
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 3, MARCH 2008 1

Secure and Serverless
RFID Authentication and Search Protocols

Chiu C. Tan, Bo Sheng, and Qun Li

Abstract—With the increased popularity of RFID applications,
different authentication schemes have been proposed to provide
security and privacy protection for users. Most recent RFID
protocols use a central database to store the RFID tag data. The
RFID reader first queries the RFID tag and returns the reply to
the database. After authentication, the database returns the tag
data to the reader. In this paper, we propose a more flexible
authentication protocol that provides comparable protection
without the need for a central database. We also suggest a
protocol for secure search for RFID tags. We believe that as
RFID applications become widespread, the ability to securely
search for RFID tags will be increasingly useful.

Index Terms—Authentication, privacy, RFID, search, security.

I. INTRODUCTION

RADIO Frequency Identification (RFID) technology is
increasingly being deployed in diverse applications rang-

ing from inventory management to anti-counterfeiting protec-
tion [1]. Features such as the ability for a reader to read data
off an RFID tag located several meters away, make RFID tags
an attractive replacement for barcodes, which require line-of-
sight to a reader before being read. Nonetheless, RFID tags
have yet to supplant the ubiquitous barcode found on almost
every grocery product. This slow adoption is partly due to the
security and privacy concerns over the pervasive deployment
of RFID tags. Such concerns include the illicit tracking of
RFID tags which in turn violate the privacy of the holders of
the tags. Until these concerns are adequately addressed, large
scale adoption of RFID is unlikely to materialize.

Recent work [2], [3], [4], [5] attempts to solve the RFID
security and privacy problem by utilizing the “central database
model”. There are three players in this model: an RFID reader,
an RFID tag, and a secure central database. To obtain data
from a tag, the reader first queries the tag and then forwards
the tag reply to the central database. The reader obtains no
useful information from the tag reply. After the database
authenticates the reader and verifies that the tag reply is
genuine, the database returns the tag information to the reader.
While the central database approach provides security and
privacy protections, it is dependent on a reliable connection

Manuscript received December 2, 2006; revised March 9, 2007; accepted
June 7 2007. The associated editor coordinating the review of this paper and
approving it for publication was D. Wu. This project was supported by US
National Science Foundation award CCF-0514985.

C. C. Tan is with the Department of Computer Science, College of William
and Mary, Williamsburg, VA, 23187 (e-mail: cct@cs.wm.edu).

B. Sheng is with the Department of Computer Science, College of William
and Mary, Williamsburg, VA, 23187 (e-mail: shengbo@cs.wm.edu).

Q. Li is with the Department of Computer Science, College of William and
Mary, Williamsburg, VA, 23187 (e-mail: liqun@cs.wm.edu).

Digital Object Identifier 10.1109/TWC.2008.061012.

between an RFID reader and the central database. Consider,
for example, a truck driver dispatched to an off-site location
to collect some merchandise tagged with RFID tags. He has
with him a PDA which doubles as an RFID reader. Due to the
remote location, the truck driver is unable to connect with the
central database to authenticate the goods. As a result, despite
having an authorized reader and genuine RFID tags, the driver
is unable to obtain the data.

A simple alternative, analogous to using a central database,
is to download the information from the database onto the
reader. The RFID reader can then continue to access the
RFID tags as before. However, unlike a stationary server,
which can be well protected, the portable and mobile nature
of a reader increases the likelihood of it being stolen. An
adversary with a stolen reader will have access to information
originally found only in the database. This information can
include the unique ID and secret password of an RFID tag. An
adversary can use this information to create fake RFID tags
that are indistinguishable from the real ones. The adversary
first obtains a “blank” RFID tag and then proceeds to store
data from the compromised reader onto this blank tag. Since
this fake tag has the same information as a real RFID tag,
a reader is unable to distinguish between the two. In this
paper, we suggest a protocol that provides similar security
and privacy protections as the central database model without
requiring a persistent connection to the database. Our protocol
also prevents an adversary from using a compromised reader
to create indistinguishable fake RFID tags.

After providing security and privacy protection to a single
reader querying a single tag, a natural extension is to provide
the same protection to situations where there is a single reader
and multiple tags. One such situation is when a reader needs
to search for a particular RFID tag out of a large collection of
tags. As the number of RFID tags in circulation increases, the
ability to search for RFID tags is invaluable when the reader
only requires data from a few tags rather than all the tags in
a collection. Authenticating each tag one at a time until the
desired tag is found is a time consuming process. Surprisingly,
the problem of RFID search has not been widely addressed
in the literature despite the availability of search capabilities
in commercial RFID products. In this paper, we examine the
challenges of extending security and privacy protection to
RFID search, and suggest several solutions.

We make the following three contributions in this paper.
First, we propose an authentication protocol that provides
mutual authentication between the RFID reader and RFID
tag without the need for a persistent central database. This
is a departure from recent work on RFID security and privacy

1536-1276/08$25.00 c© 2008 IEEE

2 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 3, MARCH 2008

research. Second, our scheme considers security for both the
RFID reader and the RFID tag. This differs from some of the
earlier research which focused on only protecting the reader
or the tag. Third, we introduce the problem of searching for
RFID tags with security and privacy protection, and suggest
several solutions.

The rest of the paper is as follows. The next section reviews
related work on RFID security. Section III explains security
and privacy in the context of RFID. Section IV and Section
V contain the authentication protocol and security analysis
respectively. Section VI introduces the secure RFID search
problem and presents several possible solutions. Section VII
discusses the shortcomings of a serverless approach and how
to overcome them. It also includes a discussion on the cost
and efficiency of our protocol. Finally, we conclude in Section
VIII.

