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Abstract—Embedding small devices into everyday objects like toasters and coffee mugs creates a wireless network of objects. These
embedded devices can contain a description of the underlying objects, or other user defined information. In this paper, we present
Snoogle, a search engine for such a network. A user can query Snoogle to find a particular mobile object, or a list of objects that fit the
description. Snoogle uses information retrieval techniques to index information and process user queries, and Bloom filters to reduce
communication overhead. Security and privacy protections are also engineered into Snoogle to protect sensitive information. We have
implemented a prototype of Snoogle using off-the-shelf sensor motes, and conducted extensive experiments to evaluate the system
performance.
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1 INTRODUCTION

WIRELESS sensors have grown beyond motes scattered
off a plane to collect environmental data. Sensors

today can be found on diverse objects such as buildings,
cars [1], and even clothing [2]. As sensors become more
ubiquitous in our environment, their roles can extend
beyond environmental sensing, to become an electronic
representation of different objects. A sensor attached to a
folder, for example, can contain a short summary of the
contents of the folder. Information once scribbled onto post-
it notes and stuck to the folder can also be stored directly
onto the sensor itself. These sensors, which are considered
as the representatives of the physical objects they are
attached to, naturally form a database of the physical world.
New techniques for searching information in such a
database are necessary.

Information retrieval (IR) has been widely used to search
for information1 within databases. People can use search
engines like Google, to easily find remote data objects.
However, since the physical objects are disconnected from
the cyberspace, searching for information in the physical
world is more difficult. For example, a college student can
easily search and view a Shakespeare manuscript on the Web
using several mouse clicks, but may have to spend hours to
find his notebook for an exam. This observation motivates us
to develop an information retrieval system for the physical
world.

A straightforward system design is to maintain a central
database, and let each object return its location and data to

this database. The user will query the database to find a
particular object. However, since the data in an object can
change, frequent updates to the database are needed. This
poses a scalability issue when the number of objects
increases, since database will be unable to support large
numbers of simultaneous object updates. An alternative
design of broadcasting a user query to all the objects instead
of maintaining a database can eliminate the cost of frequent
updates. Upon receiving a query, each object will determine
whether its data match the query before deciding whether
to respond. The user will collect the responses and
determine the most suitable answer. However, the commu-
nication cost of delivering the query to all the objects is high
when the number of objects is large. Furthermore, an object
is unaware of the answers provided by its peers, and hence
cannot accurately determine whether its own answer is best
suited for the query. As a result, the user has to sift through
a large number of responses to determine a suitable answer.

In this paper, we present Snoogle, an information
retrieval system built on low-cost wireless sensor networks.
In a pervasive computing environment, Snoogle serves as
the search engine and helps people to search physical
objects at their vicinity.

1.1 Challenges

While the use of IR in the Internet is well established,
adopting IR within a sensor network poses several unique
challenges. First, a sensor network has to limit communica-
tion to conserve power. Internet search engines can have
spiders that continuously crawl the Internet for data. Large
amounts of data can be collected and stored in a depository
for further processing. Sensor networks do not have this
luxury, and thus we cannot directly implement the data
collection techniques for Internet search engines onto sensor
networks. Novel data storage and collection techniques
are necessary to overcome such limitations. Second, when
we consider sensors being attached to physical objects, these
sensors can be mobile and the stored data can change rapidly.
Most web page locations, on the other hand, are compara-
tively more static even though the content could be very
dynamic. This makes maintaining up-to-date information in
a sensor network more challenging. Third, security and
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privacy are bigger challenges in the sensor network search
than the Internet search. People may choose not to have a web
page, or not to update it frequently. However, since sensors
are attached to physical objects like clothes, a user may have
several sensors they are not aware of. Furthermore, sensors
always have fewer resources compared to web servers,
making implementation of security even more challenging.
In this paper, we focus on reducing the communication cost,
and addressing security and privacy concerns.

1.2 Contributions

We have built Snoogle, an information retrieval system built
on sensor networks for the physical world. Snoogle consists
of three components, object sensors, index points (IP ), and a
Key Index Point (KeyIP ), which is a super node that
manages all IPs. These terms are defined later in the paper.
We summarize our contributions below.

First, to the best of our knowledge, this is the first research
work to propose and build an IR system for the physical
world based on sensor networks. Existing IR systems have
been deployed on large systems such as servers and desktop
machine, and not on tiny, low cost, resource limited devices
used in this paper. Prior work on sensor network data
management investigated data query, or index building for
sensor databases, but not IR.

Second, we examine compression techniques like Bloom
filters and compressed Bloom filters to reduce the data
transmitted within the sensor network. A Bloom filter is
basically a way to compress information into a form that
can still be searchable. It generates smaller amount of
information for the objects to transmit to an IP , but incurs
uncertainty about the original information, and thus might
result in false positives during the search process (although
no false negatives will appear). Our scheme tries to reduce
as much information transmitted as possible, while redu-
cing false positives. A false positive occurs when we cannot
distinguish between two different terms that are mapped
onto the Bloom filter bitmap. This work is interesting on its
own merits since this opens another avenue for minimizing
transmission costs in sensor networks. While bloom filters
have been used in other systems, the combination of bloom
filters into an IR based physical world search engine, which
is built on top of sensor devices, is a new concept.

Third, we develop a distributed top-k query algorithm to
further reduce the communication cost for user distributed
queries. Our theoretical analysis shows the message
complexity is linear to the value of k and the number of
queried IPs, which is close to the optimal solution. Our
simulation results are consistent with the theoretical
analysis and demonstrate the significant message complex-
ity advantage over the naive scheme. Unlike the top-k
algorithm proposed in prior work [3], our algorithm design
addresses the challenges of message complexity problem on
resource constrained sensor devices.

Fourth, we propose a more flexible security and privacy
framework for a user to search a sensor network of objects.
Each object defines its access attributes similar to a file in
UNIX system, allowing for personal, group, and global
permissions. A user must show that his access rights
matches with the object’s access attributes before searching
an object. We use elliptic curve cryptography (ECC), an
efficient public key cryptography (PKC) suitable for
sensors, which has a clean interface with no messy key
distribution and management phase, instead of the more

common symmetric key cryptography used in sensor
network research. Our proposed scheme is flexible enough
to be easily adopted into other sensor applications. We are
the first to integrate the resilient public key scheme into an
access control security scheme for a practical sensor
network application.

Fifth, we have built a sensor network information
retrieval prototype on our mote testbed. Our prototype
has integrated all the components, including IR, compres-
sion technology, distributed top-k query scheme, and PKC-
based access control on off-the-shelf sensor hardware. The
prototype validates the approaches proposed in this paper,
and provides experimental data on the indexing and
searching performance. We also build a simulator to
simulate a larger sensor network to demonstrate the
scalability of Snoogle. Although the prototype built in this
paper is not a mature system, the experience and experi-
mental data collected in this work can serve as a guide for
future full-fledged systems.

The rest of the paper is as follows: The next section
presents the Snoogle system overview. Sections 3 and 4
examine the communication compression and query pro-
cess, respectively. Section 5 explores the mobility and
security support. Section 6 illustrates our prototype im-
plementation, and Section 7 contains the evaluation results.
We discuss our system limitation and related work in
Sections 8 and 9. Finally, Section 10 concludes.

2 SYSTEM DESIGN

2.1 System Components

Snoogle consists of three main components: object sensors,
IPs and KeyIPs. An object sensor is a mote attached to a
physical object, and contains a textual description of the
physical object. The object sensor can be either static or
mobile, depending on whether the attached physical object
is stationary or moving. Snoogle does not require object
sensors to be homogeneous. Object sensors can be as
powerful as an iMote [4] or MICAz mote [5], or as weak as
an active RFID tag. Snoogle only requires all object sensors
to communicate using the same radio frequency.

