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Abstract —Collecting histograms over RFID tags is an essential premise for effective aggregate queries and analysis in large-scale
RFID-based applications. In this paper we consider an efficient collection of histograms from the massive number of RFID tags,
without the need to read all tag data. In order to achieve time efficiency, we propose a novel, ensemble sampling-based method to
simultaneously estimate the tag size for a number of categories. We first consider the problem of basic histogram collection, and
propose an efficient algorithm based on the idea of ensemble sampling. We further consider the problems of advanced histogram
collection, respectively, with an iceberg query and a top-k query. Efficient algorithms are proposed to tackle the above problems
such that the qualified/unqualified categories can be quickly identified. This ensemble sampling-based framework is very flexible
and compatible to current tag-counting estimators, which can be efficiently leveraged to estimate the tag size for each category.
Experiment results indicate that our ensemble sampling-based solutions can achieve a much better performance than the basic
estimation/identification schemes.
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✦

1 INTRODUCTION

With the rapid proliferation of RFID-based applications,
RFID tags have been deployed into pervasive spaces in
increasingly large numbers. In applications like ware-
house monitoring, the items are attached with RFID
tags, and are densely packed into boxes. As the maxi-
mum scanning range of a UHF RFID reader is usually
6-10m, the overall number of tags within this three-
dimensional space can be up to tens of thousands in
a dense deployment scenario, as envisioned in [1–3].
Many tag identification protocols [4–8] are proposed to
uniquely identify the tags one by one through anti-
collision schemes. However, in a number of applications,
only some useful statistical information is essential to be
collected, such as the overall tag size [2, 9, 10], popular
categories [11] and the histogram. In particular, his-
tograms capture distribution statistics in a space-efficient
fashion. In some applications, such as a grocery store
or a shipping portal, items are categorized according to
some specified metrics, such as types of merchandize,
manufacturers, etc. A histogram is used to illustrate the
number of items in each category.

In practice, tags are typically attached to objects be-
longing to different categories, e.g., different brands and
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models of clothes in a large clothing store, different
titles of books in a book store, etc. Collecting histogram
can be used to illustrate the tag population belonging
to each category, and determine whether the number
of tags in a category is above or below any desired
threshold. By setting this threshold, it is easy to find
popular merchandise and control stock, e.g., automati-
cally signaling when more products need to be put on
the shelf. Furthermore, the histogram can be used for
approximate answering of aggregate queries [12, 13], as
well as preprocessing and mining association rules in
data mining [14]. Therefore, collecting histograms over
RFID tags is an essential premise for effective queries
and analysis in conventional RFID-based applications.
Fig.1 shows an example for collecting histogram over
the RFID tags deployed in the application scenarios.
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Fig. 1. An example of collecting histogram over RFID tags

While dealing with a large scale deployment with
thousands of tags, the traditional tag identification
scheme is not suitable for histogram collection, since the
scanning time is proportional to the number of tags,
which can be in the order of several minutes. As the
overall tag size grows, reading each tag one by one can
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be rather time-consuming, which is not scalable at all.
As in most applications, the tags are frequently moving
into and out of the effective scanning area. In order to
capture the distribution statistics in time, it is essential
to sacrifice some accuracy so that the main distribution
can be obtained within a short time window–in the order
of several seconds. Therefore, we seek to propose an
estimation scheme to quickly count the tag sizes of each
category while achieving the accuracy requirement.

In most cases, the tag sizes of various categories are
subject to some skewed distribution with a “long tail”,
such as the Gaussian distribution. The long tail repre-
sents a large number of categories, each of which occu-
pies a rather small percentage among the total categories.
While handling the massive number of tags, in the order
of several thousands, the overall number of categories
in the long tail could be in hundreds. Therefore, by
separately estimating the tag sizes over each category,
a large number of query cycles and slots are required.
Besides, in applications like the iceberg query and the
top-k query, only those major categories are essential
to be addressed. In this situation, the separate estimate
approach will waste a lot of scanning time over those
minor categories in the long tail. Therefore, a novel
scheme is essential to quickly collect the histograms over
the massive RFID tags. In this paper, we propose a series
of protocols to tackle the problem of efficient histogram
collection. The main contributions of this paper are listed
as follows (a preliminary version of this work appeared
in [15]):

1) To the best of our knowledge, we are the first to
consider the problem of collecting histograms and
its applications (i.e., iceberg query and top-k query)
over RFID tags, which is a fundamental premise for
answering aggregate queries and data mining over
RFID-based applications.

2) In order to achieve time efficiency, we propose
a novel, ensemble sampling-based method to si-
multaneously estimate the tag size for a num-
ber of categories. This framework is very flexible
and compatible to current tag-counting estimators,
which can be efficiently leveraged to estimate the
tag size for each category. While achieving time-
efficiency, our solutions are completely compatible
with current industry standards, i.e., the EPCglobal
C1G2 standards, and do not require any tag mod-
ifications.

3) In order to tackle the histogram collection with a
filter condition, we propose an effective solution
for the iceberg query problem. By considering the
population and accuracy constraint, we propose an
efficient algorithm to wipe out the unqualified
categories in time, especially those categories in the
long tail. We further present an effective solution
to tackle the top-k query problem. We use ensemble
sampling to quickly estimate the threshold corre-
sponding to the k-th largest category, and reduce

it to the iceberg query problem.

The remainder of the paper is as follows. Sections 2
and 3 present the related work and RFID preliminary,
respectively. We formulate our problem in Section 4,
and present our ensemble sampling-based method for
the basic histogram collection in Section 5. We further
present our solutions for the iceberg query and the top-
k query, respectively, in Sections 6 and 7. In Section 8,
we provide performance analysis in time-efficiency. The
performance evaluation is in Section 9, and we conclude
in Section 10.

2 RELATED WORK

In RFID systems, a reader needs to receive data from
multiple tags, while the tags are unable to self-regulate
their radio transmissions to avoid collisions; then, a
series of slotted ALOHA-based anti-collision protocols
[1, 4–8, 16, 17] are designed to efficiently identify tags
in RFID systems. In order to deal with the collision
problems in multi-reader RFID systems, scheduling pro-
tocols for reader activation are explored in the literature
[18, 19]. Recently, a number of polling protocols [20–22]
are proposed, aiming to collect information from battery-
powered active tags in an energy efficient approach.

Recent research is focused on the collection of statisti-
cal information over the RFID tags [2, 9–11, 23–27]. The
authors mainly consider the problem of estimating the
number of tags without collecting the tag IDs. Murali et
al. provide very fast and reliable estimation mechanisms
for tag quantity in a more practical approach [9]. Li et
al. study the RFID estimation problem from the energy
angle [23]. Their goal is to reduce the amount of energy
that is consumed by the tags during the estimation
procedure. Shahzad et al. propose a new scheme for
estimating tag population size called Average Run based
Tag estimation (ART) [2]. Chen et al. aim to gain deeper
and fundamental insights in RFID counting protocols
[27], they manage to design near-optimal protocols that
are more efficient than existing ones and simultaneously
simpler than most of them. Liu et al. investigate efficient
distributed query processing in large RFID-enabled sup-
ply chains [28]. Liu et al. propose a novel solution to fast
count the key tags in anonymous RFID systems [29]. Luo
et al. tackle an interesting problem, called multigroup
thresholdbased classification [25], which is to determine
whether the number of objects in each group is above or
below a prescribed threshold value. Sheng et al. consider
the problem of identifying popular categories of RFID
tags out of a large collection of tags [11], while the set of
category IDs are supposed to be known. Different from
the previous work, in this paper, our goal is to collect
the histograms for all categories over RFID tags in a
time-efficient approach, without any priori knowledge
of the categories. Specifically, we respectively consider
the basic histogram collection problem, the iceberg query
problem, and the top-k query problem in regard to
collecting histograms in large-scale RFID systems. We
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aim to propose a flexible and compatible framework
for current tag-counting estimators based on slotted
ALOHA protocol, which can be efficiently leveraged to
estimate the tag size for each category.