II. RELATED WORK

RFID security and privacy research can be broadly divided
into two categories. The first category is protocol based.
Its emphasis is on designing better protocols using mostly
lightweight primitives [6] known to be implementable on
RFID tags. Our paper falls under this category. The second
category is hardware based. The emphasis is on improving
RFID tag hardware to provide additional security primitives
like elliptic curve cryptography. For the remainder of this
section, the focus is on prior work done in the first category.
A brief discussion of RFID hardware improvements is given
at the end. Interested readers can refer to an online resource
by Avoine [7] for up-to-date information, and recent survey
papers [8], [9] for more details.

Early work by Weis et al. [10] used a backend database
to perform RFID authentication. A reader querying the RFID
tag will receive a metaID. The reader forwards this metaID
to the backend server which then retrieves the real tag ID
for the reader. Every tag has a unique metaID and will
always reply with the same metaID value when queried. This
creates a privacy problem since an adversary can track the
movements of a tag by repeatedly querying and comparing
metaID values. The authors proposed the randomized hash
lock scheme to solve this problem. Under this scheme, the tag
returns (r, ID⊕fk(r)) when queried by a reader, where r is a
random number generated by the tag, k is the tag’s secret key
and fk is a pseudorandom function. The reader forwards this
reply to a secure database which then searches its database for
the ID/secret key pair that matches the tag reply. Once found,
the tag ID is returned to the reader. Since every new reader
query results in a different reply, the adversary is unable to
track the tag.

Molnar and Wagner [11] pointed out that the randomized
hash lock scheme does not defend against an eavesdropper.
An adversary can eavesdrop on the communication between
reader and tag to learn the tag reply, (r, ID ⊕ fk(r)). The
adversary then uses this information to impersonate the RFID
tag to fool a reader. In their paper, the authors suggest having
both the reader and tag each contribute a random number, r1

and r2 respectively. Their approach assumes that the reader
knows the tag secret k. After the reader and tag exchange

random numbers, the tag replies with ID⊕fk(0, r1, r2). Since
the reader knows k, he can derive fk(0, r1, r2) and obtain
ID. The protocol works without a central database. However,
it does not consider the case of a compromised reader. An
adversary with a compromised reader will know the tag secret
of every tag the reader has access to. The adversary can
then use this information to make duplicate tags to fool other
readers. Our protocol addresses this particular vulnerability.

Dimitriou [2] is a more recent example of a protocol based
on a database. In this protocol, both the reader and tag
exchange random numbers, nr and nt, at the start of the query.
The tag then returns (h(IDi), nt, hIDi(nt, nr)) to the reader,
where IDi is the tag secret. The reader learns nothing from
this reply, and forwards it to the database. The database uses
h(IDi) to determine the matching tag secret IDi. This IDi

is applied to nt and nr to verify the tag reply. Once satisfied,
the database updates the tag secret from IDi to IDi+1. The
tag information, together with hIDi+1(nt, nr), is returned to
the reader. The reader completes the protocol by forwarding
hIDi+1(nt, nr) back to the tag. The tag determines IDi+1

independently, and applies it to the two random numbers used
earlier. If the result matches hIDi+1(nt, nr), the tag knows
that the reader has been authenticated by the database. The tag
updates its secret to IDi+1 and the protocol terminates. Other-
wise, the tag retains the old secret IDi. Similar protocols [3],
[4] also use the idea of changing the tag secret after every
query. A key feature of this protocol is how desynchronization
between tag and server is avoided. A fake RFID tag will
not be able to generate a reply to convince the database to
update the tag secret IDi. A rogue reader is unable to derive
hIDi+1(nt, nr) to convince an RFID tag to change its secret.
Work by [12], [13] examines desynchronization attacks in
greater detail.

While RFID with database protocols are relatively new, a
similar problem is found in 3GPP mobile authentication [14],
[15]. In 3GPP authentication, mutual authentication is required
between the mobile user and network. Synchronization of
sequence numbers used by a mobile user and the home
network is also required. These requirements are similar to
the mutual authentication between a reader and a tag, and the
synchronization of tag secret between the database and the
RFID tag.

An alternative method for RFID authentication is based on
a “challenge and response” between a reader and a tag. Juels
et. al. [16] observed that human authentication protocols can
be applied to RFID, since RFID tags, like humans, have weak
computational capabilities. They introduced HB protocol, in
which a reader issues a new challenge to a tag each time
it queries an RFID tag. The tag computes the binary inner
product based on the reader’s challenge, and returns the answer
to the reader. The reader authenticates the tag by verifying the
tag response. The HB+ protocol is an improvement over the
HB protocol by using an additional binding factor from the
tag to defend against an active adversary. Later work by [17],
[18], [19] improves on this idea.

YA-TRAP [5] introduces a novel technique using times-
tamps in RFID authentication. This is a novel approach since
RFID tags have no self-contained power source to keep track
of time. In YA-TRAP, a reader will send a timestamp of the

TAN et al.: SECURE AND SERVERLESS RFID AUTHENTICATION AND SEARCH PROTOCOLS 3

current time to a tag which then decides whether to return
a random reply or an encrypted reply based on the received
timestamp and its own internal timestamp. The reader sends
this reply back to a backend server to obtain the tag data.
Chatmon et. a. [20] suggested an improvement to this protocol.

