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Abstract

Even though symmetric-key scheme, which has been investigated extensively for sensor networks,
can fulfill many security requirements, public-key cryptography is more flexible and simple rendering
a clean interface for the security component. Against the popular belief that public key scheme is not
practical for sensor networks, this technical report describes the ECC (Elliptic Curve Cryptography)
public-key cryptosystem implementation in the real world sensor devices. We detail the implementation
of 160-bit ECC cryptosystems over prime field on MICAz, TelosB and Tmote Sky sensor motes. We
evaluate the performance of our implementation by running digital signature generation and verification.
We have achieved the performance of 0.77s for signature generation and 1.12s for signature verification
on Tmote Sky sensor motes. Comparatively, we show the performance on MICAz and TelosB motes are
1.35s and 1.45s for signature generation, 1.96 and 2.25 for signature verification. This technical report
summarize our previous implementation effort presented in[11, 12, 13, 10].

1 Introduction

Public-key cryptography has been used extensively in data encryption, digital signature, user authentication,
etc. Compared with the popular symmetric key based schemes proposed for sensor networks, public-key
cryptography provides a more flexible and simple interface requiring no complicated key pre-distribution,
no pair-wise key sharing negotiation. It is a popular belief, however, in sensor network research community
that public-key cryptography is not practical because the required computational intensity is not suitable for
sensors with limited computation capability and extremelyconstrained memory space. The recent progress
in ECC implementation on Atmel ATmega128, a CPU of 8MHz and 8 bits[3], however, shows that a pub-
lic key operation takes less than one second, which proves public-key cryptography is feasible for sensor
network security related applications.

This technical report details our implementation of 160-bit ECC cryptosystem on MICAz, a latest sensor
platform of MICA family from Crossbow. It is of the size of twoAA batteries integrating USB program-
ming capability, an IEEE 802.15.4 radio with integrated antenna, a low-power 8-bit MCU. Its detail features
include: IEEE 802.15.4/ZigBee compliant RF transceiver, 2.4 to 2.4835 GHz (a globally compatible ISM
band), 250 kbps data rate, 8 bit, 8MHz Atmel ATmega microcontroller with 4KB RAM, low current con-
sumption, 128KB programmable ROM, and optional external memory for data collection.

The fundamental operations ECC cryptosystems are large integer arithmetics over the finite field. To
efficiently perform ECC exponentiations on the low-power CPU of sensor motes, it is essential to optimize
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the expensive large integer operations. In particular, multiplication and reduction are most dominant opera-
tions in ECC. Since most CPU cycles are consumed in these two integer operations, the efficiency of these
two integer operation modules directly determines the performance of the encryption and decryption. The
low-power sensor microcontroller has very limited number of registers (only 32 8-bit registers in ATmega).
The large integer operands cannot be loaded into the registers at one time, so that the latency of memory
accesses have to be paid for operand loading and storing between registers and memory. The implemen-
tation challenge is to reduce the number of such memory accesses. In this technical report, we adopt the
hybrid multiplication method [3], which is a very effectiveway to reduce the number of memory accesses.
To precisely control the register and memory operations, weimplement this module in assembly language.
Our experiments demonstrate that the hybrid multiplication is at least 7 times faster than the conventional
multi-precision multiplication programmed in C language.The modular reduction can also be optimized
under certain conditions. For example, when the modulus is apseudo-Mersenne number, the reduction can
be greatly optimized and be finished more than 10 times fasterthan the classic long division method.

In addition to the optimizations of the big integer operation. ECC can be further optimized. We apply
a mixed coordinate, the combination of Affine coordinate andJacobian coordinate, to do ECC exponentia-
tion, so that some expensive operations can be avoided (e.g., inversion) or reduced (e.g., multiplication and
squaring).

Our experiments show that ECC can efficiently run on MICAz motes. It takes 1.35s to generate a
signature, and 1.96s to perform a signature verification. Our comparison tests further show that ECC is even
more efficient on Tmote Sky by taking the advantage of 8MHz and16-bit CPU. The signature generation and
verification on Tmote are 0.77s and 1.12s, respectively. Since TelosB mote, sharing the same hardware with
Tmote, can only run at 4MHz, the performance on TelosB is 1.54s for signature and 2.25 for verification.
Overall, our experiment results demonstrate that ECC is feasible for sensor network security applications.