3 PRELIMINARY

3.1 The framed slotted ALOHA protocol

In the Class 1 Gen 2 standard, the RFID system leverages
the framed slotted ALOHA protocol to resolve the collisions
for tag identification. When a reader wishes to read a set
of tags, it first powers up and transmits a continuous
wave to energize the tags. It then initiates a series of
frames, varying the number of slots in each frame to
best accommodate the number of tags. Each frame has
a number of slots and each active tag will reply in
a randomly selected slot per frame. After all tags are
read, the reader powers down. We refer to the series
of frames between power down periods as a Query
Cycle. Note that, within each frame, tags may choose the
same slot, which causes multiple tags to reply during
a slot. Therefore, within each frame there exist three
kinds of slots: (1) the empty slot where no tag replies;
(2) the single slot where only one tag replies; and (3) the
collision slot where multiple tags reply.

In regard to the tag ID, each tag has a unique 96-bit ID
in its EPC memory, where the first s binary bits can be
regarded as the category ID (1 < s < 96). According to the
C1G2 standard, for each Query Cycle, the reader is able to
select the tags in a specified category by sending a Select
command with an s-bit mask in the category ID field. If
multiple categories need to be selected, the reader can
provide multiple bit masks in the Select command.

3.2 Basic Tag Identification versus the Estimation
Scheme

Assume that there are n tags in total, and that it takes
si slots to uniquely identify n tags. It is known that for
each query round, when the frame size f is equal to the
remaining number of tags, the proportion of singleton
slots inside the frame is maximized; then, the efficiency
is ns

f = 1
e . Hence, the essential number of slots is si =∑+∞

i=0 (1− 1
e )

i · n = n · e.
Therefore, assume that it takes se slots to estimate the

tag size for each category with a certain accuracy. If we
want the estimation scheme to achieve a better reading
performance than the basic tag identification method,
then we need se · le ≪ si · li, where le and li are the
sizes of the bit strings transmitted during the estimation
and identification phases, respectively.

3.3 The Impact of the Inter-cycle Overhead

The MAC protocol for the C1G2 system is based on
slotted ALOHA. In order to accurately estimate the size
of a specified set of tags, conventionally, the reader
should issue multiple query cycles over the same set
of tags and take the average of the estimates. The

inter-cycle overhead consists of the time between cycles
when the reader is powered down, and the carrier time
used to power the tags before beginning communication.
According to the experiment results in [30], which are
conducted in realistic settings, these times are 40 ms and
3 ms respectively, while the average time interval per slot
is 1 ∼ 2 ms.
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Fig. 2. The captured raw signal data of the interrogation
between the reader and the tag

We have further measured the time interval for var-
ious slots and the inter-cycle duration with the USRP
N210 platform. In our experiments, we use the Alien-
9900 reader and Alien-9611 linear antenna with a di-
rectional gain of 6dB. The RFID tags used are Alien
9640 general-purpose tags which support the EPC C1G2
standards. We use Alien reader to continuously read 13
tags for 100 query cycles. We use USRP N210 as a sniffer
to capture the physical signals. Fig. 2 shows an example
of the captured raw signal data of the interrogation
between the reader and the tag. According to the realistic
experiment results in this setting, the average intervals
for various slots are summarized in Table 1. It is found
that, in most cases, the slot is started with a QueryRep
command, then the average interval for empty slots is 0.9
ms per slot, the average interval for singleton slots is 4.1
ms per slot, and the average interval for collision slots is
1.3 ms per slot; when a slot happens to be the first slot of
a frame, the slot is started with a Query command, then
the average interval for empty slots is 1.7 ms per slot,
the average interval for singleton is 5.1 ms per slot, and
the average interval for collision slots is 2.2 ms per slot.
By measuring the time intervals between two adjacent
query cycles, it is found that the average interval for
inter-cycle duration is 28.3 ms. Note that if the powered-
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down interval is not long enough, it is possible that some
surrounding tags will maintain the former state for the
inventoried flag with their local residual power, which
causes them to keep silent in the upcoming query cycle.

TABLE 1
The average time interval for various slots

after QueryRep command after Query command
empty slot 0.9 ms 1.7 ms

singleton slot 4.1 ms 5.1 ms
collision slot 1.3 ms 2.2 ms

Therefore, since the average inter-cycle duration (28.3
ms) is much larger than the average time interval of
conventional slots (empty slot: 0.9 ms, singleton slot:
4.1 ms, collision slot: 1.3 ms), the inter-cycle duration
must be taken into account when considering overall
reading performance. It is obvious that reading a large
number of tags per cycle amortizes the cost of inter-cycle
overhead, resulting in lower per tag reading time, while
for small tag sets the inter-cycle overhead is significant. It
is essential to sufficiently reduce the inter-cycle overhead
when we design a solution and set the corresponding
parameters for RFID systems.

4 PROBLEM FORMULATION

Suppose there are a large number of tags in the effective
scanning area of the RFID reader, the RFID system
conforms to EPCglobal C1G2 standards, i.e., the slotted
ALOHA-based anti-collision scheme [4, 6] is used in the
system model. The objective is to collect the histogram
over RFID tags according to some categorized metric,
e.g, the type of merchandise, while the present set of
category IDs cannot be predicted in advance. As we aim
at a dynamic environment where the tags may frequently
enter and leave the scanning area, a time-efficient strat-
egy must be proposed. Therefore, the specified accuracy
can be relaxed in order to quickly collect the histogram.
Assume that the overall tag size is n, there exist m
categories C = {C1, C2, ..., Cm}, and the actual tag size
for each category is n1, n2, ..., nm.

In the Basic Histogram Collection, the RFID system
needs to collect the histogram for all categories. Due to
the inherent inaccurate property for RFID systems, users
can specify the accuracy requirement for the histogram
collection. Suppose the estimated tag size for category
Ci(1 ≤ i ≤ m) is n̂i, then the following accuracy
constraint should be satisfied:

Pr[|n̂i − ni| ≤ ǫ · ni] ≥ 1− β accuracy constraint. (1)

The accuracy constraint illustrates that, given the exact
tag size ni for a specified category, the estimated tag size
n̂i should be in an confidence interval of width 2ǫ · ni,
i.e., n̂i

ni
∈ [1− ǫ, 1+ ǫ] with probability greater than 1−β.

For example, if ǫ = 0.1, β = 0.05, then in regard to a
category with tag size ni = 100, the estimated tag size
n̂i should be within the range [90, 110] with probability
greater than 95%.

