

Fig. 3: Privacy provided by different activation algorithms.

6 PRIVACY-PRESERVING OFFLOADING FOR PAR-

ALLEL DNNS TRAINING

In the previous work, we give a privacy-preserving compu-
tation offloading solution for a single DNN training task.
To meet the rising demand of collaborative learning appli-
cations, such as FL, we will provide a privacy-preserving
computation offloading solution for parallel DNN models
training. Furthermore, we find it possible to reduce the
total computing resource consumption of parallel training
through privately offloading and model aggregation.

6.1 Offload Parallel DNNs Training with zCDP-A

FL is a widely studied instance of parallel training concepts.
But many open problems should be addressed before its
further developing [28]. Privacy and resource consumption
are two major concerns. By offloading the training task of
each client privately to the central server, we provide an
alternative solution of FL, which addresses privacy issue
and resource issue at the same time. As shown in Figure 4, a
privacy-preserving offloaded FL task can be constructed on
the basis of our private activation algorithm. Each client can
achieve local privacy by using zCDP-A before offloading.
The central server should maintain multiple partitioned
DNN instances for different clients. Generally, we assume
that DNN instances of all clients are partitioned in the same
position.

Max
PoolingPooling

Softmax
Prob/Loss

Conv1_2

Conv2_2

ReLU
Max

PoolingPooling

Conv3_2

ReLU

Conv3_3

ReLU
Max

PoolingPooling

Conv4_2

ReLU

Conv4_3

ReLU
Max

PoolingPooling

Conv5_2

ReLU

Conv5_3

ReLU
Max

PoolingPooling

FC2

ReLU

FC3

ReLU

Conv2_1

ReLU

Conv2_2

ReLU

Conv3_1

ReLU

Conv3_2

ReLU

Conv4_1

ReLU

Conv4_2

ReLU

Conv5_1

ReLU

Conv5_2

ReLU

FC1

ReLU

FC2

ReLU

Conv1_2

Conv2_2

ReLU

Conv3_2

ReLU

Conv4_2

ReLU

Conv5_2

ReLU

FC2

ReLU

ReLUReLU
MaxMax

PoolingPoolingReLUReLUPoolingPoolingPooling

Softmax
Prob/Loss

Conv2_1

Conv1_2

Conv2_2

ReLU

ReLU ReLUReLU ReLU
MaxMaxMax

PoolingPoolingReLUReLUPoolingPoolingPoolingPoolingPoolingPoolingPooling

Conv3_1

Conv3_2

ReLU

Conv3_33_33_3

ReLUReLUReLU

ReLU ReLUReLU ReLU
MaxMaxMax

PoolingPoolingReLUReLUPoolingPoolingPoolingPoolingPoolingPoolingPooling

Conv4_1

Conv4_2

ReLU

Conv4_34_3

ReLUReLUReLU

ReLU ReLUReLU ReLU
MaxMax

PoolingPoolingReLUReLUPoolingPoolingPoolingPoolingPoolingPoolingPooling

Conv5_1

Conv5_2

ReLU

Conv5_35_3

ReLUReLUReLU

ReLU ReLUReLU ReLU
MaxMaxMax

PoolingPoolingReLUReLUPoolingPoolingPoolingPoolingPoolingPoolingPooling

FC1

FC2

ReLU

FC3FC3

Conv4_1Conv4_1Conv4_1

ReLU

ReLU

ReLU

Conv2_1Conv2_1Conv2_1

ReLU

ReLU

ReLU

Conv2_1

ReLU

Conv2_2

ReLU

Conv3_1

ReLU

Conv3_2

ReLU

Conv4_1

ReLU

Conv4_2

ReLU

Conv5_1

ReLU

Conv5_2

ReLU

ReLU

FC2

ReLU

Conv2_1

Conv3_1

Conv4_1

Conv5_1

FC1

Conv2_2

ReLU

Conv3_2

ReLU

Conv4_2

ReLU

Conv5_2

ReLU

FC2

ReLU

ReLUReLU

Conv2_1 Conv2_2
MaxMaxMaxMax

PoolingPoolingPooling
ReLUReLU

PoolingPoolingPoolingPooling
ReLU

Pooling

Softmax
Prob/LossProb/LossProb/Loss

Conv1_2

Conv2_2

ReLU

ReLU ReLUReLU ReLU

MaxMax
PoolingPoolingReLUReLUPoolingPoolingPoolingPoolingPoolingReLUPoolingPooling