An assumption made by earlier research, as well as this
paper, is that RFID tags are capable of executing cryptographic
hash functions. However, most current commercial RFID tags
do not provide these hash functions, mainly due to the higher
production cost [10]. A cryptographic hash function requires
additional gates to be implemented in the tag, raising the
overall cost per tag. Common hash functions like MD4, SHA-
1 and SHA-256 require between 7350 and 10868 additional
gates [21]. This suggests that the majority of the proposed
protocols are likely to be feasible only on expensive RFID
tags attached to more valuable items. Recent work by [22]
suggested using physically unclonable functions (PUF) in
RFID tags since they only require 545 gates to implement.
However, the same paper also noted that PUF-based hash
functions are difficult to analyze since they are influenced by
physical environment. How to design security protocols using
PUF-based hash functions remain an open problem.

An orthogonal approach to RFID security focuses on chang-
ing the physical hardware of the RFID tag itself. Efforts
by [23], [24], [25] investigated the possibility of building
RFID hardware that is capable of performing public key
based authentication. Their efforts have centered on using a
particular flavor of public key cryptography based on elliptic
curve cryptography (ECC). ECC has been suggested as a good
replacement for RSA based public key cryptosystems since a
160-bit ECC offers the same level of security as a 1024-bit
RSA encryption. While a public key cryptosystem for RFID
tags greatly improves RFID privacy and security, it is also
more costly to implement than cryptographic hash functions.
Furthermore, it is unclear whether tiny sensor motes will be
used in lieu of these RFID tags, since current sensor motes are
already capable of efficiently performing ECC primitives [26],
[27] and protocols [28].

III. RFID PRIVACY AND SECURITY

For RFID tags attached to personal items like a passport,
exposing information from these tags to an unauthorized
reader violates the privacy of the owner of the item. There
are two ways information about a tag can be exposed. The
first is when an unauthorized reader queries the tag and gets
back the tag data. This can be solved by encrypting the tag
reply such that only an authorized reader can decrypt the
reply. The second is when an unauthorized reader obtains a
constant reply from an RFID tag. The unauthorized reader
can use this information to track the movements of the holder
of an RFID tag. For instance, consider a tag attached to a
passport. An unauthorized reader queries the tag and obtains
a constant encrypted reply. Even though the unauthorized
reader cannot decrypt the reply, it can compare tag replies
at different locations. When the same tag reply is obtained in
two separate locations, the unauthorized reader can infer that
the holder of the tag has been to these two locations. This
is also known as violating the “location privacy” of the tag.

TABLE I
NOTATIONS

CA Trusted party, responsible for authenticating readers and
deploying tags

Ri RFID reader i
ri id for RFID reader Ri

Li access list for RFID reader Ri

n number of entries in Li

Ti RFID tag i
idi id for RFID tag Ti

ti secret for RFID tag Ti

h(x) one-way hash function
f(x, y) Concatenate x and y, then applying h(.), h(x||y)

l number of bits of hash h(.)
m CA defined number of bits, m < l

Location privacy can be solved by having each tag reply be
different and unlinkable to previous tag replies.

RFID tags are also widely used as a means of identification.
For example, an RFID tag can be attached to a container of
pharmaceuticals so that a reader can query the tag and learn
the contents without opening up the container. An adversary
manufacturing counterfeit pharmaceuticals will attempt to
create a fraudulent RFID tag to place onto his container of
counterfeit drugs. An RFID reader that queries and accepts
the fraudulent tag as a real RFID tag will then accept the
counterfeit drugs as genuine.

A basic component of RFID security is to allow a reader
to distinguish a real RFID tag from a fake tag. This is
accomplished by having a secret known only to a reader
and a genuine tag. The RFID tag can then use this secret
to prove itself to a reader. An adversary attempting to create a
fraudulent tag indistinguishable from a real tag needs to obtain
this secret. The adversary has three methods to try to obtain
this secret. The first is by eavesdropping on the communication
between a reader and a tag. The second is by repeatedly
querying the RFID tag to obtain enough information to derive
the secret. Finally, the adversary can physically compromise
the RFID tag to obtain the secret. In this paper, we only defend
against the first two methods. Tamper proof hardware capable
of foiling a physical attack is beyond the scope of this paper.

IV. RFID AUTHENTICATION

We present the authentication protocol in this section, and
leave the evaluation to the next section. For the remainder of
this paper, we consider the data a tag transfers to a reader to
be the ID of the tag.

A. Setup

We consider an RFID reader denoted as R. Each R has
a unique identifier r and an access list, L. R obtains r and
L from a certificate authority, CA, after authenticating itself.
The CA is a trusted party responsible for deploying all the
RFID tags and authorizing all the RFID readers. We assume
that communications between R and the CA are performed
via a secure channel. Subscripts are used to distinguish one
reader from another. Thus RFID reader i will be Ri, with a
identifier ri and access list Li. Each RFID tag, T , contains
a unique value id, a unique secret t, knowledge of functions
f(., .) and h(.). The id is an unique identifier for T , and is the

4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 3, MARCH 2008

tag data requested by a reader. The secret t is the tag secret
known only by the tag itself and CA. The function h(.) is a
one way hash function that outputs a bitstring of length l. A
shorter length m < l is predefined by the CA and known to all
readers and tags. The function f(., .) is the hash function h(.)
applied to the concatenation of two arguments. For instance,
a tag T applying f(., .) to an argument r sent by R will then
have f(r, t) = h(r||t) where || denotes concatenation.

