
Achieving robust message authentication in sensor networks:
a public-key based approach

Haodong Wang Æ Qun Li

Published online: 20 May 2009

� Springer Science+Business Media, LLC 2009

Abstract Given the extremely limited hardware resources

on sensor nodes and the inclement deploying environment,

the adversary Denial-of-Service (DoS) attack becomes a

serious security threat toward wireless sensor networks.

Without adequate defense mechanism, the adversary can

simply inundate the network by flooding the bogus data

packets, and paralyze the partial or whole sensor network by

depleting node battery power. Prior work on false packet

filtering in sensor networks are mostly based on symmetric

key schemes, with the concern that the public key operations

are too expensive for the resource constrained sensors.

Recent progress in public key implementations on sensors,

however, has shown that public key is already feasible for

sensors. In this paper, we present PDF, a Public-key based

false Data Filtering scheme that leverages Shamir’s thresh-

old cryptography and Elliptic Curve Cryptography (ECC),

and effectively rejects 100% of false data packets. We

evaluate PDF by real world implementation on MICAz

motes. Our experiment results support the conclusion that

PDF is practical for real world sensor deployment.

Keywords Sensor networks � Denial of service �
Authentication � ECC

1 Introduction

The repertoire of sensor network applications requires an

inclement and human unattended environment, such as

battlefield surveillance, wild animal habitat monitoring, and

environmental monitoring. Given the extremely constrained

hardware resources of the sensor nodes, the adversary

Denial-of-Service (DoS) attack becomes a serious security

threat. The adversary can first compromise an individual

low-power sensor, and then inundate the whole network by

injecting large amounts of bogus data packets into the

network through the compromised node. These bogus

messages flood the network, deplete the battery power of

the sensor nodes, and finally paralyze the whole network.

This problem has attracted many attentions in the past

several years. Most of prior work [1–4], except [5], on

sensor network message authentication and bogus data

filtering mainly rely on symmetric key schemes. Ye et al.

[1, 2] proposed a statistical en-route false report filtering

scheme (SEF). The scheme requires each report be

endorsed by multiple sensor nodes by encrypting the report

with their random pre-distributed symmetric keys. The

intermediate nodes on the route compare their own keys

with those used for encrypting the report, and check the

corresponding encryption if matched keys are found. Since

the authentication capability of the intermediate nodes

depends on the probabilistic key sharing, only a portion of

bogus messages can be detected and dropped. If the com-

munication is between two remote sensor nodes, the

receiver still cannot know, with a certain probability,

whether or not the message is valid. Zhu et al. [4] proposed

an Interleaved Hop-by-hop Authentication scheme (IHA)

to detect the false report. The protocol requires that the

sensor nodes maintain a pre-route interleaved associations

so that any sensor shares each secret with its upper asso-

ciated node and lower associated sensor. The problem of

this approach is that it is not practical for large sensor

networks. Many times, the message routing paths are not

determined due to the unpredictable nature of wireless

H. Wang (&) � Q. Li

Department of Computer Science, College of William and Mary,

Williamsburg, VA 23187, USA

e-mail: wanghd@cs.wm.edu

Q. Li

e-mail: liqun@cs.wm.edu

123

Wireless Netw (2010) 16:999–1009

DOI 10.1007/s11276-009-0184-z

communications. The association requires global knowl-

edge of the networks, which is very difficult to get for large

scale sensor networks. Further, this scheme only filters the

false report which is sent to the sink. The sensor nodes have

no ability to authenticate the messages between the sensor

nodes since the corresponding association knowledge is not

available.

Unlike the symmetric key based schemes, the public key

approach [5] proposed by Zhang et al. yields better security

resilience. Unfortunately, the bilinear pairing based scheme

is too expensive to be afforded by the low-power sensor

hardware. Another straightforward public-key based

approach is to use the public-key infrastructure (PKI) that is

widely used on Internet, e.g., X509. However, PKI cannot

be directly used on sensor networks due to following three

issues. First, public key size is normally large, such as 128

bytes for 1024-bit RSA. Sensors are extremely resource

constrained devices. The distribution of public keys in

sensor network would cause high communication overhead,

which in turn will reduce the battery life. Second, the public

key has to be certified before it can be used to verify a

signature. It is difficult to have an on-line CA in sensor

networks. The workaround solution is to attach a certificate

with the public key. But again it would cause more com-

munication overhead since the certificate has the same data

length as the public key. Third, the simple scheme is not

resilient to defend against DoS attacks. If a sensor is com-

promised, the adversary then uses it to send a large number

of messages with legitimate signatures (of the compromised

sensor).