Conv3_2

ReLU

Conv3_33_33_3

ReLUReLUReLU

ReLU ReLUReLU ReLU

MaxMax
PoolingPoolingReLUReLUPoolingPoolingPoolingPoolingPoolingReLUPoolingPooling

Conv4_2

ReLU

Conv4_34_34_3

ReLUReLUReLU

ReLU ReLUReLU ReLU

MaxMax
PoolingPoolingReLUReLUPoolingPoolingPoolingPoolingPoolingReLUPoolingPoolingPooling

Conv5_2

ReLU

Conv5_35_35_3

ReLUReLUReLU

ReLU ReLUReLU ReLU

MaxMax
PoolingPoolingReLUReLUPoolingPoolingPoolingPoolingPoolingReLUPoolingPoolingPooling

FC2

ReLU

FC3FC3

Conv4_1Conv4_1

ReLU

Conv5_1Conv5_1

ReLU

FC1FC1

ReLU

Conv2_1Conv2_1

ReLU

Conv3_1Conv3_1

ReLU

Input Images

... ...

Preprocess

Conv1_1

ReLU

Normalization

DP-A
Algorithm

Central
Server:

ReLU

Conv2_1

ReLU

Conv2_2

ReLU

Conv3_1

ReLU

Conv3_2

ReLU

Conv4_1

ReLU

Conv4_2

ReLU

Conv5_1

ReLU

Conv5_2

ReLU

FC1

ReLU

FC2

ReLU

Conv2_2

ReLU

Conv3_2

ReLU

Conv4_2

ReLU

Conv5_2

ReLU

FC2

ReLU

ReLU

Conv2_1 Conv2_2

ReLU

Conv2_1 Conv2_2
MaxMaxMaxMax

PoolingPoolingPooling
ReLU

PoolingPoolingPooling
ReLU

Pooling

Softmax
Prob/LossProb/LossProb/Loss

Conv1_2

ReLU

Conv2_1

ReLU

Conv2_2

ReLU

ReLU ReLUReLU ReLU

Conv3_1 Conv3_2
MaxMax

PoolingPoolingReLUReLUPoolingReLUReLUPoolingPoolingPoolingPoolingReLUPoolingReLUReLUPoolingPooling

Conv3_1

ReLU

Conv3_2

ReLU

Conv3_33_33_33_3

Conv4_1ReLUReLUReLU

ReLU ReLUReLU ReLU

Conv4_1 Conv4_2
MaxMax

PoolingPoolingReLUReLUPoolingReLUReLUPoolingPoolingPoolingPoolingReLUPoolingReLUReLUPoolingPooling

Conv4_1

ReLU

Conv4_2

ReLU

Conv4_34_34_34_3

Conv5_1ReLUReLUReLU

ReLU ReLUReLU ReLU

Conv5_1 Conv5_2
MaxMax

PoolingPoolingReLUReLUPoolingReLUReLUPoolingPoolingPoolingPoolingReLUPoolingReLUReLUPoolingPooling

Conv5_1

ReLU

Conv5_2

ReLU

Conv5_35_35_35_3

ReLUReLUReLU

ReLU ReLUReLU ReLU

MaxMax
PoolingPoolingReLUReLUPoolingReLUReLUPoolingPoolingPoolingPoolingReLUPoolingReLUReLUPoolingPooling

FC1

ReLU

FC2

ReLU

FC3FC3

Conv4_1Conv4_1

ReLU

Conv5_1Conv5_1

ReLU

FC1FC1

ReLU

Conv2_1Conv2_1

ReLU

Conv3_1Conv3_1

ReLU

Input Images

... ...

Preprocess

Conv1_1

ReLU

Normalization

DP-A
Algorithm

Input Images

... ...

Preprocess

Conv1_1

ReLU

Normalization

DP-A
Algorithm

Input Images

... ...

Preprocess

Conv1_1

ReLU

Normalization

DP-A
Algorithm

P
1

P
2

P
3

P
4

Fig. 4: Clients offload parallel training tasks.

Since all model instances have the same partitioning
position, it is possible to improve the efficiency of par-
allel model training by aggregating the models deployed

on the server side. The central server shown in Figure 4
maintains multiple isolated models for all FL clients. If the
clients are within the same FL task, their model weights
should be synchronized to be identical. Hence, the only
difference between parallel models is the input. Benefiting
from parallel computing paradigm of DNN, different input
activations can be handled as an expanded batch input after
the aggregation of models. Taking the case of Figure 4 as an
example, if the outputs of DP-A algorithms of four clients
are c1, c2, c3 and c4, then the batch input of the aggregated
model should be {c1, c2, c3, c4}. The gradients of the aggre-
gated model can be calculated by averaging gradients of all
samples inside the batch as g = 1

m

∑4
j=1∇θL(θ, cj).

