
Technical Report WM-CS-2006-07

College of
William & Mary

Department of Computer Science

WM-CS-2006-07

Efficient Implementation of Public Key Cryptosystems
on MICAz and TelosB Motes

Haodong Wang and Qun Li

Oct. 30, 2006

1

Technical Report WM-CS-2006-07

Efficient Implementation of Public Key Cryptosystems on MICAz
and TelosB Motes

Haodong Wang and Qun Li
Department of Computer Science

College of William and Mary
Williamsburg, VA, 23187

E-mail:{wanghd, liqun}@cs.wm.edu

Abstract

Even though symmetric-key scheme, which has been investigated extensively for sensor networks,
can fulfill many security requirements, public-key cryptography is more flexible and simple rendering
a clean interface for the security component. Against the popular belief that public key scheme is not
practical for sensor networks, this technical report describes the RSA and ECC public-key cryptosystem
implementation in the real world sensor devices. We detail the implementation of 1024-bit RSA and 160-
bit ECC cryptosystems on MICAz sensor motes, the latest product of Crossbow in the MICA family. We
evaluate the performance of our implementation by running the public key and the private key operations
in RSA cryptosystem, and signature generation and verification in ECC cryptosystem. We have achieved
the performance of 0.79s for RSA public key operation and 1.35s for ECC signature generation. For
comparison, we show our new ECC implementation on TelosB motes with a signature time 1.55s and a
verification time 2.25s. We also explain the reasons that TelosB mote can not perform better than MICAz
even though it is equipped with a 16-bit CPU. We believe that the experiment results are encouraging,
and RSA and ECC are getting closer to be practially implemented in the sensor motes in the real world.

1 Introduction

Public-key cryptography has been used extensively in data encryption, digital signature, user authentication,
etc. Compared with the popular symmetric key based schemes proposed for sensor networks, public-key
cryptography provides a more flexible and simple interface requiring no complicated key pre-distribution,
no pair-wise key sharing negotiation. It is a popular belief, however, in sensor network research community
that public-key cryptography, such as RSA and Elliptic Curve Cryptography (ECC), is not practical because
the required computational intensity is not suitable for sensors with limited computation capability and
extremely constrained memory space. The nascent exploration has already disabused of this misconception.
The recent progress in 1024-bit RSA implementation on AtmelATmega128, a CPU of 8Hz and 8 bits[4],
shows that a public key operation takes less than one second,which proves public-key cryptography is
feasible for sensor network security related applications.

This technical report describes our implementation of 1024-bit RSA cryptosystem and 160-bit ECC
cryptosystem on MICAz, a latest sensor platform of MICA family from Crossbow. It is of the size of two AA
batteries integrating USB programming capability, an IEEE802.15.4 radio with integrated antenna, a low-
power 8-bit MCU. Its detail features include: IEEE 802.15.4/ZigBee compliant RF transceiver, 2.4 to 2.4835
GHz (a globally compatible ISM band), 250 kbps data rate, 8 bit, 8MHz Amtel ATmega microcontroller with

2

Technical Report WM-CS-2006-07

4KB RAM, low current consumption, 128KB programmable ROM, and optional external memory for data
collection.

The fundamental operations in RSA and ECC cryptosystems arelarge integer arithmetics over the finite
field. To efficiently perform RSA and ECC exponentiations on the low-power CPU of sensor motes, it is
essential to optimize the expensive large integer operations. In particular, multiplication and reduction are
most dominant operations in both RSA and ECC. Since most CPU cycles are consumed in these two integer
operations, the efficiency of these two integer operation modules directly determines the performance of
the encryption and decryption. The low-power sensor microcontroller has very limited number of registers
(only 32 8-bit registers in ATmega 128). The large integer operands cannot be loaded into the registers at
one time, so that the latency of memory accesses have to be paid for operand loading and storing between
registers and memory. The implementation challenge is to reduce the number of such memory accesses. In
this technical report, we adopt the hybrid multiplication method [5], which is a very effective way to reduce
the number of memory accesses. To precisely control the register and memory operations, we implement
this module in assembly language. Our experiments demonstrate that the hybrid multiplication is at least 7
times faster than the conventional multi-precision multiplication programmed in C language. The modular
reduction can also be optimized under certain conditions. For example, when the modulus is a pseudo-
Mersenne number, the reduction can be greatly optimized andbe finished more than 10 times faster than the
classic long division method.

In addition to the optimizations of the big integer operation. RSA and ECC can be further optimized.
Montgomery reduction can be applied to efficiently calculate the RSA exponentiation. Chinese Remainder
Theorem (CRT) can be used to reduce the exponent sizes and speed up the RSA exponentiation for up to 4
times. In ECC, we apply a mixed coordinate, the combination of Affine coordinate and Jacobian coordinate,
to do ECC exponentiation, so that some expensive operationscan be avoided (e.g., inversion) or reduced
(e.g., multiplication and squaring).

Our experiments show that both RSA and ECC can efficiently runon MICAz motes. For RSA, it takes
0.79s to do a public key operation, and 21.5s to perform a private key operation. For ECC, it takes 1.35s
to generate a signature, and 1.96s to perform a signature verification. It is possible to further reduce the
computation time by using extended instruction set proposed in [5]. Our experiment results demonstrate
that most operations in RSA and ECC are feasible for sensor network security applications. It also can be
inferred by the results that the combination of RSA and ECC has the potential to yield a better performance
than that the either single cryptosystem can achieve.

The rest of the technical report is organized as follows. Section 2 briefly introduces RSA and ECC public
key schemes. Section 3 gives detail description of several most important optimizations in large integer
operation, as well as some specific optimizations designed for RSA and ECC implementations exclusively.
Section 4 evaluates the performance of our implementations. Section 5 concludes the technical report.

2 RSA and ECC Background

In this section, we give brief introduction of RSA and ECC public key cryptography. RSA is the most
popular security scheme and widely used in security applications. Recently, ECC receives more attentions
due to its nice security capability with the much smaller signature size.

