Technical Report WM-CS-2006-07

College of
William & Mary
Department of Computer Science

WM-CS-2006-07

Efficient Implementation of Public Key Cryptosystems
on MICAz and TelosB Motes

Haodong Wang and Qun Li

Oct. 30, 2006

Technical Report WM-CS-2006-07

Efficient Implementation of Public Key Cryptosystems on MIC
and TelosB Motes

Haodong Wang and Qun Li
Department of Computer Science
College of William and Mary
Williamsburg, VA, 23187
E-mail:{wanghd, liqu} @cs.wm.edu

Abstract

Even though symmetric-key scheme, which has been invéstigextensively for sensor networks,
can fulfill many security requirements, public-key cryptaghy is more flexible and simple rendering
a clean interface for the security component. Against thaufar belief that public key scheme is not
practical for sensor networks, this technical report dbssrthe RSA and ECC public-key cryptosystem
implementation in the real world sensor devices. We ddtailmnplementation of 1024-bit RSA and 160-
bit ECC cryptosystems on MICAz sensor motes, the latestymroaf Crossbow in the MICA family. We
evaluate the performance of our implementation by runriegublic key and the private key operations
in RSA cryptosystem, and signature generation and veiiicat ECC cryptosystem. We have achieved
the performance of 0.79s for RSA public key operation an®d4 f8r ECC signature generation. For
comparison, we show our new ECC implementation on TelosBeawith a signature time 1.55s and a
verification time 2.25s. We also explain the reasons thatsBmote can not perform better than MICAz
even though it is equipped with a 16-bit CPU. We believe thatéxperiment results are encouraging,
and RSA and ECC are getting closer to be practially implestbint the sensor motes in the real world.

1 Introduction

Public-key cryptography has been used extensively in dateyption, digital signature, user authentication,
etc. Compared with the popular symmetric key based schenogeged for sensor networks, public-key
cryptography provides a more flexible and simple interfampiiring no complicated key pre-distribution,
no pair-wise key sharing negotiation. It is a popular belefvever, in sensor network research community
that public-key cryptography, such as RSA and Elliptic @@ryptography (ECC), is not practical because
the required computational intensity is not suitable fansses with limited computation capability and
extremely constrained memory space. The nascent exgloraéis already disabused of this misconception.
The recent progress in 1024-bit RSA implementation on AtATehegal28, a CPU of 8Hz and 8 bits[4],
shows that a public key operation takes less than one seedrnidh proves public-key cryptography is
feasible for sensor network security related applications

This technical report describes our implementation of 1B2ARSA cryptosystem and 160-bit ECC
cryptosystem on MICAz, a latest sensor platform of MICA finfiom Crossbow. Itis of the size of two AA
batteries integrating USB programming capability, an IEHBR.15.4 radio with integrated antenna, a low-
power 8-bit MCU. Its detail features include: IEEE 802.18igBee compliant RF transceiver, 2.4 to 2.4835
GHz (a globally compatible ISM band), 250 kbps data ratet,8blHz Amtel ATmega microcontroller with

Technical Report WM-CS-2006-07

4KB RAM, low current consumption, 128KB programmable ROMdaptional external memory for data
collection.

The fundamental operations in RSA and ECC cryptosystemisuaye integer arithmetics over the finite
field. To efficiently perform RSA and ECC exponentiations be low-power CPU of sensor motes, it is
essential to optimize the expensive large integer opemstitn particular, multiplication and reduction are
most dominant operations in both RSA and ECC. Since most Geldsare consumed in these two integer
operations, the efficiency of these two integer operationlutes directly determines the performance of
the encryption and decryption. The low-power sensor mamtaoller has very limited number of registers
(only 32 8-bit registers in ATmega 128). The large integegrapds cannot be loaded into the registers at
one time, so that the latency of memory accesses have to thégraiperand loading and storing between
registers and memory. The implementation challenge isdoae the number of such memory accesses. In
this technical report, we adopt the hybrid multiplicatioethod [5], which is a very effective way to reduce
the number of memory accesses. To precisely control theteggaind memory operations, we implement
this module in assembly language. Our experiments denategtrat the hybrid multiplication is at least 7
times faster than the conventional multi-precision miittggion programmed in C language. The modular
reduction can also be optimized under certain conditionst example, when the modulus is a pseudo-
Mersenne number, the reduction can be greatly optimizedatithished more than 10 times faster than the
classic long division method.

In addition to the optimizations of the big integer opemtidRSA and ECC can be further optimized.
Montgomery reduction can be applied to efficiently calauldte RSA exponentiation. Chinese Remainder
Theorem (CRT) can be used to reduce the exponent sizes agd gpehe RSA exponentiation for up to 4
times. In ECC, we apply a mixed coordinate, the combinatfoiffine coordinate and Jacobian coordinate,
to do ECC exponentiation, so that some expensive operat@mmdbe avoided (e.g., inversion) or reduced
(e.g., multiplication and squaring).

Our experiments show that both RSA and ECC can efficientlyoruMICAz motes. For RSA, it takes
0.79s to do a public key operation, and 21.5s to perform af&ikey operation. For ECC, it takes 1.35s
to generate a signature, and 1.96s to perform a signatuifecagon. It is possible to further reduce the
computation time by using extended instruction set pragpasd5]. Our experiment results demonstrate
that most operations in RSA and ECC are feasible for sendwionle security applications. It also can be
inferred by the results that the combination of RSA and EC£tha potential to yield a better performance
than that the either single cryptosystem can achieve.

The rest of the technical report is organized as followsti8e@ briefly introduces RSA and ECC public
key schemes. Section 3 gives detail description of seveost important optimizations in large integer
operation, as well as some specific optimizations desigoeR$A and ECC implementations exclusively.
Section 4 evaluates the performance of our implementati®astion 5 concludes the technical report.

2 RSA and ECC Background

In this section, we give brief introduction of RSA and ECC liulxey cryptography. RSA is the most
popular security scheme and widely used in security apgmica. Recently, ECC receives more attentions
due to its nice security capability with the much smallensigre size.