6.2 Secure Aggregation of Non-Offloaded Parts

It is secure to aggregate the parallel models on the server
side because the aggregation is equivalent to treating input
activations collected from all clients as a newly formed
batch. But the tricky part is the parallel models on clients.
We have evaluated the offloading solution for parallel DNN
training without the aggregation of DNN model deployed
on client side (client aggregation for short). Four clients join
the FL task aiming at training a CIFAR-10 classification
model with noise added to the clients’ output which is
sampled from N (0, 0.1). Other settings are the same as in-
troduced in Evaluation. From the evaluation results shown
in Table 1, we can conclude that if the non-offloaded parts
are not aggregated during the parallel training, global model
quality will be frustrated significantly, when compared with
the original FL baseline.

TABLE 1: Parallel training without client aggregation.

Non-Offloaded Part Conv1 1 Conv1 1–2 2 Conv1 1–5 3
Training Accuracy 0.99 0.99 0.99

Test Accuracy 0.66 0.64 0.61

Non-offloaded parts contain knowledge extracted from
the raw training data. Publishing model weights of non-
offloaded parts directly will put at risk the clients’ data pri-
vacy. Hence, a secure client aggregation solution is needed.
Recently, some practical solutions for secure aggregation of
FL have been proposed, like [1], [29]. However, secure client
aggregation solution for offloaded parallel training case is
still missing. Inspired by previous studies, we propose a
hybrid solution for secure client aggregation by combining
the DP mechanism with cryptographic tools.

Different from [1], we combine a verifiable secret sharing
(VSS) scheme [30] rather than the ordinary Shamir secret
sharing with pairwise masking method to provide the men-
tioned security requirements. Now we need to define some
cryptographic primitives first.

• RSA.enc, RSA.dec: RSA encryption primitives, en-
crypting transmitter’s message with receiver’s public
key while decrypting transmitter’s cipher with re-
ceiver’s secret key respectively.

• KA.agree: Key agreement primitive giving a shared
key as its output. In particular, the Diffie-Hellman
key agreement will be used.

• C.commit, C.verify: Commitment primitives, publish-
ing client’s commitment to a secret while verifying a
published commitment respectively.

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

8

TABLE 2: Comparison between our secure client aggregation solution and related work [1].

Computation Communication Storage Communication
Rounds

Resistance to
Corrupt Sharesclient server client server client server

[1] O(n2 +mn) O(mn2) O(n+m) O(n2 +mn) O(n+m) O(n2 +m) 5 ✗

Ours O(n2 + (γm + 1)n) O(γmn2) O(n+ γm) O((γm + k)n) O(n+ γm) O(n2 +m) 3 ✓

• SS.share, SS.reconstruct: A (k, n)-threshold secret
sharing scheme primitives, SS.share generates n
shares of a secret while SS.reconstruct can reconstruct
the secret from at least k shares.

• PRG.gen: Pseudo-random number generator.

To cover client’s model weights, a straightforward
method is using randomly generated masks. To recover the
masked weights during client aggregation, a pairwise mask
technique should be used. To save communication cost, the
random seeds for generating pairwise masks are the secrets
to be shared among clients. In case of clients’ dropping out
or failure, the central server can ask other active clients to
recover necessary seeds and generated missing masks for
the aggregation. To deal with the attack of a active server
considered in [1] and the corrupt shares, we construct the
solution on the basis of the VSS scheme given in [30]. We
now give main steps of secure client aggregation as follows.

(S0) Setup all cryptographic primitives and secure com-
munication channels for the server and clients. Model
weights on Pi are denoted by θPi

. For each client, let p
and q denote large primes such that q divides p − 1 and
n = pq. Construct key pair pki and ski with p, q, n. Let g
and h denote two elements of Gq . A commitment to some
r ∈ Zq can be constructed by C.commit(r, t) = grht, where
t ∈ Zq is chosen randomly. To share a secret r with (k, n)-
threshold secrete sharing, let Fi ∈ Zq denote the polynomial
coefficients of degree at k − 1 satisfying F (0) = r. For
masking, we use ordinary addition operator (+) to denote
bitwise XOR operation (⊕).