3

Technical Report WM-CS-2006-07

2.1 RSA Introduction

In RSA cryptography, a user, say Alice, has two keys: a publickey (e) and a private key (d). Alice publishes
her public key and keeps private key in secret. When Bob wantsto send a messagem to Alice, and does not
want any other to know the message contents, he just encryptsm by using Alice’s public key. Without the
private key, it is computationally infeasible for others todecrypt the ciphertext. After receiving the encypted
message from Bob, Alice uses her private key to decrypt the message.

The security of RSA scheme is based on the difficulty to factora large integer (n). Here we briefly go
over the key generation procedure and encryption/decryption in RSA. Alice needs to take following steps to
get her public keye and private keyd.

• Pick two random large prime numberp andq, so thatp 6= q;

• Computen = p×q;

• Compute the totient:φ(n) = (p−1)(q−1);

• Choose an integere as the public key so that 1< e < φ(n), ande is co-prime toφ(n);

• Compute the private keyd = e−1 (modφ(n)).

To encrypt a messagem, Bob computesc = me and sends cipher textc to Alice. The decryption for Alice
is to raise the value of her private key to the power of the ciphertextc, so thatcd = (me)d = med = m (mod
n). The decryption procedure works due to following reasons.Becausee×d ≡ 1 (mod(p−1)(q−1)), we
havee×d ≡ 1 (mod(p−1)) ande×d ≡ 1 (mod(q−1)). Applying Fermat’s little theorem, we getmed ≡m
(mod p) andmed ≡ m (modq). Applying Chinese Remainder Theorem (CRT), we havemed ≡ m (modn).

In practice, RSA must be combined with certain padding scheme to defend against security attacks,
such as Adaptive Chosen Cipher Text attack. The popular padding schemes include Optimal Asymmetric
Encryption Padding (OAEP) and Probabilistic Signature Scheme for RSA (RSA-PSS). For the simplicity,
we do not cover the padding scheme implementation in this technical report.

2.2 ECC Introduction

In this section, we briefly give a background introduction about elliptic curve cryptography, and correspond-
ing elliptic curve Digital Signature Algorithm.

2.2.1 Elliptic Curve Cryptography

In recent years, ECC has attracted much attention as the security solutions for wireless networks due to the
small key size and low computational overhead. For example,160-bit ECC offers the comparable security
to 1024-bit RSA. An elliptic curve over a finite fieldGF (a Galois Field of orderq) is composed of a finite
group of points (xi,yi), where integer coordinatesxi,yi satisfy the long Weierstrass form:

y2 + a1xy+ a3y = x3 + a2x2 + a4x+ a6, (1)

and the coefficientsai are elements inGF(q). Since the fieldGF(q) (q is a prime) is generally used in
cryptographic applications, (1) can be simplified to:

y2 = x3 + ax2 + b, (2)

4

Technical Report WM-CS-2006-07

wherea,b ∈ GF(q).
The elliptic curve points form an additive abelian group, sothat the addition of any two points is a point

in the group. Given two pointsP andQ, with the coordinates(x1,y1), (x2,y2), respectively, the addition
results in a pointR on the curve with coordinate(x3,y3), wherex3 andy3 satisfy

(x1,y1)+ (x2,y2) = (x3,y3), (3)

such that
x3 = L2 + L + x1+ x2 + a, (4)

y3 = L(x1 + x3)+ x3 + y1, (5)

where
L = (y1+ y2)/(x1+ x2) (6)

If x1 = x2 (note x1 + x2 is 0), thenR is defined as a point at infinity,O. O is an identity element of the
group. Each element in the group has an inverse that satisfiesP + (−P) = O, and(−P)+ P = O. Also,
P+ O = O + P = P. If P = Q, thenR = P + P = 2P, and coordinate(x3,y3) is derived by

x3 = L2+ L + a, (7)

y3 = x1
2 +(L +1)x3, (8)

where
L = x1 + y1/x1. (9)

The ECC relies on the difficulty of the Elliptic Curve Discrete Logarithm Problem, that is, given points
P andQ in the group, it is hard to find a numberk such thatQ = kP.

2.2.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECC signature is based on Digital Signature Algorithm. We assume Alice sends a message to Bob. To
convince Bob that the message does come from Alice, Alice needs to apply a digital signature for the
message so that Bob can verify it by using Alice’s public key.Initially, Alice and Bob have to agree on a
particular curve with base pointP over the fieldGF(p), and the order ofP is q. When Alice sends a message
to Bob, she attaches a digital signature(r,s) generated by following steps (suppose Alice has a private key x
and a public keyQ = xP).

1. Choose a random keyk in [1,q−1];

2. ComputekP, yield a point with coordinate(x1,y1). Let r = x1 (modq). Checkr, go back to the first
step if the result is zero;

3. Computek−1 (modq);

4. Computes = k−1(Hash(m)+ xr), whereHash is a one-way hash function. Again, checks, go back
to the first step ifs = 0;

5. (r,s) is the digital signature.

To verify the messagem and the signature, Bob needs to do following steps.

5

Technical Report WM-CS-2006-07

1. Computew = s−1 modq andH(m);

2. Computeu1 = H(m) ·w modq andu2 = r ·w modq;

3. Computeu1P+ u2Q, get the result point(x2,y2);

4. The signature is verified ifx2 = r.

Finally, Bob compares the value ofx2 andr, and accepts the message only ifx2 equals tor.

3 Implementation

We implement RSA and ECC cryptosystems on MICAz motes, powered by ATmega128 microcontroller.
The ATmega128 incorporates an 8MHz, 8-bit RISC CPU, 128K bytes programmable flash memory (ROM)
and 4K bytes SRAM. This architecture provides 133 powerful instructions and 32× 8 general purpose
registers. Besides, ATmega128 also features an on-chip multiplier.