An IP is a static sensor device that is associated with a
physical location, for example, a specific room in an office
building. IPs are responsible for collecting and maintaining
the data from the object sensors in their vicinity. A typical IP
is battery powered, and equipped with a microcontroller,
radio module, and a large amount of flash memory. A
collection of IPs forms a homogeneous mesh sensor network.

The KeyIP collects data from different IPs in the
network. The KeyIP is assumed to have access to a
constant power source, powerful processing capacity, and
possess considerable storage and processing capacity.

2.2 System Architecture

Snoogle adopts a two-tier hierarchical architecture shown
in Fig. 1. The lower tier involves object sensors and IPs.
Each IP manages a certain area within its transmission
range. Object sensors register themselves and transmit the
object description metadata to the specific IP . IPs are
responsible for building the inverted indexes for local
search. We assume the object description data are either
preloaded or incrementally uploaded by the object owner.
For example, before a book is placed on the shelf for sale,
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the store staff attaches a sensor loaded with the book’s
introduction to the item. This is just like putting a price tag
on the book. Later, the store staff can upload some reader
reviews to the sensor attached so that the potential buyers
can directly search the reviews from the book instead of via
a remote website like amazon.com.

On the upper tier, IPs have dual roles. First, IPs forward
the aggregated object information to the KeyIP so that the
KeyIP can return a list of IPs that are most relevant to a
certain user query. Second, IPs also routes traffic between
IPs, the KeyIP , and objects. The KeyIP , considered as the
sink of the network, holds the global object aggregation
information reported by each IP . While Snoogle does not
restrict the number of KeyIPs, we only consider a single
KeyIP setup in this paper for simplicity.

Users query Snoogle using portable devices such as
smart phones or PDAs. Snoogle provides two different
kinds of queries, a local query and a distributed query. A
local query is performed when a user directs his query to a
specific IP . This type of query occurs when a user wishes to
limit his search to objects located at a specific location. A
user performs a distributed query when he queries the
KeyIP . The distributed query capability allows for scal-
ability since users do not need to flood every IP to find a
particular object.

2.3 Data Processing in Object Sensors

Each object sensor contains two types of data, payload data
and metadata. Payload is the short description about the
particular physical object. Metadata is a representation of
the payload data. For example, consider an object sensor
attached to a folder. The payload data could be a short note
describing the contents of the folder. The metadata is a set
of tuples, fterm1 : freq1 : idg � � � ftermn : freqn : idg, where
term is a single word describing the payload data, and freq
indicates the importance of this term in describing the
payload data. A user storing information into an object
sensor will create both the payload data and metadata. To
minimize the data transmission cost, the data in the object
sensor can also be precompressed using compression
schemes described in the next section.

2.4 Data Processing and Storage at IP s

IPs in Snoogle have two data processing roles. First, IPs
collect metadata from objects within their range and

organize the data into indexed chains. Due to reliability
and limited memory concerns, these chains are stored in
the sensor’s onboard flash memory rather than RAM.
Second, IPs have to periodically send aggregated informa-
tion to the KeyIP so that the KeyIP can maintain its
inverted index of IPs information. IPs perform the
following three data operations:

Insert. This operation is executed when a new object
comes into the IP ’s region and sends its metadata to the IP .
The IP stores the new metadata with the associated term
frequencies and object ID into its inverted table.

Delete. When a physical object leaves the vicinity of a
particular IP , e.g., a user moves a book from one office to
another, the corresponding object is no longer associated
with that IP . The IP then performs a “delete” operation to
remove all the metadata of the leaving object from the
corresponding chains.

Modify. This operation is performed when there is a
change in the object’s data. When this happens, the object
sensor sends a modification request to the IP . Since the
corresponding chains are stored in the flash memory, which
does not support random writes, the “modify” operation is
achieved by the combination of a “delete” and an “insert.”

We let the IPs only store the metadata of the objects,
instead of the entire payload data in flash memory in order
to conserve storage space. We take advantage of the small
granularity write capability of the NOR flash (TelosB
onboard flash memory) and allow IPs to be able to append
the object metadata sequentially in the flash memory.

We also implement a “delete” function that efficiently
invalidates the metadata associated with an object. We
perform this “delete” by zeroing out the necessary bytes in
the flash memory, avoiding the expensive read and write
method used in general flash storage system. That same
memory location is not overwritten until there is a sector
delete during garbage collection.

After the object sends its ID and metadata to the IP , the
information is first stored in a buffer in RAM. Fig. 2 illustrates
the IP storage architecture. Once the buffer is full, a hash
function is applied to every term in the buffer. The hash
results are used as the indices that map to the lookup table
entries. We maintain the lookup table (INDEX in Fig. 2) in
RAM to store the address pointing to the flash page. Each
flash page has the size of 256 bytes. Those flash pages which
are associated to the same lookup entry are organized in a
chained structure, very similar to the structure of the linked
list in data structure. The value of the lookup table entry
always points to the head of the flash page chain. The most
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populated terms that are mapped to the same lookup table
entry are flushed to the flash memory, and the flash address is
returned to the lookup table entry. This flushing operation
continues until there are enough empty buffer slots to hold
the incoming object terms. The lookup table manages the
flash addresses in a chained structure that multiple flash
pages can be assigned to the same table entry.

When an IP receives a query, it applies the hash function
to the query to map each query term to a lookup table entry,
and obtains the flash address. This address stores a location
of the flash page chain head which contains that particular
term. Next, each flash page in the chain is sequentially read
to the RAM, and scanned for the matching elements.
Eventually, a list of matching terms with associated object
IDs is obtained, then a ranked list of object IDs that best
match the query is derived using an IR algorithm elaborated
in the next section.

Finally, each IP will periodically send the updated
metadata terms and objects, which reflect the object
dynamics in the region, to the KeyIP . The KeyIP stores
the data and checks for inconsistency. This inconsistency
occurs when objects moved from one IP to another before
the IPs have a chance to update their information. Since all
objects have their unique IDs, this inconsistency can be
easily detected by the KeyIP . The KeyIP then informs the
involved IPs to verify the object data. For example, both
IP1 and IP2 report having object s1. Each IP will send a
message directed to s1. If s1 is no longer in the range of IP1,
then only IP2 will receive a reply. IP1 will flag s1 as no
longer present and inform KeyIP . The same holds if s1 is no
longer in the range of IP2. If s1 falls in the intersection of
both IPs, s1 will reply to both and KeyIP is not updated.

2.5 Additional Discussion

When an object lies within the vicinity of multiple IPs, the
object has to determine which IP to select to transmit its data.
Ideally, the nearest IP in terms of the closest physical
distance to the object is a good criteria. However, this may
not be practical because the IP deployment may be restricted
at certain locations due to the physical limitations. In this
paper, we use a predetermined mapping table to identify
the IP that the object sensor should select. The lookup table
maps the RSSI pattern to a specific IP . In this scheme, the
sensor will sample the RSSI values from multiple IPs, and
query the nearby IPs for the designated IPs given the RSSI
readings. For example, a first-aid kit placed in the cabinet
should select the room IP mounted on the other side of the
wall rather than a closer IP that is mounted in the next room.
This lookup table can be precomputed ahead of time, and can
be stored in IP flash memory.

The use of RSSI for localization has been widely studied,
and Snoogle can be modified to use more advanced
localization algorithms [6], [7], [8], [9], [10] to achieve more
accurate localization.

