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Abstract

Data storage has become an important issue in sensor
networks as a large amount of collected data needs to be
archived for future information retrieval. This paper pro-
poses to introduce storage nodes that can store data col-
lected from the sensors in their proximities. The storage
nodes alleviate the heavy load of transmitting all the data
to a central place for archiving and reduce the communi-
cation cost induced by the network query. This paper con-
siders the storage node placement problem to minimize the
total power consumption for data funneling to the storage
nodes and data query. We formulate it as an integer linear
programming problem and present an approximation algo-
rithm based on a rounding technique. Our simulation shows
that our approximation algorithm performs well in practice.

1 Introduction

We consider a data storage system in sensor networks so
that data collected by sensors could be stored in the network
rather than being sent to the base station. Specifically, we
consider a two tier-structure composed of storage nodes and
associated normal sensors, proposed in our previous work
[20]. Storage nodes are special sensors with much larger
permanent storage (e.g., flash memory) and more battery
power. In such a hybrid sensor network, these storage nodes
collect the data from normal sensors nearby. Upon receiv-
ing a query, the storage nodes will process the query and
then reply back to the sink. If needed, the data accumu-
lated on each storage node can be transported periodically
to a data warehouse by robots or traversing vehicles using
physical mobility as Data Mule [19]. The basic model is
shown in Fig. 1 (with 3 storage nodes), where solid lines
indicate raw data transfer and dashed lines denote query
replies. Since the storage nodes only collect data from the
sensors in their proximity and not all of the raw data are
transmitted to the sink via a hop-by-hop relay of other sen-

sor nodes, the concerns of limited storage, communication
capacity, and battery power are ameliorated.

Figure 1. Access Model with Storage Nodes

Due to the higher cost of storage nodes compared to reg-
ular sensor nodes, there are usually only a limited number of
storage nodes in the entire sensor network. Thus, the place-
ment of such storage nodes is a crucial problem that affects
data transmission in the whole network. Under this two-tier
model,each sensor, apart from sensing data, is also involved
in routing data for two network services: transmitting raw
data to storage nodes, and diffusing/replying queries. In this
paper, we use power consumption as the metric for evaluat-
ing our solution. Thus, we aim to minimize the total power
consumption in data accumulation and data query by judi-
cious placing of storage nodes.

In our prior work [20], we discussed the problem of plac-
ing storage nodes on a communication tree. In this paper,
we consider a more general case without topology assump-
tion. We formulate the problem as an integer programming
problem and propose a 10-approximation algorithm to re-
solve it. Our simulation results show that our algorithm per-
forms well even though the approximation factor is large.

The problem in this paper is quite similar to the k-
median problem and the uncapacitated facility location
problem (UFL), which have been well studied in literature
[4,5,7–9,15] and [12–14,17,18,21]. Our approximation al-
gorithm follows the ideas in [8], which give an approxima-
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tion factor of 6 2
3 to the k-median problem. In our problem,

however, the sink is a special facility as the final destination
of all data. From another aspect, our problem is similar to
the two-level facility location problem ( [2, 3, 6, 23] ) with
the sink as the only one level-2 facility. However, in our
problem, the cost triangle inequality does not always hold,
which makes the problem more complicated, as a special
case of the non-metric two-level facility location problem.
The best known solution to the metric k-median problem
has an approximation factor of (3+ε) ( [5] ). No prior work
guarantees a constant approximation factor for the general
UFL and 2-UFL problems. The best known solution has an
approximation factor of O(ln(C)) ( [23] ), where C is the
number of clients.

2 Problem Formulation

In this paper, we consider an application in which sensor
networks provide real-time data services to users. A sen-
sor network is given with one sensor identified as the sink
(or base station) and each sensor generating (or collecting)
data from its environment. Users specify the data they need
by submitting queries to the sink and they are usually inter-
ested in the latest readings generated by the sensors1. There
are two types of sensors (or nodes) in this hybrid network,
defined as follows.

• Storage nodes: This type of nodes store all the data it
has received from other nodes or generated by them-
selves. The sink only sends queries to storage nodes.
According to the query description, storage nodes ob-
tain the results needed from the raw data they are hold-
ing and then send these results back to the sink. The
sink itself is considered as a storage node.