In the Iceberg Query Problem, only those categories
with a tag size over a specified threshold t are essential
to be illustrated in the histogram, while the accuracy
requirement is satisfied. As the exact tag size ni for
category Ci is unknown, then, given the estimated value
of tag size n̂i, it is possible to have false negative
error and false positive error in verifying the population
constraint. Therefore, it is essential to guarantee that the
false negative/positive rate is below β, that is:

Pr[n̂i < t|ni ≥ t] < β, (2)

Pr[n̂i ≥ t|ni < t] < β. (3)

In the Top-k Query Problem, we use the definition of
the probabilistic threshold top-k query (PT-Topk query),
i.e., in regard to the tag size, only the set of categories
where each takes a probability of at least 1 − β to be in
the top-k list are illustrated in the histogram, while the
accuracy requirement is satisfied. Much like the iceberg
query problem, as the exact tag size ni for category Ci

is unknown, then, given the estimated value of tag size
n̂i, it is possible to have false negative error and false
positive error in verifying the population constraint, the
following constraint must be satisfied:

Pr[Ciis regarded out of top-k list|Ci ∈ top-k list] < β,
(4)

Pr[Ciis regarded in top-k list|Ci /∈ top-k list] < β. (5)

In this paper, we aim to propose a series of novel
solutions to tackle the above problems while satisfying
the following properties: (1) Time-efficient. (2) Simple
for the tag side in the protocol. (3) Complies with the
EPCglobal C1G2 standards. Therefore, in order for the
proposed algorithm to work, we only require the tags to
comply with the current C1G2 standards: each tag has
a unique 96-bit ID in its EPC memory, where the first s
binary bits are regarded as the category ID (1 < s < 96).
According to the C1G2 standard, the reader is able to
select the tags in a specified category by sending a Select
command with an s-bit mask in the category ID field. If
multiple categories need to be selected, the reader can
provide multiple bit masks in the Select command.

5 USE ENSEMBLE SAMPLING TO COLLECT
HISTOGRAMS

When collecting the histograms over a large number of
categories, the objective is to minimize the overall scan-
ning time while the corresponding accuracy/population
constraints are satisfied. Two straightforward solutions
are summarized as follows: (1) Basic Tag Identification:
The histogram is collected by uniquely identifying each
tag from the massive tag set and putting it into the
corresponding categories, thus the accuracy is 100%, and
(2) Separate Counting: As the category IDs cannot be
predicted in advance, the tree traversal method [31] is
used to obtain the category IDs. Then, the reader sends
a Select command to the tags, and it activates the tags
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in the specified category by providing a bit mask over
the category ID in the command. According to the replies
from the specified tags, the estimators such as [9][24][32]
can be used to estimate the tag size for each category. As
the rough tag size for each category cannot be predicted
in advance, a fixed initial frame size is used for each
category.

Both the above two solutions are not time-efficient. In
regard to the basic tag identification, uniquely identify-
ing each tag in the massive set is not scalable, for as the
tag size grows into a huge number, the scanning time
can be an unacceptable value. In regard to the separated
counting, the reader needs to scan each category with at
least one query cycle, even if the category is a minor cat-
egory, which is not necessarily addressed in the iceberg
query and the top-k query. As the number of categories
m can be fairly large, e.g., in the order of hundreds, the
Select command and the fixed initial frame size for each
category, as well as the inter-cycle overhead among a
large number of query cycles, make the overall scanning
time rather large.

Therefore, we consider an ensemble sampling-based
estimation scheme as follows: select a certain number
of categories and issue a query cycle, obtain the emp-
ty/singlton/collsion slots, and then estimate the tag size
for each of the categories according to the sampling in
the singleton slots. In this way, the ensemble sampling
is more preferred than the separate counting in terms
of reading performance. Since more tags are involved in
one query cycle, more slots amortize the cost of inter-
cycle overhead, the Select command, as well as the fixed
initial frame size. Thus, the overall scanning time can be
greatly reduced.

5.1 The Estimator ES

In the slotted ALOHA-based protocol, besides the emp-
ty slots and the collision slots, the singleton slots can
be obtained. In the ensemble sampling-based estima-
tion, according to the observed statistics of the emp-
ty/singleton/collision slots, we can use estimators in
[9][24][32] etc. to estimate the overall tag size. Then,
according to the response in each singleton slot, the
category ID is obtained from the first s bits in the tag
ID. Based on the sampling from the singleton slots, the
tag size for each category can be estimated. The reason
is as follows:

Assume that there exists m categories C1, C2, ..., Cm,
the overall tag size is n, and the tag size for each category
is n1, n2, ..., nm. We define an indicator variable Xi,j to
denote whether one tag of category Ci selects a slot j
inside the frame with the size f . We set Xi,j = 1 if only
one tag of category Ci selects the slot j, and Xi,j = 0
otherwise. Moreover, we use Pr[Xi,j = 1] to denote the
probability that only one tag of category Ci selects the
slot j, then,

Pr[Xi,j = 1] =
1

f
· (1−

1

f
)n−1 · ni.

If we use ns,i to denote the number of singleton slots

selected by tags of category Ci, thus ns,i =
∑f

j=1 Xi,j ,
then, the expected value

E(ns,i) =

f∑

j=1

Pr[Xi,j = 1] = (1−
1

f
)n−1 · ni.

Furthermore, let ns denote the number of singleton slots,

the expected value E(ns) = (1− 1
f )

n−1 ·n. Then,
E(ns,i)
E(ns)

=
ni

n . Thus we can approximate the tag size of category Ci

as follows:

n̂i =
ns,i

ns
· n̂. (6)

Here, n̂ is the estimated value of the overall tag size. Let
α̂i =

ns,i

ns
, then n̂i = α̂i · n̂.

5.2 Accuracy Analysis

5.2.1 Accuracy of the ES Estimator
In the ensemble sampling-based estimation, since the
estimators such as [9][24][32] can be utilized for estimat-
ing the overall number of tags, we use δ to denote the
variance of n̂. We have the property in Lemma 1.

Lemma 1: The number of singleton slots ns and the
number of singleton slots ns,i selected by the tags of cat-
egory Ci, respectively, have the following expectations:
{

E(n2
s) = (1− 1

f )
n−1 · n+ f−1

f · (1− 2
f )

n−2 · (n2 − n),

E(n2
s,i) = (1− 1

f )
n−1 · ni +

f−1
f · (1− 2

f )
n−2 · (n2

i − ni).

Proof: See Appendix A.
We rely on the following theorem to illustrate the

accuracy of the estimator SE.
Theorem 1: Let δi represent the variance of the estima-

tor SE n̂i, the load factor ρ = n
f , then,

δi =
ni

n
·
eρ + ni − 1

eρ + n− 1
· (δ + n2)− n2

i . (7)

Proof: See Appendix B.

5.2.2 Reducing the Variance through Repeated Tests
As the frame size for each query cycle has a maximum
value, by estimating from the ensemble sampling within
only one query cycle, the estimated tag size may not
be accurate enough for the accuracy constraint. In this
situation, multiple query cycles are essential to reduce
the variance through repeated tests. Suppose the reader
issues l query cycles over the same set of categories,
in regard to a specified category Ci, by utilizing the
weighted statistical averaging method, the averaged tag

size n̂i =
∑l

k=1 ωk · n̂i,k; here ωk =
1

δi,k∑l
k=1

1

δi,k

, n̂i,k

and δi,k respectively denote the estimated tag size and
variance for each cycle k. Then, the variance of n̂i is
σ2
i = 1∑

l
k=1

1

δi,k

.