While we do not specify the maximum number of objects
that can associate with an IP , we assume that there should
not be more than about 200 objects that lie within the range
of a single IP . The reason is that even though object sensors
are small, the sensors are attached to larger physical objects
like laptops and coffee mugs. For a smaller space like an
office cubical, the number of tagged things are unlikely to
be in the hundreds or thousands; thus, the IP never has to
index so many items. Furthermore, since the IP will delete

data from object sensors that have left its vicinity, there will
be no accumulation of data.

Larger spaces such as a warehouse storage area may
contain thousands of objects. In this situation, multiple
IPs can be installed to index the data from the objects. As
mentioned earlier, an object facing a choice of multiple IPs
will send the RSSI values to the IPs which will then assign
an IP for that object to associate with. This way, the objects
can be associated with an appropriate IP to facilitate
searching, and will not be concentrated into a single IP .

3 COMMUNICATION COMPRESSION

A Bloom filter [11] is used in Snoogle to compress groups of
terms together. A Bloom filter with an m-bit array and
k independent hash functions are used for every n words.
The m-bit array is first initialized to “0.” Then, for each
word, the hash function maps the input to a value between
0 and m� 1, corresponding to the bit position in the bit
array, and that bit is then set to “1.” After n words are
inserted, the resulting value of the array becomes the
summary of the n words. The collection of the arrays
becomes the summary of the document. To check whether
or not a word is in the document, we apply the k hash
functions to the word and check if the resulting bit
positions are all “1”s in any of the array collection. A
single “0” indicates there is no match. However, the result
of all matching “1”s only indicates there is a certain
probability that there is a real match. The uncertainty is due
to false positive or a collision. We use the terms false
positive and collision interchangeably in this paper. If a
Bloom filter has m bits, k functions, and holds n words, the
probability of having a collision (incurs the false positive)
with another word is

1� 1� 1

m

� �kn !k

� ð1� e�kn=mÞk: ð1Þ

When m and n are fixed, the optimal false positive rate can
be achievable when [12]

k ¼ ln2 �m
n
: ð2Þ

Bloom filters can be further compressed to achieve better
transmission efficiency [13]. This is based on the observation
that an m-bit string may be transmitted by a less number of
bits without any information loss. We denote z as the number
of bits after compression. Note that the compression only
works (z < m) when there are less “1”s than “0”s (or in
reversed case). Mitzenmacher [13] indicated that each bit of
the Bloom filter has roughly 1/2 probability to be “1” or “0”
when a Bloom filter is tuned to have optimal false positive
rate. This suggests that an optimal Bloom filter almost cannot
be compressed. It also means that there is trade-off between
false positive and compression ratio. To gain transmission
efficiency, we have to sacrifice the false positive rate.
Mitzenmacher [13] also noted that the procedure of compres-
sing a Bloom filter is actually equivalent to hashing each term
into a z=n bit string. Therefore, instead of doing complicated
bit operations, we simply hash each term to a z=n bit string,
and concatenate the n hash results together to generate an
array. Assuming that the hash function is perfect, the
probability of having a collision with another word for each
z=n bit string is roughly ð12Þ

z=n.
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Selecting the correct compression method is crucial for
Snoogle system. The optimal bloom filter achieves the lowest
false positive rate, while the compressed bloom filter scores
better compression ratio [14] so that it can achieve better
transmission efficiency and lower processing overhead. We
believe that the low transmission cost and processing over-
head are more desirable for extremely resource constrained
sensor nodes. Therefore, we use the compressed Bloom filter
for our Snoogle system. In practice, with carefully chosen
parameters, we can lower the false positive rate to an
acceptable level. As we will describe in Section 7, given the
data set with 1,512 words, and compressed Bloom filter size of
16 bits, the false positive rate is only about 2.3 percent.

4 PERFORMING QUERY

In this section, we present the details and theoretical
discussion of the user query process and the top-k query
schemes.

4.1 Query Process

There are two ways of querying Snoogle. The first is to
query an IP directly, the second is to query the KeyIP first,
and then to perform the distributed query given a list of
most relevant IPs returned by the KeyIP .

The first query method is used when a user is only
interested in finding the object in some specific area, or
when the user has an approximate idea where the object
might be found. For example, a user may want to find a
magazine, but only if it is within a short distance from
where he is currently located. Thus, he only queries the IP
nearest to him by sending a few terms that describe this
magazine. The IP then evaluates the query and returns an
answer to the user. Each answer is the object ID that best
matches the user query. The user can then query the object
directly, or physically find the object.

The second query method is used when a user wishes to
find an object regardless of where it is, or has no idea which
IP to start querying. The user first queries the KeyIP with
several terms describing the target object. The KeyIP then
returns a ranked list of m IPs that contain objects that best
match the query, where m is a system parameter. The user
then performs a distributed top-k query from the returned
list of m IPs to find a satisfactory answer.

4.2 Scoring the Object Relevancy

When a user queries an IP , he receives a ranked list of
object IDs that best match his query from the IP as his
answer. This ranking is derived from a score for each object
contained within that IP based on the query terms. For
example, the user issues a query with two query terms,
ðtx; tyÞ to an IP with three objects, ðs1; s2; s3Þ. The score for
s1 is the sum of the weight of tx in s1 and weight of ty in s1.
The score for s2 and s3 are determined in a similar fashion.

The weight of a term in a object is determined using the
TF=IDF weighing algorithm used in IR research. The
intuition behind TF=IDF is that the importance of a term in
describing an object is based on two considerations. The
first is the number of times that term appears in that object
description, the TF . The greater number of times a term
appears, the more relevant that term is in describing that
object. In our system, the TF value is given as part of the
metadata of the object.

The second consideration is how important that term is
among the collection of all objects in a particular IP . The
IDF is determined as

IDF ¼ log
Total number of objects

Number of objects containing the term

� �
:

The idea here is that if a term appears in many objects
found within an IP ’s neighborhood, it is less important.
Consider an extreme case that a term appears in every
object under an IP . Then, any one of the objects returned
will contain that term, making that term not descriptive of
any one object at all. To device the IDF value, we need the
total number of objects, and the number of objects contain-
ing the term. The total number of objects is easily obtained
since an IP knows all the objects in its neighborhood. The
number of objects with a term is determined while
processing the query at an IP . For a query term, an IP
counts the number of the matches with stored terms in its
flash memory.

Putting it all together, the weight for a term tx in an
object s1 is

Weight of tx ¼ ðTFtx in s1Þ � ðIDFtx in s1Þ:

The above TF=IDF scoring methods can also be used to
evaluate the weight of IPs and objects in the distributed
query. If object scores from different IPs are compared with
each other in a distributed query, the IDF values used have
to either be normalized [15] or be replaced by global IDFs
due to the object variation among the IPs. A discussion of
IDF normalization in top-k query schemes is given in the
next section.

The use of the IDF allows the appropriate answer to be
derived when comparing different IPs. Consider for a
system instance with just two IPs, IPa and IPb, where IPa
is placed at a music CD store, and IPb is placed inside a
student’s dorm room (we assume the object population in
the music store is much larger than those in the dorm).
When the student wants to query for his own CD, he would
like to obtain an answer from IPb rather than IPa. However,
since IPa is placed in a store with a lot of music albums, IPa
will contain more terms associated with music albums, even
though the appropriate answer should be from IPb.

If our scoring algorithm only used the TF , then the score
from IPa will be better than IPb, since there are more objects
in IPa that contain album terms. However, using IDF (the
global IDF for the two IPs) means that the scores from IPa
will be smaller since the album terms appear in almost all
the objects in IPa, resulting in a much lower overall score.
This behavior allows IPb to be returned to the student as the
most likely location for his own CD album.