• Forwarding nodes: Each forwarding node is associ-
ated with a storage node. A forwarding node always
forwards the data generated by itself to the associated
storage node. Since forwarding nodes are not aware
of queries, the forwarding operation is independent of
queries and there is no data processing at these nodes.

Since storage nodes hold raw data sent from nearby for-
warding nodes, it requires a large local disk space (flash
memory), which makes storage nodes more expensive than
normal forwarding nodes. Considering the total budget of a
sensor network, we probably can afford only a limited num-
ber of storage nodes (a small fraction of all the deployed
sensors). Thus, given an input parameter k, our goal is to
strategically allocating at most k storage sensors in a sen-
sor network to minimize the energy cost (power consump-

1Our algorithms also apply to the queries to the historic data. For the
ease of presentation, we assume all queries are corresponding to the latest
generated data.

tion) associated with raw data transfers, query diffusion,
and query replies.

In the deployment, we first deploy normal forwarding
nodes. After collecting their location information, we se-
lect at most k of them to be storage nodes. We can attach
large flash memory to these selected forwarding nodes or
replace them by deploying more powerful storage nodes at
the same locations. We also associate each forwarding node
with a storage node which will hold the raw data from the
forwarding node. We broadcast the association information
to the network in the initial phase.

In this model (shown in Fig. 1), queries are only diffused
to every storage node. Since we consider a very limited
number of storage nodes in this paper and query message
size is negligible compared to the data transmission, the
query diffusion cost is ignored. Thus, in the following of
this paper, energy cost includes transmission cost of the raw
data and query reply cost but not query diffusion cost.

We make the following assumptions about the character-
istics of data generation, query diffusion, and query reply.
First, for data generation, assume that each node generates
rd readings per time unit and the data size of each reading
is sd. Second, for query rate, assume that rq queries of the
same type are submitted from users per time unit. Third, for
query reply, assume that the size of data needed to reply a
query is a fraction α of that of the raw data. Specifically,
we define a data reduction function f for query reply. For
input x, which is the size of the raw data generated by a set
of nodes, function f(x) = αx for α ∈ (0, 1] returns the size
of the processed data needed to reply the query. This char-
acterizes many queries satisfied by a certain fraction of the
all sensing data, e.g., a query may be “return all the nodes
that sense a temperature higher than 100 degree”. The char-
acteristics of queries can be estimated from historic query
records and analytical models.

In this paper, we consider multi-hop communication for
relaying data. We assume the data routing between a pair
of sensors, e.g., a normal sensor and a storage node, a stor-
age node and the sink, follows the geographic routing al-
gorithm [16], which looks for the shortest path connecting
them. Thus, the energy cost model is simplified by the as-
sumption that the transmission cost is proportional to the
data size and the hop distance between the sender and the
receiver. In a densely deployed sensor network, the hop dis-
tance between two sensors is proportional to the Euclidean
distance ( [10, 11, 22] ). Therefore, in this paper, we use

Euclidean distance × Data size

to measure the energy consumed to send data.
Therefore, the problem in this paper is to find the op-

timal placement of the storage nodes such that the energy
cost associated with raw data transfer and query reply is
minimized. This problem is a general case of the k-median
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problem2. Especially when there is no data transfer between
storage nodes and the sink, i.e. rq = 0, the problem be-
comes the classic k-median problem, which is NP-hard. In
the following, we give an approximate algorithm for our op-
timal storage node placement problem.

More specifically, given L as a set of locations of sensor
nodes including the sink, the problem is to select at most k
sensors to be storage nodes such that the total energy cost
is minimized. Assume different nodes are placed at distinct
locations, L can be also regarded as the set of sensor nodes.
All nodes/locations are labeled from 0 to n and node 0 is
the sink. We define yi as the type flag of node i,

∀i ∈ L, yi =
{

1 if i is a storage node;
0 if i is a forwarding node.

Let cij be the Euclidean distance3 between node i and j and
li be the Euclidean distance between node i and the sink,
i.e. li = ci0. We use xij as an indicator denoting if the
raw data generated by node j are sent to storage node i and
stored there,

xij =
{

1 if yi = 1 and node j forwards its raw data to i;
0 otherwise.