Therefore, according to the accuracy constraint in the
problem formulation, we rely on the following theorem
to express this constraint in the form of the variance.
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Theorem 2: Suppose the variance of the averaged tag
size n̂i is σ2

i . The accuracy constraint is satisfied for a
specified category Ci, as long as σ2

i ≤ ( ǫ
Z1−β/2

)2 · n2
i ,

Z1−β/2 is the 1 − β
2 percentile for the standard normal

distribution.
Proof: See Appendix C.

According to Theorem 2, we can verify if the accuracy
constraint is satisfied for each category through directly
checking the variance against the threshold ( ǫ

Z1−β/2
)2 ·n2

i .

If 1− β = 95%, then Z1−β/2 = 1.96.

5.2.3 Property of the Ensemble Sampling (ES)

According to Theorem 1, the normalized variance of the
SE estimator λi =

δi
ni

is equivalent to λi =
δ−n·eρ+n
eρ+n−1 · ni

n +
(δ+n2)(eρ−1)
n·(eρ+n−1) . Let a = δ−n·eρ+n

eρ+n−1 , b = (δ+n2)(eρ−1)
n·(eρ+n−1) . Then, the

normalized variance λi = a· ni

n +b. Since the SE estimator
can utilize any estimator like [9][24][32] to estimate the
overall tag size, then, without loss of generality, if we
use the estimator in [9], we can prove that a < 0 for any
value of n > 0, f > 0. The following theorem shows this
property in the normalized variance.

Theorem 3: δ−n·eρ+n
eρ+n−1 < 0 for any value of n > 0, f > 0.

Proof: See Appendix D.
This property applies to any estimator with variance
smaller than δ0 in ZE, which simply estimates the overall
tag size based on the observed number of empty slots.

According to Theorem 3, in order to satisfy the accu-
racy constraint, we should ensure λi ≤ ( ǫ

Z1−β/2
)2 · ni. As

a < 0 for all values of f , it infers that the larger the
value ni is, the faster it will be for the specified category
to satisfy the accuracy constraint. On the contrary, the
smaller the value ni is, the slower it will be for the
specified category to satisfy the accuracy constraint. This
occurs during the ensemble sampling, when the major
categories occupy most of the singleton slots, while those
minor categories cannot obtain enough samplings in the
singleton slots for an accurate estimation of the tag size.

5.3 Compute the Optimal Granularity for Ensemble
Sampling

As indicated in the above analysis, during a query
cycle of the ensemble sampling, in order to achieve
the accuracy requirement for all categories, the essential
scanning time mainly depends on the category with the
smallest tag size, as the other categories must still be
involved in the query cycle until this category achieves
the accuracy requirement. Therefore, we use the notion
group to define a set of categories involved in a query
cycle of the ensemble sampling. Hence, each cycle of
ensemble sampling should be applied over an appro-
priate group, such that the variance of the tag sizes for
the involved categories cannot be too large. In this way,
all categories in the same group achieve the accuracy
requirement with very close finishing time. In addition,
according to Eq. (7), as the number of categories in-
creases in the ensemble sampling, the load factor ρ is

increased, then the achieved accuracy for each involved
category is reduced. Therefore, it is essential to compute
an optimal granularity for the group in regard to the
reading performance. Suppose there exists m categories
in total, the objective is to divide them into d(1 ≤ d ≤ m)
groups for ensemble sampling, such that the overall
scanning time can be minimized while achieving the
accuracy requirement.

For a specified group, in order for all involved cate-
gories to satisfy the accuracy requirement, it is essential
to compute the required frame size for the category with
the smallest tag size, say ni. Let ti = ( ǫ

Z1−β/2
)2 · ni, then

according to Theorem 2, we can compute the essential
frame size f such that λi(f) ≤ ti. Assume that the inter-
cycle overhead is τc, the average time interval per slot
is τs. Therefore, if f ≤ fmax, then the total scanning
time T = f · τs + τc. Otherwise, if the final estimate is
the average of r independent experiments each with an
estimator variance of λi(fmax), then the variance of the

average is λi(fmax)
r . Hence, if we want the final variance

to be ti, then r should be λi(fmax)
ti

, the total scanning
time is T = (fmax · τs + τc) · r.

We propose a dynamic programming-based algorith-
m to compute the optimal granularity for ensemble
sampling. Assume that currently there are m categories
ranked in non-increasing order according to the esti-
mated tag size, e.g., C1, C2, ..., Cm. We need to cut the
ranked categories into one or more continuous groups
for ensemble sampling. In regard to a single group
consisting of categories from Ci to Cj , we define t(i, j)
as the essential scanning time for ensemble sampling,
which is computed in the same way as the aforemen-
tioned T . Furthermore, we define T (i, j) as the minimum
overall scanning time over the categories from Ci to Cj

among various grouping strategies. Then, the recursive
expression of T (i, j) is shown in Eq.(8).

T (i, j) =

{
mini≤k≤j{t(i, k) + T (k + 1, j)}, i < j;
t(i, i), i = j.

(8)

In Eq. (8), the value of T (i, j) is obtained by enumerating
each possible combination of t(i, k) and T (k+ 1, j), and
then getting the minimum value of t(i, k) + T (k + 1, j).
By solving the overlapping subproblems in T (i, j), the
optimization problem is then reduced to computing the
value of T (1,m).

For example, suppose there are a set of tags with 10
categories, these categories are ranked in non-increasing
order of the estimated tag size, say, {100, 80, 75, 41,
35, 30, 20, 15, 12, 8}, then they are finally divided into
3 groups for ensemble sampling according to the dy-
namic programming, i.e., {100, 80, 75}, {41, 35, 30}, and
{20, 15, 12, 8}. In this way, the tag sizes of each category
inside one group are close to each other, during the
ensemble sampling all categories in the same group
can achieve the accuracy requirement with very close
finishing time, very few slots are wasted due to waiting
for those, comparatively speaking, minor categories. On
the other hand, these categories are put together with
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an appropriate granularity for ensemble sampling to
sufficiently amortize the fixed time cost for each query
cycle.

5.4 The Ensemble Sampling-based Algorithm

In Algorithm 1, we propose an ensemble sampling-based
algorithm for the basic histogram collection. In the begin-
ning, as the overall number of tags n cannot be predicted,
in order to accomodate a large operating range up to
n̄, we need to set the initial frame size f by solving
fe−n̄/f = 5 as suggested in [9]. Then, during each cycle
of ensemble sampling, we find the category with the
largest population υ in the singleton slots, and set a
threshold ns,i > υ · θ(0 < θ < 1) to filter out those minor
categories which occasionally occupy a small number of
singleton slots. For example, suppose it is observed from
the singleton slots that the number of slots occupied by
various categories are as follows: {35, 25, 10, 5, 3, 1}, if θ
is set to 0.1, then the categories with the number of slots
equal to 3 and 1 are filtered out from the next ensemble
sampling. Therefore, during the ensemble sampling, we
can avoid estimating tag sizes for those minor categories
with a rather large variance. Then, the involved cate-
gories are further divided into smaller groups based on
the dynamic programming. Therefore, as those major
categories are estimated and wiped out from the set R
phase by phase, all categories including the relatively
minor categories can be accurately estimated in terms of
tag size. The query cycles continue to be issued until no
singleton slots or collision slots exist.