After reader Ri authenticates itself to CA and obtains
access to RFID tags T1 · · ·Tn, Ri will have Li where

Li =

⎧⎨
⎩

f(ri, t1) : id1

· · · : · · ·
f(ri, tn) : idn

Note that Ri does not know any of the tags secret t. It only
knows the outcome of the function f(r, t). We assume that
the CA cannot be compromised, and that all readers once
authenticated by the CA are trusted. They will not reveal their
access lists to anyone else. Next, we present our authentication
protocol.

B. Authentication Protocol

Ri → Tj : request (1)

Ri ← Tj : nj (2)

Ri → Tj : ni, ri (3)

Ri ← Tj : h(f(ri, tj))m, h(f(ri, tj)||ni||nj)⊕ idj (4)

Ri : Hash every entry in Li and check

if first m bits match h(f(ri, tj))m (5)

Ri : Checks Li for matching h(f(ri, tj))m (6)

Ri : Determine h(f(ri, tj)||ni||nj), obtain idj(7)

where ni and nj are random numbers generated by Ri and
Tj respectively. Tj sends its idj as h(f(ri, tj)||ni||nj)⊕ idj .
The tag also sends h(f(ri, tj))m to help Ri reduce the time
taken to search through Li. An unauthenticated reader cannot
obtain idj since he does not know f(ri, tj), and hence cannot
compute the h(f(ri, tj)||ni||nj) necessary to obtain idj . This
is a form of tag authenticating reader, since the value of the
tag is incomprehensible to an unauthorized reader.

The reader checks his Li for matching entries that have
the same first m bits as h(f(ri, tj))m. Ri can precompute
the h(f(ri, t∗))m for every entry in Li, and then organize
the result into corresponding groups. If there are no entries
in Li that match the first m bits, then either the RFID tag
is a fake, since it is not able to generated a correct f(ri, tj),
or that it is a tag that Ri is not authorized to access, thus
not appearing in Li. If there is a match, the reader then uses
the random numbers ni and nj to obtain h(f(ri, tj)||ni||nj)
and the resulting idj . If the idj received from the tag does
not match any entry in Li then Ri ignores the tag. Note
that a different random numbers nj and ni are used in each
transaction, which means that the shared secret between Ri

and Tj used to protect idj , h(f(ri, tj)||ni||nj), changes each
time. Also, since hash h(·) is a one way hash function, even
knowing the entire h(f(ri, tj))m does not reveal f(ri, tj).

To determine the value of m, we first define a collision
space CS whose cardinality is 2l−m. This is the expected
number of RFID tags whose hashed value share the same first
m bits. We define β as the probability that, given a tag, the
probability that when a reader reads in another tag having the
same first m bits, the two tags are the same. The more privacy
we wish, the smaller we set β. Thus, we have

(CS
1)

CS2 = 1
CS = 2m−l ≤ β ⇒ m ≤ l + log β.

The search time for Ri becomes O(Li

2m) since Ri can organize
Li into respective groups after Tj returns the first m bits of
h(f(ri, tj))m. Thus, Ri does not need to search the entire Li,
but only the smaller group of size Li

2m .

V. SECURITY ANALYSIS

In this section, we analyze our protocol against different
types of attacks. For each attack, we first give a brief de-
scription of the attack, and the common assumptions about
the adversary. This is followed by an explanation of how the
protocol defends against the attack. We denote the adversary
as α, and a legitimate reader and tag as Ri and Tj respectively.
A fake tag j impersonating the real tag j is depicted as T̂j .

Basic Privacy: The basic privacy attack occurs when α
wishes to learn the contents of Tj . Consider for example, the
tag Tj attached to a valuable container in a warehouse. Under
this attack, we generally assume that α has a list of targeted
RFID tags. The adversary α then queries every tag in the
warehouse to decide the most valuable one to steal. In our
protocol, each time any reader queries Tj , Tj generates a new
response h(f(ri, tj)||nr||nt) for authentication. Thus α cannot
identify which RFID tag is on his list. This protects the privacy
of the tag.

Tracking: Under this attack, α tries to track Tj over time.
He succeeds if he is able to distinguish Tj from other RFID
tags over time. For example, Tj could be attached to a
passport. By repeatedly querying with a value that yields a
consistent reply, α will be able to track the movements of Tj

over time. This consistent reply becomes a signature of Tj .
Under our scheme, α can reuse the same nα and rα

for every query, but cannot predict the random nj gener-
ated each time by Tj . In the protocol, we return the entire
h(f(ri, tj)||ni||nj) XORed with idj . Since nj is a random
number chosen by the tag for each query, α learns nothing
from repeated queries. Note that we also return h(f(ri, tj))m

in step (4) which could be used to track Tj . This is an
optimization step done to improve the search time for Ri. Step
(4) can be modified to return just h(f(ri, tj)||ni||nj) ⊕ idj

to make tracking impossible. However, by keeping m small,
the risk of tracking is minimal since there could be multiple
RFID tags with the same first m bits.

Cloning: We consider the “skimming” attack described by
Juels [29]. Under this attack, α will usually first query Tj and
obtain a response. He then places the response on a fake RFID
tag, T̂j . By creating fake RFID tags that contain the responses
of real RFID tags, α attempts to pass off his counterfeits as
legitimate. α succeeds if Ri believes that T̂j is Tj .