Technical Report WM-CS-2006-07

2.1 RSA Introduction

In RSA cryptography, a user, say Alice, has two keys: a plaic(e) and a private keyd). Alice publishes
her public key and keeps private key in secret. When Bob wargend a messageto Alice, and does not
want any other to know the message contents, he just enarypysusing Alice’s public key. Without the
private key, it is computationally infeasible for othersdecrypt the ciphertext. After receiving the encypted
message from Bob, Alice uses her private key to decrypt thesage.

The security of RSA scheme is based on the difficulty to faattarge integerr(). Here we briefly go
over the key generation procedure and encryption/decrypti RSA. Alice needs to take following steps to
get her public key and private key.

¢ Pick two random large prime numbprandq, so thatp # q;

e Computen= pxq;

e Compute the totientp(n) = (p—1)(q—1);

e Choose an integaras the public key so thatd e < ¢(n), andeis co-prime tog(n);
e Compute the private key = e~ (mod@(n)).

To encrypt a messagm, Bob computes = m® and sends cipher tegto Alice. The decryption for Alice
is to raise the value of her private key to the power of theaifgixtc, so thatcd = (mf)d = m™ = m (mod
n). The decryption procedure works due to following reas@ecause x d =1 (mod(p—1)(q—1)), we
haveex d =1 (mod(p—1)) andex d = 1 (mod(q— 1)). Applying Fermat’s little theorem, we getm® =m
(mod p) andm®™ = m (modq). Applying Chinese Remainder Theorem (CRT), we havem™ = m (modn).

In practice, RSA must be combined with certain padding seéh&mdefend against security attacks,
such as Adaptive Chosen Cipher Text attack. The popularipgdghemes include Optimal Asymmetric
Encryption Padding (OAEP) and Probabilistic Signatureegoh for RSA (RSA-PSS). For the simplicity,
we do not cover the padding scheme implementation in thimieal report.

2.2 ECC Introduction

In this section, we briefly give a background introductionattelliptic curve cryptography, and correspond-
ing elliptic curve Digital Signature Algorithm.

2.2.1 Elliptic Curve Cryptography

In recent years, ECC has attracted much attention as thatgeslutions for wireless networks due to the
small key size and low computational overhead. For exandj@ie;bit ECC offers the comparable security
to 1024-bit RSA. An elliptic curve over a finite fieldF (a Galois Field of ordeq) is composed of a finite
group of points X;,y;), where integer coordinateg y; satisfy the long Weierstrass form:

Y2+ agxy + agy = X° + apxX® + aux + as, 1)

and the coefficients; are elements itGF(qg). Since the fieldSF(q) (g is a prime) is generally used in
cryptographic applications, (1) can be simplified to:

v =x3+a+b, 2)

4

Technical Report WM-CS-2006-07

wherea,b € GF(q).

The elliptic curve points form an additive abelian groupttsat the addition of any two points is a point
in the group. Given two point® and Q, with the coordinates$xs,yi), (X2,Y2), respectively, the addition
results in a poinR on the curve with coordinates, y3), wherexs andys satisfy

(X1, y1) + (%2,¥2) = (X3,¥3), (3)
such that
Xg=L2+L+X +X+a, 4)
y3 = L(X1+X3) + X3+ Y1, (5)
where
L= (yl+y2)/(x1+x2) (6)

If x1 =Xz (notexy + %o is 0), thenR is defined as a point at infinity). O is an identity element of the
group. Each element in the group has an inverse that satidfies-P) = O, and(—P) + P = O. Also,
P+O=0+P=P.If P=Q, thenR=P+P = 2P, and coordinatéxs, ys) is derived by

x3=L2+L+a, (7)
ya = X2+ (L + 1)xs, (8)

where
L:x1+y1/x1. (9)

The ECC relies on the difficulty of the Elliptic Curve Disadtogarithm Problem, that is, given points
P andQ in the group, it is hard to find a numbkisuch thaQ = kP.
2.2.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECC signature is based on Digital Signature Algorithm. Wsuaee Alice sends a message to Bob. To
convince Bob that the message does come from Alice, Alicels\é@ apply a digital signature for the
message so that Bob can verify it by using Alice’s public kieytially, Alice and Bob have to agree on a
particular curve with base poiftover the fieldGF (p), and the order oP is . When Alice sends a message
to Bob, she attaches a digital signat(res) generated by following steps (suppose Alice has a privatecke
and a public keyQ = xP).

1. Choose a random keyin [1,q— 1];

2. ComputekP, yield a point with coordinatéx;,y;). Letr = x; (modq). Checkr, go back to the first
step if the result is zero;

3. Computek—! (modaq);

4. Computes = k~Y(Hash(m) +xr), whereHash is a one-way hash function. Again, chegkgo back
to the first step i = 0;

5. (r,s) is the digital signature.

To verify the messagm and the signature, Bob needs to do following steps.

Technical Report WM-CS-2006-07

1. Computew = s~! modq andH (m);

2. Computay; = H(m)-wmodqgandu; =r-w modg;
3. Computau; P+ upQ, get the result pointx, y2);

4. The signature is verified i =r.

Finally, Bob compares the value xf andr, and accepts the message onlyitquals ta.

3 Implementation

We implement RSA and ECC cryptosystems on MICAz motes, pesvbly ATmegal28 microcontroller.
The ATmegal28 incorporates an 8MHz, 8-bit RISC CPU, 128k$programmable flash memory (ROM)
and 4K bytes SRAM. This architecture provides 133 powenfigtructions and 32 8 general purpose
registers. Besides, ATmegal28 also features an on-chifipfier

Given the limited processor resources, we concentrate ofiasir efforts on computation optimization.
The fundamental RSA operation is large integer exponéntiadver a finite fieldGF (n), wheren is the
product of two large prime numbgrandqg. The computation of the exponentiation can be decomposad to
series of squaring, multiplications and reductions. Intolt we also heed an inversion module to calculate
the public key and private key pair given two prime numbg@ndg. In this section, we first present our
optimization in large integer operations. Based on that,describe our further optimization by using
Montgomery reduction and Chinese Remainder Theorem (C&3ighificantly improve the computation
efficiency. The fundamental ECC operation is large integénraetics over either prime number finite field
GF (p) or binary polynomial fieldsF (2™) (wheremis a prime). Because the two heavily used operations:
multiplication and modular reduction, can be more effedjivoptimized if pseudo-Mersenne primes are
picked for elliptic curves compared with those of binarydif#], we limit our discussion in prime number
finite field GF (p) in this paper. Without further clarification, our discussif ECC implementation is based
on SECG recommended 160-bit elliptic curve: secp160rl.