We initially considered CORI weighing algorithm [16]
when a user queries the KeyIP , but there was no noticeable
improvement. Thus, we use a simple TF=IDF algorithm
throughout this paper.

4.3 Performing Top-k Query

While Snoogle is capable of returning a ranked list of all
relevant objects matching a query to a user, a user will
usually want to limit the number of replies due to limited
device display or battery power. Snoogle allows the user to
specify a top-k query which returns the k best matches to a
user query. The k is a user specified value.
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For a local query, returning the top-k query is straight-
forward since an IP needs to only return the top k answers
to the user. For a distributed query, a naive method is for
the user to perform a top-k query for each of the m IPs
returned by KeyIP . By collecting the m � k answers, the user
can then obtain the top k objects. However, the message
complexity of OðmkÞ is too expensive for the energy
constrained system.

Our distributed top-k query algorithm is shown in
Algorithm 1. The intuition for the algorithm is as follows:
Upon receiving a list ofm ranked IPs, theKeyIP queries each
IP for the most relevant object, denoted as tai; 1 � i � m. The
KeyIP stores the m objects in an array a such that
a½i�:obj ¼ tai; a½i�:weight ¼ weightðtaiÞ; a½i�:ip ¼ IPi, where
weightðtaiÞ returns the weight score determined by TF and
IDF as we discussed previously. After collecting the highest
weighing objects from all m IPs, the KeyIP sorts the objects
in the descending order of the object weight, and obtains a
new array that a½1�:weight � a½2�:weight � � � � � a½m�:weight.
The first top-k answer, a½1�:obj, is immediately available. The
KeyIP sets the threshold value as a½2�:weight, and queries
a½1�:ip for the objects (excluding a½1�:obj) that weights more
than the threshold value. Note that among all them IPs, it is
possible for IP a½1�:ip to solely hold objects with weights
larger than a½2�:weight, so there is no reason to first query the
other IPs. Ignoring objects that are designated as top-k
objects, each IP has a new highest weighing object, and the
same process continues till all top-k objects are found. The
algorithm stops any time whenk top objects are retrieved, and
the KeyIP returns the answer to the user.

Algorithm 1. Distributed Top-k Query Algorithm
1: Input: k IPs: IP1; IP2; . . . ; IPm
2: Output: top-k answers: Obj1; Obj2; . . . ; Objk
3: Each IP sorts its objects in descending order of the

weights

4: for from i ¼ 1 to i ¼ m do

5: query IPi for the top answer; each IP removes the

first object from the sorted list and sends it to user

6: store the top answer tai and its associated weight in
an array: a½i�:obj ¼ tai; a½i�:weight ¼ weightðtaiÞ;
a½i�:ip ¼ IPi

7: end for

8: set the number of committed objects, num_commit=1

9: while num_commit < k do

10: sort the array in descending order of weight so that

a½1�:weight � a½2�:weight � � � � a½m�:weight
11: send a½2�:weight and num_commit to IP a½1�:ip
12: IP a½1�:ip removes from its sorted list a list of objects

(say l of them) such that the last object has the

highest weight less than a½2�:weight, say w

13: IP a½1�:ip sends the first min(l, k� num_commit)

14: commit all retrieved objects with weight greater than

a½1�:weight, change the value of num_commit, set

a½1�:weight ¼ w
15: end while

16: return all the committed objects Obj1; Obj2; . . . ; Objk

An important issue in the above algorithm is the accuracy
of the merged object ranking. Note that the object weights
reported by each IP are local scores, which are determined
by local IDFs. However, the local weights cannot be

compared directly [15]. We consider following two solu-
tions: 1) normalizing the local scores; 2) calculate the global
scores. As indicated in [15], the common normalization
scheme requires the exchange of object statistics among IPs,
which may incur large amount of communications between
IPs. On the other hand, the heuristics used in the proposed
normalized score estimation are tied to the specific database
and, therefore, cannot be used in Snoogle. In this paper, we
choose to calculate the global IDF . Upon receipt of a user
query, theKeyIP first querym IPs for the localDF value of
each term. After collecting all localDFs,KeyIP immediately
computes the global IDFs and sends them back to IPs. From
now on, the weights computed at each IP becomes global
scores and then can be compared with each other. Although
this approach requires an extra round of communication
between KeyIP and IPs, the actual cost is bounded by 2m,
where m is the number of IPs.

To bound the number of messages transmitted in the
process, we make the following observations: First, each IP
transmits at most one object that will not appear in the top-k
list. Therefore, the number of messages sent by all the IPs is
at most mþ k including the top-k objects and other objects
that will not appear in the top-k list. Second, for each query
sent out to the IP , we will get back at least one object
(which may appear or not appear in the final top-k objects).
Thus, the number of queries sent out to all the IPs is
bounded by the number of received objects, which is at
most mþ k. From these two observations, the number of
messages in this process is at most 2ðmþ kÞ, which is more
efficient than m � k in the naive scheme.

5 MOBILITY AND SECURITY SUPPORT

Here, we present the system enhancement for supporting
the mobile objects, and describe a flexible and resilient
security mechanism for private objects.

5.1 Supporting Mobile Objects

An IP needs to keep up-to-date information about the object
sensors in its neighborhood. However, since objects can be
mobile, there will inevitably be object sensors moving in and
out of an IP ’s neighborhood. Snoogle uses a combination of
beacon and timer methods to maintain updated information.

In the beacon method, the IP will periodically broadcast a
beacon that identifies itself. An object sensor in the neighbor-
hood that receives this beacon will compare it against the
previous beacon. If both beacons match, this indicates that the
physical object’s metadata has already been sent to that IP ,
and the sensor does nothing. Otherwise, it indicates that the
physical object has moved to a new location, and sensor will
send the metadata and ID to the new IP .

In the timer method, the communication is initiated by
each individual sensor. Each object sensor periodically
broadcasts a “keepalive” message. At the same time, the IP
maintains a timer. If the IP does not receive any
“keepalive” message from a certain associated object before
the timer expires, the IP considers the object to have moved
away, and then deletes all the data of the object sensor from
its storage. The beacon and timer methods can vividly
regarded as “pull” and “push.” In the beacon method, IPs
pull the status information from the object sensors. In the
timer method, object sensors push their status to IPs.
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The beacon scheme consumes less energy than the timer
method. The object sensors only need to wake up in the
duty cycle to listen the beacons. They do not need to
transmit any message as long as there is no movement. The
timer method, however, offers better reliability. When an
object moves to another IP neighborhood, the previous IP
can notice an object missing through the timer, and the new
IP also can also be notified by the timer message sent by the
moving object. In short, the beacon method is more suitable
for static objects, while the timer method works better for
mobile ones. In practice, the two methods can be properly
combined depending on the system requirement.

5.2 Providing Security and Privacy

Since Snoogle is built on sensors, Snoogle shares the same
security threats as other sensor network applications.
Furthermore, Snoogle also poses unique security and
privacy requirements due to the search function which
may violate personal privacy by revealing object informa-
tion to others. For example, a user may not want his private
object (i.e., DVD movie) to be searchable by strangers, but
only his friends and himself.

Based on the above concerns, Snoogle must have a
security mechanism to prevent objects from being searched
by unauthorized users. We adopt WM-ECC [17], an efficient
ECC suite customized for sensor devices as the security
primitive. Prior work [18] has indicated that the public key
scheme provides a cleaner user interface and outperforms
the symmetric key schemes in memory overhead and
energy consumption. The reason we choose ECC over more
popular RSA is that ECC can be more efficiently imple-
mented in resource constrained sensors. On TelosB sensor
motes, it takes 1.4 s to generate a public key. To the best of
our knowledge, this is the best ECC performance achieved
among the academic implementations. In Snoogle, the
access control is performed at the IP instead of at KeyIP
in a distributed fashion.

