
CacheKeeper: A System-wide Web Caching Service
for Smartphones

Yifan Zhang
College of William and Mary

Williamsburg, VA 23185, USA
yzhang@cs.wm.edu

Chiu Tan
Temple University

Philadelphia, PA 19122, USA
cctan@temple.edu

Qun Li
College of William and Mary

Williamsburg, VA 23185, USA
liqun@cs.wm.edu

ABSTRACT

Efficient web caching in mobile apps eliminates unneces-
sary network traffic, reduces web accessing latency, and im-
proves smartphone battery life. However, recent research
has indicated that current mobile apps suffer from poor im-
plementations of web caching. In this work, we first con-
ducted a comprehensive survey of over 1000 Android apps to
identify how different types of mobile apps perform in web
caching. Based on our analysis, we designed CacheKeeper,
an OS web caching service transparent to mobile apps for
smartphones. CacheKeeper can not only effectively reduce
overhead caused by poor web caching of mobile apps, but
also utilizes cross-app caching opportunities in smartphones.
Furthermore, CacheKeeper is backward compatible, meaning
that existing apps can take advantage of CacheKeeper with-
out any modifications. We have implemented a prototype of
CacheKeeper in Linux kernel. Evaluation on 10 top ranked
Android apps shows that our CacheKeeper prototype can save
42% networks traffic with real user browsing behaviors and
increase web accessing speed by 2x under real 3G settings.
Experiments also show that our prototype incurs negligible
overhead in most aspects on cache misses.

Author Keywords

Smartphone apps; HTTP caching; Cache system; Redundant
network traffic reduction

ACM Classification Keywords

C.2.2 Computer-Communication Networks: Network Proto-
cols − Applications; C.5.3 Computer System Implementa-
tion: Microcomputers − Portable devices

INTRODUCTION

Web traffic is the dominant type of Internet traffic [7], and
with the popularity of smartphones and tablets, an increasing
amount of web traffic originates from mobile devices. The
mobile web traffic has grown 35% in under a year [5], and
now accounts for 20% of the U.S. web traffic [4]. Unlike con-
ventional PCs, where web browser is the main source of web
traffic, smartphones have another significant source of web

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UbiComp’13, September 8–12, 2013, Zurich, Switzerland.
Copyright c© 2013 ACM 978-1-4503-1770-2/13/09...$15.00.
http://dx.doi.org/10.1145/2493432.2493484

traffic: dedicated mobile apps. The popularity of the ubiq-
uitous smartphone is partly driven by these useful and enter-
taining mobile apps, all available for little or no cost. Since
most mobile apps utilize some form of network connectivity,
the network behavior of mobile apps is an important area of
research. In this paper, we consider providing a system-wide
HTTP caching service for mobile apps to fully exploit the
benefits of web caching in smartphones.

An appropriate web caching implementation in mobile apps
will benefit both users and network operators. With such an
implementation, users can (a) experience a higher quality of
service, since the data can be accessed faster locally, (b) lower
costs, since users may have to pay a higher fee for download-
ing more data, and (c) conserve energy by reducing unneces-
sary data transmissions. Network operators also benefit when
mobile apps implement web caching correctly since this re-
duces the congestion on the network, especially the last mile
radio connections.

Despite the importance of web caching, large numbers of
mobile apps have imperfect web caching, meaning that web
caching is either implemented for only certain HTTP re-
sources the apps request, or is not implemented at all. The
reason is twofold: lack of library support and negligence
from developers. For example, the Android platform pro-
vides two official HTTP client classes: HttpURLConnec-
tion and Apache HTTP Client [2]. Before Android
3.2 (API level 13), the HttpURLConnection class only
provided an interface for caching implementation. Develop-
ers have to implement their own client-side caching mecha-
nisms. Heavy programming burden will hold developers from
doing so. Later, Android added an official implementation of
client-side caching (i.e., the HttpResponseCache class)
for HttpURLConnection. However, it still requires de-
velopers to call the library to add caching capability. Since
apps without caching or with poor caching will still have the
“look-and-feel”, some developers will spend less time imple-
menting and testing the caching behavior of their apps.

Our approach is to reduce the burden of mobile app devel-
opers by providing a caching-as-a-service layer. We propose
CacheKeeper, an OS web caching service transparent to mo-
bile apps for smartphones. CacheKeeper provides the cor-
rect web caching implementation with no effort on the part
of mobile app developers. Developers do not need to in-
stall any additional libraries or incorporate any additional API
calls to take advantage of CacheKeeper. Our caching layer is
also backward compatible with existing apps. In addition,
CacheKeeper is an OS-wide service, meaning that all mobile

apps that generate web traffic will make use of it. This allows
for cross-app caching opportunities, where an app can take
advantage of cached data from another app. Finally, to pre-
vent malicious apps from peeking web contents downloaded
by other apps, CacheKeeper provides a means allowing apps
to specify if the HTTP objects they downloaded can be stored
by the caching service or not.

In this paper, we make the following contributions. First, to
the best of our knowledge, we have conducted the first sys-
tematic and extensive measurement study of individual An-
droid apps’ caching behaviors. Existing studies all investi-
gated from a perspective of network-wide traces [14,15]. Our
measurement considered top ranked apps in each app cate-
gory in Google Play (i.e., the official Android app store). In
total, we have investigated 1300 top ranked Android apps.
Our measurement results indicate that over 40% of the apps
that generate HTTP traffic have the flaw of imperfect web
caching. This number jumps to 58% when considering
heuristic expiration. The average redundant HTTP traffic ra-
tio due to imperfect web caching was 0.19 without counting
heuristic redundant HTTP traffic. Since our measurement
study was from a perspective of individual apps, we were able
to make several observations that would not be possible by the
existing studies. For example, we observed that categories of
apps with high HTTP traffic intended to perform worse in
web caching. For example, for the “News & Magazines” cat-
egory, the redundant HTTP traffic ratio was as high as 0.45.
We also observed that a notable number of apps had the prob-
lem of same-click HTTP traffic redundancy, where only one
click on mobile apps generated multiple downloads for the
same HTTP object even if the object was used only once by
the apps. We incorporated special attention on same-click
HTTP traffic redundancy in the design of CacheKeeper.

Second, we designed CacheKeeper, an OS web caching ser-
vice for smartphones. CacheKeeper performs HTTP 1.1 com-
pliant web caching transparently for mobile apps running
above. CacheKeeper is user-configurable. Moreover, we
provide privacy control in CacheKeeper: apps making pri-
vacy sensitive HTTP communications can declare their HTTP
transactions (i.e., HTTP request/response pairs) as private so
that they will not be cached by the caching service.

Finally, we implemented a prototype of CacheKeeper in
Linux kernel, and evaluated it with extensive experiments.
Our evaluation on 10 top ranked Android apps shows that our
CacheKeeper prototype can save 42% HTTP traffic with real
user browsing behaviors and reduce web accessing latency
by half under real 3G settings. In the case of cache miss,
where no HTTP request is served by the caching service,
CacheKeeper incurs negligible overhead in most aspects.