(S1) Pi chooses a random seed ri ∈ Zq, publishes
a commitment Ci to ri with a randomly chosen ti ∈
Zq: Ci ←C.commit(ri, ti), chooses Fio ∈ Zq of de-
gree at k − 1 and generates n shares of ri: {rij |j ∈
[1, n]} ←SS.share(ri) and sends eij ←RSA.enc(rij , pkj) to
Pj , generates a seed for generating pairwise masks for client
Pj by sij ←KA.agree(gri, pkj), generates pairwise masks
mij ←PRG.gen(rij), i, j ∈ [1, n], i 6= j. Pi chooses Gio ∈ Zq

randomly and commits to Fio using Gio and broadcasts
Cio ←C.commit(Fio,Gio), generates n shares of ti using Gio:
{tij |j ∈ [1, n]} ←SS.share(ti) and sends encrypted share
RSA.enc(tij , pkj) to Pj , 1 ≤ o < k.

(S2) After receiving encrypted messages from other
client Pj , j 6= i, Pi decrypts eji to get rji ←RSA.dec(eji,
ski), generates seed sji ←KA.agree(gri, pkj) and pairwise
masks mij ←PRG.gen(sji). Then Pi decrypts the cipher,
gets tji, verifies the correctness of rji by C.verify(rji,
tji,

∏

1≤o<kC.commit(Cio

jo)). If the commitment verification
passes then continues, otherwise aborts. Then Pi sends
masked weight θ′

Pj
← θPj

+
∑

i6=j mij to the server.
(S3) The server checks the received weights θ′

Pi
and

yields the dropping out clients set O. For client Po in O,
the server recovers the rand ro ←SS.reconstruct({roj |j ∈
[1, n], j 6= o} and the seed soj ←KA.agree(gri, pkj).
Then the server performs client aggregation and broad-
casts the result θclient ← 1/(n − |O|)∑Pi 6∈O θ′

Pi
+

∑

Po∈O

∑

j 6=OPRG.gen(soj).

7 ANALYSIS AND COMPARISON

7.1 Security and Communication

According to [30], the adversary cannot open such a com-
mitment unless he can find logg(h), which is nearly im-
possible. But the verification of this commitment is quite
easy. By putting RSA encryption, commitment scheme and
secret sharing together, we have constructed a VSS in the
previous subsection. It is oblivious that the constructed VSS
satisfies the requirements given in [30]. Hence, the security
of our solution can be proved by following the results of [30]
directly.

FL clients may drop out occasionally. Generally, we as-
sume that the clients may drop out before sending interme-
diate results to the server, after sending intermediate results
to the server but before sending shares to other clients, or
after sending shares to other clients. In the first case, the par-
allel training procedure will not be hurt since these clients
cannot affect the training at all. In the second case, the server
can simply drop the duplicated model weights on the server
side of these disconnected clients to ensure the consistency
of model aggregation for both sides. For the last case, the
server can recover model weights of these disconnected
clients by the proposed secure aggregation solution. Since
the non-offloaded weights of each client are shared among
all the other clients secretly, the model weights of these
disconnected clients can be secretly recovered via a (k, n)-
threshold VSS scheme as long as the amount of remaining
clients is no less than k.

Computation complexity. The computation of each client
can be broken down to four parts. Encryption, decryption
and key agreement between each pair of clients. Commit-
ments of the random seed and the polynomial coefficients.
Verification for the shares of the pairwise seed. Mask gen-
eration for client’s model weights. If we denote the ratio of
client model weights to the total weights amount by γ =
|θPi

|

|θ| , then the total computation complexity of each client is

about (4n+2n2 +2k+ γmn), which is O(n2 +(γm+1)n).
The computation of the server mainly happens in (S3). In
the worst case, the server needs to recover all pairwise
seed from secret sharing for the aggregation of each weight.
Hence the total computation of the server is O(γmn2).

Communication complexity. The communication of each
client can also be broken down to four parts. Public key
exchanging in the setup (S0) phase. Sending and receiving
encrypted shares and commitments. Sending masked model
weights to the server. Sending shares to the server in (S3).
Overall, the communication complexity of each client is
O(n + γm). The communication of the server is mainly
receiving shares and masked weights from all clients, which
is O((γm+ k)n) in the worst case.

Storage complexity. The clients need to store shared se-
crets and keys of other clients. The commitments sent and
received are not stored because they are used for temporal
verification. Adding up these and model weights, the stor-
age complexity of each client is O(n+ γm). Meanwhile, the

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

9

server needs to store the model weights and all shares of all
clients in the worst case, which is O(n2 +m).

