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Abstract. Efficient household electrical load scheduling benefits not
only individual customers by reducing electricity cost but also the society
by reducing the peak electricity demand and saving natural resources.
In this paper, we aim to design efficient load scheduling algorithms for
a household considering both real-time pricing policies and renewable
energy sources. We prove that household load scheduling problem is NP-
hard. To solve this problem, we propose several algorithms for different
scenarios. The algorithms are lightweight and optimal or quasi-optimal,
and they are evaluated through simulations.

1 Introduction

With the development of information and communication technologies, many
smart meters have recently been deployed in the power grid, and more will
be deployed in the near future. With these smart meters, time-varying pricing
policy, which encourages customers to use power wisely, becomes practical. With
time-varying pricing, consumers are motivated to shift their high-load appliances
to off-peak periods, in which unit price is usually low. Furthermore, some houses
may be equipped with a renewable energy system, such as a photovoltaic panel
and/or a wind turbine, which also drives customers to seek smart load scheduling
such that they can benefit more from renewable energy. In a word, efficient
household electrical load scheduling benefits not only individual customers by
reducing electricity cost but also society by reducing the peak electricity demand
and saving natural resources.

In this paper, we formulate a general household load scheduling problem that
considers both time-varying price and renewable energy sources. We show that
finding an optimal solution is NP-hard. Then, we propose several load schedul-
ing algorithms for different household appliances, with or without renewable
energy. Different from previous work, our goal in this paper is to design generic
lightweight and efficient algorithms such that our solution can handle all types
of scheduling scenarios. We group household appliances into three categories:
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(1) schedulable and uninterruptable appliances; (2) schedulable and interrupt-
able appliances; and (3) real-time appliances. For one appliance alone in each
category, we propose optimal solutions. For multiple appliances of different cat-
egories, we propose efficient heuristic algorithms. Our main contributions in this
paper are as follows:

– We formulate a generic household load scheduling problem which includes
real-time pricing, with and without renewable energy.

– We design optimal algorithms to schedule any individual appliance. Espe-
cially, for electric water heater (EWH)-like appliances, we design an optimal
algorithm using dynamic programming.

– We propose heuristic algorithms for multiple commonly used appliances.
– We evaluate our dynamic programming and heuristic algorithms via sim-

ulation studies. The results validate the efficiency and performance of our
proposed algorithms.

2 Related Work

Time-varying price policies have been proposed since the last century. Exam-
ples are real-time pricing, time-of-use pricing, critical-peak pricing, and so on
[1,2]. Given time-varying price, power cost saving via load scheduling has been
extensively studied, such as [3–8]. In [5], the authors investigated residential
load control in presence of a real-time pricing combined with inclining block
rates. In [4], the authors discussed the load scheduling in households, buildings
and warehouses, but they only considered uninterruptable appliances. In [3] and
[7], the authors modeled the energy consumption scheduling with a carefully
selected utility function, and they formulated to maximize the utility function
minus electricity cost; however they consider a house as a whole and ignore the
detailed appliance scheduling. In [6], Du and Lu have investigated the electrical
load scheduling problem for a specific appliance, EWH. They solved the min-
imization problem with a multiloop heuristic algorithm, which, however, may
not be optimal. In [8], Lu et al. have studied the scheduling for another specific
appliance, HVAC (heating, ventilation and cooling).

Different from previous work, we tackle the household electrical load schedul-
ing problem in a general sense by considering all types of appliances and renew-
able energy, and propose lightweight and efficient algorithms to solve it.

3 Problem Formulation

We group household appliances into three categories, based on their usage char-
acteristics: (1) A1, appliances that are schedulable but not interruptable, such
as washer and dryer; (2) A2, appliances that are both schedulable and interrupt-
able, such as air conditioning unit (AC), and EWH; (3) A3, real-time appliances,
such as TV and microwave. Besides various appliances, a house may also have a
renewable energy system, such as a photovoltaic system and/or a wind turbine
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system, which can store the renewable energy in a battery. We assume that the
capacity of the battery that stores renewable energy is B kwh, and it can only
be discharged up till a fraction c of its capacity, such as c = 20%. We denote the
renewable energy generating rate by Gt and the battery’s discharge rate by Ft

1.