We provide security for Snoogle by adding a security tag
field to the object sensor. The security tag has an OwnerID
field and a GroupMask field. The OwnerID refers to the owner
identification. The GroupMask determines which group of
users has the privilege to access the object. The ECC-based
user authentication is very similar to RSA. If a user wants to
search private objects, he first sends the query and the
certificate, where the certificate is issued by Certification
Authority, which can be Snoogle administration. The IP first
verifies the user certificate and then makes sure that the
corresponding OwnerID and GroupMask match with the
object tag. In the next step, the IP uses the user public key
derived from the certificate to encrypt a randomly chosen

secret key, and sends the ciphertext to the user. If the user
can successfully decrypt the key, it proves that the user is the
legitimate owner of the certificate. Finally, the key is used to
establish the secure channel between the IP and the user.
This key can also be used to achieve the user privacy, since
the user can simply encrypt his query terms by using the key
so that no one can learn the query content.

6 PROTOTYPE EXPERIENCE

6.1 System Setup and Parameters

We implement a prototype of Snoogle, including object
sensors, IPs, KeyIP , and user module, on TelosB motes, a
research platform developed by Berkeley. TelosB hardware
features a lower power TI MSP430 16-bit microcontroller
with 10 KB RAM and 48 KB ROM. The onboard IEEE
802.15.4/ZigBee compliant radio transceiver facilitates the
wireless communication with other IEEE 802.15.4 compliant
devices. TelosB also has an onboard flash memory with
1 MB space, which enables our prototype IP to store as
many as 262,144 terms and the associated object IDs and
term frequency. The low-power feature (5:1 �A current
draw in sleep mode) of TelosB motes allows object sensors
to stay alive for long time. We use an HP iPAQ for the user
module. The HP iPAQ features a 522 MHz ARM920T
PXA270 processor, 64 MB RAM, and 128 MB flash memory.
The software of IPs, object sensors, and user module are
written by NesC language on TinyOS version 1.1.15. Table 1
illustrates the summary of the implementation.

We adopt the RC5 block cipher as the cryptographic hash
function used to implement the compressed Bloom filter. We
choose 16-bit as the Bloom filter size. Given our data set with
1,455 unique terms, the false positive rate is only 2.3 percent.

We set up a Snoogle network in our computer science
building. The floorplan and the deployment of object
sensors, IPs, and the KeyIP are shown in Fig. 3. Our
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TABLE 1
Summary of Snoogle Implementation

Fig. 3. Floorplan for testbed. The KeyIP represented by a rectangular
box is placed in the lobby. The two IP s, IP1 and IP2, also represented
by a rectangular box, are located in two wings of the building, in rooms
101 and 107. There are five object sensors (squares) in the
neighborhood of each IP . To route the messages between IPs and
the KeyIP , we also deploy six IPs (round dots) in the hallway.



experiment consists of two IPs located in the two wings of
the building, in rooms 101 and 107. We attach a laptop to
each IP to collect timing information. The laptop plays no
role in processing any of the data sent from sensor to IP .
Each IP has in its neighborhood five sensors which
simulate sensors attached to different objects. Each sensor
contains data from one complete conference paper. Details
of the sensor workload will be discussed in Section 7. The
KeyIP is placed in the lobby, and consists of a laptop using
a TelosB sensor as a communications module. Since the
KeyIP in our scheme can be a server, all data processing is
performed by the laptop. We deploy several additional IPs
to route data to the KeyIP .

We assume that a user will query Snoogle with a PDA
like iPAQ. Since iPAQ does not directly support sensor
communications, we use a TelosB mote to attach to the
iPAQ through a USB adaptor as the front-end radio
communication module. The iPAQ is running Windows
Mobile 5.0 and Mysaifu JVM [19]. Fig. 4 shows a picture of
our PDA querying device.

6.2 Prototype Test

We use the prototype tests to demonstrate the validity of
the Snoogle architecture in a real world environment. The
evaluation of specific Snoogle components is left to the next
section. We consider the following two tests: First, can a
user successfully query the KeyIP to get a list of IPs, and
can he query an IP to obtain a list of sensors? Second, can
the IP and the KeyIP effectively and accurately detect and
manage mobile sensors?

Our first test emulates a user’s query experience. We are
particularly interested in the time duration for a user to get
the object he searches for. A graduate student wants to
search an academic publication. He first enters the lobby of
Computer Science building, and uses his iPAQ to query the
KeyIP with the paper keywords. The KeyIP immediately
replies him with the list of IPs that carries the record as well
as the associated term frequency information. Given the
information replied from the KeyIP , the student picks the
IP which most probably contains the paper he is looking for,
which is IP1 in our experiment setup. He then immediately
queries IP1 again. This time, IP1 gives more detailed
answers which finally help the student to find the paper.
The time duration for the whole procedure is 1 minute and
45 seconds. Most of the time is spent on walking across the
hallway and operating iPAQ. The KeyIP and IP query
response time contributes a very small portion of the total

time consumption. It only takes 41 and 55 ms for the KeyIP
and the IP to reply the user query, respectively.

Our second experiment tests whether or not the KeyIP
and IPs are able to give a correct answer to the query for
a mobile object. We implement both the beacon and timer
methods in the prototype and test them separately. In
each test, we set the cycle period with 30 and 60 seconds.
The mobile object starts at the neighborhood of IP1.
When the experiments begin, one of our group members
takes the mobile object and walks cross the hallway to
room 107. He stays in room 107 for 5 minutes and then
carries the object back to room 101. During this period, we
keep track of the object status in the KeyIP .

The test results of the beacon method is shown in Fig. 5.
In the test with 30 s beacon cycle, it takes 71.6 s for the
KeyIP to get the object update report from IP2. Once the
update arrives, the KeyIP detects the object was originally
associated with IP1. The KeyIP , therefore, immediately
issues a notification to IP1. Note IP1 has no way to notice
the missing object in the beacon method. After 5 minutes, the
object returns to room 101, it takes 68.0 s for the KeyIP to
receive the update from IP1. Similarly, the KeyIP issues a
notification to IP2. When the beacon cycle is extended from
30 to 60 s, it takes longer time to detect the associate change.

Fig. 6 plots the mobile object association changes at the
KeyIP in the timer method. Comparing the two methods,
the timer method is more reliable than the beacon method.
The timer method allows both the IP and the object to
detect the movement while the IP cannot detect the leaving
object in the beacon method. That explains why it takes
more time for the beacon method to detect the object
movement once the object itself misses a couple of beacons,
as shown in Fig. 5. However, the timer method requires
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more energy consumption for the object sensors because
they have to keep sending “keepalive” messages. This is a
disadvantage for energy constrained sensors. In practice,
the two methods may be combined together to achieve the
tracking performance to the energy consumption ratio.

7 PERFORMANCE EVALUATION

To better discern the performance of the system, we break
the search system down into individual components and
evaluate each component separately. We mainly focus on
object sensor and IP interaction because both the object
sensor and IP are power constrained and computationally
challenged devices, while the KeyIP is a resource-rich
device. This makes the performance of the object sensors
and IPs crucial for the validity of the system.