6 ENSEMBLE SAMPLING FOR THE ICEBERG
QUERY

6.1 Motivation

In some applications, the users only pay attention to
the major categories with the tag sizes above a cer-
tain threshold t, while those minor categories are not
necessarily addressed. Then, the iceberg query [33] is
utilized to filter out those categories below the threshold
t in terms of the tag size. In this situation, the separate
counting scheme is especially not suitable, since most of
the categories are not within the scope of the concern,
which can be wiped out together immediately.

According to the definition in the problem formu-
lation, three constraints for the iceberg query must be
satisfied:

Pr[|n̂i − ni| ≤ ǫ · ni] ≥ 1− β accuracy constraint,

P r[n̂i < t|ni ≥ t] < β population constraint,

P r[n̂i ≥ t|ni < t] < β population constraint.

The first constraint is the accuracy constraint, while
the second and third constraints are the population con-
straints. In regard to the accuracy constraint, we have
demonstrated in Theorem 2 that it can be expressed in
the form of the variance constraint. In regard to the
population constraint, the second constraint infers that,

Algorithm 1 Algorithm for histogram collection

1: INPUT: 1. Upper bound n̄ on the number of tags n
2: 2. Confidence interval width ǫ
3: 3. Error probability β
4: Initialize the set R to all tags. Set l = 1.
5: while ns 6= 0 ∧ nc 6= 0 do
6: If l = 1, compute the initial frame size f by solving

fe−n̄/f = 5. Otherwise, compute the frame size
f = n̂. If f > fmax, set f = fmax.

7: Set S to ∅. Select the tags in R and issue a query
cycle with the frame size f , get n0, nc, ns. Find
the category with the largest population υ in the
singleton slots. For each category which appears
in the singleton slot with population ns,i > υ · θ(θ
is constant, 0 < θ < 1), add it to the set S. Estimate
the tag size ni for each category Ci ∈ S using the
SE estimator. Compute the variances δ′i for each
category Ci ∈ S according to Eq. (7).

8: Rank the categories in S in non-increasing or-
der of the tag size. Divide the set S into
groups S1, S2, ..., Sd according to the dynamic
programming-based method.

9: for each Sj ∈ S(1 ≤ j ≤ d) do
10: For each category Ci ∈ Sj , compute the frame

size fi from δi by solving 1
1/δ′i+1/δi

≤ ( ǫ
Z1−β/2

)2 ·

n̂i
2.

11: Obtain the maximum frame size
f = maxCi∈Sj fi. If f < fmax, select all
categories in Sj , and issue a query cycle with
frame size f . Otherwise, select all categories in
Sj , and issue r query cycles with the frame size
fmax. Wipe out the categories with satisfied
accuracy after each query cycle.

12: Estimate the tag size n̂i for each category Ci ∈
Sj , illustrate them in the histogram.

13: end for
14: n̂ = n̂−

∑
Ci∈S n̂i. R = R− S. S = ∅. l = l + 1.

15: end while

in the results of the iceberg query, the false negative
probability should be no more than β, while the third
constraint infers that the false positive probability should
be no more than β. We rely on the following theorem to
express the population constraint in another equivalent
form.

Theorem 4: The two population constraints, Pr[n̂i <
t|ni ≥ t] < β and Pr[n̂i ≥ t|ni < t] < β, are satisfied
as long as the standard deviation of the averaged tag

size σi ≤ |ni−t|
Φ−1(1−β) , Φ(x) is the cumulative distribution

function of the standard normal distribution.

Proof: See Appendix E.

In order to better illustrate the inherent principle, Fig.3
shows an example of the histogram with the 1 − β
confidence interval annotated, the y-axis denotes the
estimated tag size for each category. In order to accu-
rately verify the population constraint, it is required
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t

Fig. 3. Histogram with confidence interval annotated

that the variance of the estimated tag size should be
small enough. Note that when the 1 − β confidence
interval of the tag size n̂i is above/below the threshold
t, the specified category can be respectively identified
as qualified/unqualifed, as both the false positive and
false negative probabilities are less than β; otherwise, the
specified category is still undetermined. According to the
weighted statistical averaging method, as the number
of repeated tests increases, the averaged variance σi for
each category decreases, thus the confidence interval
for each category is shrinking. Therefore, after a certain
number of query cycles, all categories can be determined
as qualified/unqualifed for the population constraint.

Note that when the estimated value n̂i ≫ t or n̂i ≪ t,
the required variance in the population constraint is
much larger than the specifications of the accuracy con-
straint. In this situation, these categories can be quickly i-
dentified as qualified/unqualified, and can be wiped out
immediately from the ensemble sampling for verifying
the population constraint. Thus, those undetermined cat-
egories can be further involved in the ensemble sampling
with a much smaller tag size, verifying the population
constraint in a faster approach.

Sometimes the tag sizes of various categories are
subject to some skew distributions with a “long tail”. The
long tail represents those categories each of which occu-
pies a rather small percentage among the total categories,
but all together they occupy a substantial proportion of
the overall tag sizes. In regard to the iceberg query, con-
ventionally the categories in the long tail are unqualified
for the population constraint. However, due to the small
tag size, most of them may not have the opportunity to
occupy even one singleton slot when contending with
those major categories during the ensemble sampling.
They remain undetermined without being immediately
wiped out, leading to inefficiency in scanning the other
categories. We rely on the following theorem to quickly
wipe out the categories in the long tail.

Theorem 5: For any two categories Ci and Cj that
ns,i < ns,j satisfies for each query cycle of ensemble
sampling, if Cj is determined to be unqualified for the
population constraint, then Ci is also unqualified.

Proof: See Appendix F.
According to Theorem 5, after a number of query cy-

cles of ensemble sampling, if a category Cj is determined
unqualified for the population constraint, then for any
category Ci which has not appeared once in the singleton
slots, ns,j > ns,i = 0, it can be wiped out immediately
as an unqualified category.

6.2 Algorithm for the Iceberg Query Problem

We propose the algorithm for the iceberg query problem
in Algorithm 2. Assume that the current set of categories
is R, during the query cycles of ensemble sampling, the
reader continuously updates the statistical value of n̂i

as well as the standard deviation σi for each category
Ci ∈ R. After each query cycle, the categories in R can be
further divided into the following categories according
to the population constraint:

• Qualified categories Q: If n̂i ≥ t and σi ≤
n̂i−t

Φ−1(1−β) ,
then category Ci is identified as qualified for the
population constraint.

• Unqualified categories U : If n̂i < t and σi ≤
t−n̂i

Φ−1(1−β) , then category Ci is identified as unquali-
fied for the population constraint.

• Undetermined categories R: The remaining cate-
gories to be verified are undetermined categories.

Therefore, after each query cycle of ensemble sam-
pling, those unqualified categories and qualified categories
can be immediately wiped out from the ensemble sam-
pling. When at least one category is determined as
unqualified, all of the categories in the current group
which have not been explored in the singleton slots
are wiped out immediately. The query cycles are then
continuously issued over those undetermined categories in
R until R = ∅.