The rest of the technical report is organized as follows. Section 2 briefly introduces ECC public key
schemes. Section 3 gives detail description of several mostimportant optimizations in large integer op-
eration, as well as some specific optimizations designed forECC implementations exclusively. Section 4
evaluates the performance of our implementations. Section5 concludes the technical report.

2 ECC Introduction

In this section, we briefly give a background introduction about elliptic curve cryptography, and correspond-
ing elliptic curve Digital Signature Algorithm.

2.0.1 Elliptic Curve Cryptography

In recent years, ECC has attracted much attention as the security solutions for wireless networks due to the
small key size and low computational overhead. For example,160-bit ECC offers the comparable security
to 1024-bit RSA. An elliptic curve over a finite fieldGF (a Galois Field of orderq) is composed of a finite
group of points (xi,yi), where integer coordinatesxi,yi satisfy the long Weierstrass form:

y2 + a1xy+ a3y = x3 + a2x2 + a4x+ a6, (1)

and the coefficientsai are elements inGF(q). Since the fieldGF(q) (q is a prime) is generally used in
cryptographic applications, (1) can be simplified to:

y2 = x3 + ax2 + b, (2)
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wherea,b ∈ GF(q).
The elliptic curve points form an additive abelian group, sothat the addition of any two points is a point

in the group. Given two pointsP andQ, with the coordinates(x1,y1), (x2,y2), respectively, the addition
results in a pointR on the curve with coordinate(x3,y3), wherex3 andy3 satisfy

(x1,y1)+ (x2,y2) = (x3,y3), (3)

such that
x3 = L2 + L + x1+ x2 + a, (4)

y3 = L(x1 + x3)+ x3 + y1, (5)

where
L = (y1+ y2)/(x1+ x2) (6)

If x1 = x2 (note x1 + x2 is 0), thenR is defined as a point at infinity,O. O is an identity element of the
group. Each element in the group has an inverse that satisfiesP + (−P) = O, and(−P)+ P = O. Also,
P+ O = O + P = P. If P = Q, thenR = P + P = 2P, and coordinate(x3,y3) is derived by

x3 = L2+ L + a, (7)

y3 = x1
2 +(L +1)x3, (8)

where
L = x1 + y1/x1. (9)

The ECC relies on the difficulty of the Elliptic Curve Discrete Logarithm Problem, that is, given points
P andQ in the group, it is hard to find a numberk such thatQ = kP.

2.0.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECC signature is based on Digital Signature Algorithm. We assume Alice sends a message to Bob. To
convince Bob that the message does come from Alice, Alice needs to apply a digital signature for the
message so that Bob can verify it by using Alice’s public key.Initially, Alice and Bob have to agree on a
particular curve with base pointP over the fieldGF(p), and the order ofP is q. When Alice sends a message
to Bob, she attaches a digital signature(r,s) generated by following steps (suppose Alice has a private key x
and a public keyQ = xP).

1. Choose a random keyk in [1,q−1];

2. ComputekP, yield a point with coordinate(x1,y1). Let r = x1 (modq). Checkr, go back to the first
step if the result is zero;

3. Computek−1 (modq);

4. Computes = k−1(Hash(m)+ xr), whereHash is a one-way hash function. Again, checks, go back
to the first step ifs = 0;

5. (r,s) is the digital signature.

To verify the messagem and the signature, Bob needs to do following steps.
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1. Computew = s−1 modq andH(m);

2. Computeu1 = H(m) ·w modq andu2 = r ·w modq;

3. Computeu1P+ u2Q, get the result point(x2,y2);

4. The signature is verified ifx2 = r.

Finally, Bob compares the value ofx2 andr, and accepts the message only ifx2 equals tor.

3 Implementation

We implement ECC cryptosystems on MICAz motes, powered by ATmega128 microcontroller. The AT-
mega128 incorporates an 8MHz, 8-bit RISC CPU, 128K bytes programmable flash memory (ROM) and
4K bytes SRAM. This architecture provides 133 powerful instructions and 32×8 general purpose registers.
Besides, ATmega128 also features an on-chip multiplier. The fundamental ECC operation is large integer
arithmetics over either prime number finite fieldGF(p) or binary polynomial fieldGF(2m) (wherem is
a prime). Because the two heavily used operations: multiplication and modular reduction, can be more
effectively optimized if pseudo-Mersenne primes are picked for elliptic curves compared with those of bi-
nary field [3], we limit our discussion in prime number finite field GF(p) in this paper. Without further
clarification, our discussion of ECC implementation is based on SECG recommended 160-bit elliptic curve:
secp160r1.