Compared with related secure weights aggregation work
[1], our solution can defend against malicious clients who
try to sabotage the aggregation by using corrupt shares,
which has not been considered in [1]. Furthermore, our
solution has less communication rounds since we use a
non-interactive VSS scheme. We summarize the complete
comparison between our solution and [1] in Table 2.

7.2 Comparison with the Original FL

The original FL concept is proposed by Google in [31], [32].
The privacy-preserving parallel learning solution proposed
in our work has made several modifications to the original
FL. Generally speaking, there are three main differences. We
cut off the original training flow at a partitioning point of
each participant’s local model and offload the remaining
workload to a central server. Then the artificial noise is
added to the output of each participant to ensure differential
privacy guarantee. And last but not least, an efficient secure
aggregation scheme of non-offloaded parts is introduced
in this extension work. We give a clear comparison in
Algorithm 1 by identifying our modifications to the original
FL algorithm3 explicitly. Please note that we use a sketchy
pseudocode to show main differences. Detailed procedures
of zCDP-A and secure aggregation are omitted. The main
modifications that we make to the original FL are high-
lighted in red color.

Algorithm 1 Comparison with the original FL

Require: Pre-processed training data D, The participants
indexed by Pi, i ∈ [1, n], VSS threshold k, maximal
training iteration T , learning rate η.

Server procedure:
1: initialize θserver

2: for all t ∈ [1, T] do
3: P ′ ← (random set of at least k participants from P)
4: for all Pi ∈ P ′ do
5: di ← Pi procedure
6: θi

server ← θi
server − η∇L(θi

server ,d
i)

7: end for
8: θserver ←

∑

i∈[1,n]
ni

n θi
server

9: end for

Client Pi procedure:
10: initialize θi

client

11: for all batch b ∈ Di do
12: θi

client ← θi
client − η∇L(θi

client, b)
13: end for
14: di ← zCDP-A output regarding θi

client

15: θi
client ← secure aggregation of P ′

16: return di to the server

3. The FL algorithms introduced in [31], [32] have distinct differences
due to different concerns, such as communication efficiency. We rewrite
the original FL by summarizing basic procedures shared by algorithms
given in [31], [32] and following the FederatedAveraging algorithm in
[32] if any ambiguity happens.

8 EVALUATION

We have implemented privacy-preserving offloaded DNN
training solutions for single model and parallel models. The
experimental results are obtained with VGG-16 network.
Three real-life datasets are used for evaluation, Labeled
Face in the Wild dataset (LFW), CIFAR-10 dataset and
SVHN dataset. All convolutional layers in VGG-16 have
stride = 1, pad = 1. Max pooling size is 2 × 2. Mini-batch
size is 64. Momentum coefficient is 0.9. Learning rate is
initialized with 0.01 and exponentially decayed with factor
0.1. Besides, for the local normalization unit that we use in
the partitioning layer, u = 5, α = 1, β = 0.5, γ = 2. Without
any further statement, we assume that the first layer is
partitioned from VGG-16 while the rest part is offloaded.

8.1 Offloaded Single Model Training

To evaluate the feasibility of offloading DNN training with
DP-A algorithm, we record the loss and accuracy of the
model and give the results in Figure 5. The baseline is a
local training result of VGG-16 without any privacy pro-
tection. Other three figures are offloaded training results
with different epsilon values. It is obvious that small epsilon
makes training process more unstable. When ǫ = 2–5, DP-A
based offloading solution can achieve both strong privacy
and high accuracy.

To perform finetuning on a pre-trained VGG-16 model,
weights in fully connected layers will be tuned while the
other weights keep frozen. Tuning result in the same setting
with no noise added is seen as the baseline. Results of tuning
with different epsilons are shown in Figure 6. High accuracy
can be achieved in early learning stage. But adding noises
to activations can affect learning speed. When ǫ = 2–5, we
can still get high accuracy and strong privacy after slightly
more epochs. When ǫ = 3, it takes no more than 5 epochs
for offloaded tuning to achieve similar accuracy with the
baseline.

To investigate how partitioning position would affect
offloaded training, we perform offloaded training tasks with
different partitioning positions. The same level noises are
added to client’s output, which is equivalent to ǫ = 5 in
the first convolutional layer. We choose four partitioning
positions in the network uniformly. As shown in Figure 7,
the latter the partitioning position is, the harder the train-
ing process is. When the network is partitioned before
“conv5_1” layer, activations are so sensitive that the train-
ing cannot proceed normally.