In this paper, we propose a Public-key based false Data

Filtering scheme (PDF), which leverages threshold cryp-

tography and Elliptic Curve Cryptography (ECC). As we

will show, ECC is more affordable than other public key

schemes for sensors. With carefully devised ECC-based

security protocols and optimized ECC primitive imple-

mentation on sensor nodes, ECC is very practical on

extremely resource constrained devices. In PDF, any event

report message requires an attached digital signature which

is signed by system private key. Due to the threat of node

compromise, any single sensor cannot be trusted to keep

the system private key and be allowed to generate the

system signature. Instead, with the assumption that the

adversary can not compromise up to t sensors, we design a

threshold endorsement scheme. We first pre-distribute a

unique system secret share to every individual sensor

during the network deployment. Upon the detection of an

event, the group of sensor nodes that detect the event

collaborate together and jointly generate a system signa-

ture. The intermediate sensor nodes can easily validate the

event report by efficiently verifying the attached signature.

Unlike the symmetric key based schemes that only support

false data filtering for the sink bounded messages, PDF

supports any point to point communication in the sensor

network.

Since it is computationally infeasible for the adversary

to forge a digital signature without knowing the system

secret, any false report will be detected with 100% prob-

ability. PDF is also resilient to sensor compromising attack.

The threshold cryptography guarantees the system secret

will not be revealed as long as no more than t - 1 (t is a

system parameter) sensors are compromised. We have

implemented all the components for the false data filtering

scheme on the real world sensor nodes and shown the

performance of the public-key based scheme is practical.

The contribution of this paper can be summarized as

follows. First, we propose a public-key based false data

filtering scheme for sensor networks. Different from sym-

metric key based schemes, our scheme is able to filter out

the false data with 100% probability and support any end-

to-end communication in sensor networks. Second, we

carefully design a threshold signature generation scheme

that allows a number of low-power and untrusted sensors to

cooperatively and efficiently generate a system digital sig-

nature. Our threshold signature generation scheme can also

be applied in other applications, such user access control.

Third, we have implemented all the components for our

proposed scheme, including the ECC public-key primitive

suite for MICAz sensor motes. Our experiment results

prove that PDF is practical for real world applications.

2 Related work

Sensor network security has attracted extensive attentions

in recent years. Eschenauer and Gligor propose a random

graph based key pre-distribution scheme [6]. The scheme

assigns each sensor a random subset of keys from a large

key pool, and allows any two nodes to find one common key

with a certain probability and use that key as their shared

symmetric key. Based on their contribution, a number of

researches [7–11] have been delivered to strengthen the

security and improve the efficiency. Researchers found

the sensor deployment information can be used to reduce

the number of pre-loaded keys and meanwhile improve the

key connectivity. Instead of pre-distributing random keys,

schemes [9, 10] pre-loads either secret matrices or secret

polynomials in the sensors to improve the connectivity and

reduce the overhead. Recently, this method is also adopted

in heterogeneous sensor networks [12, 13]. Although the

symmetric key based schemes are efficient in computation,

they all require considerable memory space and commu-

nication overhead for key pre-distribution and key discov-

ery. The public key based pair-wise key schemes proposed

by Zhang et al. [5, 14] achieve some nice security features

by using ID-based cryptography. Unfortunately, it is still a

1000 Wireless Netw (2010) 16:999–1009

123

doubt that the ID-based cryptography is feasible for

resource constrained sensors.