In this section, we first describe the optimized large integer operation modules. Then we focus on the
protocol related optimizations specifically for ECC operation.

3.1 Large Integer Operations

We implement a suite of large integer arithmetic operations, including addition, subtraction, shift, multi-
plication, division and modular reduction. Due to the spacelimit, we only present three of most important
functions: multiplication/squaring, modular reduction and inversion.

3.1.1 Multiplication and Squaring

The multiplication (or squaring) is the key component in ECCimplementation because the exponentiation
is basically computed by multiplications and squaring. We have compared three different multiplication
implementations [3, 7, 6], and finally decided to use Hybrid Multiplication proposed in [3]. To ease our ex-
planation, we use three large integers as the examples for our following discussion:A(an−1,an−2, · · · ,a1,a0),
B(bn−1,bn−2, · · · ,b1,b0), andC(n2n−1,c2n−2, · · · ,c1,c0), whereC = A ∗B. A andB both have length ofn
words, each word hask-bit size. The productC has 2n words.

The Hybrid multiplication is the combination of Row-wise multiplication and Column-wise multipli-
cation. The Row-wise method fixes the multiplierbi (0 ≤ i ≤ n), and multiplies it with every word of
multiplicand A. Partial results are stored inn+1 accumulator registers. Every time one row is finished, the
last accumulator register can be stored to memory as the partof final results. On average, one memory load
is required for eachk× k multiplication. When integer sizen is increased, the required number registers
increase linearly in Row-wise method. For 160-bit ECC, a typical multiplication is between two 20-byte
large integers. Given only 32 registers in ATmega128, Row-wise multiplication can not be directly applied.
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The Column-wise method, on the other side, computes the partial results ofai ∗ b j (wherei + j = l)
for column l. After one column finishes, the last word of accumulator registers is stored as the part of
final result. The Column-wise method only requires three accumulator registers and two more for operands.
However, two memory load operations are required for eachk× k multiplication.

The Hybrid method takes advantages of Row-wise and Column-wise strategies. To optimize the mem-
ory operation, the Hybrid method merges a number (d) of columns together, and then conducts Row-wise
multiplication in each merged column. Whend equals to 1, the Hybrid method becomes the Column-wise
multiplication. Whend equals ton, then it becomes Row-wise method. A largerd leads to fewer memory
operations, but requires more registers. A smalld, however, requires more memory operations and consumes
more CPU cycles. Balancing the advantages and disadvantages, we implement the Hybrid multiplication
with column widthd = 4, which requires 9 accumulator registers, 5 operand registers, 6 pointer registers
(point to A, B and C), and others for temporary storage and loop control.

We implement the Hybrid multiplication in assembly language. For the comparison purpose, we also
implement a standard multi-precision multiplication program in C language. Our experiments show the
standard C program needs 122.2ms to finish the multiplication between two 128-byte integers,while it only
takes 17.6ms for our Hybrid multiplication to do the same computation, which is more than 7 times faster.

The squaring is a special case of the multiplication, which has the same the multiplicand and the mul-
tiplier. Given an m-bit large integerA = (A1,A0), whereA1,A0 are two halves,A2 = A1A1×2m +2A1A0×
2m/2 + A0A0. Therefore, we can take advantage of the fact thatA1A0 only needs to be calculated once.
Compared with the multiplication, the optimized squaring can reduce the computational complexity up to
25%.