For example, suppose the threshold is set to 30, after a
query cycle of ensemble sampling, the estimated number
of tags for each category is as follows: {120, 80, 65, 35, 28,
10, 8}, according to the standard deviation of estimation
for various categories, then the categories with estimated
tag size of 120, 80 and 65 can be immediately determined
as qualified, the categories with estimated tag size of 10
and 8 can be also immediately determined as unquali-
fied, for those categories with estimated tag size 35 and
28, due to the current estimation error, we cannot yet
determine if they are exactly qualified or unqualified,
thus another cycle of ensemble sampling is required for
further verification.

During the ensemble sampling, if there exist some cat-
egories with tag sizes very close to the threshold t, then
the required number of slots to verify the population
constraint can be rather large. Thus, we compute the
essential frame size fi for each category Ci and compare
it with the expected number of slots n̂i · e in basic tag
identification. If fi > n̂i · e, then the category is removed
from the set S to V . We heuristically set the frame size
f to the mid-value among the series of fi, such that
after a query cycle, about half of the categories can be
determined as qualified/unqualifed, and thus wiped out
quickly. Therefore, after the while loop, for each category
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Ci ∈ V , basic identification is used to obtain the exact
tag size ni. If ni ≥ t, Ci is illustrated in the histogram.
For each category Ci ∈ Q, the reader verifies if it has
satisfied the accuracy requirement; if so, Ci is illustrated
in the histogram and wiped out from Q. Then, ensemble
sampling is further applied over the categories in Q to
satisfy the accuracy requirement by using the optimized
grouping method.

Algorithm 2 Algorithm for Iceberg Query

1: INPUT: 1. Upper bound n̄ on the number of tags n
2: 2. Confidence interval width ǫ
3: 3. Threshold t
4: 4. Error probability β
5: Initialize R to all categories, set Q,U, V to ∅. Set l =

1.
6: while R 6= ∅ do
7: If l = 1, compute the initial frame size f by solving

fe−n̄/f = 5. Otherwise, compute the frame size
f = n̂. If f > fmax, set f = fmax.

8: Set S to ∅. Select the tags in R and issue a
query cycle with frame size f , get n0, nc, ns. Find
the category with the largest population υ in the
singleton slots. For each category which appears
in the singleton slot with population ns,i > υ · θ(θ
is constant, 0 < θ < 1), add it to the set S. If
υ · θ < 1, then add all remaining categories into S.
Set S′ = S.l = 1.

9: while S 6= ∅ do
10: Compute the frame size fi for each category

Ci ∈ S such that the variance σi = |t−n̂i|
Φ−1(1−β) .

If fi > n̂i · e, then remove Ci from S to V . If
fi > fmax, set fi = fmax. Obtain the frame size
f as the mid-value among the series of fi.

11: Select all tags in S, issue a query cycle with the
frame size f , compute the estimated tag size n̂i

and the averaged standard deviation σi for each
category Ci ∈ S. Detect the qualified category
set Q and unqualified category set U . Set S =
S −Q− U .

12: if U 6= ∅ then
13: Wipe out all categories unexplored in the

singleton slots from S.
14: end if
15: end while
16: n̂ = n̂−

∑
Ci∈S′ n̂i. R = R− S′, l = l + 1.

17: end while
18: Further verify the categories in V and Q for the

accuracy constraint.

7 ENSEMBLE SAMPLING FOR THE TOP-k
QUERY

7.1 Motivation

In some applications, when the number of categories is
fairly large, the users only focus on the major categories

in the top-k list in regard to the tag size. Then the top-k
query is utilized to filter out those categories out of the
top-k list. In this situation, the separate counting scheme is
especially not suitable. If the specified category is not in
the top-k list, it is unnecessary to address it for accurate
tag size estimation. However, since the threshold t for
the top-k list cannot be known in advance, the separate
counting scheme cannot quickly decide which categories
can be wiped out immediately.

Moreover, when the distribution around the kth rank-
ing is fairly even, i.e., the size of each category is very
close, it is rather difficult to determine which categories
belong to the top-k categories. Based on this understand-
ing, we utilize the probabilistic threshold top-k query
(PT-Topk query) to return a set of categories Q where each
takes a probability of at least 1 − β(0 < β ≤ 1) to be in
the top-k list. Therefore, the size of Q is not necessarily
going to be exactly k.

Hence, as the exact value of tag size ni is unknown,
in order to define Pr[Ci ∈ top-k list], i.e., the probability
that category Ci is within the top-k list in terms of
tag size, it is essential to determine a threshold t so
that Pr[Ci ∈ top-k list] = Pr[ni ≥ t]. Ideally, t should
be the tag size of the kth largest category; however,
it is rather difficult to compute an exact value of t in
the estimation scheme due to the randomness in the
slotted ALOHA protocol. Therefore, according to the
problem formulation in Section IV, we attempt to obtain
an estimated value t̂ such that the following constraints
are satisfied:

Pr[|n̂i − ni| ≤ ǫ · ni] ≥ 1− β accuracy constraint,

P r[|t̂− t| ≤ ǫ · t] ≥ 1− β accuracy constraint of t̂ ,

P r[n̂i < t̂|ni ≥ t̂] < β population constraint, (9)

Pr[n̂i ≥ t̂|ni < t̂] < β population constraint. (10)

Therefore, if the threshold t̂ can be accurately esti-
mated, then the top-k query problem is reduced to the
iceberg query problem. The population constraints (9)
and (10) are respectively equivalent to the population
constraints (4) and (5). Then it is essential to quickly
determine the value of the threshold t̂ while satisfying
the constraint Pr[|t̂ − t| ≤ ǫ · t] ≥ 1 − β. We rely on the
following theorem to express the above constraint in the
form of the variance.

Theorem 6: The constraint Pr[|t̂ − t| ≤ ǫ · t] ≥ 1 − β is
satisfied as long as V ar(t̂− t) ≤ ǫ2 · t2 · β.

Proof: See Appendix G.

7.2 Algorithm

According to Theorem 6, we utilize the ensemble sam-
pling to quickly estimate the threshold t̂. The intuition
is as follows: after the first query cycle of ensemble
sampling, we can estimate a confidence interval [tlow, tup]
of the threshold t according to the sampled distribution.
Then, by wiping out those categories which are obvi-
ously qualified or unqualified to be in the top-k list, the
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width of the confidence interval can be quickly reduced.
As the approximated threshold t̂ is selected within the
confidence interval, after a number of query cycles of
ensemble sampling, when the width is below a certain
threshold, the estimated value t̂ can be close enough to
the exact threshold t.