Under our protocol, Tj will return a different hash based on
the random ni and ri provided by Ri. Since α cannot predict

TAN et al.: SECURE AND SERVERLESS RFID AUTHENTICATION AND SEARCH PROTOCOLS 5

the random ni generated each time by Ri, the hash value that
α obtains from Tj will not be the same as the value Ri obtains
when he queries Tj . Thus α cannot create a T̂j that can fool
Ri.

Eavesdropping: Here α is able to observe all interactions
between Ri and Tj . In other words, α learns ri, ni, nj ,
h(f(ri, tj)||ni||nj) ⊕ idj and h(f(ri, tj))m. His goal is to
use the data to launch any of the three attacks mentioned
above. This version of eavesdropping is stronger since it
assumes that α can eavesdrop on both reader-to-tag and tag-
to-reader communications. A weaker version of eavesdropping
considered by some researchers assume that α can only
eavesdrop on the reader-to-tag communication.

In the protocol, every transaction between Ri and Tj begin
by both parties generating a different ni and nj . An α eaves-
dropping on the communication observes a different query
and a different response each time, even if Ri is querying
the same tag Tj . Thus, our protocol prevents α from using
eavesdropping to launch a basic privacy attack or tracking
attack.

An α can try to clone a tag by creating a fake tag with
the eavesdropped information. However, α cannot control the
random number nr chosen by the Ri for each new query.
In the authentication protocol, each new query generates a
new hashed result h(f(ri, tj)||ni||nj). Since α does not know
f(ri, tj), α cannot derive the correct hash result, even if it
knew what the random numbers were.

Physical attack: We consider two different flavors of
physical attack. The first is when α compromises the reader
Ri. The second is when α compromises the tag Tj . In both
cases, we assume that once α has physically compromised
Ri and Tj , and α will learn everything about Ri and Tj .
Hardware-based defenses against physical attacks are beyond
the scope of this paper.

First, we consider α compromising Ri. The adversary will
know the contents of Li, as well as ri. He will therefore be
able to impersonate Ri and obtain data from tags T1, · · · , Tn.
The goal is to prevent α from using the knowledge to create
counterfeit tags. Let Tj be in Li, and α wishes to create a
counterfeit tag T̂j that can fool another authenticated RFID
reader Rx. α knows f(ri, tj) and idj from Li. To create T̂j

to fool Rx, α has to be able to derive f(rx, tj). This is because
each f(., .) value in the access list is different for every RFID
reader. Ri will have f(ri, tj), and Rx will have f(rx, tj). Thus
α cannot substitute his f(ri, tj) and idj into T̂j . Since f(., .)
is irreversible, α cannot derive tj from f(ri, tj).

Next, we consider α compromising tag Tj . The adversary
will now be able to create a fake t̂j that can fool the honest Ri.
We want to prevent α from creating another tag that can fool
Ri. We let this other tag be Tx, and assume that Tx is inside
Li. Since α has compromised Tj , we assume that α knows any
information that Ri passes to Tj . To create Tx to fool Ri, α
has to be able to generate the correct f(ri, tx). However, each
RFID tag has a unique secret t. Thus α knowing tj cannot
derive tx. Therefore, α cannot create a fake Tx to fool Ri.

Denial of service (DoS): The adversary α here does not try
to obtain information from the tag, but rather tries to ensure
that a legitimate Ri cannot access the data stored in Tj . To
launch a DoS attack, α sends a large number of requests to

the backend server to overwhelm the server. This results in a
legitimate Ri being unable to access the database to obtain
information about the tag. Under our solutions, a reader only
needs to contact the server once to obtain an access list Li. The
reader is then able to interact with RFID tags without further
interaction with the server. A DoS attack under our schemes
will not affect readers that have already been authenticated.
Only readers yet to obtain an access list are affected. Thus,
our serverless protocol mitigates the damage of a DoS attack.

VI. RFID SEARCH

Complex RFID operations which require data from a large
collection of RFID tags usually assume that the data have
already been collected and stored into a database [30], [31].
Any RFID authentication protocol which provides security
and privacy protection can be used. However, as the number
of RFID tags increases, the cost of collecting data can be
very high. More efficient methods for performing different
RFID operations are needed. In this paper, we consider one
such operation: searching for an RFID tag from a large
collection of tags. Search is a basic and invaluable tool for
sifting through large amounts of data. Consider for example,
a large pharmacy stocked with RFID embedded medication.
A pharmacist wanting to find a particular drug can broadcast
his query and receive an answer. Due to the limited broadcast
range of RFID readers, the pharmacist can even determine the
approximate locality of the medication by directing the RFID
reader at different locations, i.e., different shelves.

Ideally, we want a reader to be able to query for a specific
tag and have only that tag to reply. To illustrate, we have Ri

wanting to find the tag Tj .

Ri → T ∗ : idj (1)

T ∗ : If id = idj (2)

Ri ← Tj : Reply (3)

where T ∗ refers to an arbitrary tag in the collection. However,
this simple protocol does not provide any privacy or security
protections. An adversary, for example, can query for valuable
tags to steal. To provide security and privacy, an RFID tag
should authenticate the reader before replying. Also, the RFID
reader should ensure that only genuine RFID tags receive his
query. This prevents an adversary from learning the content
of the query. The adversary knowing the query and observing
a reply, can conclude that a particular tag is in the collection,
since only a tag matching the query will reply. We can
thus characterize the problem as follows. Tags should only
respond to authenticated readers. Readers should only query
authenticated tags. This creates a chicken-and-egg problem
since readers want to query authenticated tags, but tags
will only respond to authenticated readers.