In this section, we first describe the optimized large integgeration modules, which can be used for
both RSA and ECC cryptosystems. Then we focus on the protetated optimizations specifically for
RSA and ECC, respectively.

3.1 Large Integer Operations

We implement a suite of large integer arithmetic operatiomsluding addition, subtraction, shift, multi-
plication, division and modular reduction. Due to the spiaoé, we only present three of most important
functions: multiplication/squaring, modular reductiamddnversion.

3.1.1 Multiplication and Squaring

The multiplication (or squaring) is the key component in Ri¥plementation because the exponentiation
is basically computed by multiplications and squaring. Vigehcompared three different multiplication
implementations [5, 9, 8], and finally decided to use Hybridlfiplication proposed in [5]. To ease our ex-
planation, we use three large integers as the examplesiféoltmwing discussionA(an_1,an—2,--- ,a1,80),
B(bn—1,bn—2,--+,b1,bp), andC(nzn_1,Con—2,- - ,C€1,C0), WwhereC = AxB. A andB both have length of
words, each word hdsbit size. The produdf has 2 words.

Technical Report WM-CS-2006-07

The Hybrid multiplication is the combination of Row-wise fiplication and Column-wise multipli-
cation. The Row-wise method fixes the multipligr (0 < i < n), and multiplies it with every word of
multiplicand A. Partial results are storednn- 1 accumulator registers. Every time one row is finished, the
last accumulator register can be stored to memory as the@ffimal results. On average, one memory load
is required for eacl x k multiplication. When integer size is increased, the required number registers
increase linearly in Row-wise method. For 1024-bit RSA,@dgl multiplication is between two 128-byte
large integers. Given only 32 registers in ATmegal28, Rasewnultiplication can not be directly applied.

The Column-wise method, on the other side, computes théabpeatults ofa; « b; (wherei+ j = 1)
for columnl. After one column finishes, the last word of accumulator stegs is stored as the part of
final result. The Column-wise method only requires threeiamdator registers and two more for operands.
However, two memory load operations are required for éack multiplication.

The Hybrid method takes advantages of Row-wise and Coluisa-girategies. To optimize the mem-
ory operation, the Hybrid method merges a numioRrof columns together, and then conducts Row-wise
multiplication in each merged column. Whdrequals to 1, the Hybrid method becomes the Column-wise
multiplication. Whend equals tan, then it becomes Row-wise method. A largkleads to fewer memory
operations, but requires more registers. A smafowever, requires more memory operations and consumes
more CPU cycles. Balancing the advantages and disadvantageimplement the Hybrid multiplication
with column widthd = 4, which requires 9 accumulator registers, 5 operand Brgis6é pointer registers
(point to A, B and C), and others for temporary storage ang mmtrol.

We implement the Hybrid multiplication in assembly langeadror the comparison purpose, we also
implement a standard multi-precision multiplication piang in C language. Our experiments show the
standard C program needs 128s to finish the multiplication between two 128-byte integevkijle it only
takes 176ms for our Hybrid multiplication to do the same computation,igvhis more than 7 times faster.

The squaring is a special case of the multiplication, whiak the same the multiplicand and the mul-
tiplier. Given an m-bit large integek = (A1,Ao), whereA;, Ag are two halvesA? = AjA; x 2™+ 2A1Ag X
2W2 4 AgAg. Therefore, we can take advantage of the fact ha# only needs to be calculated once.
Compared with the multiplication, the optimized squarireg ceduce the computational complexity up to
25%.

3.1.2 Modular Division

Modular division is another expensive operation in ECC. ffing coordinate, each ECC operation of point
addition and doubling requires a modular inversion. Thegat inversion is also required for ECC digital
signature generation and verification. In our implemeatative adopt the Great Divide scheme proposed
in [12]. We briefly explain the algorithm in the followings.

Given an denominatotr and numeratoy, we want to compute the modular divisicﬁmverGF(p). This
is equivalent to find, so that

= z(mod q) (10)

To findr efficiently, the algorithm maintains following two invanrelationship:

Axy=U xX, andBxy=V xX, (12)

whereA, B,U,andV are four auxiliary variables and initialized with values,y, and 0, respectively. Note
the two relationship is true with the initial values. Thealithm intuition is to reduce the value @fto
1, so that the first relationship in (11) will becorie= U x x, andU will be the result. The procedure is
conducted in following way. WheA is even, we can divid& by 2. CorrespondinglyJ has to be divided

7

Technical Report WM-CS-2006-07

by 2 to keep the relation true. U is not even at that time, we can make it become even by addlingh
the modulus. WheA is odd, we use the 2nd relationship to help to reddic B is even, we keep dividing
B by 2 similarly to makeB odd. Then we add the two relation together and the dividedhaltr value by
2 at the both sides. By repeating this process, it is guagdnieat either value oA or B reduces one bit
in one iteration. The procedure stops whkere= B = 1, the first equation becomgs= U xx. The value
of U is our final result. If we initializdd with 1, this routine can be used to calculate an inversior. of
This algorithm works wherx andq are relatively prime. The Great Divide finishes division wvdrsion
operation in 2log(x) — 1) steps. Great Divide is much faster than the long divisionhogtbecause Great
Divide only needs addition operations in each iterationjeMong division method requires multiplications.
Unfortunately, Great Divide cannot be used in RSA to cateulae public key and private key. The reason
is that Great Divide only works when the modulus is an odd renniut the totientp(n) = (p—1)(q—1)

in RSA is always even. Therefore, we use Extended Euclidiegmitam instead.