3.1.2 Modular Division

Modular division is another expensive operation in ECC. In Affine coordinate, each ECC operation of point
addition and doubling requires a modular inversion. The integer inversion is also required for ECC digital
signature generation and verification. In our implementation, we adopt the Great Divide scheme proposed
in [9]. We briefly explain the algorithm in the followings. Given an denominatorx and numeratory, we
want to compute the modular divisionyx overGF(p). This is equivalent to findr, so that

r ≡
y
x

(mod q). (10)

To find r efficiently, the algorithm maintains following two invariant relationship:

A∗ y ≡U ∗ x, andB∗ y ≡V ∗ x, (11)

whereA,B,U ,andV are four auxiliary variables and initialized with valuesx,q,y, and 0, respectively. Note
the two relationship is true with the initial values. The algorithm intuition is to reduce the value ofA to
1, so that the first relationship in (11) will becomey ≡ U ∗ x, andU will be the result. The procedure is
conducted in following way. WhenA is even, we can divideA by 2. Correspondingly,U has to be divided
by 2 to keep the relation true. IfU is not even at that time, we can make it become even by addingU with
the modulus. WhenA is odd, we use the 2nd relationship to help to reduceA. If B is even, we keep dividing
B by 2 similarly to makeB odd. Then we add the two relation together and the divide the result value by
2 at the both sides. By repeating this process, it is guaranteed that either value ofA or B reduces one bit
in one iteration. The procedure stops whenA = B = 1, the first equation becomesy ≡U ∗ x. The value of
U is our final result. If we initializeU with 1, this routine can be used to calculate an inversion ofx. This
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algorithm works whenx andq are relatively prime. The Great Divide finishes division or inversion operation
in 2(log(x)−1) steps. Great Divide is much faster than the long division method because Great Divide only
needs addition operations in each iteration, while long division method requires multiplications.

3.1.3 Modular Reduction

The modular reduction operation is another important module because each multiplication or squaring must
be followed by a reduction operation. The classic reductionmethod is using long division. Although the
long division method is a general method for calculating themodular reduction, it is also the slowest method.
In ECC cryptosystem, the modular reduction operation is as important as modular multiplication. Each
multiplication must be followed by a reduction operation. Since we choose to use pseudo-Mersenne primes
as specified in NIST/SECG curves, the modular reduction can be optimized by conducting a fixed number
of integer additions. Because the optimization is curve specific, we will explain in more details in the next
subsection of ECC operation.

Now, we discuss the modular reductions in ECC digital signature generation and verification. In most
cases, the modulus is not a pseudo-Mersenne prime, the optimization cannot be applied for those reduction
calculations. We choose the classic long division method toimplement this operation. Fortunately, the
number of this type of modular reduction is very limited, it does not affect the overall performance much.
We briefly describe the long division method as in Algorithm 1. The long division producer reduces the

Algorithm 1 Reduction by using long division.
1: Input: x,n;
2: Output:r = x modn;
3: while x ≥ n do
4: Align the most significant byte (MSB) of modulusn to the MSB ofx, the lower bytes ofn can be

filled with zeros;
5: Starting with the MSB ofx, divide the first two MSBs ofx by the MSB of modulusn, and get the

quotient;
6: Multiply the quotient with the modulus and get a subproduct;
7: If the subproduct is greater than the remainder ofx (over estimation), subtract the modulus from the

subproduct;
8: Then subtract the subproduct from the remainder ofx;
9: The procedure continues and goes back to step 2 if the MSB of the remainder becomes zero;

10: If the MSB of the remainder is not zero (under estimation), subtract the modulus from the remainder,
and then go back to step 2;

11: The procedure stops when the remainder is less than modulusn;
12: end while
13: returnx;

remainder ofx by one byte in each iteration.

3.2 Optimization for ECC Operation

We first discuss ECC point addition and doubling. We then introduce an optimized modular reduction for
curve secp160r1. Finally, we explain several different optimizations for point multiplication.
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3.2.1 ECC addition and doubling

The fundamental ECC operation is point addition and point doubling. The point multiplication can be de-
composed to a series of addition and doubling operations. Asdiscussed in previous section, point addition
and doubling in Affine coordinate require integer inversion, which is considered much slower than integer
multiplication. Cohenet al. showed that these operations in Projective coordinate and Jacobian coordinate
yield better performance [1]. They further found addition and doubling in mixed coordinate, with the combi-
nation of Modified Jacobian coordinate and Affine coordinate, lead to the best performance [2]. Consider an
ECC point in Modified Jacobian coordinate,P1(X1,Y1,Z1,aZ4

1), and a point in Affine coordinate,P2(x2,y2),
their addition results in the third pointP3 = (X3,Y3,Z3,aZ4

3) in Modified Jacobian coordinate. The result is
given by following equations.