Given the limited processor resources, we concentrate mostof our efforts on computation optimization.
The fundamental RSA operation is large integer exponentiation over a finite fieldGF(n), wheren is the
product of two large prime numberp andq. The computation of the exponentiation can be decomposed toa
series of squaring, multiplications and reductions. In addition, we also need an inversion module to calculate
the public key and private key pair given two prime numbersp andq. In this section, we first present our
optimization in large integer operations. Based on that, wedescribe our further optimization by using
Montgomery reduction and Chinese Remainder Theorem (CRT) to significantly improve the computation
efficiency. The fundamental ECC operation is large integer arithmetics over either prime number finite field
GF(p) or binary polynomial fieldGF(2m) (wherem is a prime). Because the two heavily used operations:
multiplication and modular reduction, can be more effectively optimized if pseudo-Mersenne primes are
picked for elliptic curves compared with those of binary field [5], we limit our discussion in prime number
finite fieldGF(p) in this paper. Without further clarification, our discussion of ECC implementation is based
on SECG recommended 160-bit elliptic curve: secp160r1.

In this section, we first describe the optimized large integer operation modules, which can be used for
both RSA and ECC cryptosystems. Then we focus on the protocolrelated optimizations specifically for
RSA and ECC, respectively.

3.1 Large Integer Operations

We implement a suite of large integer arithmetic operations, including addition, subtraction, shift, multi-
plication, division and modular reduction. Due to the spacelimit, we only present three of most important
functions: multiplication/squaring, modular reduction and inversion.

3.1.1 Multiplication and Squaring

The multiplication (or squaring) is the key component in RSAimplementation because the exponentiation
is basically computed by multiplications and squaring. We have compared three different multiplication
implementations [5, 9, 8], and finally decided to use Hybrid Multiplication proposed in [5]. To ease our ex-
planation, we use three large integers as the examples for our following discussion:A(an−1,an−2, · · · ,a1,a0),
B(bn−1,bn−2, · · · ,b1,b0), andC(n2n−1,c2n−2, · · · ,c1,c0), whereC = A ∗B. A andB both have length ofn
words, each word hask-bit size. The productC has 2n words.

6

Technical Report WM-CS-2006-07

The Hybrid multiplication is the combination of Row-wise multiplication and Column-wise multipli-
cation. The Row-wise method fixes the multiplierbi (0 ≤ i ≤ n), and multiplies it with every word of
multiplicand A. Partial results are stored inn+1 accumulator registers. Every time one row is finished, the
last accumulator register can be stored to memory as the partof final results. On average, one memory load
is required for eachk× k multiplication. When integer sizen is increased, the required number registers
increase linearly in Row-wise method. For 1024-bit RSA, a typical multiplication is between two 128-byte
large integers. Given only 32 registers in ATmega128, Row-wise multiplication can not be directly applied.

The Column-wise method, on the other side, computes the partial results ofai ∗ b j (wherei + j = l)
for column l. After one column finishes, the last word of accumulator registers is stored as the part of
final result. The Column-wise method only requires three accumulator registers and two more for operands.
However, two memory load operations are required for eachk× k multiplication.

The Hybrid method takes advantages of Row-wise and Column-wise strategies. To optimize the mem-
ory operation, the Hybrid method merges a number (d) of columns together, and then conducts Row-wise
multiplication in each merged column. Whend equals to 1, the Hybrid method becomes the Column-wise
multiplication. Whend equals ton, then it becomes Row-wise method. A largerd leads to fewer memory
operations, but requires more registers. A smalld, however, requires more memory operations and consumes
more CPU cycles. Balancing the advantages and disadvantages, we implement the Hybrid multiplication
with column widthd = 4, which requires 9 accumulator registers, 5 operand registers, 6 pointer registers
(point to A, B and C), and others for temporary storage and loop control.

We implement the Hybrid multiplication in assembly language. For the comparison purpose, we also
implement a standard multi-precision multiplication program in C language. Our experiments show the
standard C program needs 122.2ms to finish the multiplication between two 128-byte integers,while it only
takes 17.6ms for our Hybrid multiplication to do the same computation, which is more than 7 times faster.

The squaring is a special case of the multiplication, which has the same the multiplicand and the mul-
tiplier. Given an m-bit large integerA = (A1,A0), whereA1,A0 are two halves,A2 = A1A1×2m +2A1A0×
2m/2 + A0A0. Therefore, we can take advantage of the fact thatA1A0 only needs to be calculated once.
Compared with the multiplication, the optimized squaring can reduce the computational complexity up to
25%.

3.1.2 Modular Division

Modular division is another expensive operation in ECC. In Affine coordinate, each ECC operation of point
addition and doubling requires a modular inversion. The integer inversion is also required for ECC digital
signature generation and verification. In our implementation, we adopt the Great Divide scheme proposed
in [12]. We briefly explain the algorithm in the followings.

Given an denominatorx and numeratory, we want to compute the modular divisiony
x overGF(p). This

is equivalent to findr, so that

r ≡
y
x

(mod q). (10)

To find r efficiently, the algorithm maintains following two invariant relationship:

A∗ y≡U ∗ x, andB∗ y≡V ∗ x, (11)

whereA,B,U ,andV are four auxiliary variables and initialized with valuesx,q,y, and 0, respectively. Note
the two relationship is true with the initial values. The algorithm intuition is to reduce the value ofA to
1, so that the first relationship in (11) will becomey ≡U ∗ x, andU will be the result. The procedure is
conducted in following way. WhenA is even, we can divideA by 2. Correspondingly,U has to be divided

7

Technical Report WM-CS-2006-07

by 2 to keep the relation true. IfU is not even at that time, we can make it become even by addingU with
the modulus. WhenA is odd, we use the 2nd relationship to help to reduceA. If B is even, we keep dividing
B by 2 similarly to makeB odd. Then we add the two relation together and the divide the result value by
2 at the both sides. By repeating this process, it is guaranteed that either value ofA or B reduces one bit
in one iteration. The procedure stops whenA = B = 1, the first equation becomesy ≡ U ∗ x. The value
of U is our final result. If we initializeU with 1, this routine can be used to calculate an inversion ofx.
This algorithm works whenx andq are relatively prime. The Great Divide finishes division or inversion
operation in 2(log(x)−1) steps. Great Divide is much faster than the long division method because Great
Divide only needs addition operations in each iteration, while long division method requires multiplications.
Unfortunately, Great Divide cannot be used in RSA to calculate the public key and private key. The reason
is that Great Divide only works when the modulus is an odd number, but the totientφ(n) = (p−1)(q−1)
in RSA is always even. Therefore, we use Extended Euclidean algorithm instead.