RELATED WORK

Measurements of Web Usage in Smartphones. The popu-
larity of smartphones and tablets has driven a growing num-
ber of works on studying web usage in smartphones. Based
on a dataset containing one-year-long web accessing log from
24 iPhone users, recent work [16] studies users’ Internet ac-
cessing behaviors on smartphones. The study results show
that dedicated mobile apps are used by users to visit the web

much more frequently than browsers. This demonstrates the
needs to ensure properly working web functions, including
web caching, for mobile apps. Work [17] specifically investi-
gates smartphone web traffic related to advertisements based
on a large dataset collected in a major European mobile net-
work. The results suggest that ad traffic is a major component
of overall mobile web traffic. Work [14] compares smart-
phone web traffic and laptop web traffic based on a 3-week-
long wireless communication trace collected in an enterprise
environment. As one of the findings, the authors suggest that
web caching in smartphones is not as effective as that in lap-
tops. Similar to [14], Qian et al. [15] conduct a comprehen-
sive measurement study on web caching in smartphones. By
examining a one-day smartphone web traffic dataset collected
from a cellular carrier and a five-month web access trace col-
lected from a small user base, the study reveals that about
20% of the total web traffic examined is redundant because of
poor web caching. In this work, we investigate the effective-
ness of web caching in smartphones from a different perspec-
tive. Instead of analyzing mobile web traffic collected from
service provider, we inspect web caching function of 1300
top ranked apps downloaded from the Google Play. This way,
we can explicitly get, rather than inferring, information about
how different types of mobile apps perform in web caching,
which we believe will be helpful for future mobile apps and
mobile platforms design.

Reducing Web Accessing Latency in Smartphones. A con-
siderable amount of efforts have been invested in reducing
web accessing latency in smartphones. To increase the oper-
ation speed of web browsers, work [19] proposes improved
web caching on style/layout data. Work by Wang et al. [18]
also studies the causes of slow web mobile browsers. The
authors suggest the root cause is slow content loading. They
propose a method of speculative loading to reduce web ac-
cessing latency when using smartphone browsers. Pocket-
Search [11] proposes to put results of certain cloud services
like web search in smartphones’ local storage to expedite ser-
vice speed. Similarly, PocketWeb [12] proposes, using ma-
chine learning on a per-user basis, to prefetch web pages into
smartphone’s local storage to reduce web accessing latency.
In this work, we take a different approach to reduce web ac-
cessing latency for smartphones. We propose to run web
caching as a system service, so that we can compensate for
the flaw of imperfect web caching in many mobile apps.

MOTIVATION

Two major observations have led us to believe that it is de-
sirable to provide web caching as a system-wide service for
smartphones: web caching imperfection in mobile apps and
cross-app caching opportunities.

Web Caching Imperfection in Mobile Apps

We have conducted an extensive measurement study of top-
ranked Android apps in Google Play to study the web caching
behaviors of individual Android apps.

Measurement Setup

Apps Selection. The Google Play organizes apps into around
24 categories (shown in first column of Table 1). We down-
loaded the top 50 ranked free apps from each category, except

Table 1. Summary of the app measurement study.
I: Setup II: Inter-click. III: Same-click IV: Advertisement

Categories redundancy redundancy
on 1 2 3 1 2 1 2 1 2 3 4

Google Play Apps Has HTTP HTTP traf. Apps Traf. Apps Traf. Apps Ad Ad traf. Cacheable
tested traffic per-click cnt.† ratio† cnt.† ratio† cnt. only per-click traf. ratio†

books & refs 50 30 42.3 KB 12|14 0.23|0.26 3|3 0.04|0.04 19 10 10.3 KB 0.77|0.87

business 50 23 16.0 KB 4|15 0.06|0.26 1|1 0.01|0.01 14 6 5.1 KB 0.92|0.93

comics 50 39 125.1 KB 12|23 0.19|0.29 3|6 0.03|0.04 31 18 13.0 KB 0.68|0.89

communication 50 17 18.0 KB 3|10 0.02|0.25 2|2 0.01|0.02 9 4 11.4 KB 0.61|0.94

education 50 31 130.3 KB 9|14 0.16|0.27 2|2 0.01|0.01 24 15 13.7 KB 0.88|0.89

entertainment 50 37 105.7 KB 18|20 0.21|0.25 3|4 0.04|0.05 29 4 32.0 KB 0.89|0.92

finance 50 16 29.4 KB 3|4 0.14|0.19 0|0 0|0 14 7 15.7 KB 0.87|0.88

health & fitness 50 35 74.4 KB 8|12 0.11|0.20 2|3 0.04|0.06 33 13 37.5 KB 0.86|0.94

libs & demos 50 29 82.7 KB 10|12 0.16|0.17 4|4 0.04|0.04 24 16 19.9 KB 0.81|0.95

lifestyle 50 30 98.8 KB 8|13 0.10|0.15 1|1 0.01|0.01 24 5 12.5 KB 0.70|0.78

media & video 50 37 122.9 KB 8|15 0.13|0.18 6|8 0.03|0.04 32 16 38.0 KB 0.94|0.97

medical 50 33 31.1 KB 3|14 0.04|0.15 0|0 0|0 30 20 16.6 KB 0.85|0.91

music & audio 50 28 98.6 KB 11|15 0.17|0.19 4|5 0.04|0.04 25 6 39.0 KB 0.87|0.93

news & mgzns 150 129 232.2 KB 92|106 0.45|0.50 41|45 0.12|0.12 94 7 39.4 KB 0.85|0.89

personalization 50 34 53.5 KB 5|14 0.06|0.16 1|1 0.01|0.01 33 16 27.9 KB 0.81|0.88

photography 50 40 47.6 KB 9|16 0.05|0.10 1|2 0.01|0.01 37 12 23.6 KB 0.91|0.93

productivity 50 26 27.7 KB 3|13 0.01|0.07 1|2 0.01|0.01 22 10 12.5 KB 0.80|0.82

shopping 50 34 197.7 KB 27|28 0.44|0.52 11|13 0.11|0.15 20 1 17.4 KB 0.94|0.97

social 50 17 112.1 KB 8|12 0.20|0.24 1|1 0.01|0.01 16 3 30.7 KB 0.87|0.95

sports 50 44 227.2 KB 34|38 0.42|0.47 17|18 0.09|0.09 31 3 18.1 KB 0.82|0.86

tools 50 40 25.6 KB 6|15 0.04|0.08 0|3 0|0.01 36 21 19.4 KB 0.78|0.84

transportation 50 40 102.6 KB 17|23 0.19|0.26 2|2 0.03|0.03 32 7 37.0 KB 0.88|0.92

travel & local 50 29 178.5 KB 17|22 0.31|0.40 4|5 0.02|0.02 23 4 7.9 KB 0.61|0.89

weather 50 45 171.2 KB 27|32 0.26|0.31 11|12 0.03|0.03 43 6 30.7 KB 0.76|0.83

Overall 1300 863 121.2 KB 354|500 0.19|0.26 121|143 0.03|0.04 695 230 24.2 KB 0.84|0.90

†: Presented in the format of a|b, where a and b are the values without and with heuristically redundant traffic counted respectively.

for the “News and Magazines” category. In this category, we
selected the top 150 ranked free apps. We paid more atten-
tion to the news apps because they all access web contents.
In total we selected 1300 top ranked apps. We also examined
the selected apps to ensure no app appears in two different
categories.

Web Traffic Generation. We installed and used each app on
a smartphone running Android 4.0 to see if the app generates
web traffic. To achieve automated testing, we developed a
tool (using the ADB getevent/sendevent utility) that
can record and replay user inputs on the touch screen. Prior
to running the automated measurement experiment, we first
recorded the user inputs when we used an app. To ensure
comprehensive app usage, we clicked all the representative
buttons/tabs/links when recording the user inputs. During the
measurement experiment, we replayed the recorded user in-
puts to test all the 1300 apps. The experiment has been run
twice with a one-week interval between the two executions.