7.1 Workload Design

We use data from an academic conference to create our data
set. The title, authors, and affiliations of each entry become
the metadata terms in each object. We use the IR definition
of TF to obtain the weight of each metadata term. This
yields a workload of 1,455 terms, which are sufficient for
about 80 objects, each of which has about 15-25 unique
words on the average. The average term size is between 7
and 8 characters. We further divide the 80 object sensors
into eight IPs as the testbed for the distributed query.

7.2 Data Input and Maintenance at IP s

The startup phase for our search system occurs when the IP
is first initialized and contains no object data at all. This is a
costly activity since the IP has to identify all the objects
within its range, and obtain their metadata. Fortunately, this
initialization phase occurs rarely since the IP utilizes
persistent flash memory for data storage to protect against
data loss. The main metric we use to evaluate this portion is
the time latency needed for an IP to obtain necessary data
from object sensors and update the collected data for the
future changes to give accurate answers for queries.

To reduce the transmission cost and improve the storage
efficiency, Snoogle adopts the idea of compressed Bloom
filter to compress the metadata terms. In particular, a hash
function residing in the object sensor convert each plaintext
metadata term into a 2-byte digest before transmitting the
data over to the IP . We perform a comparison test to learn
the benefit of the data compression. Fig. 7 shows the
time taken to transmit hashed data to the IP compared to
the plaintext method. As we can see, the transmission time

grows linearly as the number of terms increases when the
plaintext data is used, while it takes much less time for the
IP to collect the same amount of data in the compressed
form. It only takes 90 ms to collect 40 compressed terms.
However, it requires more than five times of amount of time
to transfer 40 uncompressed terms.

Note that the time taken to transmit hash terms is not
proportional to the number of terms. For instance, the
transmission time for five hashed terms is 30 ms, while the
transmission time for 40 hashed terms is 90 ms. It only takes
triple the amount of time to transmit eight times the data. The
reason is due to TinyOS message overhead. For the commu-
nications between each object and an IP , we set the message
payload size up to 60 bytes. Besides the 60-byte payload, each
messages has 8-byte message header and 10-byte TinyOS
header. We need three bytes to transmit one hashed text: one
for the term frequency and other two for hashed value. Given
a 60-byte payload, one message can carry up to 20 terms. Due
to the above reason, even though the text size of 40 terms is
eight times of that for 5 terms, it only takes one more message
to transmit 40 terms, compared to that for sending 5 terms.
Therefore, the transmission time for 40 terms should not be
eight times of that for 5 terms.

Next, we show how the buffer helps to further improve the
data collection efficiency. An IP has limited RAM and uses
flash memory to store the sensor metadata. The flash memory
operation principle determines that the write in flash
memory, specially in small granularity, is slow. We have
performed a simple test to show the write efficiency at
different write granularity. Fig. 8 plots the experiment result.
As we can see, it consumes almost 0.6 s to write 256 bytes in
flash with 1 byte write granularity, compared to 8 ms to write
the same amountof data with 256byte granularity. A common
way to amortize the memory write overhead is to use a buffer.
In Snoogle, each IP maintains a small buffer in RAM of
256 bytes, to buffer object data before flushing to flash. Even
though the NOR flash in TelosB supports random writes, we
adopt the buffering approach to improve the efficiency. When
therearemultipleobjectswantingto senddata to anIP , theIP
will have to periodically halt transmission to flush the coming
data into flash. The IP does not need to invoke the expensive
flashflushing routineas longas there is enoughbuffer space to
hold the coming object terms, and picks a spare time later to
flush the buffered terms into the flash.

Again, we conduct the comparison test to compare the two
schemes. For the test case with an IP buffer, we choose the
buffer size with 256 bytes, equivalent to the page size of the
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Fig. 7. Time taken to transmit metadata to IP . Fig. 8. The time delay to write 256 bytes of data with different write
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flash memory setup. Since each object term requires 4-byte
memory space, including 2-byte digest, 1-byte term fre-
quency, and 1 byte for the object id, a 256-byte buffer can hold
at most 64 object terms. In both the experiments, 30 object
sensors, each having 10 terms, sequentially transmit the data
to the IP . We record the average waiting time of each object
sensor and present the results in Fig. 9. It clearly shows that
each object sensor waits significantly less amount of time
when the IP uses the buffer.

We further notice that the variation of the object sensor
waiting time without an IP buffer is much larger. Our
investigation reveals that the variation is determined by the
amount of time taken to flush the data to the flash. Since each
compressed term is further hashed by the IP (as previously
described in Section 4) to an index table, different terms can
be mapped to different positions of index entries. The
number of entries can be any value between 1 and the
number of terms. The bigger the number is, the longer time is
required because the IP has to flush more flash pages. As the
comparison, this variation is much smaller with a buffer
enabled IP . The reason is that the IP buffer keeps track of
the index entry position of each term. When the number of
buffer empty slots is not enough to hold the coming data, the
buffer first flushes the most populated terms that hashed to
the same index position, and stops flushing if there are
enough space. As a result, with a high probability, the
number of pages required to be flushed is less than that in a
bufferless IP .

When an object is removed from its original location, the
IP has to update its inverted index table to reflect such
change. As described previously, the delete operation
requires the IP to scan the entire valid flash storage area
and tag the deleted object terms to be invalid. It appears that
the delete performance is determined by the size of stored
flash data. Our experiment results in Fig. 10 illustrates this
trend. The experiment is conducted in the following way: We
select a specific object sensor with 10 terms, and perform
deletion with different amounts of data loaded in the IP ,
ranging from 0 to 1,600 terms. Initially, the deletion time does
not vary much when the number of loaded terms increases.
The reason is that the IP has to scan at least one flash page for
each index entry, no matter how many terms have already
been stored in the flash. When the term number continues to
grow, some index entries require more flash page to store the
metadata terms. Therefore, the deletion operation has to scan
more flash pages. As a result, the time consumption increases
accordingly.

Note that deletion does not have to be done each time an

object leaves an IP ’s neighborhood. A simple list can be

kept by the IP that records the IDs of the objects that have

left. Then, before the IP replies to a query, it removes the

objects found in the list from the answer. This way, the user

will still have the correct answer. The IP can then perform

the deletion in the background when there are no other

pending query requests.

7.3 Local Query

To evaluate the local query performance, we focus on two

main areas: query latency and query accuracy. We first test

the performance of the query latency of Snoogle. Then, we

demonstrate Snoogle query efficiency via a comparison test

that compares the latency performance between Snoogle

and a flat structured network. Finally, we evaluate the

query accuracy.

7.3.1 Query Latency

Query latency is the time taken for a user querying an IP to

receive a reply. This includes the time to transmit, process,

and reply to a query. To better evaluate our search system,

we measure the query latency using common web search

characteristics. From [20], the average number of query

terms per search is less than 3. We then determine the

average time taken to complete a user query comprising of

one to four terms. Fig. 11 shows the results. We see that the

query response time increases as the number of query terms

increase. As mentioned in Section 4.1, multiple flash pages

may have to be read from flash memory to determine the
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IDF of each query term. This accounts for the increase in
query response time.

The above experiment is an example of a local query
performance given a typical system setting with 80 objects.
To evaluate the scalability performance of the local query, we
design the following test: In this test, the IP term index table
is configured with 16 entries. As we discussed in Section 2,
each object term, after being compressed, is hashed again to
get its index in the index table that stores the address
pointing to the flash memory. Since we assume an ideal hash
function, each term is equally likely hashed to one of 16
indices. Thus, the 16 page chains, pointed by 16 indices, can
be considered to have the same length. Based on this
observation, we generate a number of synthetic object terms
and directly load them into the flash memory of an IP . We
evaluate the local query performance as the IP starts from
lightly loaded to fully loaded.