X3 = −H3−2X1H2+ r2,

Y3 = −Y1H3+ r(X1H2−X3),

Z3 = Z1H,

aZ4
3 = aZ4

3,

(12)

whereH = x2Z2
1 −X1, andr = y2Z3

1 −Y1. The result of point doubling forP3 = 2P1 is given by following
formula.

X3 = T,

Y3 = M(S−T )−U,

Z3 = 2Y1Z1,

aZ3 = 2U(aZ4
1)

(13)

To estimate the computational complexity, we only considerlarge integer multiplication and squaring op-
erations, and ignore those addition and subtraction since they are much faster. According to Eq.12 and
Eq.13, point addition requires 9 large integer multiplications and 5 squaring, and point doubling requires 4
multiplications and 5 squaring.

The basic point operations can be further optimized for specific elliptic curves. In our case, the curve
parametera of secp160r1 equals to -3. For point doubling,M can be further reduced to

M = 3X3
1 −3Z4

1 = 3(X1 + Z2
1)(X1−Z2

1). (14)

As the result, point doubling operation reduces to 4 multiplications and 4 squaring. Actually,aZ4
3 does not

have to be calculated in point addition, so the computational complexity reduces to 8 multiplications and 3
squaring. Our observation supports the choice of mixed coordinate, the performance of point multiplication
improves around 6% compared with our previous implementation in Jacobian coordinate.

3.2.2 Modular Reduction on ECC Curve

Recall that modular reduction has to be applied after every large integer multiplication, it is also a perfor-
mance critical operation. By taking advantage of pseudo-Mersenne primes specified in SECG curves, the
complexity of the modular reduction operation can be reduced to a negligible amount. In this section, we
use curve secp160r1 as the example to show how to do efficient reduction.

Suppose we use the 8-bit architecture, the multiplication result of two 160-bit integers can be represented
by

C(c39, · · · ,c20,c19, · · · ,c1,c0),
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whereci (0≤ i ≤ 39) is a word with 8 bits, andc39 is the most significant word. The 40-word integer can
also be written as:

C = (c39, · · · ,c20)∗2160+(c19, · · · ,c1,c0) (15)

Given the field of curve secp160r1q = 2160−231−1, we can have 2160≡ 231+1. Therefore,

C ≡ (c39, · · · ,c20)∗ (231+1)+ (c19, · · · ,c1,c0)

≡ (c39, · · · ,c20)∗231+(c39, · · · ,c20)+ (c19, · · · ,c1,c0)
(16)

Since each word has 8 bits, the first term in the result of Eq. 16can be further reduced to

(c39, · · · ,c20)∗231 ≡ (c39,c38,c37)∗2167+ c36∗2159+(c35, · · · ,c20)∗231

≡ (c39,c38,c37)∗238+(c39,c38,c37)∗27 +(d7d6 · · ·d0)∗231+(d7d6 · · ·d0)+ (d0)∗2159
(17)

where(d7, · · · ,d1,d0) are 8 bits ofc36. Now, all terms in Eq.16 and 17 have at most 159 bit length, the
reduction result is simply the addition of these terms.

3.2.3 Further Optimization

Examining the computational complexity, we notice that point addition is more expensive than point dou-
bling. As we have discussed, point multiplication can be decomposed to a series of point addition and
doubling, we would rather use more point doubling than pointaddition to compute the point multiplication.
Morain et al. found Non-adjacent forms (NAFs) is an effective way to achieve the lightest Hamming weight
for scalark in point multiplicationk∗P, which results to use the least number of point additions to calculate
k ∗P [8]. For example, 255∗P, or (11111111) ∗P, requires 7 point additions. But if we transform it to
(10000000−1)∗P, which is 256∗P−P, only one addition is required. Note the point subtraction can be
replaced by point addition because the inverse of an Affine point P = (x,y) is −P = (x,−y). We implement
NAFs technique in random point multiplication. According to our experiments, point multiplication with
NAFs contributes at least 5% performance improvement.