Web Traffic Recording. During the measurement experi-
ment, we configured the smartphone to access the Internet
via an HTTP debugging proxy [3], through which we could
capture all the HTTP traffic the smartphone generated. The
captured HTTP traffic was saved into trace files for later pro-
cessing. Among the 1300 apps, there are 863 apps generating
HTTP traffic. Table 1 column I.2 shows the number of apps
with HTTP traffic for each category. To quantify how much
HTTP traffic an app generates, we computed the per-click
HTTP traffic volume for each app, which is the ratio of an
app’s total HTTP traffic volume over the app’s total number
of clicks. Table 1 column I.3 shows the average per-click
HTTP traffic volume for each category.

Web Caching Imperfection Identification. When testing
an app, we executed the app twice by replaying the user in-
puts twice with a short interval, and collected traces for the
two executions. We chose a short execution interval because
we wanted to ensure that the cacheable HTTP objects (de-
fined in RFC 2616 [9]) obtained in the first execution are still
fresh when the second execution happens. If the second trace
contained the same cacheable HTTP objects as in the first
one, and the cacheable objects in the first one were still fresh
when the second execution occurred, then the app would be
identified to have imperfect web caching, and the correspond-
ing HTTP transaction (i.e., the HTTP request/response pair)
in the second trace would be labeled as redundant. For
an HTTP response that does not contain expiration time or
validators (e.g., ETag, Last-Modified time), if it neither con-
tains the Cache-Control:no-store directive, we treat
it as heuristic cacheable (because in this case, according to
RFC2616, HTTP caches can assign a heuristic expiration
time to the response).

Measurement Findings

App HTTP Traffic and Web Caching Imperfection. Fig-
ure 1 (a) plots, for the 24 categories of apps, the relationship
between each category’s per-click HTTP traffic and the cat-
egory’s percentage of apps with imperfect web caching. We
can see that the ratio of apps with imperfect web caching in
a category is roughly proportional to the category’s average
per-click HTTP traffic. We can also learn that almost all the
(four out of five) categories whose per-click HTTP traffic is
greater than 150 KB have more than half apps with imperfect
web caching. This suggests that imperfect web caching is a
common among apps with high HTTP traffic volumes.

Inter-click HTTP Traffic Redundancy. We label a redun-
dant HTTP transaction as inter-click redundant if the origi-

0 50 100 150 200 250

0.0

0.1

0.2

0.3

0.4

0.5

Per-click HTTP traffic (KB)

 No heuristic expiration

 With heuristic expiration

A
v

e
ra

g
e
 i

n
te

r-
c
li

c
k

re
d

u
n

d
a
n

t
H

T
T

P
 t

ra
ff

ic
 r

a
ti

o

(b)

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80 No heuristic expiration

 With heuristic expiration

P
e
rc

t.
 o

f
a
p

p
s

w
it

h

im
p

e
rf

e
c
t

H
T

T
P

 c
a
c
h

in
g

 (
%

)

Per-click HTTP traffic (KB)

(a)

Figure 1. Correlation between per-click HTTP traffic and

(a) the number of apps with imperfect web caching, and (b)

the average inter-click redundant HTTP traffic ratio.

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100 No heuristic expiration

 With heuristic expiration

P
e
rc

t.
 o

f
a
p

p
s

w
it

h
 s

a
m

e
-c

li
c
k

re
d

u
n

d
a
n

t
H

T
T

P
 t

ra
ff

ic
 (

%
)

Same-click redundant HTTP traffic ratio

Figure 2. CCDF of the same-

click HTTP redundant traf-

fic ratio.

0

10

20

30

40

50

60

70

80

Apps with same-click

redundant traffic

Apps with inter-click

redundant traffic

P
e
rc

e
n

ta
g

e
 o

f
a
p

p
s

(%
)

 application/*

 image/*

 text/*

 other

(a)

0

20

40

60

80

 application/*

 image/*

 text/*

 other

P
e
rc

e
n

ta
g

e
 o

f
re

d
u

n
d

a
n

t
tr

a
ff

ic
 (

%
)

Inter-click

redundant traffic

Same-click

redundant traffic

(b)
Figure 3. Content type breakdowns for (a) number

of apps and (b) redundant HTTP traffic.

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100 No heuristic expiration

 With heuristic expiration

P
e
rc

t.
 o

f
a
p

p
s

w
it

h
 i

n
te

r-
c
li

c
k

re
d

u
n

d
a
n

t
H

T
T

P
 t

ra
ff

ic
 (

%
)

Inter-click redundant HTTP traffic ratio

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100 No heuristic expiration

 With heuristic expiration

P
e
rc

t.
 o

f
a
p

p
s

w
it

h
 i

n
te

r-
c
li

c
k

re
d

u
n

d
a
n

t
H

T
T

P
 t

ra
ff

ic
 (

%
)

Inter-click redundant HTTP traffic ratio

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

P
e
rc

t.
 o

f
a
p

p
s

w
it

h
 i

n
te

r-
c
li

c
k

re
d

u
n

d
a
n

t
H

T
T

P
 t

ra
ff

ic
 (

%
)

 No heuristic expiration

 With heuristic expiration

Inter-click redundant HTTP traffic ratio

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

P
e
rc

t.
 o

f
a
p

p
s

w
it

h
 i

n
te

r-
c
li

c
k

re
d

u
n

d
a
n

t
H

T
T

P
 t

ra
ff

ic
 (

%
)

Inter-click redundant HTTP traffic ratio

 No heuristic expiration

 With heuristic expiration

(d) overall(c) "shopping" category(b) "sports" category(a) "news & magazines" category

Figure 4. Distribution of inter-click redundant traffic ratio: (a)-(c) show the CCDF of the redundant ratio for the apps with inter-click redundant traffic

in the top 3 categories with the most per-click HTTP traffic; (d) shows the same statistics for all the imperfect apps.

nal transaction and the redundant transaction occur as results
of two different clicks on the same app. Table 1 column
II.1 shows the number of apps with inter-click redundant
HTTP traffic for each category. We calculate the inter-click
redundant traffic ratio of a category as the ratio of the cate-
gory’s total inter-click redundant traffic over its total HTTP
traffic. Table 1 column II.2 shows this value of each cat-
egory. The inter-click redundant traffic ratio is 0.19 for all
the apps tested. This number increases to 0.26 when counting
heuristically redundant traffic. Figure 1 (b) plots, for the 24
categories, the relationship between each category’s per-click
HTTP traffic and its inter-click redundant traffic ratio. We
can observe that those categories with high per-click HTTP
traffic have much higher inter-click redundant traffic ratios.
For example, the inter-click redundant traffic ratios for the
top 3 categories with the most HTTP traffic are 0.45 (News
& Magazines), 0.42 (Sports) and 0.44 (Shopping). To fur-
ther study the distribution of the inter-click redundant traffic
ratio among apps, we plot in Figure 4 the CCDFs (Comple-
mentary Cumulative Distribution Function) of the inter-click
redundant traffic ratio for the previous three categories and
for all the apps tested. From the figure we can learn that for
the top three categories with the most per-click HTTP traffic,
half of the apps with inter-redundant traffic have a redundant
ratio greater than 0.5, which suggests imperfect web caching
is not only a common, but also a serious flaw for apps with
high HTTP traffic volumes.