3.1 Constraints

For each appliance a, it usually has a preferred power range, denoted by
[rmin

a , rmax
a ]. For each schedulable appliances, there is a preferred time window,

denoted by [tαa , tωa ]. Let Ra,t denote the power of appliance a at time t, and let Ca

denote the duration of a cycle for an appliance in A1. Then general constraints
for appliances in three categories are as follows:

∀a ∈ A1: {
rmin
a ≤ Ra,t ≤ rmax

a , t ∈ [ta, ta + Ca] ⊂ [tαa , tωa ];
Ra,t = 0, otherwise.

(1)

∀a ∈ A2: {
rmin
a ≤ Ra,t ≤ rmax

a or 0, t ∈ [tαa , tωa ];
Ra,t = 0, t /∈ [tαa , tωa ].

(2)

∀a ∈ A3: {
rmin
a ≤ Ra,t ≤ rmax

a , if a is on;
Ra,t = 0, otherwise.

(3)

Many appliances may have other specific constraints. For instance, the tem-
perature of the water in an EWH cannot be too high or too low. We describe
these specific constraints in a general form:

Specific Constraint(a),∀a ∈ A. (4)

Each house has a circuit breaker that automatically protects the household
electricity system from overloading or short circuit. Thus, each house is con-
strained by the maximum power, denoted by Rmax:∑

a∈A

Ra,t − Ft ≤ Rmax (5)

Battery constraint:

cB ≤ B0 +
i∑

t=0

(Gt − Ft)δt ≤ B (6)

where B0 is the energy already stored at the beginning of the first time slot.

1 B = Gt = Ft = 0 if there is no renewable energy system.



390 Z. Qin and Q. Li

3.2 Formulation

The ultimate goal for household load scheduling is to minimize the total elec-
tricity cost while fulfilling user’s satisfaction. We assume the scheduling time
domain is [0,H], which is divided into m time slots with length of δt = H

m . The
formulation is as follows.

Min :
m∑

t=1

(
∑
a∈A

Ra,t − Ft) ∗ δt ∗ Pt +
H∑

t=0

∑
a∈A

Da,t (7)

Subject to: Constraints (1), (2), (3), (4), (5), and (6).
The first term in the objective function is the total electricity cost, and the

second term is the penalty imposed by delayed services or unfulfilled services,
where Da,t is the penalty of appliance a at time t.

4 Scheduling Algorithms

In this section, we will first show in a theorem that the problem formulated
in Sect. 3 is NP-hard. Then we will design lightweight algorithms to solve the
problem in different scenarios.

Theorem 1: The household load scheduling problem formulated in Sect. 3 is NP-
hard.

Proof: We prove the theorem by the method of restriction, in which we show
that a special case of the problem (less complicated than the original one) is
NP-hard.

The special case is designed as follows. The renewable energy generating rate
is G0 all the time, and the discharge rate is F0 all the time, where F0 ≤ G0.
Furthermore, there are only schedulable and uninterruptable appliances, which
have the same usage duration, H/m, and the same scheduling window, [0,H],
where m is an integer. Finally, the power of each appliance is less than F0.
Since renewable energy is free, the cost minimization should first check whether
renewable energy alone can satisfy the power demand. This is equivalent to
packing all the jobs into m bins, with height of F0 and width of H/m. Since all
the usage durations are H/m, the solution with jobs scheduled across two bins is
not better than the one without jobs across two bins. Therefore, it is equivalent
to asking, whether we can pack all the appliances into less than or equal to m
bins. This is obviously a bin packing problem, which is NP-hard. �

Within a household, constraint Eq. (5) seldom takes effect; that is, the total
consumption of a household usually does not surpass Rmax. The circuit breaker
seldom triggers unless there is a short circuit. Thus, we can schedule appliances
individually in most cases, since they affect each other only when constraint
Eq. (5) comes into effect. With this insight, we propose algorithms for individual
appliances in each category, and ignore the second term in Eq. (7).
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4.1 Algorithms for Different Scenarios

As the renewable energy is storable, the energy in the battery is non-descending if
no renewable energy is used. We denote the amount of renewable energy available
at time slot i, i ∈ [1,m], by RE0(i), if no renewable energy is used.