3.1.3 Modular Reduction

The modular reduction operation is another important metelcause each multiplication or squaring must
be followed by a reduction operation. The classic reductimthod is using long division. Although the
long division method is a general method for calculatingtfeelular reduction, it is also the slowest method.
In ECC cryptosystem, the modular reduction operation igmgsitant as modular multiplication. Each
multiplication must be followed by a reduction operatioincg we choose to use pseudo-Mersenne primes
as specified in NIST/SECG curves, the modular reduction eayptimized by conducting a fixed number of
integer additions. Because the optimization is curve $igegve will explain in more details in the section
of ECC operation.

Now, we discuss the modular reductions in RSA and ECC digitadature generation and verification.
In most cases, the modulus is not a pseudo-Mersenne primeptimization cannot be applied for those
reduction calculation. We choose the classic long divismathod to implement this operation. Fortunately,
the number of this type of modular reduction is very limitétddoes not affect the overall performance
much. We briefly describe the long division method as in Allfpon 1. The long division producer reduces
the remainder ok by one byte in each iteration.

3.1.4 Inversion

The multiplicative inversion is required to calculate th&&Rpublic key and private key pair. A RSA
public keye and a private keyl should satisfy the conditione x d = 1 mod@(n), where totientp(n) =
(p—1)(g—1). Given a public keye, the corresponding private key is the multiplicative irsien of e.
Since bothp andq are prime numbersyn) must be even. Thus, the efficient Great Divide scheme [12] can
not be used because Great Divide requires the modulo to bddanumber. We use the classic Extended
Euclidean Algorithm to compute the private key. The aldoritis described as below.

3.2 RSA Operations

With the basic large integer operation modules implementediconducted the first performance test for
RSA public key operation (17-bit public key) and private kgeration (1024-bit private key). Surprisingly,
both operations are very slow. It takes 4.6s to finish theipway operation and 389s to do a private key
operation.

Technical Report WM-CS-2006-07

Algorithm 1 Reduction by using long division.
1. Input: x,n;
2: Output:r = xmodn;
3: whilex>ndo
4: Align the most significant byte (MSB) of modulusto the MSB ofx, the lower bytes of can be
filled with zeros;
5. Starting with the MSB o, divide the first two MSBs ok by the MSB of modulus, and get the
quotient;
: Multiply the quotient with the modulus and get a subproduct;
7. If the subproduct is greater than the remaindex (dver estimation), subtract the modulus from the
subproduct;
8: Then subtract the subproduct from the remaindeg; of
9: The procedure continues and goes back to step 2 if the MSReakthainder becomes zero;
10: If the MSB of the remainder is not zero (under estimationptsact the modulus from the remainder,
and then go back to step 2;
11: The procedure stops when the remainder is less than modulus
12: end while
13: returnx;

To learn the reason for the poor performance of our initigdlementation, we profiled the every oper-
ation in RSA exponentiation. We found that the modular rédadollowing each multiplication consumes
0.13s on the average. For 17-bit public key, there are yo1allsuch reductions, which spend 2.2s in total,
almost 50% of the execution time of the public key operation.

In this section, we explore two optimization schemes whiahta reduce the costs of the reduction and
multiplication operations.

3.2.1 Montgomery Reduction

Montgomery reduction [10] is a method to efficiently perfoitme modular reduction without doing expen-
sive division. For example, suppose we want to comfuteodulo N, the algorithm says it is easy to
computeTR™! (mod N) (without any division), wher® is a radix R > N) and co-prime td\. We do not
validate this algorithm in this paper. Interested readey refer to [10] for details. It seems this algorithm
does not save anything because an extra step to canRett(modN) to T moduloN is required. However,
this method is useful if a number of computations are needethé same modulud. That is the reason
that Montgomery reduction is widely used to reduce the rédnccost for the exponentiation operation in
RSA. The efficient exponentiation by using Montgomery rditucis described as below. The idea is to
convert integeb to anN-residue so that?« 2¢ (modn) can be quickly computed without doing any reduc-
tion. As the result, we only need to do two reductions for tkgomentiation. The first one is to convért
to N-residue before the Montgomery reduction, the second otteasnvert the exponentiation result from
N-residue back to integer. Having implemented the Montggnmeduction module, the performance of
RSA public key and private key operations have been imprsiguficantly to 1.2s and 82.2s, respectively.

Technical Report WM-CS-2006-07

Algorithm 2 Extended Euclidean Algorithm
1: Input: e, @(n)
Output:d
X—0,lagx 1
a—eb«—qn)
while bl =0do
g—a/b
r —amodb
a<—b
b«r
temp « lastx
X — lastx+ q*x mod @(n)
lastx < temp
: end while
. returnlastx

N ol e =
AW NN RO

Algorithm 3 An efficient exponentiation by using Montgomery reduction.
1. Input: b,a,n

2: Output:c = b? (modn)
3: c— b- 2% (modn), (2 > n)
4:t—cC
5: for fromi=msb(a) toi =0 do
6: C«—c2-27X(modn)
7. if i’s bit of ais setthen
8: c«—cxt-27%(modn)
9: endif

10: end for

11: ¢+ c* 27X (modn)

12: returnc

3.2.2 Chinese Remainder Theorem (CRT)

The complexity of the exponentiation in RSA largely depeoiishe the size of modulusand the exponent
(either public key or private key). Chinese Remainder Teeo(CRT) can be used to effectively reduce
the computational complexity of exponentiation by redgdine size of botlm and the exponent. CRT can
be found in any number theorem textbook, here we only givenplsi example to serve for this paper. Let
numberny, n; be positive integers which are co-prime to each other, GED(ny,ny) = 1. Letn=ng xnp
andxy, %o be integers. CRT states that if there are congruereex; (modny), X = X (modny), then there

is only one solutiorx between 0 and — 1, inclusively. The value of can be determined by

X=Xy *l1*%S1+ X xr2xS(mod n) (12)

wherer; = n—”l S = ri‘1 (modn;) for i = 1,2. Based on the above simple version of CRT, we describe our
RSA optimization (adapted from [3]) by using CRT. Note stepri8l 4 can be precomputed. Th above
algorithm reduces the size afandd in half. Considerm andd are both 1024-bit integers, the computation
of a’ is reduced to 2 modular exponentiation with both base andreqt size of 512 bits. Thus, the

10

Technical Report WM-CS-2006-07

Algorithm 4 Calculatea® (modn) by CRT

1: Input: a,d, n, p,q (n= px*Q)
Output:m= a“ (modn)
Rp < gP~ (modn), Ry < p%~! (modn)
Dp«—d(modp—1),Dq«d(modg—1)
Ap —a(modp), Aq < a(modq)
My — Agp (mod p), Mg — qu (modq)
S« Mp xRy (modn), §; « Mg * Ry (modn)
m=§,+ & (modn)

returnm

overall computational complexity is reduced to roughly @fahe original exponentiation. The CRT can

also be applied for public key operation, but the computatiacomplexity can only be reduced by 50%.