The most related research to our work are [1–4]. Zhu

et al. [4] proposed an Interleaved Hop-by-hop Authenti-

cation scheme (IHA) to detect the false report. The pro-

tocol requires that the sensor nodes maintain a pre-route

interleaved associations so that any sensor shares each

secret with its upper associated node and lower associated

sensor. Ye et al. [2] proposed a statistical en-route false

report filtering scheme (SEF). The scheme requires each

report be endorsed by multiple sensor nodes by encrypt-

ing the report with their random pre-distributed symmetric

keys. The intermediate nodes on the route compare their

own keys with those used for encrypting the report, and

check the corresponding encryption if matched keys are

found. If the corresponding encryption does not match,

the report is considered as a forged one and dropped. A

more sophisticated en-route false report filtering scheme

is proposed by Yang et al. [1]. Based on SEF, this scheme

pre-distributes the symmetric keys in a way that the keys

are associated with the sensor location (in the granularity

of a cell). This scheme is more resilient than SEF because

the adversary has to compromise a number of sensors in a

same location to forge an event report, which is consid-

ered more difficult and easier to be detected. Besides the

above symmetric key based schemes, Zhang et al. pro-

pose a Probabilistic En-route Filtering scheme [5] by

threshold-endorsement using ID-based cryptography. The

scheme is more resilient and more effective than the

symmetric key schemes in defending against the various

security attacks, such as Sybil and node duplicates.

However, as we mentioned, the computation is still too

expensive for practical implementation on real world

sensor networks.

The threshold cryptography adopted in this paper was

also studied for ad hoc network security in prior work

[15, 16]. The main difference is that sensor nodes have

extremely limited resources, including CPU, memory,

storage and battery power. As a result, their solutions

cannot be practically applied to sensor networks. We are

the first to implement threshold cryptography in practice

for sensor networks. We carefully design the protocol to

show threshold cryptography is affordable and practical for

real sensor network deployment.

3 Network and security model

We consider a large scale wireless sensor network deployed

in a variety of environments. Sensor nodes are the low-cost

wireless devices and have very limited hardware resources

including processor, memory and energy. Upon detection of

an event, the sensor nodes generate event report packets and

send them back to the sink through multihop routing. For

the event detection that needs the collaboration of a group

of nearby sensors, we assume the sensor clustering protocol,

as proposed in prior work [17–23], has been already

deployed. The event report is generated by the sensor

cluster and transmitted to the sink by the multi-hop routing

protocol. We assume the sensor network routing scheme,

such as Directed Diffusion [24], LEACH [22] or GPSR

[25], is also deployed.

The sensor network security is managed by a Certifi-

cation Authority (CA), which is responsible for generating

all security credentials and distributing the secret keys. Due

to the constrained resources and costly wireless commu-

nications on sensors, the CA can not be online and acces-

sible as the way it runs in Public Key Infrastructure (PKI).

Instead, the CA only runs during the network deployment,

system rekeying, or sensor replenishing period. Since the

CA has to be off-line in most of time, each sensor has to be

pre-loaded with its private key, public key and certificate

before the deployment. Each sensor uses these keys to

build the secure communication channels with its neigh-

boring sensors as well as perform future sensing tasks.

An adversary is assumed to use all possible means to

attack the message authentication mechanism in the sensor

network. To capture the system secret, the adversary may

launch either passive or active attacks. A typical passive

attack is message eavesdropping. The active attacks,

however, may include Man-In-The-Middle (MITM) and

sensor compromise. Due to the limited hardware resources,

sensor nodes may be compromised upon capture. In this

paper, we assume the adversary can retrieve all secret

information from compromised sensors. However, we

assume that at most t - 1 sensors can be compromised.

The assumption is reasonable because compromising sen-

sors takes time and effort. In addition to the system secret

capture, this paper focuses on the adversary DoS attack.

The adversary may forge the event reports and inundate

these messages in the network in order to deplete the batter

power of sensors and finally paralyze the network.

Finally, this paper assumes the event detected by a

sensor group (or cluster) with t members is always genuine.

It is true that the adversary may generate a fake event or a

forged value to confuse the base station. The adversary can

influence the group decision through various attacks, such

as the Sybil attack. However, it is obviously out of the

scope of the security problem addressed in this paper, and

prior work [26, 27] has already proposed schemes to

defend against such attacks. We thus do not explicitly

address the security problem in event detection.