Thus, our problem can be formulated as an integer program,

IP: min
∑

i,j∈L

xij(c1cij + c2li)

s.t. ∀j ∈ L,
∑
i∈L

xij = 1, (1)

∑
i∈L

yi ≤ k, (2)

∀i, j ∈ L, yi ≥ xij ≥ 0, y0 = 1. (3)

where c1 = rdsd and c2 = rqαsd. In the objective, the
cost incurred by a node j includes two parts. The first part
(c1cij ) is the cost for raw data transfer from node j to the
associated storage node i. The second part (c2li) is the cost
of sending the query reply, which is derived from the raw
data generated by j, from the storage node i to the sink.
The first constraint requires every sensor to send its data
through a storage node. Since we treat the sink as a storage
node, it includes the case that sensors send data directly to
the sink. The second constraint is for the number of storage
nodes, where k is given as a parameter of this problem. In

2Definition of k-median problem ( [8] ): Given n points, we must select
k of them to be cluster centers, and then assign each point j to the selected
center that is closest to it. The goal is to minimize the sum of the distance
between each node and its associated center.

3We use the Euclidean distance to approximate the minimal number
of communication hops between two nodes, which translates to the total
optimal power consumption of the nodes on the communication path be-
tween those two nodes. This approximation is valid when a large number
of nodes are deployed ( [10, 11, 22] ).

the third constraint, if node j forwards data to node i, node
i must be a storage node. It shows the connection between
variables x and y.

Since c1 and c2 are constant, the objective function is
equivalent to

min
∑

i,j∈L

pijxij ,

where pij = cij + βli with β = c2
c1

= rqα
rd

. We are going
to use the above objective function for the IP problem from
now on. Its LP-relaxation is

LP-relaxation: min
∑

i,j∈L

pijxij

s.t. ∀j ∈ L,
∑
i∈L

xij = 1,

∑
i∈L

yi ≤ k,

∀i, j ∈ L, yi ≥ xij ≥ 0, y0 = 1.

Note that the difference between this LP-relaxation and the
k-median problem is that pij is neither symmetric nor pro-
portional to the Euclidean distance between i and j.

Theorem 1 If β ≥ 1, there is no need to place storage
nodes.

Proof: Assume node i is a storage node, and a node
j (j may be equal to i) sends data via node i. Recall that
the cost incurred by node j is pij = cij + βli. If j sends
data directly to the sink, the cost will be lj . According to
the triangle inequality

lj ≤ cij + li ≤ cij + βli = pij .

It shows that when β ≥ 1, there is no benefit from transmit-
ting data through a storage node. Thus, there is no need to
deploy storage nodes.
In the following, we only consider the scenario with β < 1.

3 Approximation Algorithm

In this section, we describe a rounding algorithm to re-
solve the problem. We first modify the LP-relaxation prob-
lem to an equivalent problem by introducing a demand dj

to every node. Intuitively, dj can be regarded as the size
of the raw data generated by node j. Parameter dj is set
to 1 for each node and we keep the same constraints of the
LP-relaxation problem. But the objective function of this
problem becomes

Original: min
∑

i,j∈L

djpijxij .

We call this problem the original problem. Obviously, a fea-
sible solution to the LP-relaxation is feasible to the original
problem and an integer solution to the original problem is
feasible to the IP problem.
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3.1 Outline of the Algorithm

Initially, we obtain a feasible solution (x̄, ȳ) to the LP-
relaxation problem, which is also feasible to the original
problem. Let C̄LP be the value of the objective of the orig-
inal problem. For any node j ∈ L, we use C̄j to represent
the cost of raw data transfer and query reply incurred by a
unit data from node j in solution (x̄, ȳ):

C̄j =
∑
i∈L

pij x̄ij . (4)

And the total cost of (x̄, ȳ) in the original problem is

C̄LP (x̄, ȳ) =
∑
j∈L

djC̄j . (5)

We use the following three steps to obtain an integer so-
lution to the original problem.

Step 1: We modify the demand of every node by moving
some nodes’ demands to the others. We call this process
consolidating demands. After this step, only some nodes
hold demands while the other nodes’ demands become 0.
Since we keep the same constraint, (x̄, ȳ) is also feasible to
the modified problem. Additionally, our modification fol-
lows some rules such that an integer solution to the modi-
fied problem can be converted to an integer solution to the
original problem with no more than 4C̄LP (x̄, ȳ) extra cost.