Same-click HTTP Traffic Redundancy. We found that a
notable amount of apps we tested downloaded the same re-
source multiple times for the same user click. We call those
redundant HTTP transactions occurring for a single click on
the app as same-click redundant HTTP transactions. Table
1 column III.1 and column III.2 list, for each category, the
number of apps with same-click redundant HTTP traffic and
the same-click redundant HTTP traffic ratio. Overall, about
10% of the apps have same-click redundant HTTP traffic, and

the average same-click redundant traffic ratio is 0.03. How-
ever, similar to the case of inter-click HTTP traffic redun-
dancy, these two figures are much higher for those categories
with high HTTP traffic volumes. For example, for the top
three categories with the most HTTP traffic, more than 20%
of the apps have same-click redundant HTTP traffic, and the
redundant traffic ratio is around 10%. We plot the CCDF of
the same-click redundant ratio in Figure 2, which shows that
about 40% of all the apps with same-click redundant HTTP
traffic have a redundant ratio greater than 10%.

By carefully examining the web contents that involved same-
click redundant HTTP transactions, we confirmed that those
redundant downloads for the same click were not because the
same resources needed to be displayed at several places on
the same web page. We believe the main cause for same-
click redundant HTTP transactions is developer error. As an
evidence, a well-known online shopping and auction app had
a self-redundant traffic ratio of 0.64 for the version we tested,
and the problem was fixed in a new version when we retested
the app several months later.

Content Types of Redundant HTTP Traffic. By extracting
the Content-Type field from the HTTP response headers,
we identified three major types of HTTP resources appeared
in the measurement experiment: application/*, im-
age/* and text/*. Figure 3 (a) shows for all the apps with
redundant HTTP traffic, the percentage of apps neglecting to
cache each type of HTTP resources. In the figure, all the
types other than the three major types are labeled as other.
According to our experience, many of the apps with redun-
dant traffic on image resources only cache large images, but
fail on caching small images like thumbnail images for news
lists. Meanwhile, almost all the apps with redundant traffic
on text resources fail to cache all kinds of text objects such as
configuration files and data files. Figure 3 (b) shows the con-
tent type breakdown for the redundant HTTP traffic. We can
learn that image resources took the most redundant traffic. In

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

A
v

er
ag

e
re

d
u

d
an

t
H

T
T

P
 t

ra
ff

ic
 r

at
io

news &

magazines
sports shopping

 High ranked

 Middle ranked

 Low ranked

0

10

20

30

40

50

60

70

80

sports
news &

magazines

P
e
rt

.
o

f
a
p

p
s

w
it

h

im
p

e
rf

e
c
t

w
e
b

 c
a
c
h

in
g

 (
%

) High ranked

 Middle ranked

 Low ranked

shopping

(a) (b)

Figure 5. Web caching imperfection and app

rankings.

OS

data configuration and status info

OS

user space

CLT
Configuration

and Status

Manager HTTP Transaction

ORT #
OS

kernel

space

*

Cache Manager
g

Handler

Volatile cache

(memory-based)

Non-volatile cache

(filesystem-based)
NIC

Hardware

layer

[*] CLT: Cache Lookup Table

[#] ORT: Outstanding Request Table CacheKeeper

Figure 6. CacheKeeper architecture.

SK: socket of the HTTP transaction RU: requested URL
ICH: is cache-hit (False by default) IP: is private (False by default)

SK

() f h di bl ()

ICH: is cache hit (False by default) IP: is private (False by default)

CRA: cached response address

RU ICH IP CRA

(a) Entry of the outstanding requests table (ORT)

RU: requested URL VCE: volatile-cache entry

NVCE: non-volatile-cache entry

(b) Entry of the cache lookup table (CLT)

RU VCE NVCE

Figure 7. Entry structures of ORT and CLT.

the meantime, text resources also account for about 10% of
all the redundant HTTP traffic.

App Ranking and Web Caching Imperfection. We have
investigated whether app rankings have relationship with im-
perfect web caching. For the top 3 categories with the most
per-click HTTP traffic we tested, we divide their apps into
three groups (i.e., high, middle and low ranked) according
to the app rankings on Google Play. We plot the percentage
of apps with imperfect web caching and the average redun-
dant HTTP traffic ratio of each group in Figure 5 (a) and (b)
respectively. The shopping category has a much higher per-
centage of imperfect apps in the low ranked group. Mean-
while, for all the three categories, there is a clear increasing
trend for redundant traffic ratio from the high ranked group
to the low ranked group. Thus, we can cautiously make the
conclusion that apps with lower ranking are more likely to
have poor web caching implementation. This is reasonable
because high ranked apps are usually developed by experi-
enced and well-known developers, who are more likely to pay
attention to details like web caching for their apps.

Cross-app Caching Opportunities

Same-app web caching reduces web accessing latency and
saves bandwidth for an app when it accesses the same
cacheable content more than once. Meanwhile, cross-app
web caching can also achieve the same benefit for different
apps accessing the same web content. We have identified two
types of cross-app caching opportunities for mobile apps.

Opportunities by User Behaviors. The first type of oppor-
tunity comes when a user uses different apps to access the
same web content. For example, many top-ranking news
reader apps on Google Play (such as Flipboard, Pulse and
Yahoo!) allow users to view the news they are browsing on
phone’s web browser. This is a useful feature because usu-
ally a web browser provides more full-fledged web content
rendering support. With this feature, users may access the
same piece of news several times with both the news reader
app and a web browser. Another example is that when a user
wants to do online shopping with his smartphone, he may
first use a web browser to search for the product and com-
pare prices and reviews. After seeing that an online retailer,
Amazon.com for example, provides the product for the low-
est price, the user opens Amazon’s dedicated shopping app to
complete the transaction.

Opportunities by Shared Libraries. The second type of op-
portunity comes when two different apps use the same shared
library that regularly accesses web contents. Mobile adver-

tising network SDKs are the most notable kind of shared li-
brary. The way that a developer puts ads in his app is to call
functions from an ad library provided by the mobile ad net-
work. The app will download (or the ad network will push)
advertisements to the smartphone running the app dynami-
cally when the app is being used. Mobile ads are common
in free mobile apps. For example, among the 1300 apps in our
measurement experiment, 695 apps generate ad HTTP traffic
(Table 1 column IV.1); HTTP traffic of 230 apps are all ad
traffic (Table 1 column IV.2); and the per-click ad traffic is
24.2 KB (Table 1 column IV.3), which accounts for 20% of
the per-click HTTP traffic. In the mean time, most of the ad
traffic is cacheable: as shown in Table 1 column IV.4, the
overall cacheable ad traffic ratio is 0.84 (or 0.9 if consider-
ing heuristic expiration). Considering that the mobile ads
market is dominated by just a few ad networks [17] and that
the ads to be shown are usually determined based on the user
information such as user’s location [10], it’s likely that differ-
ent apps running on the same phone will display the same set
of ads over time. According to our experience, even two dif-
ferent ads from the same ad network usually share common
cacheable objects like configuration scripts and data files.

SYSTEM DESIGN

Design Goals and Challenges

Design Goals. We design CacheKeeper (CK for short) with
the following goals in mind.

1. CK should be able to perform standard-compliant (RFC
2616 [9]) web caching for all the entities (e.g., apps) mak-
ing HTTP requests in the device. This is the fundamental
goal of designing CK.

2. CK should be transparent to all the entities that it serves.
In other words, entities making HTTP requests should be
able to perform normally without any modifications. This
is to ensure backward-compatibility for existing apps.

3. Since CK is essentially a shared client-side cache, the de-
sign of CK should provide means to protect apps’ cache
privacy.

4. While cache hits will bring benefits, CK should also incur
low overhead on cache misses to ensure good usability.

5. CK should provide interfaces allowing users to configure
the web caching services (e.g., cache size, cache location
and heuristic expiration time) and to obtain service status.