Based on the above analysis, we propose an algorithm
for the top-k query problem in Algorithm 3. In the
beginning, a while loop is utilized to quickly identify
an approximate value t̂ for the threshold t. Suppose that
the averaged estimated tag size and standard deviation
for each category Ci are respectively n̂i and σi, if we
use p to denote a small constant value between 0 and 1,
let η = Φ−1(1 − p

2 ). Then, given a fixed value of p, the
1− p confidence interval for ni is [n̂i − η · σi, n̂i + η · σi].
For each iteration, we respectively determine an upper
bound tup and a lower bound tlow for the threshold
t, according to the kth largest category in the current
ranking. Then, we respectively wipe out those qualified
and unqualified categories according to the upper bound
tup and a lower bound tlow. The value of k is then
decreased by the number of qualified categories. In this
way, the threshold t is guaranteed to be within the
range [tlow, tup] with a probability of at least 1 − p.
When p → 0, then t ∈ [tlow, tup] with the probability
close to 100%. Moreover, an estimated threshold t̂ is
also selected within this range. Therefore, let the width
g = tup − tlow, then the variance of t̂ − t is at most g2.
In order to guarantee that V ar(t̂ − t) ≤ ǫ2 · t2 · β, it
is essential to ensure g2 ≤ ǫ2 · t2 · β. As the ensemble
sampling is continuously issued over the categories in
R, the standard deviation σi for each category Ci ∈ R
is continuously decreasing. Furthermore, as the quali-
fied/unqualified categories are continuously wiped out,
the upper bound tup is continuously decreasing while
the lower bound tlow is continuously increasing. The
width of the range [tlow, tup] is continuously decreasing.
The while loop continues until g2 ≤ ǫ2 · t2 · β. Then,
after the estimated threshold t̂ is computed, the iceberg
query is further applied over those categories with the
threshold t̂.

For example, suppose the value of k is 5, after a
query cycle of ensemble sampling, the estimated number
of tags for various categories is ranked in decreasing
order as follows: {C1:120, C2:85, C3:67, C4:50, C5:48,
C6:45, C7:20, C8:15 }, the threshold tup and tlow are
respectively set to 68 and 28 according to the 5th largest
category, then the categories with tag size 120 and 85
can be determined as qualified categories since their
tag sizes are above the threshold tup, the categories
with tag size 20 and 15 can be also determined as
unqualified categories since their tag sizes are below the
threshold tlow. Therefore, the remaining categories are as
follows: C3, C4, C5 and C6, we hence need another cycle
of ensemble sampling to further verify the threshold
according to the 3rd largest category.

Algorithm 3 Algorithm for PT-Topk Query Problem

1: INPUT: 1. Upper bound n̄ on the number of tags n
2: 2. Confidence interval width ǫ
3: 3. The value of k
4: 4. Error probability β
5: Initialize R to all categories, set l = 1, η = Φ−1(1− p

2 ).
6: while true do
7: Issue a query cycle to apply ensemble sampling

over all categories in R. Compute the statistical
average value and standard deviations as n̂i and
σi.

8: Rank the categories in R according to the value of
n̂i + η · σi for each identified category Ci. Find the
k-th largest category Ci, set tup = n̂i+η ·σi . Detect
the qualified categories Q with threshold tup.

9: Rank the categories in R according to the value of
n̂i − η · σi for each identified category Ci. Find the
k-th largest category Ci, set tlow = n̂i−η ·σi. Detect
the unqualified categories U with threshold tlow.

10: Wipe out the qualified/unqualified categories
from R. R = R − Q − U . Suppose the number
of qualified categories in current cycle is q, set
k = k − q.

11: Rank the categories in R according to the value
of n̂i for each identified category Ci. Find the k-th
largest category Ci, set t̂ = n̂i. Set g = tup − tlow.
l = l + 1.

12: if g2 ≤ ǫ2 · β · t̂2 then
13: Break the while loop.
14: end if
15: end while
16: Apply iceberg query with threshold t̂ over the unde-

termined categories R and the qualified categories
Q.

8 DISCUSSION ON PRACTICAL ISSUES

8.1 Time-Efficiency

As mentioned in the problem formulation, the most criti-
cal factor for the histogram collection problem is the time
efficiency. In regard to the basic histogram collection, the
time delay is mainly impacted by two factors: 1) the
number of categories m, 2) the category with the smallest
tag size, say ni, inside the group for ensemble sampling.
Generally, as the number of categories m increases, the
number of groups and the essential number of slots for
each ensemble sampling is increasing, causing the time
delay to increase. Besides, the category with the smallest
tag size ni directly decides the essential frame size inside
the group, the larger the gap among the tag sizes of each
category in the same group, the lower the time efficiency
that is achieved.

In regard to the iceberg query and the top-k query, the
time delay mainly depends on the number of categories
with the tag size close to the threshold t. Due to the
variance in tag size estimation, a relatively large number
of slots are required to verify whether the specified
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categories have tag sizes over the threshold t. For the
top-k query, additional time delay is required to estimate
the threshold t corresponding to the top-k query.

8.2 Interference Factors in Realistic Settings

In realistic settings of various applications, there might
exist several interference factors which hinder the actu-
al performance of histogram collection. These practical
issues mainly include path loss, multi-path effect, and
mutual interference. In the following we elaborate on the
detail techniques to effectively tackle these problems.

Path loss: Path loss is common in RFID-based applica-
tions, which may lead to the probabilistic backscattering
[7] in RFID systems, even if the tags are placed in
the reader’s effective scanning range. In such scenario,
the tags may reply in each query cycle with a certain
probability instead of 100%. Therefore, in regard to the
tag-counting protocols in our solutions, we need to
essentially estimate the probability via statistical tests in
the particular application scenarios. In this way, we can
accurately estimate the number of tags according to the
probability obtained in advance.

Multi-path effect: Multi-path effect is especially com-
mon for indoor applications. Due to multi-path effect,
some tags cannot be effectively activated as the forward-
ing waves may offset each other, even in the effective
scanning range of RFID systems. To mitigate the multi-
path effect, we can use the mobile reader to continuously
interrogate the surrounding tags such that the multi-path
profile can be continuously changing. In this way, the
tags are expected to have more chances to be activated
for at least once during the continuous scanning [8].

Mutual interference: If the tags are placed too close,
they may have a critical state of mutual interference [34]
such that neither of the tags can be effectively activated.
This is mainly caused by the coupling effect when the
reader’s power is adjusted to a certain value. Hence, in
order to mitigate the mutual interference among RFID
tags, we should skillfully tune the transmission power
of the reader so as to avoid the critical state among tags.
A suitable power stepping method should be leveraged
to sufficiently reduce the mutual interference among all
tags.

8.3 Overhead from Tag Identification

In our ensemble sampling-based solution, we conduct
efficient sampling over the singleton slots to estimate the
number of tags for various categories. However, since
the proposed scheme needs to identify the tag in single-
ton slots and read 96-bit EPC from the tag, it may incur
high communication overheard for ensemble sampling.
We thus conduct real experiments with the USRP N210
platform to evaluate the ratio of tags that are identified
during the whole process of collecting histograms. We
respectively test the slot ratio (the ratio of the number of
singleton slots to total number of slots) and time ratio (the
ratio of the overall time interval for the singleton slots

to total time duration). In the experiment, we use the
Alien reader to interrogate 50 tags and use USRP N210
as a sniffer to capture the detailed information in the
physical layer, we average the experiment results via 50
repeated test. According to the real experiment results,
we find that the average slot ratio is 33%, which is lower
than 36.8% in ideal case when the frame size is set to
an optimal value. We further find that the average time
ratio is 62%, it implies that the singleton slots occupy a
considerable proportion of the overall scanning time.

In order to sufficiently reduce the identification over-
head in singleton slots, we can make a slight modifi-
cation for the C1G2 protocol as follows: each tag can
embed the category ID into the RN16 response, in this
way, during the process of collecting histograms, each
tag only need to reply the RN16 random number in
the selected slot instead of the exact EPC ID, the high
overhead for identification can be effectively avoided.
We further evaluate the average time ratio for this new
method, we find that the average time ratio can be
reduced from 62% to 44%, which is much closer to the
slot ratio.