Recall in the digital signature procedure in ECDSA, component r is generated by a point multiplication
with the fixed base point of a selected elliptic curve. To further reduce the execution time, we precompute
some partial results and apply sliding window method [5] to speed up fixed point multiplication. Different
from NAFs, sliding window scheme groups scalark into a number ofs− bit bit-clusters, wheres is also
called window size. So,k can be represented bykm ∗2sm +km−1∗2s(m−1) + · · ·+k0, whereki is a bit-cluster.
If we precompute the point multiplication with every possible value ofki, the number of point addition
is bounded by⌈160

s ⌉− 1. Note the sliding window method does not reduce the number of point doubling
operations. Obviously, this scheme requires extra memory space for storing partial results. In practice, we
select window sizes = 4. Correspondingly, there are 16 entries in the partial result table. Our experiments
show sliding window method is more effective than NAFs for fixed point multiplication, the performance of
sliding window method is more than 10% better than that of NAFs.

Our initial experimental results indicated that it took double amount of time to perform an ECDSA
verification than to do an ECDSA signature: signature is 1.35s, while verification is 2.85s. The reason
is that the verification requires two ECC point multiplications (while the signature only needs one point
multiplication); the verifier has to performu1P+u2Q as shown in Section 2.2.2. To speed up the verification
time, we adopt Shamir’s trick [4] to do multiple point multiplication simultaneously. The idea of Shamir’s
trick is similar to the sliding window method discussed previously. Givent-bit u1 andu2, we use the window
sizeω and precompute the valuesiP+ jQ for 0≤ i, j ≤ 2ω. At each of⌈t/ω⌉ steps, we performω doubling
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and the (precomputed) additions determined by the window contents. The larger the window size (ω) is, the
more memory is required for storing the precomputed values.In practice, we choose the single bit window
size,ω = 1. Therefore, only the value ofP + Q needs to be precomputed and stored. As the result, the
performance of ECDSA verification has been improved more than 30%, from 2.85s to 1.96s. There is still
further improvement space if multi-bit window size is used,but the trade-off is more memory overhead.

4 Experiments and Performance Evaluation

We have implemented the 160-bit ECC security primitive on MICAz mote, and revamped our previous ECC
implementation [13] on TelosB and Tmote Sky motes. MICAz is powered by ATmega128 microcontroller.
ATmega incorporates an 8MHz, 8-bit RISC CPU, 128K bytes flashmemory (ROM) and 4KB RAM. The
RF transceiver on MICAz is IEEE 802.15.4/ZigBee compliant,and can have 250kbps data rate. TelosB and
Tmote Sky share the same platform with TI MSP430 16-bit processor, 48K bytes programming memory
and 10KB RAM. The only difference between TelosB and Tmote Sky is the CPU frequency. Tmote Sky can
work at 8MHz, while TelosB only works at 4Mhz.

4.1 ECC Evaluation

In this subsection, we first present the performance of our implementation on three sensor platforms. Then
we use the MICAz mote as an example to give an overall analysisto quantify the computation complexity.

4.1.1 The performance of ECC Implementation

In experiments, we measure execution time and code size of our implementation. We choose secp160r1
as the elliptic curve in all experiments. We use the embeddedsystem clock (921.6kHz for MICAz and
32.6kHz for TelosB/Tmote Sky) to measure the execution timeof major operations in ECC, such as point
multiplication, point addition and point doubling.

We first test point multiplication operation, which is comprised of point addition and doubling. We con-
sider two cases in point multiplication. One is multiplyinglarge integer with a fixed point(base point), and
the other one is with a random point. Fixed point multiplication allows for optimization by precomputing.
We apply sliding window technique[5] and set window size to 4, i.e., precomputing 24 − 1 = 15 points.
In experiments, we randomly generate 20 large integers to multiply with the point and take the average
execution time as the result.

Since ECC point multiplication consists of addition and doubling operations, we further evaluate these
two operations individually. We generate random points andlarge integers for tests. Since a single operation
takes very little time, to reduce the error of clock inaccuracy, we measure 100 operations every round and
take the average value.