Challenges. The design of a client-side system-wide caching
service such as CK is different from implementing a cache in
an individual app.

In particular, when compared with app-based client cache,
there are two challenges: The first challenge is the ability
to handle a large volume of concurrent HTTP transactions
while incurring low overhead. This is different from caching
in individual apps where HTTP requests are issued less fre-
quently and usually in a sequential manner. The second
challenge is that, unlike individual apps where web caching
is part of the operations handled by HTTP libraries, CK is not
in the network operations flow of the apps it serves. Thus,
it is challenging to design and implement CK without mak-
ing any modifications to the apps. For example, since fetch-
ing content from web cache is fast, it is designed as a syn-
chronous operation in individual apps (i.e., the program ex-
ecution blocks until the fetching operation finishes). How-
ever, fetching content from web cache cannot be designed as
a simple synchronous operation in CK. This is because apps
use asynchronous requests (i.e., request-then-poll) to retrieve
content from web servers. Acting as a transparent middle
layer between apps and web servers, CK cannot serve asyn-
chronous requests from apps by using simple synchronous
web cache retrieving. Otherwise it will be extremely ineffi-
cient and unscalable.

CacheKeeper Architecture

The architecture of CK is shown in Figure 6. CK is designed
as an OS kernel space component providing web caching ser-
vice to apps running in the user space. We choose to place
CK in OS kernel space for three reasons. First, this approach
has clear performance advantage over user space based ap-
proaches (e.g., user-level HTTP proxy). Second, this allows
the web caching service to be portable across different de-
vices running the same type of OS kernel. Third, by placing
it in kernel space and not changing the interfaces connecting
user and kernel spaces, we could easily achieve backward-
compatibility.

CK contains the following components: the HTTP transac-
tion handler, the cache manager, the configuration and status
manger and the physical caches. Next, we give a description
of each component, followed by the description of how the
components cooperate in CK operations.

HTTP Transaction Handler. The HTTP transaction han-
dler handles HTTP requests issued from apps and HTTP re-
sponses retrieved from network connections. The transaction
handler consults the cache manager for cached responses, and
passes incoming responses to the cache manager for caching
processing.

The transaction handler uses a key data structure, outstand-
ing requests table (ORT), to handle the asynchronous web
content requests from apps mentioned previously. Each ORT
entry corresponds to an HTTP request waiting to be served.
Figure 7 (a) shows the ORT entry structure. Since CacheKe-
eper needs to process a large amount of concurrent HTTP
transactions, we use socket address plus the requested URL to
identify individual HTTP transactions. The SK field and the
RU field record the socket address and the requested URL of
the corresponding HTTP transaction respectively. The ICH
field records if CK has a fresh cached response for the HTTP
request. The IP field records whether the app issuing the re-
quest has declared that the HTTP transaction is private and

thus should not be cached by CK. The default value of both
ICH and IP is False. If the request can be served by CK, the
field CRA holds the address of the buffer that is prepared by
the cache manager and stores the cached response.

Cache Manager. The cache manager performs the following
tasks. It accepts and processes queries for cached response
from the transaction handler. It accepts newly coming re-
sponses from the transaction handler, caches them in a proper
physical cache, and performs cache replacement if necessary.
It accepts and processes configuration or status query requests
from the configuration and status manager.

To help manage the cache entries, the cache manager main-
tains a key data structured named cache lookup table (CLT).
Each CLT entry, with the entry structure shown in Figure
7 (b), corresponds to the cached HTTP transaction (i.e., a
cached HTTP request/response pair) of a certain URL. The
field RU records the URL of the cached transaction. The fields
VCE and NVCE store the addresses of the volatile cache entry
(i.e., memory-based) and the non-volatile cache entry (i.e.,
filesystem based) of the HTTP transaction respectively.

Configuration and Status Manager. The configuration and
status manager provides interfaces to user space programs to
configure CK and to query the running status of CK for de-
bugging purposes.

Physical Caches. CK supports two types of caching media:
volatile cache residing in device’s memory and non-volatile
cache residing in device’s filesystem. The volatile cache is for
efficient cache lookup, and the non-volatile cache is to ensure
persistent cache content after reboots.

CacheKeeper in Operation

On Cache Hits/Misses/Validations. The transaction han-
dler handles every HTTP request from apps and HTTP re-
sponse from the network. Upon receiving an HTTP request,
the transaction handler creates a new ORT entry, and consults
the cache manager to see if CK has a freshed cached response
for the request. The cache manager looks up the CLT by com-
paring the URL provided by the transaction handler and the
RU field in the CLT entries, and sends the result back to the
transaction handler, which in turn updates the ICH field in the
ORT entry based on the result. If there is a cache hit, the
cache manager retrieves the cached response from either the
memory based cache or the filesystem based cache based on
the VCE and the NVCE fields in the CLT entry, and notifies the
transaction handler about the address of the buffer storing the
cached response. The transaction handler then records this
address in the CRA field of the ORT entry. Till now, the trans-
action handler has the complete ORT entry, through which the
handler knows how to serve the later polls from the app (recall
that apps use request-then-poll to retrieve contents from web
servers). If there is a cache miss or the cache response is
expired, the HTTP request is sent out as normal. The transac-
tion handler passes the HTTP response to the cache manager
for storing if the response is cacheable. If the cached re-
sponse needs to be validated before it can be served to the
apps, the transaction handler uses the validator (e.g., ETag,
Last-Modified time) provided in the cached response to issue
a conditional request to the web server. Based on the result of

the conditional request, the following operations are similar
to the cache hit or miss situation described previously.

Dealing with Same-click Redundant Requests. During the
measurement experiment, we observed that a notable amount
of apps generated same-click redundant HTTP traffic. CK
will naturally eliminate same-click redundant traffic if it has
cached the previous response for a redundant HTTP request.
However, a deeper investigation into the same-click redun-
dant HTTP transactions we obtained shows that HTTP re-
quests of about 20% of the same-click redundant transactions
were issued before the full responses of the first HTTP trans-
actions were received, in which case CK would send out those
redundant requests. To solve this problem, the transaction
handler postpones sending out an HTTP request for a short
period of time if the requested URL is found in an ORT entry.
Based on our experience, we set the length of this period to
200 ms in our prototype implementation.

Declaring Private HTTP Transactions. As one of the de-
sign goals, CK should provide means to protect apps’ cache
privacy. In our design, we allow apps to decide if they want
their HTTP traffic to be cached by CK. Specifically, we pro-
vide an interface for apps to declare privacy for each HTTP
transaction they generate. If an HTTP transaction is declared
as private, it will not be cached by CK. We will present the
implementation of the interface in the following section.

SYSTEM IMPLEMENTATION

We have implemented a prototype of CK as a loadable Linux
kernel module (kernel version: 3.0.15).

Location in Linux Kernel. Since HTTP communication
usually takes place over TCP connections [9], the CK mod-
ule intercepts TCP data flow at a location between socket
and the TCP protocol implementation (Figure 8 (a)). We
make this choice for the following three reasons. First, run-
ning CK under the system call interface can guarantee its
backward-compatibility, since the interfaces between user
space and kernel space remain untouched. Second, imple-
menting the caching service above the TCP layer allows us to
use socket information to distinguish different HTTP transac-
tions. Third, running CK at a hight level in kernel’s network
data flow avoids the needs of considering packet fragmenta-
tion, which reduces implementation complexity.