A solution is for the reader to issue a search request such
that only an authenticated tag can understand, and for the tag
to reply in such a manner that only an authenticated reader can
understand. An adversary can still observe all the transactions,
in that he can observe there has been a query and an answer.
However, since the adversary does not know the content of the
query, observing the existence of an answer is not useful. For
the remainder of this section, “query” and ”search request”

6 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 3, MARCH 2008

are used interchangeably. The secure search protocol is as
follows.

Ri → T ∗ : h(f(ri, tj)||nr)⊕ idj , nr, ri (1)

T ∗ : Derive h(f(ri, t)||nr) and XOR with

h(f(ri, tj)||nr)⊕ idj (2)

: If id = idj (3)

Ri ← Tj : h(f(ri, tj)||nt||nr)⊕ idj, nt (4)

The search request for idj is sent as h(f(ri, tj)||nr)⊕ idj . A
tag needs to have the tag secret tj to successfully execute step
(2) and obtain idj . Since α does not know tj , he is unable
to determine what the reader is searching for. Each reader’s
query is different due to the random nr generated for each new
search request. Thus, even if the reader repeatedly searches
for the same tag, α will obtain a different search request each
time. A reader receiving a tag reply h(f(ri, tj)||nt)⊕ idj, nt)
needs f(ri, tj) to obtain idj , and f(ri, tj) is known only to
the authorized reader. Thus, α cannot create a fake tag T̂j to
fool the reader.

A. Security Analysis

The security analysis in section V also applies to the search
protocol with one exception, the search protocol presented
above is not resistant to tracking.

Consider the following attack where α eavesdrops on a
transaction between a reader and a group of tags. Adversary
α is unable to decrypt the query or the reply, but can detect
the presence of a query and reply. α then broadcasts the same
query repeatedly. Since the query is legitimate, the tag with
the corresponding value will reply. Even though the reply is
different every time due to the random nt generated by the
tag, there can only be one reply since each tag has its own
unique secret t. α can extend the attack by isolating each tag
in the group and repeating the query, waiting for a reply. α
then combines this with physical observation to determine the
identity of a tag.

We stress that the tracking attack presented here is different
from tracking attacks commonly found in RFID security
literature. The adversary cannot pick a particular tag to track.
Rather, he can only track a tag which has been searched
for by a legitimate reader. Furthermore, the adversary has
to iteratively query every tag in a group individually before
determining what tag he is tracking. These reasons increase the
difficulty of launching a tracking attack via the RFID search
protocol.

This attack underscores a fundamental difficulty in devel-
oping a secure search protocol for RFID tags. The very act of
replying of a query can be used to identify a tag. So long as
a search query produces a unique reply, the reply becomes an
identifier for a particular tag. Encryption does not solve the
problem, since encryption only prevents an adversary from
learning the content of a message, but not that a message has
been sent.

B. Search Protocol Improvements

Here we suggest several improvements to the search proto-
col to minimize the impact of tracking. One solution is to force

the reader to use a different random number nr for each new
query. This can be accomplished by having the RFID tag store
a list of random numbers used in earlier queries. When a query
arrives with an nr that appears in this list, the tag will refuse
to reply. This way, an adversary will not be able to replay an
eavesdropped query. An incrementing counter cannot be used
by the tag to store the random numbers since a legitimate
reader will generate a new random number each time. Below,
we present the protocol where a tag can only remember the
last used random number.

Ri → T ∗ : h(f(ri, tj)||nr)⊕ idj , nr, ri (1)

T ∗ : Deriving h(f(ri, t)||nr) and XOR with

h(f(ri, tj)||nr)⊕ idj (2)

: If id = idj and nr �= oldn,

update oldn = nr (3)

Ri ← Tj : h(f(ri, tj)||nt)⊕ idj , nt (4)

where oldn is the previous random number used. Now, α
cannot replay h(f(ri, tj)||nr)⊕idj , nr, ri to get a reply, since
nr was just used. The adversary does not know f(ri, tj),
thus cannot generate his own legitimate query that will be
answered by the tag. The adversary can observe the next
time Ri does a search query to obtain a different random
number, n′

r. α can now try to use the previous search query.
However, since adversary cannot determine the contents of the
query, he cannot know if Ri was querying for the same tag
or not. Provided that the adversary cannot determine what
Ri is looking for, he cannot track any tag based on two
reader queries. In general, an adversary will need at least one
more successful query than the number of tags to be always
successfully track one tag. By the pigeonhole principal, with
n tags each capable of storing the last m random numbers of
successful reader query, an adversary can only guarantee to
be able to track 1 tag after n ·m + 1 queries. However, this
method is ineffective against an opportunistic adversary who
simply replays the overheard queries over and over again to
find at least 1 tag to track.

Another solution is to adopt a challenge and response
method. The idea is to avoid the condition where replying
to a query can be used to identify a tag. We use [idj]m to
denote the first m bits of idj and idm to denote the first m
bits of a generic tag’s id. The protocol is as follows.