Wireless Netw (2010) 16:999–1009 1001

123

4 Public-key based false data filtering (PDF)

In this section, we present PDF, a public-key based false

data filtering scheme. The basic idea is to generate a system

signature for each event report so that any intermediate

node with the system public key can easily verify the event

report and drop the false data packets. While public key

signature generation and verification have been well

established in Internet, its application in wireless sensor

network poses a unique challenge. To generate a system

signature, the sensor node has to have the system private

key. However, any single sensor cannot be trusted to hold

the secret because it is vulnerable to adversary’s compro-

mise attack. Our PDF solves the problem by using Shamir’s

secret sharing. Instead of giving the system secret to each

individual sensor, PDF distributes the secret in the follow-

ing way: each sensor holds a unique share of the secret and

any t sensor can collaborate together and reconstruct the

secret. Therefore, each event report message has to be

endorsed by t sensor nodes. The t endorsing sensors actually

jointly generate a system signature for the endorsed packet.

We first briefly introduce Shamir’s secret sharing

scheme. Second, to achieve the least overhead as possible,

we then adopt the ECPVS signature scheme [28]. Third, we

present the threshold endorsement false report filtering

scheme. Finally, we provide the cost and security analysis,

as well as the extension of probabilistic verification to

reduce the computation cost.

4.1 Shamir’s secret sharing

We assume CA maintains a system secret polynomial:

f ðyÞ ¼ a0 þ a1yþ a2y2 þ � � � þ at�1yt�1: ð1Þ

a0; a1; . . .at�1 are random number picked in GF(q). System

secret x is picked as x = a0.

During the sensor network deployment, each sensor

(identified by si) is pre-distributed with a secret share of x. In

particular, the secret share for sensor si is xi ¼ f ðsiÞ: Any t

sensor nodes can reconstruct the system secret by Lagrange

interpolation: x ¼
Pt

i¼1lixi; where li ¼
Qt

j¼1;j6¼i
sj

sj�si
is

Lagrange coefficient. However, it is computationally

infeasible for any t - 1 or less sensors to reconstruct the

system secret.

4.2 ECPVS signature scheme

The typical digital signature scheme in ECC is the elliptic

curve version of Digital Signature Algorithm (DSA), also

know as ECDSA. ECDSA produces 40 byte signature,

which is much smaller than 128 byte signature of RSA.

However, we are still concerned that the 60-byte message

payload (combining a 20-byte message and its 40-byte

ECDSA signature) is still too large for a typical data packet

for sensor network (e.g., 29 bytes in TinyOS for MICAz

motes). Therefore, we adopt ECPVS signature scheme

which offers smaller signature size than ECDSA.

We describe the ECPVS [28] signature scheme as fol-

lowing. Given a message M, we divide M to CjjV; where C

and V are two parts of the message M, and jCj þ jVj � jMj;
because it is necessary to arrange some redundant infor-

mation to be included in C. For example, C holds some

secret information and the signer identity, while V holds

the sender identity, message description, time stamp, etc.

We assume the signer has her private key x, and the cor-

responding public key Q = xP. The signer performs the

following steps to sign the message.

1. Choose a random key k in [1, q - 1];

2. Compute kP, resulting a point with coordinate ðxk; ykÞ;
let r = xk. Check r (mod q), go back to the first step if

the result is zero;

3. Compute e = ENC(r, C);

4. Compute d ¼ HðejjVÞ;
5. Compute r ¼ x � d þ k mod q;

6. (e,r) is the digital signature.

The ENC denotes a symmetric-key encryption algo-

rithm. Similarly, we later denote ENC-1 as a decryption

operation, which usually uses the same symmetric-key

encryption algorithm. The signer sends hV ; e; ri to the

receiver. To verify the message M ¼ CjjV and the signa-

ture, the receiver needs to do following steps.

1. Compute d ¼ HðejjVÞ;
2. Compute R = rP - dQ;

3. Compute C ¼ ENC�1ðXðRÞ; eÞ;
4. Check the redundant information in C.

4.3 Threshold signature generation

Our event report signature generation scheme combines the

ECPVS digital signature and Shamir secret sharing scheme

[29] to generate the threshold signature. Examining the

ECPVS protocol presented in Sect. 4.2, the signer has to

have secret k and x. Considering a group of local sensors

are the signer, the challenge of signature generation is how

the group jointly constructs k and x (step 1 of ECPVS

signature generation), the encryption of the content C (in

step 3), and the calculation of sigma (in step 5). Note that

any member of the group should not learn and reveal any

information about k and x, assuming the adversary may

capture all the communications inside the group.