The experiment results are shown in Fig. 12. We find the
local query time is affected by two parameters: 1) the number
of query terms; 2) the number of objects. For each query term,
the IP needs to scan the flash memory pages that are pointed
by a certain entry in the indexing table. Our test shows that it
takes around 7 ms to read a page of flash memory to RAM by
a TelosB sensor. Multiple terms then require the multiple
scans and thus produce the corresponding delay. Note the
page scanning delay dominates the total query response
time. The similar trend is observed that query time increases
when the number of object increases as more terms are
stored in flash memory. Overall, the query time is efficient. It
takes 1.2 s for an IP to respond a four-term query when there
are 256 objects.

7.3.2 Compare to Searching without IP s

An alternative searching method is to have users query the
objects sequentially and then collect the replied data to
find the desired information. This method gets rid of the
IP . To evaluate, we implement this alternative searching
scheme and compared the performance against our
Snoogle system. The alternative searching scheme is
implemented as follows: A group of sensors are organized
to a chained structure. The user always queries the chain
head sensor, the queried sensor searches the query term in
its memory and puts the results at the preassigned position
in the message packet, and then forward the query to the
next sensor in the chain. The second object repeats the
above searching and puts the results in its preassigned

position. This procedure repeats until the last object
finishes the query processing. The last sensor directly
replies to the user. We believe this is the most efficient way
that a general searching scheme can achieve because it
requires lowest amount of the message transmission. We
select 10 object sensors for both the experiment setups.
Each sensor is preloaded with the metadata of one
conference paper. The user performs a single term query
to both the systems. We measure the user query response
time with the number of object sensors changes from 1 to
10. In Fig. 13, we show the difference in query response
time in two different searching systems. We see that the
query response time in Snoogle system remains relatively
constant. The time taken in general searching system,
however, increases linearly with the number of objects
increases. This proves Snoogle achieves much better
scalability than any general searching scheme.

7.3.3 Query Accuracy

Query accuracy in traditional IR uses precision verses recall to
evaluate the effectiveness of a search system. However, Shah
and Croft [21] pointed out that using the mean reciprocal rank
(MRR) metric from question answering (QA) was more
suitable when performing IR on power constrained or
bandwidth limited devices. In QA, the emphasis is to return
a single or a very small group of answers in response to a
query, and not the return as many relevant answers as
possible. In other words, the QA metric places more emphasis
on the accuracy of the ranking of answers. This is apt for our
search system built on sensors. The MRR is defined as

MRR ¼ 1

rank of first correct response
:

For example, let the search system return a ranked answer
ðA;C;BÞ where the model answer is B. In other words, the
correct highest ranked response should be B. The MRR for
this query is thus 1

3 ¼ 0:33 since the correct answer is three
spots off. An answer that matches the model answer will
have an MRR of 1.

We first generate three different test files, q2Term,
q3Term, and q4Term, each file containing a collection of
two, three, and four query terms, respectively. Each
collection consists of 20 different questions and model
answers. These questions are designed to contain some
degree of ambiguity. For example, in our collection, there
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are two papers with DHT in their title, four papers with
Frans Kaashoek listed as an author, and two papers with
Jeremy Stribling as an author. Thus, a query “Kaashoek
DHT Stribling” will have the model answer the paper titled
“Bandwidth-efficient Management of DHT Routing Ta-
bles.” In other words, the ranked list of answers returned
should have this paper as the top-ranked result. Fig. 14
shows the results. We see our search system has a high
MRR for different number of query terms. We do not test
for only one query term since to derive a model answer, the
query term needs to be unique, which is equivalent to a
simple grep match.

7.4 Distributed Top-k Query

As we discussed in Section 4.3, the message complexity is
the major concern in the distributed top-k query. To
evaluate the performance of our top-k query scheme, we
first perform a simulation based on our own data set to
study the message complexity. Then, we estimate the query
response time on a larger network setting by using the
packet transmission time collected from our experiments. In
both the studies, we compare the performance of the
proposed top-k query with that of the naive scheme.

7.4.1 Message Complexity

In the simulation, we use the same data set which is
composed of 80 objects. We evenly and randomly distribute
these objects into eight IPs (each IP has 10 objects). In this
way, we create a testbed for the distributed query with eight
IPs, which are returned from the KeyIP for the user query
(note m ¼ 8). In the next step, the user performs the
distributed top-k query.

We implement our distributed top-k query scheme on
our simulator since our interest is the message complexity
only. The rule of determining the message complexity is
explained as follows: 1) A single user query to a certain IP
is counted as one message unit. 2) The answer with k objects
from a certain IP is counted as k message units since the
message length grows as k increases. We run the simula-
tions for three different queries with two, three, and four
query terms, respectively. We first randomly distribute the
objects into eight IPs, then run the query and count the
message numbers. We repeat this procedure for 100 times
for each simulation and calculate the average message
count values. For the comparison purpose, we also
implement the naive top-k query scheme. Note there is no

change in message complexity of naive scheme given
variant object distribution and query term numbers.

The simulation results are shown in Fig. 15. As we can see,
the performance of naive scheme is significantly worse than
that of our distributed top-k query scheme. When k increases
by one, the naive scheme needs m more messages (here
m ¼ 8). Comparatively, the number of extra messages
required for our top-k query is much less thanm. As a result,
whenk increases to eight, the naive scheme costs 72 messages,
while our top-k query only needs 32 messages on average.
The figure also shows that the number of query terms has no
significant impact on the performance of the distributed top-k
query, the performance of two, three, and four term query is
very close to each other.

7.4.2 Query Response Time

While the above simulation considers performance as
measured by the number of message units, an actual
application will be more concerned with query response
time, especially for a large network. Here, we estimate the
distributed query time. Since the KeyIP is a resource-rich
computer, we ignore the processing time at the KeyIP . The
message transmission time thus dominates the query delay.
Our experiment shows that the average transmission time
Tp for a packet with 68 byte payload is 11.4 ms.

The message complexity of the distributed top-k query is
2ðmþ kÞ, where m is the number of IPs having searched
terms, and k is the number of top answers the user is
looking for. Without loss of generality, we let k be 10 so that
the user always wants the top-10 answers. To determine the
value of m, we consider the following two scenarios: We let
m be 20 as the search items are popular, and let m be 5 as
the items are nonpopular. We further denote D as the
average hop distance between IPs and the KeyIP . A larger
D indicates a larger network.

As we described in Algorithm 1, the KeyIP first queries
m IPs for their top-ranked answers. After collecting the
responses from m IPs, the KeyIP sequentially queries up
to k IPs (that have higher scores than the rest m� k) until
the top-k answers are found. In the worst case, the
message complexity is 2ðmþ kÞ. Combining all compo-
nents, our estimation of the query time for the distributed
top-k query is:

Tquery ¼ m � TP þ 2 �D � Tp þ 2 �D � Tp � k: ð3Þ
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Fig. 14. Accuracy of query answer.
Fig. 15. Message complexity of distributed top-k query.



The first term is the time to transmit m query messages by
the KeyIP . Note the KeyIP can continuously send out the
messages without waiting for the reply for the specific IP .
The second term indicates the time duration of the average
response time for the query send by the KeyIP . The third
term is the time taken for the KeyIP to query up to k IPs.

For the naive top-k query scheme, each IP has to reply k
messages, each of which carries an answer. The total query
time can be expressed as:

Tquery ¼ m � Tp þD � Tp þm � k � Tp �D: ð4Þ

The first term is the same as in (3). The second term
indicates the time taken for the query to reach IPs. The
third term is the transmission time for the IPs to send k
messages over D hops.