The HTTP transaction handler. The transaction handler in-
spects every intercepted TCP message, and processes those
related to HTTP. Since a long HTTP response may be di-
vided by web server into several shorter HTTP messages, the
transaction handler also needs to reassemble partial HTTP
response messages into a complete one. Our implementa-
tion supports reassembling for both messages with explicit
Content-Length header field and messages using chun-
ked transfer encoding [9]. The outstanding request table
(ORT) is implemented as an array with 128 entries. Accord-
ing to our experience, 128 ORT entries are enough because
the amount of concurrent HTTP requests waiting to be served
is not a larger than 100 in all of our tests.

The Cache Manager. The cache manager executes HTTP
caching logic according to the RFC 2616 specification. Our
current implementation supports caching with explicit expira-

tion time, caching with validation and caching heuristic expi-
ration. To achieve efficient cache lookup, the cache lookup ta-
ble (CLT) is implemented as a dynamic hash table indexed by
the RU field. The initial number of CLT entries is 1024. When
the CLT is 80% full, it is expanded by adding 256 empty en-
tries. To achieve hash table indexing and also save memory
space for the CLT, we place a hashed URL value, instead of
the actual URL (which may be of hundreds of bytes), in the
RU field of a CLT entry (the same implementation applies to
ORT entries). To achieve consistent web caching between re-
boots, we write the CLT to a file before system reboots or
unloading the CK module, and read the CLT into memory
right after the CK module is loaded.

Cache Replacement. If adding a new HTTP transaction to a
cache (volatile or non-volatile) will cause the cache’s size ex-
ceeds the configured value, the cache manager deletes a cache
entry from the cache. Our current implementation adopts the
simplest replace policy: deleting the oldest cache entry. In the
future we plan to implement different types of cache replace-
ment algorithms, and evaluate how the replacement algorithm
can affect the performance of CK.

Private Transaction Declaration Interface. To declare an
HTTP transaction as private, an app adds a comment string
“CK-Private” to the User-Agent header field of the re-
quest. The transaction handler marks the IP field of the corre-
sponding ORT entry as “True” if the comment string is found,
and will never cache the response in the shared cache. Since
web servers will ignore comments in HTTP headers, this ap-
proach does not affect the app’s normal function. Note that
this method is used by apps to choose whether its HTTP re-
sponses can be put in a shared cache. This is different from
the Cache-Control:no-store directive in RFC 2616,
which is used by the web server to declare that a response
should not be stored by any cache.

User Configuration Interface. We provide an interface, by
utilizing the /proc filesystem, for users to configure CK
and to obtain CK status. Figure 8 (b) shows the screenshot
of a CK configuration interface. The configuration options
include turning on/off CK, setting caching location, setting
sizes of caches, enabling/disabling heuristic caching and set-
ting heuristic expiration time.

ADDITIONAL DISCUSSION

Caching HTTPS Traffic. HTTPS traffic can be cached by
web clients. However, the result of our Android app caching
measurement study did not contain statistics on HTTPS traf-
fic. This is because contents of HTTPS transactions were en-
crypted, and could not be parsed by our analysis program.
However, among the 1300 selected apps, only 10% of them
generate only HTTPS traffic. The current design of CK
does not support caching HTTPS traffic. One way to en-
able HTTPS caching is to generate a CK certificate accepted
by both apps and web servers. This way, CK can decrypt
and analyze through HTTPS traffic, perform caching and en-
crypt traffic back. We leave supporting HTTPS caching in
CacheKeeper to our future work.

Privacy Considerations. Sharing web cache among applica-
tions brings privacy concerns. For example, sensitive objects

User

space

APPs

Linux

kernel

space

System call

interface

socket

implementation

CacheKeeper

TCP
UDP ICMP RAW

IP

(a) (b)

network drivers

Figure 8. CacheKeeper implementation: (a) lo-

cation in Linux kernel; (b) the user configuration

interface.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N1 N2 N3 S1 S2 S3 W1 W2 LT SP

T
ra

ff
ic

 r
e
d

u
c
ti

o
n

 r
a
ti

o

 by inter-click redundant traffic

 by same-click redundant traffic

 by inter-click heuristic redundant traffic

 by same-click heuristic redundant traffic

Figure 9. Source breakdown of HTTP traffic re-

duction ratio for the 10 tested apps.

1

2

3

4

5

6

7

8

9

10

C
o

n
te

n
t

re
n

d
e
ri

n
g

 s
p

e
e
d

u
p

 Fox News

 USA Today

 AOL

 Ebay

 Craigslist

 Target

 Weather.com

 AWS

 Yelp

 Coll. Scoreboard

0.1 0.5 1.0 1.5 2.0 4.0 8.0 12.0

Available bandwidth (Mbps)

Figure 10. Web content rendering speedup of

the 10 tested apps under different transmission

bandwidths.

of one app may be accessed by other apps. A more sophis-
ticated case is that a malicious app could use the time dif-
ference of downloading certain HTTP objects to determine
if the user has viewed certain web contents, which is simi-
lar to the timing attacks of website accesses [8]. The sim-
plest and most effective solution is to disable shared caching
for sensitive HTTP objects. To this end, CK allows an app
to declare if an HTTP transaction is private to the app and
should not be stored by the shared cache. However, this so-
lution requires app modifications, and thus is not applicable
to legacy applications. To better solve this problem, we are
considering other solutions including randomizing cache ac-
cess times [6, 8], and fingerprinting app web access patterns
to detect malicious cross-app cache accessing.

The Userspace Loopback Alternative. An alternative way
to achieve system-wide web caching is to install a web proxy
supporting caching at the localhost address. All the HTTP
traffic will be looped back through the web proxy, which will
handle the HTTP caching for the phone. While this approach
might work in theory, we argue that CK still has several no-
table advantages over it. First, web proxy is not specifically
designed for running in a phone. Instead, it is usually running
in a standalone computer and has a design goal of efficiently
serving HTTP requests from a large amount of computers.
Therefore, the loopback approach is not able to take care of
issues specifically related to app semantics (e.g., performance
and privacy issues) like CK does. Second, the userspace
loopback approach apparently adds more time to complet-
ing an HTTP transaction. On the contrary, CK is much more
lightweight as it operates in the kernel. Third, although our
prototype CK currently only supports basic web caching, it
is possible to add more functions, such as compression and
JavaScript rewriting, to CK, and allow it to be functionally
comparable to standalone web proxies.

SYSTEM EVALUATION

We evaluated our CK implementation in a Samsung Galaxy
S2 smartphone running Android 4.0.3.

Case Evaluation: App Performance Gains

We selected 10 top ranked apps with imperfect web caching
from Google Play (listed in the left part of Table 2). All these

Table 2. HTTP traffic ratios of the 10 tested apps.

Category App Name Served New & Non-

by CK cacheable cacheable

Fox News (N1) 0.1967 0.4154 0.3879

News USA Today (N2) 0.4091 0.2075 0.3834

AOL (N3) 0.3528 0.1710 0.4762

Ebay (S1) 0.5654 0.1218 0.3127

Shopping Craigslist (S2) 0.2512 0.3823 0.3665

Target (S3) 0.6098 0.0734 0.3168

Weather Weather.com (W1) 0.6035 0.0716 0.3249

AWS (W2) 0.2472 0.1363 0.6165

Local&Travel Yelp (LT) 0.5810 0.0164 0.4026

Sports Coll. Scoreboard (SP) 0.6454 0.2161 0.1384

Overall 0.4205 0.2388 0.3407

apps were ranked top 20 in their categories. Before perform-
ing the measurement experiments, we first used the 10 apps,
each for three minutes, on the Samsung Galaxy S2 smart-
phone, and recorded the user inputs when using the app. We
instrumented CK such that it can record different statistics of
HTTP traffic, including the amount of total HTTP traffic, the
amount of HTTP traffic served by the caching service and the
amount of traffic with different cacheability.