Algorithm for One Appliance in A1. The basic idea is to reserve as much
renewable energy as possible at high-price periods for each possible time win-
dow. For each possible time window, we sort the price in descending order. For
the highest-price time slot, we reserve as much renewable energy as needed and
update renewable energy available for each time slot in this time window. Then
we continue with the second-highest-price slot, and so on, until no more renew-
able energy can be scheduled.

Algorithm 1. Optimal scheduling for a washer alone.
Input: tα

a , tβ
a , Ca = iδt.

Output: the start time t0.
1 t0 = tα

a ;
2 cost = a big number;

3 for j ← tα
a to tβ

a − i do
4 Ptemp,1:i = sort(Pj:j+i−1) // in descending order;
5 c = 0;
6 RE = RE0;
7 for k ← 1 to i do
8 t∗ = {t|t ∈ [j, j + i − 1] & Pt = Ptemp,k};
9 r = min{RE(t∗), Ra ∗ δt};

10 RE = REupdate(t∗, RE, r);
11 c = c + (Ra ∗ δt − r) ∗ Pt∗ ;

12 if c < cost then
13 cost = c;
14 t0 = j;

The function REupdate(t∗, RE, r) in Algorithm 1 is to update the available
renewable energy at each time slot after r amount of renewable energy is reserved
at time slot t∗. REupdate(t∗, Re, r) returns an array with m elements. The
function is as follows.

Algorithm for One Appliance in A2. Here we take an EWH as a repre-
sentative of schedulable and interruptable appliances. For an EWH alone, the
formulation for time domain [0,H] is as follows.

Min:
H∑

t=0
Ra,t ∗ δt ∗ Pt

Subject to:
θt = f(Ra,t, θam, θt−1, δt) (8)
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Function REupdate(i,RE,r)
1 for k ← i to,m do
2 RE(k) = RE(k) − r;

3 for k ← i − 1 to 1 do
4 RE(k) = min{RE(k), RE(i)};

5 return RE.

θlow ≤ θt ≤ θhigh (9)

where f is the hot water thermal dynamics function, θam is the ambient tem-
perature (the temperature of cold feed water), θt is the hot water temperature
at time slot t, and θlow and θhigh are the lower and upper limits of the comfort
temperature band respectively. Here the penalty of dissatisfaction is not consid-
ered in the objective function, since the comfort temperature band, i.e., Eq. (9)
is enforced.

EWH has been specifically studied by Du and Lu [6]. They have formulated
the scheduling of EWH in a similar way, and solved it by a heuristic algorithm,
which can achieve good performance but is not optimal. In the following, we aim
to find the optimal solution through dynamic programming.

We equally divide the time domain [t0,H], such as a day, into m time slots,
and divide the comfort temperature range [θlow, θhigh] into n domains. Then a
grid mesh is formed in which x-axis is time t, y-axis is temperature θ, and each
grid point (ti, θj) means that hot water’s temperature at time ti is θj , ∀1 ≤ i ≤ m
and 1 ≤ j ≤ n, as shown in Fig. 1. The basic idea of our algorithm is to find
the best scheduling for the transition from the starting point (t0, θ0) to another
point (ti, θj), where t0 < ti. The transition must go from the left side to the right
side. For instance, Fig. 1 shows a transition from point P1 to point P2. We also
need schedule the amount of renewable energy consumed during each transition.
Similar to the temperature domain, we divide RE0(m) equally into l portions,
and only an integer number of portions can be used during each time slot.