Step 2: In solution (x̄, ȳ), the values of the variables
are not integers. We call node i a fractional storage node
if ȳi ∈ (0, 1). In this step, we simplify the problem by
consolidating fractional storage nodes, i.e. moving ȳi of
fractional storage nodes to other nodes. We modify (x̄, ȳ)
to another solution (x′, y′), such that x′, y′ ∈ [12 , 1] and the
cost of (x′, y′) is at most three times of the cost of (x̄, ȳ).
We will further modify (x′, y′) to another { 1

2 , 1}-integral
solution (x′′, y′′) to the modified problem without increas-
ing the cost.

Step 3: Finally, we apply a rounding algorithm to con-
vert (x′′, y′′) to a {0, 1}-integral solution to the modified
problem with at most twice the cost of (x′′, y′′). As we
mentioned in Step 1, this integer solution can be further
converted to an integer solution to the original problem.

3.2 Consolidating Demands

Originally, every node has demand of 1. In this step, we
try to reallocate demands from all nodes to fewer number of
nodes such that for any pair of nodes i and j with positive
demands, cij > 4max(C̄i, C̄j). The following procedure is
applied to modify the demands.

1. We re-index the nodes in an increasing order of C̄j ,
i.e., C̄1 ≤ C̄2 ≤ . . . ≤ C̄n.

2. We modify the demands of nodes in the new order. Let
d′j be the new demands. Initially, d′j = dj . For a node
j, we check if there is another node i satisfying i < j,
di > 0 and cij ≤ 4max {C̄i, C̄j} = 4C̄j . If there
exists such a node i, we move the demand of j to node
i by:

d′i ← d′i + d′j ; d′j ← 0.

After this process, we get a new problem with the modi-
fied demands. This problem has the same constraints as the
original problem, but the objective becomes:

Modified: min
∑

i,j∈L

d′jpijxij .

A node with positive demand is called a demand node.
In the process above, we only modify the demands, but

nothing on the constraints. Thus, the feasible solution (x̄, ȳ)
to the original problem is also feasible to the modified prob-
lem. Let ĈLP be the cost in the modified problem,

ĈLP (x̄, ȳ) =
∑
j∈L

d′jC̄j .

Theorem 2 After modifying the demands, the cost of (x̄, ȳ)
in the modified problem is less than that in the original
problem, i.e., ĈLP (x̄, ȳ) < C̄LP (x̄, ȳ).

Proof: To see this, assume that during the modifica-
tion, we move demands from j to i with C̄j > C̄i. Thus,
the change of the total costs is:

ĈLP (x̄, ȳ)− C̄LP (x̄, ȳ)
= (d′iC̄i + d′jC̄j)− (diC̄i + djC̄j)

= ((di + dj)C̄i + 0 · C̄j)− (diC̄i + djC̄j)
= dj(C̄i − C̄j) < 0.

Theorem 3 For any feasible integer solution (x, y) to the
modified problem, there is a feasible integer solution to the
original problem with cost at most 4C̄LP (x̄, ȳ) more than
the cost of (x, y) in the modified problem.

Proof: Let (x1, y1) be an integer solution to the mod-
ified problem. We will convert it to an integer solution
(x2, y2) to the original problem. First, we set y2 = y1.
Secondly, assume node j moves its demand dj to another
node j′ during the consolidating process and j′ is assigned
to a storage node i in the modified problem according to the
integer solution (x1, y1). We also assign j to the storage
node i in the original problem, i.e., x2ij = x1ij′ = 1, as
illustrated as Fig. 2.
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Figure 2. Black node i is a storage node and
white nodes j and j′ are forwarding nodes.

In the original problem, the cost of sending demand dj =
1 to the sink via i is

pij = cij + βli.

Similarly, in the modified problem, the cost of sending dj =
1, which is actually a part of d′j′ , is

pij′ = cij′ + βli.

The difference is

pij − pij′ = cij − cij′ < cjj′ ≤ 4C̄j .

The first inequality (<) follows from the triangle inequal-
ity and the second inequality (≤) follows from the rule of
demand modification we mentioned earlier.

Therefore, summing up for all j ∈ L,
∑
j∈L

(pijx2ij − pij′x1ij′ ) =
∑
j∈L

(pij − pij′ )

≤
∑
j∈L

4C̄j = 4
∑
j∈L

djC̄j = 4C̄LP (x̄, ȳ).