We adopt Shamir’s secret sharing scheme [29] to share

system secret x. To achieve that, CA maintains a secret

1002 Wireless Netw (2010) 16:999–1009

123

polynomial: fxðyÞ ¼ xþ a1yþ � � � þ at�1yt�1: Before being

deployed, each sensor si receives a secret share of fx(y),

which is denoted as xi, and xi ¼ fxðsiÞ: Any t sensors can

reconstruct the system private key: x ¼
Pt

i¼1 xili; where li
is the Lagrange coefficient. Any t - 1 or less sensors, on

the other hand, can not compromise system secret x

because of the threshold property.

Shamir’s secret sharing system discussed above, how-

ever, can not be used to share the secret random number k.

The reason is that ECPVS signature scheme requires the

signer should pick a different random k for a different

signature. Otherwise, an adversary may easily derive sys-

tem secret x by only capturing two signatures generated

from the same k. To share a different random secret k

among the group of sensors each time, we adopt the Joint

Shamir Random secret sharing scheme [29]. This scheme

allows all participating sensors to generate their own ran-

dom secret polynomials (similar to fx(y)) each time. To

share a random secret k, each sensor in turn acts as a dealer

to distribute the share of the secret (of his own polynomial)

to the other members in the group. It should be emphasized

that the polynomial shares must be distributed through the

secure communication channels. We assume sensors

already establish the pair-wise keys with their neighboring

sensors by using existing schemes [6–10, 30]. In particular,

sensor si generates its secret random polynomial fsi
ðyÞ; and

distributes the share of secret fsi
ðsjÞ to sensor sj

(1� j� t; j 6¼ i). Then, each sensor receives t - 1 secret

shares from the other t - 1 sensor in the group, and one

share of its own. By combining these t secret shares, each

sensor si computes its own share of k, denoted as ki, and

ki ¼
Pt

j¼1 fsj
ðsiÞ: The shared secret, as the random number

k, is actually embedded in the polynomial that is the

summation of t secret random polynomial generated by

each of t sensors, gðyÞ ¼
Pt

i¼1 fsi
ðyÞ: The secret k is

determined by: k = g(0). In this way, no sensor in the

group knows the value of k. Any t sensors, however, can

jointly reconstruct k by using Larrange interpolation: k ¼
Pt

i¼1 kili: Again, li is the Lagrange coefficient.

With both k and x shared, the event report threshold

signature generation scheme is illustrated in Fig. 1. We

assume t sensors, s1; . . .; st; detect the event, denoted as

M ¼ CjjV ; where C can be the secret event measures and V

can be general event description. We also assume s1 is

elected as the group leader. First, t sensors construct kP.

Each sensor si sends its share kiliP to group leader s1 (li is

the Lagrange coefficient), which in-turn sums the t shares

to get kP (by Lagrange interpolation), denoted as R. Then,

s1 broadcasts R to the rest t - 1 sensors. Each sensor uses

R to generate e and d as shown in Fig. 1, computes its share

of the system signature: ri ¼ xilid þ kili; and send it to s1

through the secure communication channel. The summa-

tion of t shares of signatures produces the system signature:

r ¼
Pt

i¼1xilid þ
Pt

i¼1kili ¼ xd þ k: Finally, s1 sends (r,

e, V) to the destination, either the sink or other remote

sensor node.

An important security measure of the above joint sig-

nature generation protocol is not to reveal any of system

secrets, x, k, and individual sensor secret shares, si; xi; at

any step of the protocol. Otherwise, if the group leader is

compromised, then system secrets are compromised. When

kP is constructed to encrypt C (in step 2 of ECPVS), each

sensor si submits kiliP instead of explicit ki, so that secret

share ki is protected by the security property of discrete

logarithm problem, i.e., it is infeasible to derive ki from

kiP. When the signature r is built (in step 5 of ECPVS), the

partial signature ri submitted by each sensor is the linear

combination of two unknown secrets xi; ki; so the group

leader has no way to derive the values of xi; ki from ri.

Overall, all secrets are well protected during the signature

generation by the group.