We use a function Tr(t0, θ0, ti, θj , ri) to denote the cost of the optimal
scheduling for the transition from the starting point (t0, θ0) to another point
(ti, θj), where ri is the amount of renewable energy consumed so far at the
point (ti, θj). For the scheduling time domain [t0,H], the least cost is Tr(t0,
θ0,H, θH , rm), where θH is the temperature of hot water at the end of the time
domain. The dynamic programming method is shown in Algorithm2.

Algorithm 2 outputs the least cost cmin. Once obtaining cmin, we can trace
back to get the optimal path. Note that in the dynamic programming, the term
Tr(ti−1, θj′ , ti, θj, r) has to be calculated. The term represents the optimal cost
from one point at time ti−1 (the beginning of time slot i) to another point
at its next time ti (the end of time slot i). We will calculate this term using
an equivalent thermal parameter model [9,10]. According to this model, the
temperature changing rate is non-linear with respect to time. The higher the
initial temperature of EWH, the more difficult to increase the water temperature;
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Fig. 1. A transition from point P1 to point P2. The time domain is divided into m
slots and the temperature domain is divided into n slots. A valid transition should go
from left to right.

Algorithm 2. Optimal heating scheduling for EWH for storable renewable
energy.
Input: H, n, m, l, t0, θ0.
Output: The least cost, cmin.

1 ti = t0 + i ∗ H/m, ∀ i ∈ [1, m];
2 θj = θ0 + j ∗ (θhigh − θlow)/n, ∀ j ∈ [0, n];
3 δr = R(m)/l, ∀k ∈ [0, l];
4 for i ← 2 to m do
5 for j ← 0 to n do
6 for k ← 1 to �R(i)/δr� do
7 ri = δr ∗ k;
8 Tr(t0, θ0, ti, θj , ri) = min∀j′∈[1,n],∀r∈{0,...,ri}{Tr(t0, θ0, ti−1, θj′ , ri −

r) + Tr(ti−1, θj′ , ti, θj , r)} ;

9 cmin = min∀r∈[0,R]{Tr(t0, θ0, tm, θ0, r)}. // Find out the least cost;

the higher the initial temperature of EWH, the faster the water temperature
decreases. We need to consider in total three types of transitions: (1) from (t1, θ1)
to (t2, θ1), (2) from (t1, θ1) to (t2, θ2), where θ1 < θ2, and (3) from (t1, θ1) to
(t2, θ2), where θ1 > θ2.

We assume that we have flat electricity prices within each time slot, which is
usually the case in practice. For the first type of transition, the best scheduling
should avoid high temperature during the transition, since high temperature is
slow to reach and fast to vanish. Therefore, the best scheduling is switching on
and off EWH alternatively, heating it for a moment and then letting it cool down
to θ1, and so on. For the second type of transition, the best scheduling should
avoid temperature higher than θ2. The last switch-on should directly increase
the temperature to θ2 without any cooling down. So the best scheduling has two
sub-transitions: from (t1, θ1) to (tx, θ1) and from (tx, θ1) to (t2, θ2). The first sub-
transition uses the same strategy as in the first type of transition, and the second
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sub-transition does not have any cooling down. Similar to the second type of tran-
sition, the third one is also split into two sub-transitions: from (t1, θ1) to (tx, θ2)
and from (tx, θ2) to (t2, θ2). The first sub-transition does not have any heating, and
the second sub-transition uses the same strategy as in the first type of transition.

Algorithm for One Appliance in A3. In this case, the algorithm is very
simple. The optimal solution is to assign as much renewable energy as needed
to the time slots in price descending order.

Algorithm for All Appliances. As proved in the beginning of this section,
this problem is NP-hard. In previous subsections, we propose algorithms for dif-
ferent types of appliances individually. Here we consider all types of appliances
together. For a household, constraint (5) usually does not take effect; that is, the
consumption of a household does not surpass Rmax. We propose a heuristic algo-
rithm, which schedules appliances according to their priorities. We assume the
real-time appliances have the highest priority, followed by schedulable but unin-
terruptable appliances, then by the schedulable and interruptable appliances.
We refer to this algorithm still as Algorithm MA.