3.1.3 Modular Reduction

The modular reduction operation is another important module because each multiplication or squaring must
be followed by a reduction operation. The classic reductionmethod is using long division. Although the
long division method is a general method for calculating themodular reduction, it is also the slowest method.
In ECC cryptosystem, the modular reduction operation is as important as modular multiplication. Each
multiplication must be followed by a reduction operation. Since we choose to use pseudo-Mersenne primes
as specified in NIST/SECG curves, the modular reduction can be optimized by conducting a fixed number of
integer additions. Because the optimization is curve specific, we will explain in more details in the section
of ECC operation.

Now, we discuss the modular reductions in RSA and ECC digitalsignature generation and verification.
In most cases, the modulus is not a pseudo-Mersenne prime, the optimization cannot be applied for those
reduction calculation. We choose the classic long divisionmethod to implement this operation. Fortunately,
the number of this type of modular reduction is very limited,it does not affect the overall performance
much. We briefly describe the long division method as in Algorithm 1. The long division producer reduces
the remainder ofx by one byte in each iteration.

3.1.4 Inversion

The multiplicative inversion is required to calculate the RSA public key and private key pair. A RSA
public keye and a private keyd should satisfy the condition:e× d ≡ 1 modφ(n), where totientφ(n) =
(p− 1)(q− 1). Given a public keye, the corresponding private key is the multiplicative inversion of e.
Since bothp andq are prime numbers,φ(n) must be even. Thus, the efficient Great Divide scheme [12] can
not be used because Great Divide requires the modulo to be an odd number. We use the classic Extended
Euclidean Algorithm to compute the private key. The algorithm is described as below.

3.2 RSA Operations

With the basic large integer operation modules implemented, we conducted the first performance test for
RSA public key operation (17-bit public key) and private keyoperation (1024-bit private key). Surprisingly,
both operations are very slow. It takes 4.6s to finish the public key operation and 389s to do a private key
operation.

8

Technical Report WM-CS-2006-07

Algorithm 1 Reduction by using long division.
1: Input: x,n;
2: Output:r = x modn;
3: while x≥ n do
4: Align the most significant byte (MSB) of modulusn to the MSB ofx, the lower bytes ofn can be

filled with zeros;
5: Starting with the MSB ofx, divide the first two MSBs ofx by the MSB of modulusn, and get the

quotient;
6: Multiply the quotient with the modulus and get a subproduct;
7: If the subproduct is greater than the remainder ofx (over estimation), subtract the modulus from the

subproduct;
8: Then subtract the subproduct from the remainder ofx;
9: The procedure continues and goes back to step 2 if the MSB of the remainder becomes zero;

10: If the MSB of the remainder is not zero (under estimation), subtract the modulus from the remainder,
and then go back to step 2;

11: The procedure stops when the remainder is less than modulusn;
12: end while
13: returnx;

To learn the reason for the poor performance of our initial implementation, we profiled the every oper-
ation in RSA exponentiation. We found that the modular reduction following each multiplication consumes
0.13s on the average. For 17-bit public key, there are totally 17 such reductions, which spend 2.2s in total,
almost 50% of the execution time of the public key operation.

In this section, we explore two optimization schemes which aim to reduce the costs of the reduction and
multiplication operations.

3.2.1 Montgomery Reduction

Montgomery reduction [10] is a method to efficiently performthe modular reduction without doing expen-
sive division. For example, suppose we want to computeT modulo N, the algorithm says it is easy to
computeT R−1 (modN) (without any division), whereR is a radix (R > N) and co-prime toN. We do not
validate this algorithm in this paper. Interested reader may refer to [10] for details. It seems this algorithm
does not save anything because an extra step to convertT R−1 (modN) to T moduloN is required. However,
this method is useful if a number of computations are needed for the same modulusN. That is the reason
that Montgomery reduction is widely used to reduce the reduction cost for the exponentiation operation in
RSA. The efficient exponentiation by using Montgomery reduction is described as below. The idea is to
convert integerb to anN-residue so thatba ∗2k (modn) can be quickly computed without doing any reduc-
tion. As the result, we only need to do two reductions for the exponentiation. The first one is to convertb
to N-residue before the Montgomery reduction, the second one isto convert the exponentiation result from
N-residue back to integer. Having implemented the Montgomery reduction module, the performance of
RSA public key and private key operations have been improvedsignificantly to 1.2s and 82.2s, respectively.

9

Technical Report WM-CS-2006-07

Algorithm 2 Extended Euclidean Algorithm
1: Input: e, φ(n)
2: Output:d
3: x← 0, lastx← 1
4: a← e,b← φ(n)
5: while b! = 0 do
6: q← a/b
7: r← a modb
8: a← b
9: b← r

10: temp← lastx
11: x← lastx+ q∗ x modφ(n)
12: lastx← temp
13: end while
14: returnlastx

Algorithm 3 An efficient exponentiation by using Montgomery reduction.
1: Input: b,a,n
2: Output:c = ba (modn)
3: c← b ·2k (modn), (2k > n)
4: t← c
5: for from i = msb(a) to i = 0 do
6: c← c2 ·2−k (modn)
7: if i’s bit of a is setthen
8: c← c∗ t ·2−k (modn)
9: end if

10: end for
11: c← c∗2−k (modn)
12: returnc

3.2.2 Chinese Remainder Theorem (CRT)

The complexity of the exponentiation in RSA largely dependson the the size of modulusn and the exponent
(either public key or private key). Chinese Remainder Theorem (CRT) can be used to effectively reduce
the computational complexity of exponentiation by reducing the size of bothn and the exponent. CRT can
be found in any number theorem textbook, here we only give a simple example to serve for this paper. Let
numbern1,n2 be positive integers which are co-prime to each other, i.e.,GCD(n1,n2) = 1. Let n = n1 ∗n2

andx1,x2 be integers. CRT states that if there are congruence:x≡ x1 (modn1), x≡ x2 (modn2), then there
is only one solutionx between 0 andn−1, inclusively. The value ofx can be determined by

x = x1∗ r1 ∗ s1 + x2∗ r2∗ s2(mod n), (12)

whereri = n
ni

, si = r−1
i (mod ni) for i = 1,2. Based on the above simple version of CRT, we describe our