8.2 Offloaded Parallel Model Training

LFW dataset is seriously unbalanced which is not suitable
for parallel model training like FL. Hence, we use another
two real-life datasets, i.e., CIFAR-10 and SVHN which are
more suitable for FL, to evaluate the offloaded parallel
model training. We use a central server to coordinate four
clients for parallel learning. The FL protocol is basically the
same with [32]. To show the effect of partitioning position to
offloaded parallel model training, we choose two different
positions to partition the VGG-16. By “conv1 1”, we mean
that only the first layer is partitioned from the rest layers.

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30
 0

 1

 2

 3

 4

 5

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50
 0

 1

 2

 3

 4

 5

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

ǫ = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35
 0

 1

 2

 3

 4

 5

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

ǫ = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35
 0

 1

 2

 3

 4

 5

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

ǫ = 5

Fig. 5: Offloaded single DNN model training with DP-A algorithm on FLW dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

 0

 0.5

 1

 1.5

 2

 2.5

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

 0

 0.5

 1

 1.5

 2

 2.5

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

ǫ = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

 0

 0.5

 1

 1.5

 2

 2.5

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

ǫ = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

 0

 0.5

 1

 1.5

 2

 2.5

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

ǫ = 5

Fig. 6: Offloaded Finetuning for single DNN model with DP-A algorithm on FLW dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

 0

 1

 2

 3

 4

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

“conv1 1”

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

 0

 1

 2

 3

 4

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

“conv2 1”

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25
 1

 2

 3

 4

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

“conv4 1”

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25
 0

 1

 2

 3

 4

a
c
c
u

ra
c
y

lo
s
s

epoch

training
testing

loss

“conv5 1”

Fig. 7: Offloaded training results on FLW dataset with different partitioning positions.

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

client aggregation
without client aggregation
baseline

training, “conv1 1”

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

client aggregation
without client aggregation
baseline

test, “conv1 1”

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

client aggregation
without client aggregation
baseline

training, “conv2 2”

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

client aggregation
without client aggregation
baseline

test, “conv2 2”

Fig. 8: Offloaded parallel model training results on CIFAR-10 dataset.

By “conv2 2”, we mean that the layers from “conv1 1”
to “conv2 2” (included) are partitioned from the rest and
deployed on client side.

Offloaded parallel training results on CIFAR-10 and
SVHN datasets are shown in Figure 8 and Figure 9 respec-
tively. The baseline result is obtained from a ordinary FL
task with the same setting but no computation offloading.
The same level noises are added to each client’s output,
which is equivalent to ǫ = 2 for the first convolutional
layer. First, we can easily conclude that client aggregation
can improve parallel training results significantly for both
datasets. Second, we can find that overfitting happens in all
training tasks. But the overfitting of ‘conv1 1” cases is more
serious than “conv2 2” cases. We believe that the output of
“conv2 2” is more sensitive to the fixed level noise which
eases the overfitting by coincidence. This observation is
consistent with our result of partitioning position and the
study of preventing the overfitting with random noises [33].

To investigate the effect of the privacy budget, we eval-
uate the offloaded parallel training solution (with secure

client aggregation) with different privacy budgets (ǫ) on
both CIFAR-10 and SVHN datasets. The evaluation result is
shown in Figure 10. When ǫ = 5, our offloading solution can
achieve an acceptable result. But when ǫ ≤ 1, the parallel
training results will be frustrated. This is basically consistent
with our previous study of the single DNN model training.

Since secure client aggregation uses several crypto-
graphic tools, the overhead of the solution is important for
evaluation. Hence, we evaluate our secure client aggrega-
tion solution separately and give the averaged result of each
component across 100 run times in Figure 11. The evaluation
is performed in the same experimental environment as the
client. The X-axis indicates the threshold k of the secret
sharing scheme while the Y-axis indicates data size (bits)
and running time (microseconds). The total size of shares
and commitments will increase linearly along with the share
amount. Generating each share of a secret is around 50
microseconds. Generating each commitment will take about
300 microseconds. Verifying the commitment is very effi-
cient and takes about 12 microseconds for each share. The

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

11

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra
cy

client aggregation
without client aggregation
baseline

training, “conv1 1”

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

client aggregation
without client aggregation
baseline

test, “conv1 1”

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

client aggregation
without client aggregation
baseline

training, “conv2 2”

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

client aggregation
without client aggregation
baseline

test, “conv2 2”

Fig. 9: Offloaded parallel model training results on SVHN dataset.

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ε=5
ε=2
ε=1
ε=0.5
no noise

training, CIFAR-10

0 50 100 150 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra
cy

ε=5
ε=2
ε=1
ε=0.5
no noise

test, CIFAR-10

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ε=5
ε=2
ε=1
ε=0.5
no noise

training, SVHN

0 50 100 150 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

ε=5
ε=2
ε=1
ε=0.5
no noise

test, SVHN

Fig. 10: Offloaded parallel model training with different epsilons on CIFAR-10 and SVHN datasets.