4.2 Complexity and Performance

Our goal in this paper is to provide lightweight algorithms for an NP-hard
problem—the household load scheduling problem. All algorithms proposed in
this section are indeed lightweight. We list the complexity of all algorithms in
Table 1, which are all polynomial.

Table 1. The complexity of proposed algorithms.

Scenarios One in A1 One in A2 One in A3 Multiple appliances

Complexity O(m) O(mn2l2) O(1) O(mn2l2)

As to performance, algorithms for each individual appliance are optimal or
quasi-optimal (in the dynamic program, we use discretized temperature and
renewable energy values), no matter whether there is renewable energy. As to
the heuristic algorithms for multiple appliances of different types with renewable
energy, they are not optimal. We cannot even derive a theoretical approximation
bound for them, since no such bound exists as shown in the next subsection.

4.3 Discussion

Here we show that with renewable energy, no α-approximation algorithm exists.
Suppose we are given n appliances, each with a duration of Cj , during which

it has a power of Rj . To simplify things, we assume all appliances are uninter-
ruptable, and that the appliances can be scheduled at any time from 0 to T . The
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cost of one unit of energy at time t is Pt. The goal is to assign each appliance
a time interval of length Cj such that the total cost of the energy consumed is
minimized.

Claim 1: There exists no α-approximation algorithm for the household schedul-
ing problem for any α.

Proof: We prove it by reduction. The reduction is from 2-partition. Given n
items with sizes a1, . . . , an, can they be partitioned into two subsets of equal
size? We set REi = 1

2

∑n
j=1 aj for i = 1, 2, and REi = 0 otherwise, and create

n jobs with Rj = aj and Cj = 1. Then a schedule of 0 cost corresponds to a
partition, and any α-approximation must also be a schedule of 0 cost (to get
any approximation guarantees, one has to exclude the possibility of a 0 cost
schedule). �

5 Evaluation

In this section, we will evaluate our algorithms for different appliances under dif-
ferent scenarios via simulations. We mainly evaluate our dynamic programming
based algorithm (referred to as Price-Driven Dynamic Programming algorithm
(PDDP)) for schedulable and interruptable appliances, and compare the cost
with those obtained from existing schemes. We also evaluate the approximation
ratio for the proposed heuristic algorithms under different scenarios.

5.1 Performance of PDDP Algorithm for an EWH

Here we will evaluate our algorithm, PDDP, for EWH with simulation. In [6],
the authors compared their algorithm (we call it Du & Lu’s algorithm) with the
non-price-sensitive algorithm and the transactive control algorithm [11], and con-
cluded that their algorithm outperforms the other two. Hereby, we will compare
PDDP algorithm with Du & Lu’s algorithm, the best of the three algorithms
evaluated in [6].

We evaluate our PDDP algorithm with Ameren’s residential real time pricing
program [12]. Ameren’s real time pricing program is an electric supply rate option
in which customers pay electricity supply rates that vary by the hour. With this
program, hourly prices for the next day are set the night before and can be
communicated to customers so that they can determine the best time of day
to use major appliances. Figure 2 shows the real-time price for Nov 3 (Sunday),
Nov 4 (Monday), and Nov 7 (Thursday), 2013.

Furthermore, according to the past usage profile [13], we can forecast the
daily hot water usage for a household. Based on [13], we can obtain hourly
fraction of daily hot water draw. Suppose a typical household has 5 persons who
consume about 180 gallons hot water daily. Thus, we obtain the hot water daily
usage rate for a typical house as shown in Fig. 3.
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Fig. 3. Daily water usage forecast.