Ri → T ∗ : Broadcast [idj]m, ri, nr (1)

T ∗ : If idm = [idj]m (2)

Ri ← Tj : h(f(ri, tj)||nr||nt)⊕ idj , nt (3)

Ri : Determines f(ri, tj) from L, obtain idj (4)

Under this protocol, any tag that matches the first m bits of
idj will reply to the query. Depending on the length of m,
there could be multiple tags that share the same first m bits.
Ri can use existing anti-collision techniques to obtain idj .
Since multiple tags may share the same m bits, α cannot infer
any unique information from the reply. A tag’s response is
protected by the XORing their value with h(f(ri, tj)||nr||nt).
Only an authenticated reader will know f(ri, tj), and be able
to generate the correct hash value. Furthermore, each party
contributes a random number nr and nt that make up the

TAN et al.: SECURE AND SERVERLESS RFID AUTHENTICATION AND SEARCH PROTOCOLS 7

final hash value needed to successfully obtain the idj . This
prevents an adversary from launching a replay attack from
either the query or reply.

This solution does not work well when the id for each
tag is structured. For example, the first several bits of an
id could signify general product code, the next several bits
the tag origin and so on. In this scenario, the adversary can
obtain some information simply by observing [idj]m. Note
that [idj]m cannot be XORed with some f(ri, tj) since then
only Tj can decipher the request.

The last solution is to use noise to mask the reply. Each tag
receiving a search query that does not match the request will
have some probability of replying. Thus,

Ri → T ∗ : Broadcast h(f(ri, tj)||nr)⊕ idj , nr, ri (1)

T ∗ : Derive h(f(ri, t)||nr) and XOR with

h(f(ri, tj)||nr)⊕ idj (2)

: If id = idj :
Ri ← Tj : h(f(ri, tj)||nt)⊕ idj , nt (3)

: Else :

Ri ← Tj : (rand, nt) with prob. λ (4)

where λ is the predefined probability that a tag that does not
match idj will reply. Here, an adversary cannot depend on
replaying a previous query to track a tag since any tag could
reply. This method also avoids leaking any information to an
adversary. To estimate λ, we first let S be the number of
RFID tags that can hear a single broadcast query. We want
to have a probability of γ that at least one tag that is not the
answer to reply to create noise. We can estimate λ by solving
1−(1−λ)S ≥ γ. The additional work done by reader to filter
out the noise is O(λ·S). However, this solution only performs
well when we have a reliable S, for example, a group tags are
placed in a shipping container.

VII. ADDITIONAL DISCUSSION

Despite the shortcomings of the central database model, it
does have two advantages over a serverless solution. The first
is the ease of performing revocation, and the second is fine
grain access control.

The central database model provides an implicit revocation
capability since the RFID reader has to contact the central
database each time to obtain the tag data. To revocate a reader,
the central database simply ignores the reader. Under our
scheme, simple revocation can be accomplished by replacing
the existing RFID tag with a new tag containing a new secret
t when necessary. This solution is practical when RFID tags
are passed from one owner to another. Different owners will
want to attach their own RFID tags to their objects to better
interface with their existing RFID management applications.
An alternative revocation scheme is to retain the RFID tags,
but allow the RFID tag’s secret t to be changed by trusted
parties. A special secret pin can be built into each RFID, and
knowledge of the pin will allow the reader to change the tag
secret. This pin can be transmitted directly to trusted agents
of the CA, or encoded via a different channel like a 2-D
barcode next to the RFID tag [29], [32]. In this way, the CA

can enforce a time period in which authorized readers can
access the tag data.

The other implicit advantage of the central database model
is fine grain access control. When the central database returns
the tag data to the reader, it can choose to only return part of
the information depending on the permissions of the reader.
We can provide fine grain access control in our scheme by
replacing the single secret t in each RFID tag with multiple
secrets depending on the granularity. For example, an RFID
tag whose data consists of a general product code and unique
identifier will have two secrets t1, t2. A reader with access to
the general product code will only receive f(r, t1) in his L
while another reader with access to the unique identifier will
receive f(r, t2) as well. We can simply extend the number of
secrets per tag to as fine a level of access control as desired.

Finally, we discuss cost and efficiency. Our authentication
protocol requires three hash functions, f(., .) once and h(.)
twice. For the search protocols, the second search improve-
ment requires the tag to execute two hash functions, and
the remaining search improvements require three hash func-
tions. The cost for our protocols is higher than alternative
protocols [10], [11], [5] which require the tag to perform
only one hash function. The additional hash functions allows
our protocols to be serverless and yet avoid exposing the
tag secret to the reader. Considering communication cost,
assuming that both reader and tag ids have the same length,
the authentication protocol requires 2 · |n|+ 2 · |idj |+ m bits,
where |n| is the length of the random numbers ni and nj . The
communication cost for search protocols is higher since the
reader’s query contains of the tag id he is looking for. Again
assuming both tag and reader ids have the same length. Search
improvement 1 transfers 3 · |id|+ 2 · |n| bits. Improvements 2
and 3 transfers 2 · |id|+ m + 2 · |n| bits and 3 · |id|+ 2 · |n|
bits respectively.

In terms of efficiency, the reader needs to perform |Li|
hashes once to derive h(f(ri, t∗)). For each new query, the
reader only performs the hash for replies that match the first m
bits of h(f(ri, t∗)), resulting on average hashing and searching
|Li|
2m entries. The reader’s performance for search protocols is

very efficient since the reader only needs to check the access
list for the entry it is looking for.

VIII. CONCLUSION

In this paper, we present authentication and search protocols
for RFID tags. Our authentication protocol provides both tag-
to-reader and reader-to-tag authentication and are resistant
against common RFID attacks. A major departure from the
previous research is that our schemes do not require a per-
sistent connection to a central database. We also introduce a
new problem of performing secure search for RFID tags. We
examine the difficulties in designing a secure search protocol,
and provide several solutions. Finally, we also consider the
implicit advantages of having a central database and suggest
solutions for overcoming them.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers whose valuable comments significantly improved this

8 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 3, MARCH 2008

manuscript. This project was supported by US National Sci-
ence Foundation award CCF-0514985, CNS-0721443, and
CNS-0747108.