We summarize the performance in Table 1, including ECC fix point multiplication (with size-4 sliding-
window optimization) (FPM), random point multiplication (RPM), point addition (PAdd), point doubling
(PDbl), ECDSA signature (SIGN) and verification (VERIFY). It clearly shows that the performance of ECC
operation on MICAz is slightly better than that on TelosB, even though TelosB is equipped with an 8MHz,
16-bit CPU. After a careful investigation, we found the performance degradation on TelosB is due to the
following two reasons. First, the 8MHz CPU (MSP430) frequency on TelosB is just a nominal value. The
maximum CPU clock rate is actually 4MHz. Second, the hardware multiplier in MSP430 CPU uses a group
of special peripheral registers which are located outside of MSP430 CPU. As the result, it takes MSP430
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FPM RPM PAdd PDbl SIGN VERIFY
MICAz 1.24s 1.35s 6.2ms 5.8ms 1.35s 1.96s
Tmote 0.74s 0.77s 3.7ms 3.5ms 0.77s 1.12s
TelosB 1.44s 1.55s 7.3ms 7.0ms 1.55s 2.25s

Table 1: The comparison of ECC execution Time on three mote platforms, including fixed point multipli-
cation (FPM), random point multiplication (RPM), point addition (PAdd) and point doubling (PDbl) and
ECDSA signature generation (SIGN), verification (VERIFY) time.

eight CPU cycles to perform an unsigned multiplication, while it at most takes four cycles to do the same
operation in ATmega CPU. The above two reasons explain why TelosB cannot perform better than MICAz.

Tmote Sky is capable of running at 8MHz CPU frequency insteadof 4MHz on TelosB because it equips
with an external resistor on the ROSC pin of MSP430 that enables the DCO to operate at a higher frequency.
We simply enable the external resistor on Tmote and achieve the ECC performance twice faster than that on
TelosB. As shown in Table. 1, it only takes 0.77s to finish a signature generation and 1.12s to verify it.

ECC library ECDSA UART Comm.
ROM RAM ROM RAM ROM RAM

MICAz 10,360 978 8,244 202 3,452 147
TelosB/Tmote 7,018 1,012 4,420 164 3,202 233

Table 2: ECC implementation code size.

Table 2 presents code sizes and data sizes of the ECC implementations. For TelosB and Tmote Sky
platforms, the ECC library uses 7,018 byte ROM (for code) and1,012 byte RAM (for data). Note more
than 60% of data size is used to store the 15 elliptic points which are used in sliding-window optimization.
When the data size budget is tight, the sliding-window optimization can be removed to have more data
space. ECDSA module accounts for 4,420 bytes on TelosB and Tmote Sky. The reason is the included
SHA1 module consumes around 3KB code size. Finally, for the IO purpose, we also have the UART
communication module, which uses 3,202 bytes for code and 233 bytes for data. The total code size of our
test program is 19,290 bytes.

Compared to TelosB and Tmote Sky, our ECC package is more space demanding on MICAz platform.
The ECC library requires 10,360 bytes in code size for MICAz,46% more than that on TelosB/Tmote. This
is due to our assembly codes for optimizing the large number integer operations. Since the CPU register
number in MICAz is twice the amount that in TelosB/Tmote, more instructions are needed to handle the
extra register operations. For the same reason, the code size of ECDSA requires 8,244 bytes. Overall, the
test program on MICAz uses 24,258 bytes for code and 1507 bytes for data.

4.1.2 A Performance Anatomy of ECC Point Multiplication on MICAz

Since ECC point multiplication dominates the computational complexity in ECC signature and verification,
we are curious to learn the performance anatomy in ECC point multiplication.

This analysis is based on 160-bit ECC curves. We use secp160r1 as the example. We also assume 4-
bit sliding window method is used, and partial results are precomputed. The computational cost for each
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window unit is 4 point doubling and 1 point addition. Given a 161 bit private key, there are 41 window units.
Totally , 164 point doubling and 41 point additions are required to finish 1 point multiplication.