2550 2546
2959

118 62

5100 5091

6082

233 231

7650 7637

9560

389 523

1020010187

13417

590

1047

1275012729

16879

828

1805

0

2500

5000

7500

10000

12500

0
500
1000

2000

6000

10000

16000

10 20 30 40 50

Threshold (n=100)

T
h
e
 s

iz
e
 o

f
S

h
a
re

/C
o
m

m
it
 [
b
it
s
] T

h
e
 tim

e
 c

o
s
t o

f o
p
e
ra

tio
n
 [m

 s
]

Commit Size

Share Size

Commit time cost

Recover time cost

Verify time cost

Fig. 11: Evaluation results of secure client aggregation.

time cost of generating and verifying commitments also in-
crease linearly along with the share amount. But recovering
the secret requires that running time increases exponentially
with the secret amount. As reported in related work [1],
the total running time of each client is about 300ms when
the number of clients is 100 while our secure aggregation
solution takes about 45ms in no drop-out setting.

9 CONCLUSION

This paper provides privacy-preserving computation of-
floading solutions for DNN model training tasks in solo
mode and parallel mode respectively. To secure the user’s
data privacy, we design a DP activations algorithm that pro-
vides privacy guarantee in the activation level. In the exten-
sion, we address a client aggregation problem by employing
a non-interactive VSS scheme and masking technique which
provides fewer communication rounds and more security
guarantees. We evaluate two proposed solutions on real-life
datasets. The results show that our proposed solutions have
acceptable model quality while preserving a small privacy
budget and limited resource consumption.

However, the proposed parallel offloading solution has
limitations. When we offload clients’ workload to the central

server, we assume that the server has unlimited computing
resources. This assumption is reasonable when we compare
the resource of a commercial corporation with individuals.
But a company or a service provider also has its own
running budget. How to balance the resource consumption
between the server and clients will be studied in our future
work.

ACKNOWLEDGEMENT

The authors would like to thank the reviewers for the time
and efforts they have kindly made on this paper. This
work was supported in part by National Key R&D Program
of China (2018YFB1004301), BK20190294, NSFC-61902176,
NSFC-61872176, the Fundamental Research Funds for the
Central Universities No. 14380069, US National Science
Foundation grant CNS-1816399. This work was also sup-
ported in part by the Commonwealth Cyber Initiative.

REFERENCES

[1] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggre-
gation for privacy-preserving machine learning,” in Proceedings of
the 2017 ACM SIGSAC CCS, 2017, pp. 1175–1191.

[2] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the
gan: Information leakage from collaborative deep learning,” in
Proceedings of the 2017 ACM SIGSAC CCS, 2017, pp. 603–618.

[3] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 2019, pp.
691–706.

[4] Y. Mao, S. Yi, Q. Li, J. Feng, F. Xu, and S. Zhong, “A privacy-
preserving deep learning approach for face recognition with edge
computing,” in Proc. USENIX Workshop Hot Topics Edge Com-
put.(HotEdge), 2018, pp. 1–6.

[5] ——, “Learning from differentially private neural activations with
edge computing,” in 2018 IEEE/ACM Symposium on Edge Comput-
ing (SEC), 2018, pp. 90–102.

[6] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP), May 2017, pp. 3–18.

[7] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
in Proceedings of the 2016 ACM SIGSAC CCS, 2016, pp. 308–318.

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3040734, IEEE
Transactions on Parallel and Distributed Systems

12

[8] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in Proceedings of the 22Nd ACM SIGSAC CCS, 2015, pp. 1310–1321.

[9] S. A. Osia, A. S. Shamsabadi, S. Sajadmanesh, A. Taheri, K. Kat-
evas, H. R. Rabiee, N. D. Lane, and H. Haddadi, “A hybrid deep
learning architecture for privacy-preserving mobile analytics,”
IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4505–4518, 2020.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012,
pp. 1097–1105.

[11] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in IEEE
CVPR, 2014, pp. 1701–1708.

[12] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recogni-
tion,” in Proceedings of the British Machine Vision Conference, 2015,
pp. 41.1–41.12.

[13] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in IEEE CVPR,
2015, pp. 815–823.

[14] C. Dwork and A. Roth, “The algorithmic foundations of differen-
tial privacy,” Found. Trends Theor. Comput. Sci., vol. 9, pp. 211–407,
2014.