The reason is that public key size is normally very small (k74rbour experiment), so the exponent size
cannot be reduced in this case. With CRT implemented, thiécokdy operation has been reduce to 0.79s.
Correspondingly, the private key operation is reduced t8<Japproximately 1/4 of the time before doing
CRT.

3.3 ECC Operations

In this section, we present our optimization for ECC operatiWe first discuss ECC point addition and
doubling. We then introduce an optimized modular reducfmmcurve secpl60rl. Finally, we explain
several different optimizations for point multiplication

3.3.1 ECC addition and doubling

The fundamental ECC operation is point addition and poinbtiag. The point multiplication can be de-
composed to a series of addition and doubling operationdigesissed in previous section, point addition
and doubling in Affine coordinate require integer inversiaich is considered much slower than integer
multiplication. Coheret al. showed that these operations in Projective coordinate arwbian coordinate
yield better performance [1]. They further found additiod @oubling in mixed coordinate, with the combi-
nation of Modified Jacobian coordinate and Affine coordinkad to the best performance [2]. Consider an
ECC point in Modified Jacobian coordinaf®,(X1,Y:1,Z1,aZ7), and a point in Affine coordinatd®,(xz,Y2),
their addition results in the third poifg = (Xg,Yg,Zg,aZ§) in Modified Jacobian coordinate. The result is
given by following equations.

X3 = —H3—2X;H? +r2,

Yz = —YiH3 +r(XsH? — X3),
Z3 - ZlH7
azZ3 = az3,

(13)

11

Technical Report WM-CS-2006-07

whereH = xzzf — Xy, andr = yng —Y1. The result of point doubling foP; = 2P; is given by following
formula.

X3=T,

Y3=M(S-T)—-U, 14
Z3=2Y17Zy,

aZ3 = 2U(azZ?)

To estimate the computational complexity, we only consldege integer multiplication and squaring op-
erations, and ignore those addition and subtraction simeg are much faster. According to Eg.13 and
Eq.14, point addition requires 9 large integer multipiieas and 5 squaring, and point doubling requires 4
multiplications and 5 squaring.

The basic point operations can be further optimized for i§ipegliptic curves. In our case, the curve
parameten of secp160rl equals to -3. For point doubliican be further reduced to

M = 3X3 — 32} = 3(Xy + Z2) (X1 — Z2). (15)

As the result, point doubling operation reduces to 4 mudigtions and 4 squaring. ActuallgZ3 does not
have to be calculated in point addition, so the computatioomplexity reduces to 8 multiplications and 3
squaring. Our observation supports the choice of mixeddinate, the performance of point multiplication
improves around 6% compared with our previous implemeoriati Jacobian coordinate.

3.3.2 Modular Reduction on ECC Curve

Recall that modular reduction has to be applied after exagel integer multiplication, it is also a perfor-
mance critical operation. By taking advantage of pseudosbtene primes specified in SECG curves, the
complexity of the modular reduction operation can be reduocea negligible amount. In this section, we
use curve secpl60rl as the example to show how to do effigidattion.
Suppose we use the 8-bit architecture, the multiplicagsuilt of two 160-bit integers can be represented
by
C(cz9," -+ ,C20,C19, - ,C1,Co),

wherec; (0 <i < 39) is a word with 8 bits, andsg is the most significant word. The 40-word integer can
also be written as:

C = (Ca9, -+ ,Ca0) *2'%% 4 (c19,- -+ , €1, C0) (16)

Given the field of curve secp160rl= 2160 — 231 _ 1 we can have®%= 231+ 1. Therefore,

C = (Cag, " ,C20) * (2" + 1) + (Cyg,-++ ,C1,Co)

31 an
= (C39," -+ ,C20) *¥2° 4 (C39,- - ,C20) + (C19," - ,C1,Co)
Since each word has 8 bits, the first term in the result of Eqahrbe further reduced to
(Ca9, -+ ,C0) * 231 = (Ca9, Ca8, Ca7) * 2167 + C3p# 219+ (35, - - - , Cp) # 231 (18)

= (C39, Csg, C37) * 238 + (C3g, Cag, C37) * 27 -+ (d7d6 cee do) * 231 -+ (d7d5 oo do) + (do) * 2159

where(dy,---,d1,dy) are 8 bits ofczs. Now, all terms in Eq.17 and 18 have at most 159 bit length, the
reduction result is simply the addition of these terms.

12

Technical Report WM-CS-2006-07

3.3.3 Further Optimization

Examining the computational complexity, we notice thanp@iddition is more expensive than point dou-
bling. As we have discussed, point multiplication can beodggosed to a series of point addition and
doubling, we would rather use more point doubling than paddition to compute the point multiplication.
Morain et al. found Non-adjacent forms (NAFs) is an effective way to aehidne lightest Hamming weight
for scalark in point multiplicationk P, which results to use the least number of point additiongtoutate
kP [11]. For example, 255P, or (1111111) « P, requires 7 point additions. But if we transform it to
(10000000- 1) * P, which is 256« P — P, only one addition is required. Note the point subtractian be
replaced by point addition because the inverse of an Affimet po= (x,y) is —P = (x,—y). We implement
NAFs technique in random point multiplication. Accordirggdur experiments, point multiplication with
NAFs contributes at least 5% performance improvement.