RSA optimization (adapted from [3]) by using CRT. Note step 3and 4 can be precomputed. Th above
algorithm reduces the size ofa andd in half. Considera andd are both 1024-bit integers, the computation
of ad is reduced to 2 modular exponentiation with both base and exponent size of 512 bits. Thus, the

10

Technical Report WM-CS-2006-07

Algorithm 4 Calculatead (modn) by CRT
1: Input: a, d, n, p, q (n = p∗q)
2: Output:m = ad (modn)
3: Rp← qp−1 (modn), Rq← pq−1 (modn)
4: Dp← d (mod p−1), Dq← d (modq−1)
5: Ap← a (mod p), Aq← a (modq)

6: Mp← A
Dp
p (mod p), Mq← A

Dq
q (modq)

7: Sp←Mp ∗Rp (modn), Sq←Mq ∗Rq (modn)
8: m = Sp + Sq (modn)
9: returnm

overall computational complexity is reduced to roughly 1/4of the original exponentiation. The CRT can
also be applied for public key operation, but the computational complexity can only be reduced by 50%.
The reason is that public key size is normally very small (17 bit in our experiment), so the exponent size
cannot be reduced in this case. With CRT implemented, the public key operation has been reduce to 0.79s.
Correspondingly, the private key operation is reduced to 21.5s, approximately 1/4 of the time before doing
CRT.

3.3 ECC Operations

In this section, we present our optimization for ECC operation. We first discuss ECC point addition and
doubling. We then introduce an optimized modular reductionfor curve secp160r1. Finally, we explain
several different optimizations for point multiplication.

3.3.1 ECC addition and doubling

The fundamental ECC operation is point addition and point doubling. The point multiplication can be de-
composed to a series of addition and doubling operations. Asdiscussed in previous section, point addition
and doubling in Affine coordinate require integer inversion, which is considered much slower than integer
multiplication. Cohenet al. showed that these operations in Projective coordinate and Jacobian coordinate
yield better performance [1]. They further found addition and doubling in mixed coordinate, with the combi-
nation of Modified Jacobian coordinate and Affine coordinate, lead to the best performance [2]. Consider an
ECC point in Modified Jacobian coordinate,P1(X1,Y1,Z1,aZ4

1), and a point in Affine coordinate,P2(x2,y2),
their addition results in the third pointP3 = (X3,Y3,Z3,aZ4

3) in Modified Jacobian coordinate. The result is
given by following equations.

X3 =−H3−2X1H2+ r2,

Y3 =−Y1H3+ r(X1H2−X3),

Z3 = Z1H,

aZ4
3 = aZ4

3,

(13)

11

Technical Report WM-CS-2006-07

whereH = x2Z2
1−X1, andr = y2Z3

1−Y1. The result of point doubling forP3 = 2P1 is given by following
formula.

X3 = T,

Y3 = M(S−T)−U,

Z3 = 2Y1Z1,

aZ3 = 2U(aZ4
1)

(14)

To estimate the computational complexity, we only considerlarge integer multiplication and squaring op-
erations, and ignore those addition and subtraction since they are much faster. According to Eq.13 and
Eq.14, point addition requires 9 large integer multiplications and 5 squaring, and point doubling requires 4
multiplications and 5 squaring.

The basic point operations can be further optimized for specific elliptic curves. In our case, the curve
parametera of secp160r1 equals to -3. For point doubling,M can be further reduced to

M = 3X3
1 −3Z4

1 = 3(X1 + Z2
1)(X1−Z2

1). (15)

As the result, point doubling operation reduces to 4 multiplications and 4 squaring. Actually,aZ4
3 does not

have to be calculated in point addition, so the computational complexity reduces to 8 multiplications and 3
squaring. Our observation supports the choice of mixed coordinate, the performance of point multiplication
improves around 6% compared with our previous implementation in Jacobian coordinate.

3.3.2 Modular Reduction on ECC Curve

Recall that modular reduction has to be applied after every large integer multiplication, it is also a perfor-
mance critical operation. By taking advantage of pseudo-Mersenne primes specified in SECG curves, the
complexity of the modular reduction operation can be reduced to a negligible amount. In this section, we
use curve secp160r1 as the example to show how to do efficient reduction.

Suppose we use the 8-bit architecture, the multiplication result of two 160-bit integers can be represented
by

C(c39, · · · ,c20,c19, · · · ,c1,c0),

whereci (0≤ i ≤ 39) is a word with 8 bits, andc39 is the most significant word. The 40-word integer can
also be written as:

C = (c39, · · · ,c20)∗2160+(c19, · · · ,c1,c0) (16)

Given the field of curve secp160r1q = 2160−231−1, we can have 2160≡ 231+1. Therefore,

C ≡ (c39, · · · ,c20)∗ (2
31+1)+ (c19, · · · ,c1,c0)

≡ (c39, · · · ,c20)∗231+(c39, · · · ,c20)+ (c19, · · · ,c1,c0)
(17)

Since each word has 8 bits, the first term in the result of Eq. 17can be further reduced to

(c39, · · · ,c20)∗231≡ (c39,c38,c37)∗2167+ c36∗2159+(c35, · · · ,c20)∗231

≡ (c39,c38,c37)∗238+(c39,c38,c37)∗27 +(d7d6 · · ·d0)∗231+(d7d6 · · ·d0)+ (d0)∗2159
(18)

where(d7, · · · ,d1,d0) are 8 bits ofc36. Now, all terms in Eq.17 and 18 have at most 159 bit length, the
reduction result is simply the addition of these terms.

12

Technical Report WM-CS-2006-07

3.3.3 Further Optimization

Examining the computational complexity, we notice that point addition is more expensive than point dou-
bling. As we have discussed, point multiplication can be decomposed to a series of point addition and
doubling, we would rather use more point doubling than pointaddition to compute the point multiplication.
Morain et al. found Non-adjacent forms (NAFs) is an effective way to achieve the lightest Hamming weight
for scalark in point multiplicationk∗P, which results to use the least number of point additions to calculate
k ∗P [11]. For example, 255∗P, or (11111111) ∗P, requires 7 point additions. But if we transform it to
(10000000−1)∗P, which is 256∗P−P, only one addition is required. Note the point subtraction can be
replaced by point addition because the inverse of an Affine point P = (x,y) is−P = (x,−y). We implement
NAFs technique in random point multiplication. According to our experiments, point multiplication with
NAFs contributes at least 5% performance improvement.