We can claim that any feasible integer solution to the modi-
fied problem can be converted to a feasible integer solution
to the original problem with at most 4C̄LP (x̄, ȳ) more cost.

3.3 Consolidating Storage Nodes

The goal of this step is to modify the values of ȳ and
obtain a new solution (x′, y′), such that

y′
i = 0, if d′i = 0;

y′
i ≥ 1

2 , if d′i > 0.

For each node j, recall C̄j =
∑

i∈L pij x̄ij . we have

C̄j ≥
∑

pij>2C̄j

pij x̄ij >
∑

pij>2C̄j

2C̄j x̄ij ⇔
∑

pij>2C̄j

x̄ij <
1
2
.

Since
∑

i x̄ij = 1 and x̄ij ≤ ȳi,
∑

pij≤2C̄j

ȳi ≥
∑

pij≤2C̄j

x̄ij = 1−
∑

pij>2C̄j

x̄ij >
1
2
.

Additionally, because pij > cij , we have
∑

cij≤2C̄j

ȳi >
∑

pij≤2C̄j

ȳi >
1
2
.

Starting with x′ = x̄ and y′ = ȳ, we modify (x̄, ȳ) to
(x′, y′) as follows: For each fractional storage node i, i.e.
1 > y′

i > 0, if d′i = 0,

1. We will move the value of y′
i to the closest demand

node j,

y′
j ← min(1, y′

j + y′
i); y′

i ← 0.

2. Also, we need move the forwarding nodes assign-
ments, for each j′ ∈ L

x′
jj′ ← x′

jj′ + x′
ij′ ; x′

ij′ ← 0.

After these changes, we obtain a new solution (x′, y′) to the
modified problem and we can prove the following lemmas.

Theorem 4 ĈLP (x′, y′) ≤ 3ĈLP (x̄, ȳ).

Proof: Consider that a fractional storage node i has
moved its ȳi to node j during the modification, as shown in
Fig. 3. For any demand node j′, the previous association
x̄ij′ is also transferred to j. Since j is the closest demand
node to i, cij ≤ cij′ . Recall pjj′ = cjj′ + βlj , from the
triangle inequality,

cjj′ < cij + cij′ ≤ 2cij′ .

For the second term of pjj′ ,

βlj < βli + βcij < βli + cij ≤ βli + cij′ = pij′ .

Therefore,

pjj′ < 2cij′ + pij′ ≤ 2pij′ + pij′ = 3pij′ .

Considering all the modified fractional storage nodes, e.g.,
ȳi1 , ȳi2 , . . . are moved to y′

j ,

ĈLP (x′, y′) =
∑

j,j′∈L

d′j′pjj′x
′
jj′

=
∑

j,j′∈L

dj′pjj′ (x̄jj′ + x̄i1j′ + x̄i2j′ + · · ·)

<
∑

j,j′∈L

dj′ (pjj′ x̄jj′ + 3pi1j′ x̄i1j′ + 3pi2j′ x̄i2j′ + · · ·)

< 3
∑

j,j′∈L

dj′pjj′ x̄jj′ = 3ĈLP (x̄, ȳ).

Therefore, the cost ĈLP (x′, y′) is at most triple of
ĈLP (x̄, ȳ).
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Figure 3. Fractional storage node i moves it ȳi

to y′
j and white node j′ is a forwarding node.

Lemma 1 For a demand node j, any node i satisfying
cij ≤ 2C̄j will move its value of ȳi to y′

j .

Proof: First, ∀i, if cij ≤ 2C̄j , the demand of i is 0.
Recall the first step, we guarantee for any two remaining
demand nodes, cij > 4max(C̄j , C̄i).

Next, we prove that all these nodes will move their frac-
tions to node j. Assume there exists one node i with
cij ≤ 2C̄j moves its ȳi to another demand node j′, which
implies cij′ < cij . According to the triangle inequality,

cjj′ < cij′ + cij < 2cij ≤ 4C̄j .

It is a contradiction with the requirements of demand nodes.
Thus, after modifying (x̄, ȳ) to (x′, y′), all the nodes within
distance of 2C̄j to node j will move their values of ȳ to y′

j .

As we mentioned earlier in this section,

∑
cij≤2C̄j

ȳi ≥ 1
2
.

Hence, after the modification, we get

y′
i ≥

1
2
, if d′i > 0.