Recall in the digital signature procedure in ECDSA, componas generated by a point multiplication
with the fixed base point of a selected elliptic curve. ToHartreduce the execution time, we precompute
some partial results and apply sliding window method [7]deex] up fixed point multiplication. Different
from NAFs, sliding window scheme groups scalkainto a number ofs — bit bit-clusters, whers is also
called window size. Sd can be represented By, x 257 + k1 % 25™ 1 4 ... 4 kg, wherek; is a bit-cluster.

If we precompute the point multiplication with every podeilvalue ofk;, the number of point addition
is bounded by[l—g()} — 1. Note the sliding window method does not reduce the numbpoiat doubling
operations. Obviously, this scheme requires extra menpmagesfor storing partial results. In practice, we
select window siza= 4. Correspondingly, there are 16 entries in the partiallrézble. Our experiments
show sliding window method is more effective than NAFs foe@iypoint multiplication, the performance of
sliding window method is more than 10% better than that of KIAF

Our initial experimental results indicated that it took daiamount of time to perform an ECDSA
verification than to do an ECDSA signature: signature is 4,.3thile verification is 2.85s. The reason
is that the verification requires two ECC point multiplicets (while the signature only needs one point
multiplication); the verifier has to perforom P+ u,Q as shown in Section 2.2.2. To speed up the verification
time, we adopt Shamir’s trick [6] to do multiple point muligation simultaneously. The idea of Shamir's
trick is similar to the sliding window method discussed poegly. Givent-bit u; andu,, we use the window
sizew and precompute the valu#®+ jQ for 0 < i, j < 2. At each of|t/w] steps, we performn doubling
and the (precomputed) additions determined by the windowecds. The larger the window size)(is, the
more memory is required for storing the precomputed vallrepractice, we choose the single bit window
size,w = 1. Therefore, only the value &+ Q needs to be precomputed and stored. As the result, the
performance of ECDSA verification has been improved more 8@%6, from 2.85s to 1.96s. There is still
further improvement space if multi-bit window size is uskdt the trade-off is more memory overhead.

4 Experiments and Performance Evaluation

We have implemented the 1024-bit RSA and the 160-bit ECCrgggquimitive on MICAz motes, the latest
sensor motes of the MICA family from Crossbow. MICAz is poeerby ATmegal28 microcontroller.
ATmega incorporates an 8MHz, 8-bit RISC CPU, 128K bytes ftasmory (ROM) and 4K RAM. The RF
transceiver on MICAz is IEEE 802.15.4/ZigBee compliant aan have 250kbps data rate. Our experiments
show that the public key operation (17-bit public key) ordkds 0.79s and private key operation takes
21.5s. For the ECC operations, it takes 1.35s to generagmatsre and 1.96s to do a signature verification.
Considering that RSA verification normally happens at sesi&le, and expensive sighature generation is

13

Technical Report WM-CS-2006-07

done by powerful devices, such as PDAs, we conclude both RBIAELC are practical for small sensor
nodes.

4.1 RSA Evaluation

In this subsection, we describe the experimental perfoomarfi 1024-bit RSA on our MICAz motes. We
first present our experimental results and related issugsgdilne implementation. We then give the perfor-
mance analysis to quantify the computational complexity.

4.1.1 Experimental Results and Implementation Challenge

In the experiment, we randomly select two 512-bit prime nerdsp andg. For the public key operation,
we choose a small exponentef= 2164 1, which is commonly used value fer Our program uses 15,832
byte code size and 3,224 byte data size. Compared with RSkingmtation in [5], our code size is much
larger because of the assignments of precomputation vdiweyy initialization stage. Our implementation
spends 0.79s to finish a publick key operation and 21.5s toptivate key operation.

The biggest challenge to implement 1024-bit RSA on MICAzesds the memory constraint. MICAz
mote only has 4KB RAM, which is the total space can be used g dad program stack. Since the
operands in 1024-bit RSA are mostly 128 integers, the stibes) such as modular reduction, Extended
Euclidean Algorithm and Montgomery reduction, have to meseconsiderable amount of memory space
for storing temporary results. In addition, for optimizati purpose, a number of pre-computations are
required. In our program, 1152 bytes of memory are used @wmgf system parameters, suchpasg and
n, and precomputation results, suchRasRy in CRT. Therefore, attentions need to be paid not to waste any
memory usage. In practice, we have adopted two methodsédisavwnemory space. First, we declare more
global variables. The idea is to share the memory space adifiagent subroutines in each module. Note
this method is only good for those subroutines do not calh edlaer. Otherwise the intermediate data will
be lost. Second, we conduct every possible precomputatitiias some module may not be required during
the RSA operation in the real time. For example, the Exteritladlidean algorithm is only used to find the
public/private key pairs and to precompute the parametsed in Montgomery reduction. Actually we do
not need this module in the real time. This helps us a lot ber#wconsumes almost 1KB temporary space.

4.1.2 Performance Analysis

To analyze the computational complexity distribution agdne components in RSA exponentiation, we
profile the execution time of multiplication, squaring, anddular reduction modules, the three most time
consuming operations in RSA exponentiation. The profilifgrimation is shown in Table 1.

Our analysis assumes that all optimization schemes havedpggied in RSA exponentiation. To sim-
plify the presentation, we denote “MUL” as, large integerltiplication, and let “SQR” be large integer
squaring, and let “MOD” be large integer modular reductidrim/n” MOD means a MOD operation for a
m-byte integer over a modulus with n-bytes. For example/@2810D denotes a modular reduction of a
128 byte integer with a 64 byte modulus.

Let us consider an example of RSA operation to calcuNate C* (modn), wherex can be either public
key or private key. Following the CRT algorithm, we first dootMODs to calculate, andCy. Then, we
conduct two Montgomery reductions to dd{, andMq. Finally, two MULs, one MODs and one addition
are required to computel. Note the last two steps in CRT, which requires 2 MODs, caniropliied by
doing addition first and then only one MOD. Except the Montgoyireduction, both public key and private

14

Technical Report WM-CS-2006-07

Module Operand Sizes (bytes) Execution Time (ms)

MUL. 128 by 128 17.1
MUL. 64 by 64 4.48
SQR. 128 by 128 14.1
SQR. 64 by 64 3.87
MOD. 256/128 132
MOD. 192/128 74

MOD. 128/64 40

Table 1: Execution time profiles of some important modules.

key operation need to do two 128/64 MODs, two 22828 MULs, one 192/128 MODs operations, which
totally account for 2 40+ 2 x 17.1+ 74= 1882ms.