We simulate PDDP algorithm and Du & Lu’s algorithm for a whole day. At
the beginning, the temperature in the water tank is at the lower limit of the tem-
perature band; at the end, the temperature goes back its original value. Figure 4
shows the EWH temperature profile using water usage in Fig. 3 and real price
on Monday in Fig. 2. As we can see, Du & Lu’s algorithm has high-temperature
intervals, while PDDP only has medium-temperature intervals. Furthermore,
the locations of intervals above the lower temperature bound are different. The
high-temperature intervals of Du & Lu’s algorithm reside in low-price periods,
while those of PDDP are not necessarily in low-price periods. These differences
contribute to 4 cent saving of electricity. Of course, the savings are different for
different days due to different daily real time price. We conduct the simulation
for the whole November, 2013, by using the water usage in Fig. 3 and Ameren’s
real time price. Figure 5 shows the daily cost for both algorithms (upper panel)
and the daily saving (bottom panel). The daily saving can be as large as 24
cents and as small as 0.5 cents as well, but never be negative. Therefore, PDDP
always outperforms Du & Lu’s algorithm. On average, the daily cost for EWH
is $0.913 ± 0.085, and that for Lu and Du’s algorithm is $0.968 ± 0.084. The
daily saving is $0.055, accounting for about 6% saving; and the monthly saving
is about $1.65.

5.2 Approximation Ratios of Algorithm for Multiple Appliances

Since Algorithm MA, algorithm for multiple appliances, is heuristic, we evaluate
its performance using the approximation ratio, denoted by ar, which is defined
by the following equation:

ar =
the cost from Alg.MA

the optimal cost
(10)

We set up two simulations. The first one has three appliances, one of each
type; namely a stove, a washer, and an EWH. Note that Algorithm MA sched-
ules appliances one by one based on their priorities. By running Algorithm MA,
we can get the approximate cost. We also get the optimal solution by a variation
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Fig. 5. Daily hot water cost comparison in Nov, 2013, for a typical household.

of our dynamic programing. Then we can calculate ar according to Eq. (10).
The second simulation has an EWH, an AC, a washer and some real-time appli-
ances, by considering that a household usually has two main schedulable and
interruptable appliances, i.e., AC and EWH. In this simulation, we obtain the
optimal cost through a brute-force search with dynamic programming. In both
simulations, for a washer, we randomly pick a scheduling time window [tαa , tβa ];
for an EWH, we still use daily hot water profile in [13], with some random noise;
for an AC, we set temperature range as [72,75]◦ F.

For the renewable energy, we consider the solar power generated by a pho-
tovoltaics (PV) array. We utilize PVWatts Calculator at National Renewable
Energy Laboratory [14] to calculate the hourly solar power. In our simulation,
the PV array is fixed on the roof of a household at Maryville, Missouri, with a
size of 25 m2, 20◦ of the tilt angle and 180◦ of the azimuth angle. In each round,
we randomly pick one day from the whole year.
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We run the simulations multiple rounds and then calculate the maximum
ratio and the average ratio. The results of the simulations are listed in Table 2.

Table 2. The approximation ratios of algorithms for multiple appliances using Alg-MA.

Simulation # Mean Maximum # of rounds

1st 1.49 2.57 2000

2nd 1.14 2.06 2000

As we can see, the heuristic algorithm does not work very well. The reason
is that the schedule of one appliance affects that of another. Scheduling of each
appliance only considers minimizing its own cost, and it is likely that shifting
some renewable energy from one appliance to another achieves smaller overall
total cost.

6 Conclusion

In this paper, we formulate a generic household load scheduling problem which
considers both real-time pricing and renewable energy sources. We prove that
the household load scheduling problem is NP-hard. We divide household appli-
ances into three categories, and propose algorithms for individual appliances
from each category and for multiple appliances from all categories. Specifically,
for schedulable and interruptable appliances, such as EWH and AC, we propose a
dynamic programming algorithm, which guarantees an optimal or quasi-optimal
solution. For scenarios with multiple appliances from all three categories, we
propose a heuristic algorithm which schedules appliances in each category in
different priority order. We evaluate our algorithms with simulations, validating
their efficiency and performance.
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