4.4 Cost analysis

The t endorsing sensors have to jointly generate a random

value k for each event report. To share a random k, each

participating sensor si first generates its own random poly-

nomial fsi
ðyÞ; and calculate the secret shares for other

members in the group. For the group with t members, each

sensor has to compute t shares of the t - 1 degree polyno-

mial, including the one for itself. We will show in the

evaluation that the polynomial calculation is efficient for the

motes. For the message complexity, each sensor sends t - 1

secret shares to the t - 1 members, and receives t - 1

shares from the t - 1 members. Therefore, each sensor has

to send and receive 2(t - 1) messages.

Note the share of k can be pre-computed. The group of

sensors can run the secret sharing protocol at the idle time

Fig. 1 Event report threshold signature generation scheme by t
sensor nodes, s1,s2,...,st

Wireless Netw (2010) 16:999–1009 1003

123

before the event is detected, so the shares of a new k is ready

for the next endorsement as long as the different events do

not occur at the same location at the same time. Another way

to reduce the communication overhead for k sharing is to

eliminate the k sharing procedure by using pre-computation.

If sensor nodes have enough storage space, CA can pre-

compute different polynomials and pre-load the shares into

the sensors during the deployment. Each share is associated

with an index number. To endorse a new signature, the group

of sensors only need to negotiate a new index, and use that

share to construct a new random k. In this way, the message

complexity can be reduced to the minimum.

After the shares of k are ready, the most expensive

computation for each sensor si is one ECC point multipli-

cation to compute Pi as shown in Fig. 1. For the message

complexity, each sensor needs to send or receive two points

and one scalar value, which includes its share Pi, the value

of kP, and its share of r.

The event report message consists of r, e and V. Since V

has the half size of e, the total message length is the size of

two and half scalars. The computational cost to verify

the report, as shown in Sect. 4.2, is two ECC point

multiplications.

4.5 Security analysis

Our security analysis of the threshold signature generation

scheme focuses on following two threats. We first check

whether or not the adversary can infer the system secret by

compromising one or more sensors and collaborating with

other sensors in signature generation. Second, we examine

the security resilience of secret k sharing because the

compromise of k will lead to the whole system secret

compromise. Note, the security resilience of sharing secret

secret x by any t sensors is guaranteed by Shamir’s secret

sharing scheme. As long as there are no more than t sensors

are compromised, there is no feasible solution to get x.

A compromised group leader certainly may cause

greater security threat than other sensors since the leader

collects more information, so the following analysis is

based on the assumption that the group leader is compro-

mised. The group leader (s1) receives t shares of kP from

other endorsing sensors and derive the value of kP, but the

values of these points do not reveal any information of ki or

k due to the security property of ECC. The group leader s1

also receives t shares of system signature. In each share,

ri ¼ xilid þ kili; there are two unknown values: xi and ki.

Any single or multiple shares combined does not reveal

any information of xi and ki. Therefore, s1 has no way to

determine the system secret x and the random k without

physically compromising the rest t - 1 endorsing sensors.

As we can see, even though s1 can be compromised, the

adversary still cannot obtain the system secret to generate

the signature for his injected data.

The shared random number k has a critical security role

in PDF scheme. As we discussed previously, the compro-

mise of k directly leads the compromise of system secret x.

Therefore, any one or more (less than t) sensors must not

get any information of k during the signature generate,

otherwise the compromise attack may allow the adversary

to acquire k. In Joint Shamir Random Secret sharing

scheme [29], secret k is embedded in the polynomial that is

the combination of each secret polynomial of t sensors.

Each group member si holds a secret share of k, ki. As long

as at least one sensor is not compromised, the adversary

can not get t secret shares, and thus can not reconstruct k.

Further, since sensors do not directly send their secret

shares ki to the group leader, (instead they bind their ki with

xi and the endorsed messages abstract d), the traffic mon-

itoring does not give the adversary any chance to obtain the

secret shares. Note the communication channel between

sensors are encrypted to raise the security threshold and

defend against other security attacks, including message

injection and impersonate attacks.

One may wonder whether the compromised group lea-

der can generate the signature for the forged messages

because it can collect t partial signatures. This forged

signature generation attempt, again, will fail because the

partial signature submitted from each group member is

bind with the endorsed event. In particular, the message

abstract d is bind with each partial signature. If these partial

signatures are used on a forged message, ECPVS verifi-

cation will fail and the forged message will be immediately

dropped by the forwarding sensors.