9 PERFORMANCE EVALUATION

We have conducted simulations in Matlab, and the s-
cenario is as follows: there exist m categories in total,
and we randomly generate the tag size for each category
according to the normal distribution N(µ, σ). We set the
default values for the following parameters: in regard to
the accuracy constraint and the population constraint,
we set 1 − β = 95%, and ǫ = 0.2. The average time
interval for each slot is τs = 1ms, and the inter-cycle
overhead is τc = 43ms. We compare our solutions with
two basic strategies: the basic tag identification (BI) and
the separate counting (SC) (explained in Section V). All
results are the averaged results of 500 independent trials.

9.1 Evaluate the Actual Variance in Ensemble Sam-
pling

In order to verify the correctness of the derivation in
the variance of the SE estimator, i.e., δi in Eq. (7), we
conduct simulations and evaluate the actual variances
in ensemble sampling, thus quantifying the tightness
between the derived value of δi and the measured value
in simulation studies. We conduct ensemble sampling on
5500 tags for 200 cycles. For each query cycle, the frame
size f is set to 5500. We look into a category Ci with tag
size ni = 100. In Fig.4(a), we plot the estimated value
of ni in each cycle, while the expected values of ni − σi

and ni+σi are respectively illustrated in the red line and
the green line. We observe that the estimated value n̂i

majorly vibrates between the interval (ni − σi, ni + σi).
In Fig.4(b), we further compare the measured value of δi
with the derived value, varying the tag size of category
Ci from 100 to 1000. As the value of ni increases, we
observe that the gap between the two values are very
tight, which infers that the derived value of δi used
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in those performance guarantees can well depict the
measured value in a statistical manner.
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Fig. 4. Evaluate the actual variance in ensemble sampling

9.2 The Performance in Basic Histogram Collection

We compare the ensemble sampling with one group (ES)
and the ensemble sampling with optimized grouping
(ES-g) with the basic strategies. In Fig.5(a), we compare
the overall scanning time under three various scenarios.
In scenario 1 we set the number of categories m = 50,
the average tag size µ = 50 and its standard devia-
tion σ = 30. We observe that the ES strategy has the
longest scanning time while the others have fairly small
values in scanning time. This is because the variance
σ is relatively large as compared to the tag size. The
minor categories become the bottleneck in regard to
the estimation performance, thus greatly increasing the
scanning time. In scenario 2 we set m = 100, µ = 50 and
σ = 30. As the number of categories is increased, the
scanning time of the separate counting (SC) is apparently
increased due to the large inter-cycle overhead and the
constant initial frame size in each category. Still, the ES
strategy has the longest scanning time. In Scenario 3,
we set m = 100, µ = 500 and σ = 100, we observe
that the basic identification (BI) has the longest scanning
time as the current overall tag size is rather large. The
ES strategy now requires a fairly short scanning time
as the variance σ is relatively small as compared to
µ. Note that in all cases, our optimized solution ES-
g always achieves the best performance in terms of
scanning time. In Fig.5(b), we compare the scanning time
with various values of ǫ in the accuracy constraint. We
set m = 100, µ = 500, σ = 100. As the value of ǫ is
increasing, the scanning time of all solutions, except the
BI strategy, is decreasing. Among the four strategies, the

ES-g solution always achieves the best performance in
scanning time.

In Fig.5(c), we evaluate the impact of the inter-cycle
overhead in the strategies. We set m = 150, µ = 50, σ =
10. It is known that, by reducing the transmitted bits in
singleton slots, the average slot duration can be further
reduced, while the inter-cycle overhead is not easily
greatly reduced due to the necessity to calm down the
activated tags. So we test the overall scanning time with
various ratios of τc/τs. We observe that the BI strategy
and the ES strategy have a fairly stable scanning time,
as the number of query cycles is relatively small. The
separate counting (SC) has a relatively short scanning
time when τc/τs is less than 50. As the value of τc/τs
increases, its scanning time linearly increases and sur-
passes the other strategies. The ES-g strategy always has
the shortest scanning time. In Fig.5(d), we evaluate the
scalability of the proposed algorithms while varying the
overall number of categories. We set µ = 100, σ = 20.
Note that while the number of categories increases,
the scanning time of each solution grows in a linear
approach. Still, the ES-g solution always achieves the
minimum scanning time.

9.3 The Performance in Advanced Histogram Col-
lection

We evaluate the performance of our iceberg query al-
gorithm. We use ES to denote our optimized solution
based on ensemble sampling. In Fig.6(a) we compare the
scanning time with various values of threshold ratio θ.
We set m = 200, µ = 200, σ = 100, the exact threshold is
set to t = θ ·µ. We observe that as the threshold increases,
the scanning time of the SC strategy and the ES strategy
is continuously decreasing, while the scanning time for
the BI strategy is not affected. In Fig.6(b) we compare
the scanning time with various standard deviation σ.
We set m = 200, µ = 200, and the threshold ratio
θ = 1.5. We observe that as the value of σ increases,
the scanning time of the SC strategy and the ES strategy
grows slowly. The reason is as follows: as the standard
deviation σ increases, the number of qualified categories
is increasing, thus more slots are essential to verify the
categories for accuracy; besides, fewer categories have
tag sizes close to the threshold, thus fewer slots are
required to verify the population constraint. In all, the
overall scanning time increases rather slowly.

We evaluate the performance of our PT-Topk algo-
rithm. In Fig.6(c), we compare the scanning time with
various values of k. We observe that as k increases from
20 to 120, the scanning time of the ES strategy increases
from 1.5×105 to 2.5×105, and then decreases to 2×105.
The reason is that, as the value of k increases, the exact
threshold is reduced, and more categories are identified
as qualified, thus more slots are essential to verify the
categories for accuracy. Then, as the value of k further
increases, more qualified categories with large tag sizes
can be quickly wiped out in the threshold estimation,
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Fig. 5. Simulation results in basic histogram collection: (a)The overall scanning time in various scenarios;(b)The
overall scanning time with various ǫ;(c)The overall scanning time with various τc/τs;(d)The scanning time with various
value of m.
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Fig. 6. Simulation results in advanced histogram collection: (a)The scanning time with various threshold θ;(b)The
scanning time with various variance σ;(c)The scanning time with various values of k;(d)The variation of g with the
scanning time.

and thus fewer slots are required in the threshold esti-
mation, and the overall scanning time is decreased. In
Fig.6(d), we evaluate the convergence for estimating the
threshold t. We set m = 200, µ = 500, σ = 200, k = 20.
We observe that the width of the range [t̃, t̄], i.e., g, is
continuously decreasing as the scanning time increases.
When the scanning time reaches 1.8 × 105, the value of
g is below the required threshold in the dash line, then
the iteration ends.

10 CONCLUSION

Collecting histograms over RFID tags is an essential
premise for effective aggregate queries and analysis in
large-scale RFID-based applications. We believe this is
the first paper considering the problem of collecting
histograms over RFID tags. Based on the ensemble sam-
pling method, we respectively propose effective solu-
tions for the basic histogram collection, iceberg query
problem, and top-k query problem. Simulation results
show that our solution achieves a much better perfor-
mance than others.
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