Next, we will modify (x′, y′) to another feasible solution
(x′′, y′′) subject to x′′, y′′ ∈ { 1

2 , 1}, and the cost of (x′′, y′′)
is no more than the cost of (x′, y′). The condition that
y′, y′′ ≥ 1

2 implies that there are at most 2k nodes with pos-
itive demands in both solutions (x′, y′) and (x′′, y′′). Ini-
tially, we assign x′′ = x′ and y′′ = y′. For each i with
positive demand, the best choice is to send data through it-
self. To get the minimum cost, we should assign

x′′
ii = y′′

i , if d′i > 0.

The remaining (1 − y′′
i ) fraction should be assigned to an-

other demand node i′, where pi′i is the minimum among all

demand nodes. Let s(i) denote such node i′. The minimum
cost is ∑

d′
i
>0

d′i(piiy
′′
i + ps(i)i(1− y′′

i ))

=
∑
d′

i
>0

d′i(βliy
′′
i + ps(i)i − ps(i)iy

′′
i )

=
∑
d′

i
>0

d′ips(i)i −
∑
d′

i
>0

d′iy
′′
i (ps(i)i − βli), (6)

where

ps(i)i = cs(i)i + βlsi > β(cs(i)i + ls(i)) > βli.

So far, we only modify x′′, but y′′ is still equal to y′. Since
formula (6) only depends on y′′, we can use f(y′′) to repre-
sent it.

Next, we will show that under the constraint 1
2 ≤ y′′

i ≤
1, we can obtain a { 1

2 , 1}-integral solution y′′ such that
f(y′′) is the minimum. The first term of Eq. (6) is a
constant independent of y′′. To minimize the cost, we
should maximize y′′

i for the nodes with largest values of
d′i(ps(i)i − βli). Let n′ be the number of demand nodes, as
we know, n′ < 2k. We reorder demand nodes according to
d′i(ps(i)i − c2li) decreasingly. We set y′′

i = 1 for the first
2k − n′ nodes and y′′

i = 1
2 for the remaining 2(n′ − k). It

is actually a greedy algorithm to maximum the second term
of Eq. (6). Thus,

f(y′′) ≤ f(y′) ≤ ĈLP (x′, y′).

Accordingly, x′′ is also a { 1
2 , 1}-integral solution. For a

demand node i, if y′′
i = 1,

x′′
ji =

{
y′′

i = 1 if j = i;
0 otherwise.

Otherwise, if y′′
i = 1

2 ,

x′′
ji =




y′′
i = 1

2 if j = i;
1− y′′

i = 1
2 if j = s(i);

0 otherwise.

Theorem 5 ĈLP (x′′, y′′) ≤ ĈLP (x′, y′).

Proof: It is obvious because (x′′, y′′) yields the mini-
mum value of the cost function f .

3.4 Rounding

Finally, we apply a rounding algorithm to get a {0, 1}
integer solution. First, we place a storage node at node j if
y′′

j = 1. For the remaining nodes with y′′
i = 1

2 , half data
is sent via s(i). Consider a directed graph G consisting of
the remaining demand nodes, where each edge is from i to
s(i).
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Lemma 2 There is no loop of length more than 2 in G.

Proof: Assume there is a loop in G involving nodes
n1, n2, · · · , nm, where m > 2 and ∀t ≤ m there is a di-
rected edge from nt to n(t mod m)+1. For each node nt,
s(nt) = n(t mod m)+1. According to the definition of s(nt)
that pnts(nt) is the minimum, we have

pn2n1 < pnmn1

pn3n2 < pn1n2

· · ·
pn1nm < pnm−1nm .

Recall pij = cij + βli, the conditions above become

cn2n1 + βln2 < cnmn1 + βlnm

cn3n2 + βln3 < cn1n2 + βln1

· · ·
cn1nm + βln1 < cnm−1nm + βlnm−1 .

Thus, the summation of the left side should be less than
the summation of the right side. We find, however, that
the summation of both sides are equal. This contradiction
means that the series of conditions can not be held at a same
time.