[15] W. Liu, J. Cao, L. Yang, L. Xu, X. Qiu, and J. Li, “Appbooster:
Boosting the performance of interactive mobile applications with
computation offloading and parameter tuning,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 6, pp. 1593–1606,
2017.

[16] M. Hu, Z. Xie, D. Wu, Y. Zhou, X. Chen, and L. Xiao, “Heteroge-
neous edge offloading with incomplete information: A minority
game approach,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 31, no. 9, pp. 2139–2154, 2020.

[17] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,”
in Proceedings of the 22Nd ACM SIGSAC CCS, 2015, pp. 1322–1333.

[18] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying neural networks to en-
crypted data with high throughput and accuracy,” in International
Conference on Machine Learning, 2016, pp. 201–210.

[19] J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not
just privacy: Improving performance of private deep learning in
mobile cloud,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 2407–
2416.

[20] J. Zhang, Y. Zhao, J. Wang, and B. Chen, “Fedmec: Improving
efficiency of differentially private federated learning via mobile
edge computing,” Mobile Networks and Applications, pp. 1–13, 2020.

[21] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo,
“Deepchain: Auditable and privacy-preserving deep learning with
blockchain-based incentive,” IEEE Transactions on Dependable and
Secure Computing, 2019.

[22] S. R. Pokhrel, “Towards efficient and reliable federated learning
using blockchain for autonomous vehicles,” Computer Networks, p.
107431, 2020.

[23] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain
empowered asynchronous federated learning for secure data shar-
ing in internet of vehicles,” IEEE Transactions on Vehicular Technol-
ogy, vol. 69, no. 4, pp. 4298–4311, 2020.

[24] Y. Qu, L. Gao, T. H. Luan, Y. Xiang, S. Yu, B. Li, and G. Zheng,
“Decentralized privacy using blockchain-enabled federated learn-
ing in fog computing,” IEEE Internet of Things Journal, 2020.

[25] N. Mohammed, R. Chen, B. C. Fung, and P. S. Yu, “Differentially
private data release for data mining,” in ACM KDD, 2011, pp.
493–501.

[26] M. Bun and T. Steinke, “Concentrated differential privacy: Simpli-
fications, extensions, and lower bounds,” in Theory of Cryptography
Conference. Springer, 2016, pp. 635–658.

[27] I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th Com-
puter Security Foundations Symposium (CSF), 2017, pp. 263–275.

[28] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[29] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang,
and Y. Zhou, “A hybrid approach to privacy-preserving federated
learning,” in Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security, 2019, pp. 1–11.

[30] T. P. Pedersen, “Non-interactive and information-theoretic secure
verifiable secret sharing,” in Annual international cryptology confer-
ence. Springer, 1991, pp. 129–140.

[31] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Fed-
erated optimization: Distributed machine learning for on-device
intelligence,” arXiv preprint arXiv:1610.02527, 2016.

[32] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in Artificial Intelligence and Statistics, 2017, pp.
1273–1282.

[33] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard, “Robustness
of classifiers: from adversarial to random noise,” in Advances in
Neural Information Processing Systems, 2016, pp. 1632–1640.

Yunlong Mao received the B.S. and Ph.D. de-
grees in computer science from Nanjing Univer-
sity in 2013 and 2018, respectively. He is cur-
rently an assistant researcher with the Depart-
ment of Computer Science and Technology in
Nanjing University. His current research interests
include security, privacy and machine learning.

Wenbo Hong is a graduate student in the De-
partment of Computer Science at Nanjing Uni-
versity. His research interests include data pri-
vacy and deep learning.

Heng Wang is a graduate student in the Depart-
ment of Computer Science at Nanjing University.
His research interests include security, machine
learning and blockchain.

Qun Li received the PhD degree from Dart-
mouth College. His recent research focuses on
wireless, mobile, and embedded systems, in-
cluding pervasive computing, smart phones, en-
ergy efficiency, smart grid, smart health, cog-
nitive radio, wireless LANs, mobile ad-hoc net-
works, sensor networks, and RFID systems. He
is a fellow of the IEEE.

Sheng Zhong received the B.S. and M.S. de-
grees from Nanjing University in 1996 and 1999,
respectively, and the Ph.D. degree from Yale
University in 2004, all in computer science. He
is interested in security, privacy, and economic
incentives.

Authorized licensed use limited to: William & Mary. Downloaded on February 10,2021 at 23:29:35 UTC from IEEE Xplore. Restrictions apply.