HTTP Traffic Reduction. In this experiment, we aimed to
investigate how the 10 top ranked apps can benefit from CK
in terms of HTTP traffic reduction. We ran the 10 apps on the
smartphone by replaying the recorded inputs from real user
every 30 minutes in one-day period. This is to simulate a user
accessing an app every 30 minutes (note that the actual ben-
efits achieved by CK depend on how often the web contents
accessed by the user are updated, which is further determined
by how often the user uses the app and how often the app
updates its web contents).

Table 2 presents the ratios of traffic obtained in the experi-
ment. The third column is the ratio of HTTP traffic served by
CK, which is also the traffic reduction ratio. The fourth and
the fifth column of Table 2 are the ratio of those first-time ap-
peared cacheable traffic and the ratio of non-cacheable traffic
respectively. The sum of the values in these three columns is
1. In the experiment, the overall HTTP traffic reduction ratio
is 0.42. Among the 10 apps, 5 of them enjoyed a traffic re-
duction of over 50%. The traffic reduction ratio of an app
is determined by two factors: how well web caching is im-

0 200 400 600 800 1000

0

500

1000

1500

2000

2500

3000

3500

4000

A
v

e
ra

g
e
 t

im
e
 t

o
 c

o
m

p
le

te

a
n

 H
T

T
P

 t
ra

n
sa

c
ti

o
n

 (
m

s)

HTTP file size (KB)

 No CPU utilization imposed

 25% CPU utilization imposed

 50% CPU utilization imposed

 75% CPU utilization imposed

0 200 400 600 800 1000

0

50

100

150

200

250

300

350

400

A
v

e
ra

g
e
 t

im
e
 t

o
 c

o
m

p
le

te

a
n

 H
T

T
P

 t
ra

n
sa

c
ti

o
n

 (
m

s)

HTTP file size (KB)

 No CPU utilization imposed

 25% CPU utilization imposed

 50% CPU utilization imposed

 75% CPU utilization imposed

(a) Serving HTTP transactions

from network downloading

(b) Serving HTTP transactions

from local cache

Figure 11. Transaction times under different system loads.

1 1.007 1.011 1.018

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

N
o

rm
a
li

z
e
d

 a
v

e
ra

g
e

H
T

T
P

 t
ra

n
sa

c
ti

o
n

 t
im

e

 Without CacheKeeper (baseline, no overhead)

 Response file is not cacheable

 Response file is cacheable, writing to memory

 Response file is cacheable, writing to filesystem

Figure 12. Processing time O/H.

0 20 40 60 80 100
600

800

1000

1200

1400

1600

1800

P
o

w
e
r

(m
W

)

HTTP file size (KB)

 Without CacheKeeper (baseline)

 Response file is not cacheable

 Response file is cacheable, writing to memory

 Response file is cacheable, writing to filesystem

(a) Absolute power values for

downloading files with differet sizes

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

HTTP file size (KB)

N
o

rm
a
li

z
e
d

 p
o

w
e
r

 Without CacheKeeper (baseline)

 Response file is not cacheable

 Response file is cacheable, writing to memory

 Response file is cacheable, writing to filesystem

5 10 50 100

(b) Normalized power values for

downloading files with differet sizes

Figure 13. Power consumption O/H.

plemented in the app and how often the app updates its web
contents. Specifically, the worse web caching performance an
app has, the higher traffic reduction ratio it can obtain from
using CK. For example, the two weather apps had a similar
rate regarding content update. The weather app 1 had a higher
HTTP traffic reduction ratio than the weather app 2. This is
because the weather app 1 has a worse web caching perfor-
mance. Meanwhile, for two apps with similar web caching
performances, the app with less frequent content updates en-
joys more traffic reduction. For example, the three shopping
apps perform similarly in web caching: all of them do not
cache image resources. In the experiment, the shopping app
1 and 3 had higher traffic reduction ratios than the shopping
app 2. This is because the shopping app 2 has a much higher
content update rate, as it is the official app of Craigslist, which
is a popular classified advertisement website where many new
listings are posted by users every hour.

Figure 9 shows the source breakdowns of the HTTP traffic
reduction ratio. We can see that inter-click redundant HTTP
traffic was the only major contributor to the overall traffic re-
duced for 9 apps. For the shopping app 1, same-click redun-
dant traffic was another main source of traffic reduced. This
suggests that it is worthwhile to pay special attention to same-
click redundant traffic in CK’s design.

Web Content Rendering Speedup. We evaluated how the
10 top ranked apps can expedite web content rendering under
different connection conditions by using CK. In this experi-
ment, the smartphone was connected to the Internet via our
HTTP proxy [3], which could throttle download and upload
bandwidths according to user configuration. We set the trans-
mission bandwidth at the proxy according to a recent study
on 3G/4G wireless speed [1]. This study suggests that the
average 3G download speeds of the four major U.S. wireless
service providers range from 0.59 Mbps to 3.84 Mbps with an
average value of 2 Mbps. The average 4G download speeds
range from 2.81 Mpbs to 9.12 Mpbs with an average value
of 6.2 Mbps. Accordingly, we chose 8 values for the down-
load bandwidth: 0.1, 0.5, 1, 1.5, 2, 4, 8, 12, all in the unit
of Mbps, and set the upload bandwidth to 1 Mbps. We ran
the 10 apps, with CK enabled in the smartphone, by replay-
ing the recorded user inputs under the 8 different download
bandwidths for 20 rounds. In each round, we also ran the 10
apps with CK disabled. We recorded the web content ren-
dering time for each user click, which was the time interval
between the first HTTP request and the last HTTP response of
all the HTTP transactions of a click. The rendering speedup
was calculated as the ratio between the rendering times with
and without CK running respectively.

Figure 10 shows the average content rendering speedup of the
20 rounds testing for the 10 apps. From the figure we can see
that the content rendering speedup increases as the connec-
tion condition becomes worse for all the 10 apps. The shop-
ping app 2 and 3 are more sensitive to bandwidth changes.
This is because the HTTP resources requested by these two
apps are mainly large images. The average speedup of the 10
apps under the average 3G download bandwidth of the four
major U.S. wireless providers (2 Mbps, reported in [1]) is 2.0.
The average speedup under the average 4G download band-
width (6.2 Mbps, reported in [1]) is around 1.5.

Controlled Evaluation

Effects of High System Load. Mobile devices usually have
constrained computational resources, and thus, mobile app
performances are more sensitive to system load changes than
their counterparts in PCs. Here, we wanted to investigate
how CK can help mobile apps to improve their resilience to
high system load. We developed a mobile app that can re-
peatedly download specified files from our own HTTP server
with a configured interval. We used this app to download files
with different sizes (1, 5, 10, 50, 100, 500 and 1000, in KB)
from the server. For each file size, we repeated the download
for 50 times with a 100 ms interval, and calculated the av-
erage time needed as the HTTP transaction duration for the
file size. During the downloads, we imposed different back-
ground workloads on CPU so that we can see how transaction
durations responded to system load changes.