REFERENCES

[1] C. C. Tan and Q. Li, “A robust and secure RFID-based pedigree system
(short paper),” in ICICS, 2006.

[2] T. Dimitriou, “A lightweight RFID protocol to protect against traceabil-
ity and cloning attacks,” in SecureComm, 2005.

[3] S.-M. Lee, Y. J. Hwang, D. H. Lee, and J. I. L. Lim, “Efficient
authentication for low-cost RFID systems,” in ICCSA 2005.

[4] M. Ohkubo, K. Suzuki, and S. Kinoshita, “Cryptographic approach to
“privacy-friendly” tags,” in RFID Privacy Workshop, 2003.

[5] G. Tsudik, “YA-TRAP: Yet another trivial RFID authentication proto-
col,” in PerCom 2006.

[6] I. Vajda and L. Buttyán, “Lightweight authentication protocols for low-
cost RFID tags,” in Ubicomp 2003.

[7] G. Avoine, “http://lasecwww.epfl.ch/∼gavoine/rfid/.”
[8] A. Juels, “RFID security and privacy: A research survey,” Manuscript,

2005.
[9] M. Rieback, B. Crispo, and A. Tanenbaum, “The evolution of RFID

security,” IEEE Pervasive Computing, 2006.
[10] S. Weis, S. Sarma, R. Rivest, and D. Engels, “Security and privacy

aspects of low-cost radio frequency identification systems,” in SPC 2003.
[11] D. Molnar and D. Wagner, “Privacy and security in library RFID: Issues,

practices, and architectures,” in CCS, 2004.
[12] T. Li and G. Wang, “Security analysis of two ultra-lightweight RFID

authentication protocols,” in IFIP SEC 2007.
[13] T. Li and R. H. Deng, “Vulnerability analysis of EMAP - an efficient

RFID mutual authentication protocol,” in AReS 2007.
[14] M. Zhang and Y. Fang, “Security analysis and enhancements of 3GPP

authentication and key agreement protocol,” IEEE Trans. Wireless
Commun., 2005.

[15] A. Herzberg, H. Krawczyk, and G. Tsudik, “On travelling incognito,” in
IEEE Workshop on Mobile Computing Systems and Applications, 1994.

[16] A. Juels and S. Weis, “Authenticating pervasive devices with human
protocols,” in Advances in Cryptology – CRYPTO’05, 2005.

[17] S. Piramuthu, “HB and related lightweight authentication protocols for
secure RFID tag/reader authentication,” in CollECTeR 2006.

[18] H. Gilbert, M. Robshaw, and H. Sibert, “An active attack against HB+

– a provably secure lightweight authentication protocol,” Manuscript,
2005.

[19] J. Bringer, H. Chabanne, and D. Emmanuelle, “HB++: a lightweight
authentication protocol secure against some attacks,” in SecPerU 2006.

[20] C. Chatmon, T. van Le, and M. Burmester, “Secure anonymous RFID
authentication protocols,” Florida State University, Department of Com-
puter Science, Tech. Rep., 2006.

[21] M. Feldhofer and C. Rechberger, “A case against currently used hash
functions in rfid protocols.” in OTM Workshops (1), 2006.

[22] L. Bolotnyy and G. Robins, “Physically unclonable function -based
security and privacy in rfid systems,” in PerCom 07.

[23] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Ver-
bauwhede, “Public key cryptography for RFID-tags,” RFIDSec 06.

[24] S. Kumar and C. Paar, “Are standards compliant elliptic curve cryp-
tosystems feasible on RFID?” RFIDSec 06.

[25] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Ver-
bauwhede, “An elliptic curve processor suitable for RFID-tags,” Cryp-
tology ePrint Archive, Report 2006/227.

[26] H. Wang, B. Sheng, and Q. Li, “Elliptic curve cryptography based access
control in sensor networks,” International Journal of Sensor Networks,
2006.

[27] H. Wang and Q. Li, “Efficient implementation of public key cryptosys-
tems on mote sensors (short paper),” in ICICS 06.

[28] ——, “Distributed user access control in sensor networks,” in DCOSS
06.

[29] A. Juels, “Strengthening EPC tags against cloning,” in WiSe ’05.
[30] H. Gonzalez, J. Han, and X. Li, “Mining compressed commodity

workflows from massive rfid data sets.” in CIKM 2006.
[31] H. Gonzalez, J. Han, X. Li, and D. Klabjan, “Warehousing and analyzing

massive rfid data sets.” in ICDE 2006.
[32] A. Juels and R. Pappu, “Squealing euros: Privacy protection in RFID-

enabled banknotes,” in FC’03.

Chiu C. Tan received his B.S. in Computer Science
and B.A. in Economics (honors) from the University
of Texas at Austin in 2004. He is currently a grad-
uate research assistant at Department of Computer
Science, College of William and Mary.

Bo Sheng received his B.S. in Computer Science
from Nanjing University, Nanjing, China. He is
currently a graduate research assistant at Department
of Computer Science, College of William and Mary.

Qun Li is an assistant professor in the Department
of Computer Science at College of William and
Mary. He holds a PhD degree in computer science
from Dartmouth College. His research interests in-
clude wireless networks, sensor networks, and RFID
systems.