The difference of execution time between public key andgtekey operations is at exponentiation
part. Each Montgomery reduction requires twox684 MULSs, one 128-byte addition and possible another
128-byte subtraction. The cost of addition and subtractiam be ignored. Therefore, the execution time
of each Montgomery reduction is»24.48 = 8.96ms. Since we choose the public key to b¥ 2 1, there
are totally 16 64x 64 SQRs and 1 64 64 MUL in the exponentiation. According to Table 1, the total
time for SQRs and MUL with Montgomery reduction should be<1%87-+ 4.48+ 17 x 8.96 = 2187ms.

In addition, two 128/64 MODs are needed to convert operaetisden integer anil-residue before and
after each exponentiation. For CRT optimization, we neatbttwo 512-bit exponentiations. Therefore, the
exponentiation execution time for public key operation is 2187+ 2 x 40) = 597.4ms. Combined with
the rest operations in CRT, the public key operation consus8d4 -+ 1882 = 782 6ms, which matches our
test result very well.

For the private key operation, the number of SQRs is 511r(&f&T) in each reduced exponentiation.
The number of MULs depends on the Hamming weight of the expori@ur experiment shows the average
Hamming weight oD, andD, of our private key is 278. Hence, there are 277 MULs requineghich expo-
nentiation. Therefore, the execution time for each exptiaton is 511x 3.87+ 277 x 4.48+ 788x 8.96 =
10279ns. Since the exponentiation execution time in private keyaip@en overwhelmingly dominates other
operations, we only need to consider the execution time pdesntiations only. Two such exponentiations
consumes 20.5s, closely matching our experiment result 652

4.2 ECC Evaluation

In this subsection, we first present the performance of optdmentation. Then we give an overall analysis
to quantify the computation complexity.

4.2.1 The performance of ECC Implementation

In experiments, we measure execution time and code sizerahplementation. We choose secpl60rl
as the elliptic curve in all experiments. We use the embedystem timer (921.6kHz) to measure the
execution time of major operations in ECC, such as pointiplidation, point addition and point doubling.
We first test point multiplication operation, which is cornggd of point addition and doubling. We con-
sider two cases in point multiplication. One is multiplyilagge integer with a fixed point(base point), and
the other one is with a random point. Fixed point multiplicatallows for optimization by precomputing.

15

Technical Report WM-CS-2006-07

We apply sliding window technique[7] and set window size {d.d., precomputing 2— 1 = 15 points.
In experiments, we randomly generate 20 large integers ftiptyuwith the point and take the average
execution time as the result.

Since ECC point multiplication consists of addition and lding operations, we further evaluate these
two operations individually. We generate random pointslarge integers for tests. Since a single operation
takes very little time, to reduce the error of clock inaccyrave measure 100 operations every round and
take the average value.

Table 2 shows the experimental results of execution timatRddition and doubling of our implemen-
tation is superior to the other two implementations, whiesults in a faster point multiplication.

FPM | RPM | PAdd PDbl | SIGN | VERIFY
ECC| 1.24s| 1.35s| 6.33ms| 5.87ms| 1.35s 1.96s

Table 2: Execution Time of ECC point operations, includingdi point multiplication (FPM), random point
multiplication (RPM), point addition (PAdd) and point ddug (PDbl) and ECDSA signature generation
(SIGN), verification (VERIFY) time.

Next, we implement ECDSA signature scheme. The experirhesgalts are shown in Table 2. In fact,
when signing a message, one fixed point multiplication isdiminant operation. As we can see, the sig-
nature time is very close to the time consumed in fixed pointiptication. On the other hand, verification
of ECDSA consists of one fixed point multiplication and onedam point multiplication. Therefore, the
performance of the verification is roughly the summationmé fixed point multiplication and one random
point multiplication.

Table 3 presents the code size of the ECC implementation. ED library itself only uses 18.8KB
ROM and 1.36KB RAM. However, ECDSA consumes 56.4KB ROM artKB RAM. The reason is that
we add SHAL hash function and radio communication moduldhénECDSA package, where SHA-1,
occupying more than 30KB memory space, takes a large parfithre code size.

ECC library ECDSA
ROM | RAM | ROM | RAM
ECC | 18.8k | 1.36k | 56.4k | 1.7k

Table 3: ECC implementation code size.

4.2.2 A Performance Anatomy of ECC Point Multiplication on MICAz

Since ECC point multiplication dominates the computati@amnplexity in ECC signature and verification,
we are curious to learn the performance anatomy in ECC paittiptication.

This analysis is based on 160-bit ECC curves. We use sechH0the example. We also assume 4-
bit sliding window method is used, and partial results aecpmputed. The computational cost for each
window unit is 4 point doubling and 1 point addition. Given@il it private key, there are 41 window units.
Totally , 164 point doubling and 41 point additions are reggito finish 1 point multiplication.

Large (160-bit) integer multiplication, squaring and reiilon are the most expensive operations in point
doubling and point addition. To learn the amount of time dbaoted by the above three operations in a fix

16

Technical Report WM-CS-2006-07

point multiplication. We first individually test the perfoance of large integer multiplication, squaring and
reduction. Our results show that it taked ins, 0.44ms and 007ms to perform a 160« 160 multiplication,
squaring and reduction, respectively. Next, we count teentimber of each operation required in a point
multiplication. Since we adopt the mixed coordination (toenbination of Jacobian coordinate and Affine
coordinate), each point addition requires 8 large integeltiptications and 3 large integer squaring, and
each point doubling requires 4 large integer multiplicasi@and 4 large integer squaring. In addition, each
multiplication, squaring or shifting operation has to bkdwed by a modular reduction. Our program shows
the point addition requires 12 modular reductions, and tietgloubling requires 11 modular reductions. In
total, each point multiplication costs 1644+ 41 x 8 = 984 large integer multiplications, 1644+41x 3 =

779 large integer squaring and 1641+ 41x 12 = 2,296 large integer modular reductions. Plugging in
the results of the individual tests, we get the total amofitihree consumed on the three operations is 0.97s,
roughly 78.2% of the total time to do a fix point multiplicatio The rest of 21.8% of the time is spent on
various operations, including inversion operation (toweshthe Jacobian coordinate to Affine), addition,
subtraction, shifting and memory copy, etc. Based on aboaé/sis, we believe the performance of ECC
operations on MICAz can be further improved by more refinetdl @areful programming.