We first performed the experiment without running CK. In
this case, every HTTP transaction was served from network
downloading. Figure 11 (a) plots the relationship between
file sizes and transaction durations. We can see that trans-
action duration of a file increases much faster as file size in-
creases if the background system load is high. This is because
to transmit a large file, HTTP servers usually divide it into
small chunks and transmit them separately. For example, our
HTTP server segmented a large file into 8 KB chunks for sep-
arated transfers. Since frequent network transfers consume
high CPU resource, downloading a large file needs more time
under higher system load. We then performed the same exper-
iment with CK running in the phone. In this case, except for
the first download, which was served by network download-
ing, all the other 49 downloads were served by CK. Figure
11 (b) shows the experiment result. We can learn that when
HTTP transactions were served by CK, the transaction dura-
tions were not only shorter than when served from network
downloading (one magnitude less), but also more resilient
to system load changes (i.e., the transaction duration for the

same file size increases little as system load increases), which
is helpful to offer good user experiences under high system
loads. This suggests that CK is desirable in mobile devices
with constrained resources.

Processing Time Overhead. We evaluated processing time
overhead caused by CK in the case of cache miss. There
are two cases for processing time overhead on cache miss.
First, if the HTTP response to the cache missed request is not
cacheable, processing overhead by CK comes from searching
the CLT for a matched cached response. Second, if the HTTP
response is cacheable, additional processing time overhead
comes from caching the response. We performed the exper-
iment by downloading a 100 KB file from our HTTP server
for 50 times with a 100 ms interval. We first ran the experi-
ment with CK disabled, and recorded the average transaction
duration as the based line value. Then we ran the experi-
ment with CK enabled while enforcing the two cases of cache
misses respectively, and recorded the corresponding average
transaction duration. For the first case of cache miss, we con-
figured HTTP responses as “no-stored”. To enforce the
second case of cache miss, we used different file names for
each downloading. We also configured CK so that we could
compare the difference of caching responses to memory and
caching responses to filesystem files.

Figure 12 shows the normalized transaction durations under
different scenarios. When responses to cache missed requests
were non-cacheable, the processing time overhead was less
than 1%. When responses are cacheable, the case of writ-
ing responses to memory had an processing time overhead of
1.1%. and the case of caching responses to files had an over-
head of 1.8%. This result suggests that our implementation
of CK incurs a small processing overhead on cache misses.

Energy Overhead. In this experiment, we evaluated the en-
ergy overhead of CK in the case of cache miss. Similar to pro-
cessing time overhead, energy overhead on cache miss also
has two cases: the case that responses are not cacheable and
the case that responses are cacheable. When responses are
non-cacheable, the energy overhead is looking up the CLT for
a matched cached response. When responses are cacheable,
additional energy overhead comes from writing responses to
memory and/or files. We performed the experiment by down-
loading files with different sizes (5, 10, 50, 100, in KB) from
our HTTP server. For each file size, we repeated the down-
load for 50 times with a 100 ms interval. We measured phone
power consumption using the Monsoon power monitor [13].
To obtain the baseline power consumption, we first ran the
experiment with CK disabled. Then we ran the experiment
with CK enabled while enforcing the two cases of cache miss
using the same methods as in the processing time overhead
experiment.

Figure 13 (a) plots the absolute power values, and Figure 13
(b) shows the normalized power values for different file sizes.
From the result we can learn that CK incurs negligible energy
overhead when responses to cache-missed HTTP requests are
non-cacheable and when cacheable response are only written
to memory. When cacheable responses are written to files,
about 15% power overhead is incurred.

CONCLUSION

In this paper, we propose and design CacheKeeper, an OS
web caching service for smartphones. To motivate the work,
we have performed a comprehensive measurement study on
web caching functionality of 1300 top ranked Android apps.
The measurement results suggest that imperfect web caching
is a common and serious flaw for Android apps generating
web traffic. We have implemented CacheKeeper in Linux ker-
nel, and performed extensive evaluations on Android smart-
phone. Our evaluation indicates that CacheKeeper can effec-
tively remedy the flaw of imperfect web caching for mobile
apps with small overhead.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their valuable and
helpful comments. This project was supported in part by US
National Science Foundation grants CNS-1117412 and CA-
REER Award CNS-0747108.

REFERENCES
1. 3G and 4G Wireless Speed Showdown: Which Networks Are Fastest?

http://www.pcworld.com/article/253808/3g and 4g wireless speed -
showdown which networks are fastest .html.

2. Androids HTTP Clients. http://android-
developers.blogspot.com/2011/09/androids-http-clients.html.

3. Charles Web Debugging Proxy. http://www.charlesproxy.com.

4. Mobile Devices Now Make Up About 20 Percent of U.S. Web Traffic.
http://allthingsd.com/20120525/mobile-devices-now-make-up-about-
20-percent-of-u-s-web-traffic.

5. Study: Mobile Web Traffic Up 35% in Under a Year; PC Web Usage
Peaks Early Morning. http://insights.chitika.com/2012/study-mobile-
web-traffic-up-35-in-under-a-year-pc-web-usage-peaks-early-morning.

6. Bortz, A., and Boneh, D. Exposing private information by timing web
applications. In WWW (2007).

7. Erman, J., Gerber, A., Hajiaghayi, M. T., Pei, D., Sen, S., and
Spatscheck, O. To Cache or Not to Cache: The 3G Case. IEEE Internet

Computing 15, 2 (2011).

8. Felten, E. W., and Schneider, M. A. Timing attacks on Web privacy. In
ACM CCS (2000).

9. Fielding, et al. RFC 2616 - Hypertext Transfer Protocol - HTTP/1.1.

10. Guha, S., Jain, M., and Padmanabhan, V. Koi: A Location-Privacy
Platform for Smartphone Apps. In NSDI (2012).

11. Koukoumidis, E., Lymberopoulos, D., Strauss, K., Liu, J., and Burger,
D. Pocket cloudlets. In ASPLOS (2011).

12. Lymberopoulos, D., Riva, O., Strauss, K., Mittal, A., and Ntoulas, A.
PocketWeb: instant web browsing for mobile devices. In ASPLOS

(2012).

13. Monsoon Solutions Inc. Power Monitor.
http://www.msoon.com/LabEquipment/PowerMonitor.

14. Papapanagiotou, I., Nahum, E. M., and Pappas, V. Smartphones vs.
laptops: comparing web browsing behavior and the implications for
caching. In SIGMETRICS (2012).

15. Qian, F., Quah, K. S., Huang, J., Erman, J., Gerber, A., Mao, Z. M.,
Sen, S., and Spatscheck, O. Web caching on smartphones: ideal vs.
reality. In MobiSys (2012).

16. Tossell, C., Kortum, P. T., Rahmati, A., Shepard, C., and Zhong, L.
Characterizing web use on smartphones. In CHI (2012).

17. Vallina-Rodriguez, N., Shah, J., Finamore, A., Grunenberger, Y.,
Papagiannaki, K., Haddadi, H., and Crowcroft, J. Breaking for
commercials: characterizing mobile advertising. In IMC (2012).

18. Wang, Z., Lin, F. X., Zhong, L., and Chishtie, M. How far can
client-only solutions go for mobile browser speed? In WWW (2012).

19. Zhang, K., Wang, L., Pan, A., and Zhu, B. B. Smart caching for web
browsers. In WWW (2010).

	Introduction
	Related Work
	Motivation
	Web Caching Imperfection in Mobile Apps
	Measurement Setup
	Measurement Findings

	Cross-app Caching Opportunities

	System Design
	Design Goals and Challenges
	CacheKeeper Architecture
	CacheKeeper in Operation

	System Implementation
	Additional Discussion
	System Evaluation
	Case Evaluation: App Performance Gains
	Controlled Evaluation

	Conclusion
	Acknowledgments
	REFERENCES