Recall in the digital signature procedure in ECDSA, component r is generated by a point multiplication
with the fixed base point of a selected elliptic curve. To further reduce the execution time, we precompute
some partial results and apply sliding window method [7] to speed up fixed point multiplication. Different
from NAFs, sliding window scheme groups scalark into a number ofs− bit bit-clusters, wheres is also
called window size. So,k can be represented bykm ∗2sm +km−1∗2s(m−1) + · · ·+k0, whereki is a bit-cluster.
If we precompute the point multiplication with every possible value ofki, the number of point addition
is bounded by⌈160

s ⌉− 1. Note the sliding window method does not reduce the number of point doubling
operations. Obviously, this scheme requires extra memory space for storing partial results. In practice, we
select window sizes = 4. Correspondingly, there are 16 entries in the partial result table. Our experiments
show sliding window method is more effective than NAFs for fixed point multiplication, the performance of
sliding window method is more than 10% better than that of NAFs.

Our initial experimental results indicated that it took double amount of time to perform an ECDSA
verification than to do an ECDSA signature: signature is 1.35s, while verification is 2.85s. The reason
is that the verification requires two ECC point multiplications (while the signature only needs one point
multiplication); the verifier has to performu1P+u2Q as shown in Section 2.2.2. To speed up the verification
time, we adopt Shamir’s trick [6] to do multiple point multiplication simultaneously. The idea of Shamir’s
trick is similar to the sliding window method discussed previously. Givent-bit u1 andu2, we use the window
sizeω and precompute the valuesiP+ jQ for 0≤ i, j ≤ 2ω. At each of⌈t/ω⌉ steps, we performω doubling
and the (precomputed) additions determined by the window contents. The larger the window size (ω) is, the
more memory is required for storing the precomputed values.In practice, we choose the single bit window
size,ω = 1. Therefore, only the value ofP + Q needs to be precomputed and stored. As the result, the
performance of ECDSA verification has been improved more than 30%, from 2.85s to 1.96s. There is still
further improvement space if multi-bit window size is used,but the trade-off is more memory overhead.

4 Experiments and Performance Evaluation

We have implemented the 1024-bit RSA and the 160-bit ECC security primitive on MICAz motes, the latest
sensor motes of the MICA family from Crossbow. MICAz is powered by ATmega128 microcontroller.
ATmega incorporates an 8MHz, 8-bit RISC CPU, 128K bytes flashmemory (ROM) and 4K RAM. The RF
transceiver on MICAz is IEEE 802.15.4/ZigBee compliant, and can have 250kbps data rate. Our experiments
show that the public key operation (17-bit public key) only takes 0.79s and private key operation takes
21.5s. For the ECC operations, it takes 1.35s to generate a signature and 1.96s to do a signature verification.
Considering that RSA verification normally happens at sensor side, and expensive signature generation is

13

Technical Report WM-CS-2006-07

done by powerful devices, such as PDAs, we conclude both RSA and ECC are practical for small sensor
nodes.

4.1 RSA Evaluation

In this subsection, we describe the experimental performance of 1024-bit RSA on our MICAz motes. We
first present our experimental results and related issues during the implementation. We then give the perfor-
mance analysis to quantify the computational complexity.

4.1.1 Experimental Results and Implementation Challenge

In the experiment, we randomly select two 512-bit prime number asp andq. For the public key operation,
we choose a small exponent ofe = 216+1, which is commonly used value fore. Our program uses 15,832
byte code size and 3,224 byte data size. Compared with RSA implementation in [5], our code size is much
larger because of the assignments of precomputation valuesduring initialization stage. Our implementation
spends 0.79s to finish a publick key operation and 21.5s to do aprivate key operation.

The biggest challenge to implement 1024-bit RSA on MICAz motes is the memory constraint. MICAz
mote only has 4KB RAM, which is the total space can be used by data and program stack. Since the
operands in 1024-bit RSA are mostly 128 integers, the subroutines, such as modular reduction, Extended
Euclidean Algorithm and Montgomery reduction, have to reserve considerable amount of memory space
for storing temporary results. In addition, for optimization purpose, a number of pre-computations are
required. In our program, 1152 bytes of memory are used for storing system parameters, such asp,q and
n, and precomputation results, such asRp,Rq in CRT. Therefore, attentions need to be paid not to waste any
memory usage. In practice, we have adopted two methods to save the memory space. First, we declare more
global variables. The idea is to share the memory space amongdifferent subroutines in each module. Note
this method is only good for those subroutines do not call each other. Otherwise the intermediate data will
be lost. Second, we conduct every possible precomputation so that some module may not be required during
the RSA operation in the real time. For example, the ExtendedEuclidean algorithm is only used to find the
public/private key pairs and to precompute the parameters used in Montgomery reduction. Actually we do
not need this module in the real time. This helps us a lot because it consumes almost 1KB temporary space.

4.1.2 Performance Analysis

To analyze the computational complexity distribution among the components in RSA exponentiation, we
profile the execution time of multiplication, squaring, andmodular reduction modules, the three most time
consuming operations in RSA exponentiation. The profiling information is shown in Table 1.

Our analysis assumes that all optimization schemes have been applied in RSA exponentiation. To sim-
plify the presentation, we denote “MUL” as, large integer multiplication, and let “SQR” be large integer
squaring, and let “MOD” be large integer modular reduction.A ”m/n” MOD means a MOD operation for a
m-byte integer over a modulus with n-bytes. For example, 128/64 MOD denotes a modular reduction of a
128 byte integer with a 64 byte modulus.