The estimated query response time for both the schemes
is shown in Fig. 16. We find that our distributed top-k query
scheme is much more efficient than the naive scheme. When
the average hop distance increases from 2 to 16, the query
response time of our distributed top-k query grows linearly
from 0.7 to 4.2 s. The response time of the naive scheme, on
the other hand, grows from 4.8 s to more than 36 s. We also
find the value of m has very little affect toward the query
response time of our distributed top-k scheme. However,
the m value has a large impact on the response time of the
naive scheme because every IP out of m members has to
respond the query from KeyIP with k answers.

7.4.3 Impact of IDF on Query Accuracy

As we discussed in Section 4.3, we choose to use the global
IDF to get accurate merged object rankings. Now, we are
interested in the accuracy comparison between the ranking
using the global IDF and that using the local IDF . We
perform the similar simulation as we described in Section
7.3.3. We still use the previous data set with 80 objects that
form the testbed with eight IPs (each IP has 10 objects). We
also use MRR as the metric, and generate three different test
files, q2Term, q3Term, and q4Term, each of which contains
20 questions with certain degree of ambiguity.

The test results are illustrated in Fig. 17. We find the
MRR scores of the rankings by the global IDF are
consistently higher than those of the rankings by the local
IDFs. The reason can be explained as follows: Once the
data set (80 objects) are fixed, the global IDFs are
determined and will not be affected by the object distribu-
tion in IPs. Therefore, the merged rankings by using the

global IDF are also determined. However, the local IDF
values depend on the local document frequency (DF ),
which is affected by the distribution of the objects. Thus, the
model answer may not top the merged rankings by using
the local IDF if the matching query term has a small local
IDF value (due to a large local DF ) so that the matching
term cannot contribute much weight in the overall score.

7.5 Security Overhead for User Query

Finally, we add the authentication module to the IP and test
the performance of private object query. We use our ECC
public key cryptosystem primitive written for TelosB motes.
Our extensive optimization allows TelosB mote to efficiently
perform ECC public key operation. Our experiment shows it
only takes 1.4 s to do a point multiplication. To the best of our
knowledge, this is the best ECC performance achieved on
TelosB motes by academic implementations. When the user
queries the private objects, the user’s identity and access
privilege have to be verified. The 160-bit ECC based
authentication is performed for the verification purpose.
The user query response time is presented in Fig. 18. To query
a private object, the user waits around 4.9 s to pass the
authentication check. Obviously, the authentication time
dominates the overall response time. This is because that the
ECC based authentication scheme requires three ECC point
multiplications, which contribute more than 90 percent of the
overall delay.

8 SYSTEM LIMITATIONS

Communication reliability. From our experience in building
the prototype system, we notice that dropped messages are a
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Fig. 16. Query response time of distributed top-k query. Fig. 17. Query accuracy of distributed top-k query.

Fig. 18. User perceived private object query response time.



major concern. This occurs when IPs report to theKeyIP for
record updates, and also during the sending and replying to
beacons by an IP . This may cause an object sensor to appear
missing while moving between IPs. In other words, the old
IP may have already deleted a leaving object due to the time-
out, but the new IP does not detect the object sensor due to
packet loss during beacon sending and reply. Therefore, it is
desirable to implement a reliable communication mechanism
in the application layer or, if possible, in the transport layer,
such as acknowledge and retransmission.

System scalability. Our Snoogle system design does not
limit the number of IPs and KeyIPs. When the number
IPs is getting larger (e.g., the network spans several
buildings in a district), we can certainly deploy multiple
KeyIPs, each of which can serve a number of IPs in a
certain area as we discussed in this paper. Since KeyIPs are
resource-rich devices, the information sharing and ex-
changing among KeyIPs is beyond the scope of this paper.

Given the limited hardware resources, an individual IP
domain has its capacity limit. As we have discussed in the
previous section, each object term takes four-byte flash
space. Considering 20 terms for each object on average and
1 MB flash memory space, each IP in Snoogle can support
more than 10,000 objects in its neighborhood. Given the
limited sensor transmission range (normally 100 ft), we
believe that the scale of 10,000 objects can support most
applications. When the amounts of object are getting larger
(within a certain IP ), however, the query accuracy may be
affected for a query with multiple terms. The reason is that
the RAM space in IP is very limited in our prototype
system and cannot hold all intermediate results while
calculating the score of relevancy given a multiterm query.
One possible solution is to select a more powerful IP device
with a larger RAM size for the object populated areas.

Mobility support. While Snoogle supports the search for
a mobile object, it does not track a moving object in real
time. Due to the power constraints in both IPs and object
sensors, Snoogle cannot afford very frequent beacon or
timer mechanism; thus, an IP may not immediately detect a
moving object in its neighborhood. As a result, a snapshot
of the system view does not necessarily give accurate
moving object locations. However, once the object stops at a
certain place for a certain amount of time (e.g., a beacon
cycle), the IP at that location will capture the object and
update KeyIP with the new indexed items. Obviously, a
large number of moving objects will trigger many index
updates from IPs to the KeyIP , which may cause much
battery drain and could be a concern of the IP life cycle. We
currently assume there are limited moving objects in the
system. We leave the problem of IP power management to
our future work.

9 RELATED WORK

Effective methods for retrieving data have been studied in
sensor networks [22], [23]. However, searching in sensor
networks has been primarily restricted to numeric data and
has not been expanded to handle textual data.

Indoor localization research shares similarities with
Snoogle in that sensors are attached to mobile objects [24],
[25], [7]. However, most localization research focuses on
allowing a sensor to determine its location. One exception is

MAX [26] which extends the localization idea to finding
objects. In MAX, a user can query a particular object
attached with a sensor through an interface and receive
hints on where the object can be found, i.e., “top shelf on
third room.” However, the search functions in MAX are
more akin to the grep function, determining the presence
or absence on a sensor in a particular location. The user, in
general, has to know in advance what he is looking for, e.g.,
“my cellphone.” Searching in Snoogle is different since a
user can discover new knowledge by searching using some
general terms and obtain a ranked list of related matches.
This is done by adopting information retrieval research into
sensor networks. In addition, the security system proposed
in MAX does not provide a fine-grained and flexible access
control mechanism.

The architecture for our IP follows improvements in low
level flash storage. One early work by [27] introduced a file
system especially tailored for sensors, providing common
file system primitives like append, delete, and rename. While
a sensor file system can perform the functionalities of our IP ,
our IP architecture emphasizes good indexing and query
response time but not file system functionalities. In this
regard, our IP architecture is closer to MicroHash [28] which
focuses on efficient indexing of numeric data. Our architec-
ture differs from MicroHash in that we allow indexing of
arbitrary kinds of terms, not just numeric ones, and we adopt
information retrieval algorithms to reply to queries.

The distributed top-k query discussed in this paper is
related to the top-k operations [29], [30] in sensor networks
and the distributed top-k query [3] in a general network.
Unlike prior work which used extensive simulation for
evaluation, we used a combination of actual implementa-
tion and simulation to evaluation our top-k algorithm.

Different from Microsearch [31] that allows users to do
textual search in the local storage of a stand-alone small
device, this paper addresses the searching challenges over a
large scale sensor network. The Snoogle system presented
in this paper is an extension and enhancement of our
previous work [32].

10 CONCLUSION

In this paper, we presented Snoogle, an information retrieval
system built on sensor networks. Our system reduces
communication costs by employing compressed Bloom
filter on object data, while maintaining a low rate of false
positives. We also introduced a flexible security method
using public key cryptography that protects user privacy.
Our current implementation incurs a five second latency.
Currently, we are working on different techniques to further
reduce the security latency.
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