Furthermore, if there are two edges between two nodes,
i.e s(i) = j and s(j) = i, we arbitrarily choose one of them
as a root and eliminate the directed edge from the root to
the other node. Finally, G becomes a forest graph, which
consists of multiple rooted trees. Additionally, we assign
every node a level value, which is the distance to the root of
the tree that it belongs to. We can divide these nodes into
two sets based on odd and even level values and select the
smaller set of nodes to be storage nodes. Totally, {i|y′′

i =
1
2} has 2(n′ − k) nodes. Thus, we place at most n′ − k
storage nodes at this step. Plus the storage nodes set earlier
in {i|y′′

i = 1}, which has 2k − n′ nodes, the total number
of storage nodes is at most

∑
y′′

i ≤ k. In addition, each
unselected node i in the tree will associate itself with s(i),
which must be a storage node, i.e., (x′′

s(i)i = 1). Finally,
we get an integer solution of the modified problem from a
feasible solution (x̄, ȳ).

Theorem 6 After rounding, the cost of the integer solution
is no more than double the cost of (x′′, y′′).

Proof: In the routing process above, for j with y′′
j =

1
2 , the previous cost is 1

2βlj + 1
2ps(j)j and after rounding, it

becomes ps(j)j or βlj . Thus, the cost is at most doubled.

Let ĈINT be the cost of this integer solution in the mod-
ified problem. Based on the previous theorems,

ĈINT ≤ 2ĈLP (x′′, y′′)(Theorem 6)
≤ 2ĈLP (x′, y′)(Theorem 5)
≤ 6ĈLP (x̄, ȳ)(Theorem 4).

As we mentioned in Theorem 3, we can derive an integer
solution to the original problem from an integer solution to
the modified problem. Let C̄INT denote the cost of this
integer solution in the original problem,

C̄INT ≤ ĈINT + 4C̄LP (x̄, ȳ)
≤ 6ĈLP (x̄, ȳ) + 4C̄LP (x̄, ȳ)
≤ 6C̄LP (x̄, ȳ) + 4C̄LP (x̄, ȳ)(Theorem 2)
= 10C̄LP (x̄, ȳ).

Since (x̄, ȳ) is the optimal fractional solution, the cost of
(x̄, ȳ) must be no more than the cost of the optimal integer
solution. Therefore, combining three steps together, we get
a 10-approximation(3×1×2+4) algorithm for this problem.

4 Performance Evaluation

We have implemented the approximation algorithm and
compared the performance of the algorithm with the opti-
mal solution. We consider a network composed of 100 sen-
sor nodes randomly deployed in a 100 × 100 square field,
where the sink is in the center. We vary the number of stor-
age nodes k (including the sink) from 2 to 15 with β taking
0.1, 0.15, and 0.2 respectively. In our approximation algo-
rithm implementation, we use GLPK package (GNU Lin-
ear Programming Kit [1]) to get the fractional solution in
the first step of our algorithm. The optimal solution is done
by using integer linear programming, which is provided by
MIP (mixed integer program).

Fig. 4 shows the simulation results when the parameter
β is set to 0.1, 0.15 and 0.2. We first calculate a maximum
cost Cmax, which is the energy cost when there is no storage
node and every sensor sends data directly to the sink. The
performance shown in the figures is the ratio over Cmax.
From the figures, we observe that our approximation algo-
rithm achieves the optimal performance when the number
of storage nodes is small, which is a valid assumption since
a storage node is expected to be in charge of tens of regular
sensor nodes. When the number of storage nodes becomes
larger, the disparity between the optimal solution and our
approximation algorithm gets bigger. Even though the ap-
proximation algorithm proposed in the paper has a high ap-
proximation factor, our simulation shows that in practice,
the algorithm performs well when the number of storage
nodes is small.

5 Conclusion

This paper considers the storage node placement prob-
lem in a sensor network. Introducing storage nodes into
the sensor network alleviates the communication burden of
sending all the raw data to a central place for data archiving
and facilitates the data collection by transporting data from
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Figure 4. Select k storage nodes from 100 randomly deployed sensors and β = 0.1, 0.15, 0.2.

limited number of storage nodes. In this paper, we examine
how to place storage nodes to save energy for data collection
and data query. We formulate the problem as an integer lin-
ear programming problem and propose a 10-approximation
rounding algorithm. We also implement the algorithm and
conduct simulation on different network parameters. Our
simulation shows that the performance of our approxima-
tion algorithm is very close to optimal when the number of
storage nodes is small. Our future work includes how to
optimize query reply in a sensor network and how to solve
the storage node placement problem in terms of other per-
formance metrics.
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