Let us consider an example of RSA operation to calculateM = Cx (modn), wherex can be either public
key or private key. Following the CRT algorithm, we first do two MODs to calculateCp andCq. Then, we
conduct two Montgomery reductions to getMp andMq. Finally, two MULs, one MODs and one addition
are required to computeM. Note the last two steps in CRT, which requires 2 MODs, can be simplified by
doing addition first and then only one MOD. Except the Montgomery reduction, both public key and private

14

Technical Report WM-CS-2006-07

Module Operand Sizes (bytes) Execution Time (ms)
MUL. 128 by 128 17.1
MUL. 64 by 64 4.48
SQR. 128 by 128 14.1
SQR. 64 by 64 3.87
MOD. 256/128 132
MOD. 192/128 74
MOD. 128/64 40

Table 1: Execution time profiles of some important modules.

key operation need to do two 128/64 MODs, two 128×128 MULs, one 192/128 MODs operations, which
totally account for 2×40+2×17.1+74= 188.2ms.

The difference of execution time between public key and private key operations is at exponentiation
part. Each Montgomery reduction requires two 64×64 MULs, one 128-byte addition and possible another
128-byte subtraction. The cost of addition and subtractioncan be ignored. Therefore, the execution time
of each Montgomery reduction is 2×4.48= 8.96ms. Since we choose the public key to be 216+ 1, there
are totally 16 64× 64 SQRs and 1 64× 64 MUL in the exponentiation. According to Table 1, the total
time for SQRs and MUL with Montgomery reduction should be 16×3.87+ 4.48+ 17×8.96 = 218.7ms.
In addition, two 128/64 MODs are needed to convert operands between integer andN-residue before and
after each exponentiation. For CRT optimization, we need todo two 512-bit exponentiations. Therefore, the
exponentiation execution time for public key operation is 2× (218.7+2×40) = 597.4ms. Combined with
the rest operations in CRT, the public key operation consumes 594.4+188.2 = 782.6ms, which matches our
test result very well.

For the private key operation, the number of SQRs is 511 (after CRT) in each reduced exponentiation.
The number of MULs depends on the Hamming weight of the exponent. Our experiment shows the average
Hamming weight ofDp andDq of our private key is 278. Hence, there are 277 MULs required in each expo-
nentiation. Therefore, the execution time for each exponentiation is 511×3.87+277×4.48+788×8.96=
10279ms. Since the exponentiation execution time in private key operation overwhelmingly dominates other
operations, we only need to consider the execution time of exponentiations only. Two such exponentiations
consumes 20.5s, closely matching our experiment result of 21.5s.

4.2 ECC Evaluation

In this subsection, we first present the performance of our implementation. Then we give an overall analysis
to quantify the computation complexity.

4.2.1 The performance of ECC Implementation

In experiments, we measure execution time and code size of our implementation. We choose secp160r1
as the elliptic curve in all experiments. We use the embeddedsystem timer (921.6kHz) to measure the
execution time of major operations in ECC, such as point multiplication, point addition and point doubling.

We first test point multiplication operation, which is comprised of point addition and doubling. We con-
sider two cases in point multiplication. One is multiplyinglarge integer with a fixed point(base point), and
the other one is with a random point. Fixed point multiplication allows for optimization by precomputing.

15

Technical Report WM-CS-2006-07

We apply sliding window technique[7] and set window size to 4, i.e., precomputing 24− 1 = 15 points.
In experiments, we randomly generate 20 large integers to multiply with the point and take the average
execution time as the result.

Since ECC point multiplication consists of addition and doubling operations, we further evaluate these
two operations individually. We generate random points andlarge integers for tests. Since a single operation
takes very little time, to reduce the error of clock inaccuracy, we measure 100 operations every round and
take the average value.

Table 2 shows the experimental results of execution time. Point addition and doubling of our implemen-
tation is superior to the other two implementations, which results in a faster point multiplication.

FPM RPM PAdd PDbl SIGN VERIFY
ECC 1.24s 1.35s 6.33ms 5.87ms 1.35s 1.96s

Table 2: Execution Time of ECC point operations, including fixed point multiplication (FPM), random point
multiplication (RPM), point addition (PAdd) and point doubling (PDbl) and ECDSA signature generation
(SIGN), verification (VERIFY) time.

Next, we implement ECDSA signature scheme. The experimental results are shown in Table 2. In fact,
when signing a message, one fixed point multiplication is thedominant operation. As we can see, the sig-
nature time is very close to the time consumed in fixed point multiplication. On the other hand, verification
of ECDSA consists of one fixed point multiplication and one random point multiplication. Therefore, the
performance of the verification is roughly the summation of one fixed point multiplication and one random
point multiplication.

Table 3 presents the code size of the ECC implementation. TheECC library itself only uses 18.8KB
ROM and 1.36KB RAM. However, ECDSA consumes 56.4KB ROM and 1.7KB RAM. The reason is that
we add SHA1 hash function and radio communication module in the ECDSA package, where SHA-1,
occupying more than 30KB memory space, takes a large portionof the code size.

ECC library ECDSA
ROM RAM ROM RAM

ECC 18.8k 1.36k 56.4k 1.7k

Table 3: ECC implementation code size.

4.2.2 A Performance Anatomy of ECC Point Multiplication on MICAz

Since ECC point multiplication dominates the computational complexity in ECC signature and verification,
we are curious to learn the performance anatomy in ECC point multiplication.

This analysis is based on 160-bit ECC curves. We use secp160r1 as the example. We also assume 4-
bit sliding window method is used, and partial results are precomputed. The computational cost for each
window unit is 4 point doubling and 1 point addition. Given a 161 bit private key, there are 41 window units.
Totally , 164 point doubling and 41 point additions are required to finish 1 point multiplication.