4.3 Performance Comparison

In the last part of the evaluation, we first investigate thdgomance difference of our cryptosystem im-
plementation on different sensor platforms. Then we compas performance of our implementation with
existing research result [5] and give the possible expianatf the performance gap.

FPM | RPM | PAdd | PDbl | SIGN | VERIFY
MICAz | 1.24s| 1.35s| 6.2ms| 5.8ms| 1.35s 1.96s
TelosB | 1.44s| 1.55s| 7.3ms| 7.0ms| 1.55s 2.25s

Table 4: The comparison of ECC execution Time on both motgpta operations, including fixed point
multiplication (FPM), random point multiplication (RPM)pint addition (PAdd) and point doubling (PDbl)
and ECDSA signature generation (SIGN), verification (VERIEme.

To learn the performance of the public key cryptosystemsiffarent sensor platforms, we have re-
vamped our previous ECC implementation on TelosB mote[¥&. summarize the performance compar-
ison in Table 4. It clearly shows that the performance of E@€ration on MICAz is slightly better than
that on TelosB, even though TelosB is equipped with a 8MHzhiL&PU. After a careful and tedious in-
vestigation, we found the performance degradation on Belogue to the following two reasons. First, the
8MHz CPU (MSP430) frequency on TelosB is just a nominal valuwereality, the maximum CPU clock
rate is actually 4MHz. Second, the hardware multiplier inR430 CPU uses a group of special peripheral
registers which are located outside of MSP430 CPU. As thdtrastakes MSP430 eight CPU cycles to
perform an unsigned multiplication, while it at most takearfcycles to do the same operation in Atmega
CPU. The above two reasons explain why TelosB cannot peitietter than MICAz.

We also compare our ECC performance with the result in [5]ra@ual. implemented the ECC (the
same curve) on Atmegal28 CPU, which is the same CPU used oAMitdte. Their result, 0.81s for a
random point multiplication, is about 40% faster than 1.86eur result. We notice that the time for their
160x 160 multiplication is 0.39ms, roughly 17% faster than od7ns. In general, we believe their code
is more polished and optimized in many aspects than our cédethermore, Our code is implemented

17

Technical Report WM-CS-2006-07

in TinyOS, and mostly written with NesC (except severalicait large integer operations), which could
introduce additional CPU cycles.

5 Conclusion

In this technical report, we present a number of optimizagsohemes to efficiently implement the public
key cryptosystems in small, less-powerful sensor devidésimplement 1024-bit RSA and 160-bit ECC on
MICAz motes. Our experiments demonstrate that the publickgptography is promising for sensors. Our
experiments show that the times for ECC signature generatid verification are 1.35s and 1.96s respective
for Mica motes, and 1.55s and 2.25s for TelosB motes. For Rg#Aementation, we have achieved 0.79s
for public key operation and 21.5s for private operation andvnotes. We believe the performance can be
improved by more careful programming or using more poweséuisors.

Acknowledgment This project was partially supported by US National ScieRoeindation award CCF-
0514985.

References

[1] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curvexgonentiation. InAdvances in Crytology-
Proceedings of ICICS, Lecture Notes in Computer Science, pages 282—-290, Springer-Verlag, 1997.

[2] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curvexponentiation using mixed coordinates. In
AS ACRYPT: Advances in Cryptology, 1998.

[3] J. Grobchadl. The Chinese Remainder Theorem and itscaiph in a high-speed RSA crypto chip.
In ACSAC, page 384, 2000.

[4] Vipul Gupta, Matthew Millard, Stephen Fung, Yu Zhu, N@&ira, Hans Eberle, and Sheueling Chang
Shantz. Sizzle: A Standards-based end-to-end Securitiyitdoture for the Embedded Internet. In
Third IEEE International Conference on Pervasive Computing and Communication, Kauai, Mar. 2005.

[5] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Ebedrd Sheueling Chang Shantz. Comparing
Elliptic Curve Cryptography and RSA on 8-bit CPUs.CQRIES, Boston, Aug. 2004.

[6] D. Hankerson, A. J. Menezes, and S. Vanstof&uide to Elliptic Curve Cryptography. Springer-
Verlag, 2004.

[7] C. K. Koc. High-Speed RSA Implementation. RSA Laboratories TR201, Nov 1994.
[8] An Liu and Peng Ning. TinyECC: Elliptic Curve Cryptogiapfor Sensor Networks. Sept 15 2005.

[9] D.J. Malan, M. Welsh, and M.D. Smith. A public-key inftascture for key distribution in tinyos
based on elliptic curve cryptography. Time First IEEE International Conference on Sensor and Ad
Hoc Communications and Networks, Santa Clara, CA, October 2004.

[10] P. Montgomery. Modular Multiplication Without Trial iision. Mathematics of Communication,
44(170):519-521, April 1985.

[11] F. Morain and J. Olivos. Speeding up the computationaroalliptic curve using addition-subtraction
chains.Theoretical Informatics and Applications, 24:531-543, 1990.

18

Technical Report WM-CS-2006-07

[12] S. Chang Shantz. From Euclid’s GCD to Montgomery Muiktg@tion to the Great Divide. Ifiechnical
report, Sun Microsystems Laboratories TR-2001-95, June 2001.

[13] Haodong Wang, Bo Sheng, and Qun Li. Elliptic curve cogwaphy based access control in sensor
networks.International Journal of Sensor Networks, 1(2), 2006.

19