Large (160-bit) integer multiplication, squaring and reduction are the most expensive operations in point
doubling and point addition. To learn the amount of time contributed by the above three operations in a fix
point multiplication. We first individually test the performance of large integer multiplication, squaring and
reduction. Our results show that it takes 0.47ms,0.44ms and 0.07ms to perform a 160×160 multiplication,
squaring and reduction, respectively. Next, we count the the number of each operation required in a point
multiplication. Since we adopt the mixed coordination (thecombination of Jacobian coordinate and Affine
coordinate), each point addition requires 8 large integer multiplications and 3 large integer squaring, and
each point doubling requires 4 large integer multiplications and 4 large integer squaring. In addition, each
multiplication, squaring or shifting operation has to be followed by a modular reduction. Our program shows
the point addition requires 12 modular reductions, and the point doubling requires 11 modular reductions. In
total, each point multiplication costs 164×4+41×8= 984 large integer multiplications, 164×4+41×3 =
779 large integer squaring and 164×11+ 41×12 = 2,296 large integer modular reductions. Plugging in
the results of the individual tests, we get the total amount of time consumed on the three operations is 0.97s,
roughly 78.2% of the total time to do a fix point multiplication. The rest of 21.8% of the time is spent on
various operations, including inversion operation (to convert the Jacobian coordinate to Affine), addition,
subtraction, shifting and memory copy, etc. Based on above analysis, we believe the performance of ECC
operations on MICAz can be further improved by more refined and careful programming.

4.2 Performance Comparison

In the last part of the evaluation, we compare the performance of our implementation with existing research
results [3, 6, 7] and give the possible explanation of the performance gap.

MICAz TelosB
WM-ECC Sun-ECC TinyECC EccM2.0 WM-ECC TinyECC

SIGN 1.35s 0.81s 1.92s 30s 1.55s 4.36s
VERIFY 1.96s - 2.43s - 2.25s 5.44s

Table 3: The performance comparison of our ECC implementation, WM-ECC, with other research results,
including Sun-ECC [3], TinyECC [6] and EccM2.0 [7]. We use MICAz and TelosB as the two platforms.

We first compare the computation time of ECC operations. We denote our ECC implementation as
WM-ECC, and compare the ECDSA signature generation and verification time with other implementations
in Table 3. Obviously, our WM-ECC is more computationally efficient than TinyECC and EccM2.0. On
MICAz platform, TinyECC is 42% slower in signature generation than our implementation. On TelosB
platform, the performance gap increases to 180%.

We also notice than Sun-ECC is more efficient than our WM-ECC.Their result, 0.81s for a random
point multiplication, is about 40% faster than 1.35s of our result. We notice that the time for their 160×160
multiplication is 0.39ms, roughly 17% faster than our 0.47ms. In general, we believe their code is more
polished and optimized in many aspects than our code. Furthermore, Our code is implemented in TinyOS,
and mostly written with NesC (except several critical largeinteger operations), which could introduce more
CPU cycles.

Since memory storage is extremely limited in sensor motes, the program code size and data size de-
termine the feasibility of the ECC package. We compare our WM-ECC with TinyECC and EccM2.0. We
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ECC+ECDSA MICAz TelosB
ROM RAM ROM RAM

WM-ECC 18,604 1,180 11,438 1,176
TinyECC 13,858 1,440 12,564 1,526
EccM2.0 43k 820 - -

Table 4: ECC implementation code size and data size comparison.

do not compare Sun-ECC because it is not based on TinyOS so it is not comparable. To compare with the
code size and data size of TinyECC that only has ECC and ECDSA modules, we combine ECC library and
ECDSA of our WM-ECC, but not UART communication module. NoteEccM2.0 only has the ECC module,
there is no ECDSA available. Table 4 shows WM-ECC has the similar program code size and data size as
TinyECC. The code and data sizes shown for Comparatively, EccM2.0 consumes much more code space.
Given 128KB ROM, 4KB RAM on MICAz, and 48KB ROM, 10KB RAM on TelosB, WM-ECC can easily
fit in existing applications. One may notice that WM-ECC requires extra 5KB code size than TinyECC on
MICAz platform. This is due to the trade-off of the computation efficiency. We have extensively optimized
the large integer operations on MICAz platform. As the result, the code size is slightly inflated due to the
techniques such as loop unrolling. Considering the programming space MICAz is relatively large, 128KB,
we believe this trade-off of 5KB code size is worthwhile.

5 Conclusion

In this technical report, we present how viable that WM-ECC can run on small, less-powerful sensor de-
vices. We implement 160-bit ECC on popular sensor motes, including MICAz, Tmote Sky and TelosB. Our
experiments show that WM-ECC is practical for all three sensor platforms. ECC signature of WM-ECC
only takes 1.35s, 0.77s, 1.35s for MICAz, Tmote Sky and TelosB, respectively. Meanwhile, we believe
there is still performance improvement space, which can be achieved by more careful programming.
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