Large (160-bit) integer multiplication, squaring and reduction are the most expensive operations in point
doubling and point addition. To learn the amount of time contributed by the above three operations in a fix

16

Technical Report WM-CS-2006-07

point multiplication. We first individually test the performance of large integer multiplication, squaring and
reduction. Our results show that it takes 0.47ms,0.44ms and 0.07ms to perform a 160×160 multiplication,
squaring and reduction, respectively. Next, we count the the number of each operation required in a point
multiplication. Since we adopt the mixed coordination (thecombination of Jacobian coordinate and Affine
coordinate), each point addition requires 8 large integer multiplications and 3 large integer squaring, and
each point doubling requires 4 large integer multiplications and 4 large integer squaring. In addition, each
multiplication, squaring or shifting operation has to be followed by a modular reduction. Our program shows
the point addition requires 12 modular reductions, and the point doubling requires 11 modular reductions. In
total, each point multiplication costs 164×4+41×8= 984 large integer multiplications, 164×4+41×3 =
779 large integer squaring and 164×11+ 41×12 = 2,296 large integer modular reductions. Plugging in
the results of the individual tests, we get the total amount of time consumed on the three operations is 0.97s,
roughly 78.2% of the total time to do a fix point multiplication. The rest of 21.8% of the time is spent on
various operations, including inversion operation (to convert the Jacobian coordinate to Affine), addition,
subtraction, shifting and memory copy, etc. Based on above analysis, we believe the performance of ECC
operations on MICAz can be further improved by more refined and careful programming.

4.3 Performance Comparison

In the last part of the evaluation, we first investigate the performance difference of our cryptosystem im-
plementation on different sensor platforms. Then we compare the performance of our implementation with
existing research result [5] and give the possible explanation of the performance gap.

FPM RPM PAdd PDbl SIGN VERIFY
MICAz 1.24s 1.35s 6.2ms 5.8ms 1.35s 1.96s
TelosB 1.44s 1.55s 7.3ms 7.0ms 1.55s 2.25s

Table 4: The comparison of ECC execution Time on both mote platform operations, including fixed point
multiplication (FPM), random point multiplication (RPM),point addition (PAdd) and point doubling (PDbl)
and ECDSA signature generation (SIGN), verification (VERIFY) time.

To learn the performance of the public key cryptosystems on different sensor platforms, we have re-
vamped our previous ECC implementation on TelosB mote[13].We summarize the performance compar-
ison in Table 4. It clearly shows that the performance of ECC operation on MICAz is slightly better than
that on TelosB, even though TelosB is equipped with a 8MHz, 16-bit CPU. After a careful and tedious in-
vestigation, we found the performance degradation on TelosB is due to the following two reasons. First, the
8MHz CPU (MSP430) frequency on TelosB is just a nominal value. In reality, the maximum CPU clock
rate is actually 4MHz. Second, the hardware multiplier in MSP430 CPU uses a group of special peripheral
registers which are located outside of MSP430 CPU. As the result, it takes MSP430 eight CPU cycles to
perform an unsigned multiplication, while it at most takes four cycles to do the same operation in Atmega
CPU. The above two reasons explain why TelosB cannot performbetter than MICAz.

We also compare our ECC performance with the result in [5]. Gura et al. implemented the ECC (the
same curve) on Atmega128 CPU, which is the same CPU used on MICAz mote. Their result, 0.81s for a
random point multiplication, is about 40% faster than 1.35sof our result. We notice that the time for their
160×160 multiplication is 0.39ms, roughly 17% faster than our 0.47ms. In general, we believe their code
is more polished and optimized in many aspects than our code.Furthermore, Our code is implemented

17

Technical Report WM-CS-2006-07

in TinyOS, and mostly written with NesC (except several critical large integer operations), which could
introduce additional CPU cycles.

5 Conclusion

In this technical report, we present a number of optimization schemes to efficiently implement the public
key cryptosystems in small, less-powerful sensor devices.We implement 1024-bit RSA and 160-bit ECC on
MICAz motes. Our experiments demonstrate that the public key cryptography is promising for sensors. Our
experiments show that the times for ECC signature generation and verification are 1.35s and 1.96s respective
for Mica motes, and 1.55s and 2.25s for TelosB motes. For RSA implementation, we have achieved 0.79s
for public key operation and 21.5s for private operation on Mica motes. We believe the performance can be
improved by more careful programming or using more powerfulsensors.
Acknowledgment This project was partially supported by US National ScienceFoundation award CCF-
0514985.

References

[1] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation. InAdvances in Crytology-
Proceedings of ICICS, Lecture Notes in Computer Science, pages 282–290, Springer-Verlag, 1997.

[2] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using mixed coordinates. In
ASIACRYPT: Advances in Cryptology, 1998.

[3] J. Grobchadl. The Chinese Remainder Theorem and its application in a high-speed RSA crypto chip.
In ACSAC, page 384, 2000.

[4] Vipul Gupta, Matthew Millard, Stephen Fung, Yu Zhu, NilsGura, Hans Eberle, and Sheueling Chang
Shantz. Sizzle: A Standards-based end-to-end Security Architecture for the Embedded Internet. In
Third IEEE International Conference on Pervasive Computing and Communication, Kauai, Mar. 2005.

[5] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle,and Sheueling Chang Shantz. Comparing
Elliptic Curve Cryptography and RSA on 8-bit CPUs. InCHES, Boston, Aug. 2004.

[6] D. Hankerson, A. J. Menezes, and S. Vanstone.Guide to Elliptic Curve Cryptography. Springer-
Verlag, 2004.

[7] C. K. Koc. High-Speed RSA Implementation. InRSA Laboratories TR201, Nov 1994.

[8] An Liu and Peng Ning. TinyECC: Elliptic Curve Cryptography for Sensor Networks. Sept 15 2005.

[9] D.J. Malan, M. Welsh, and M.D. Smith. A public-key infrastructure for key distribution in tinyos
based on elliptic curve cryptography. InThe First IEEE International Conference on Sensor and Ad
Hoc Communications and Networks, Santa Clara, CA, October 2004.

[10] P. Montgomery. Modular Multiplication Without Trial Division. Mathematics of Communication,
44(170):519–521, April 1985.

[11] F. Morain and J. Olivos. Speeding up the computations onan elliptic curve using addition-subtraction
chains.Theoretical Informatics and Applications, 24:531–543, 1990.

18

Technical Report WM-CS-2006-07

[12] S. Chang Shantz. From Euclid’s GCD to Montgomery Multiplication to the Great Divide. InTechnical
report, Sun Microsystems Laboratories TR-2001-95, June 2001.

[13] Haodong Wang, Bo Sheng, and Qun Li. Elliptic curve cryptography based access control in sensor
networks.International Journal of Sensor Networks, 1(2), 2006.

19