Finally, PDF scheme does not prevent the adversary’s

disruption attacks. The disruption attack happens when the

adversary (by compromising one or more sensors) inten-

tionally submits a corrupted partial secret or signature and

then disturbs the signature generation. As the result, the

generated threshold signature is invalid, and the legitimate

event report will be dropped by the forwarding sensors.

Several schemes have been proposed to identify the com-

promised sensors in prior studies [31–33], the security

solution for defending against the disruption or false neg-

ative attacks is still an open research problem [2], and is

considered as one of our future work. It should be

emphasized that the disruption attack may trigger the sys-

tem attention from the base station or sink because the

network abnormality can be detected if many legitimate

reports are dropped due to the attack. Then, the adminis-

tration personnel can physically locate the compromised

sensors and remove them from the network.

1004 Wireless Netw (2010) 16:999–1009

123

4.6 Probabilistic false data filtering

Given the event report with system signature, any inter-

mediate forwarding sensor can easily verify the signature

and decide whether or not to drop the packet. Theoretically,

starting from the source node (s1) to the destination, only

one verification is enough to filter the possible false data

packet. The signature verification at every hop is not nec-

essary. However, considering the adversary’s DoS attack

can occur at any location in the network, one signature

verification is not adequate because the adversary can

inject the false data after the node that verifies the signa-

ture. Therefore, we propose the probabilistic false data

filtering to balance the trade-off between computation

overhead and the DoS attack prevention.

We denote pf, a system wide parameter, as the en-route

verification probability. Any intermediate forwarding sen-

sor, with the probability of pf, verifies the system signature

by using the verification method presented in Sect. 4.2 . The

verifying sensor first calculates d ¼ hðejjVÞ; then deduces

R = rP - dQ (P is the base point, and Q is the system

public key). The value of X-coordinate of R is used to

recover C, which is the part of original message M. Finally,

the verifying sensor compares the redundant information in

C with V. The event report message will be regarded

authentic if the verification is successful. Otherwise, the

message will be immediately dropped.

5 Performance evaluation

We evaluate our proposed PDF scheme by implementing all

components on the real world experiment test-bed, including

sensor confidential generation and pre-loading, security

communication channel establishing, random secret number

sharing, and threshold signature generation.

5.1 Experiment testbed and parameter setting

Our experiments use MICAz [34] motes as the sensor

platform. MICAz is powered by an ATmega128 micro-

controller, which features an 8MHz, 8-bit RISC CPU,

128K bytes flash memory (ROM) and 4K RAM. The RF

transceiver on MICAz is IEEE 802.15.4/ZigBee compliant,

and can achieve maximum 250kbps data rate. Our MICAz

motes run TinyOS [35] version 1.1.15.

We implement ECC public key primitives on MICAz

motes. We choose SECG recommended 160-bit elliptic

curve, secp160r1, in our ECC implementation. The 160-bit

ECC offers the same security level as the 1024-bit RSA

does [36], which is a more popular public key scheme and

widely used in e-commerce. The performance of threshold

signature generation and public key verification directly

determines the performance of PDF. The current ECC

implementation in the public domain suffers very poor

performance if ported directly. It is reported in [37] that it

takes more than 30 s to generate a public key. To signifi-

cantly reduce the computation time for ECC exponentia-

tion, we have adopted a number of optimization techniques

customized for the 8-bit architecture, including Hybrid

Multiplication and Pseudo Mersenne modular reduction for

large integer multiplication, Mixed Coordination for effi-

cient ECC additions and doubling, etc. Due to the space

limit, this paper omits the detail description of the opti-

mizations. We refer interested readers to [38] for details.

We summarize the key performance results in Table 1.

We run the experiment in an office room with the

dimension of 15 ft by 10 ft. The sensors are evenly placed

on a table with the average distance of 2ft with each other.

To achieve the better communication efficiency, we change

the default TinyOS data packet payload size to 68 bytes

(including 4-byte control information) from the original 29

bytes. This allows us to transmit an ECC public key (40

bytes) in one data packet. One possible trade-off for pay-

load size extension is that the packet may suffer trans-

mission errors more easily than that of the default size. As

the result, the communication efficiency can be affected

when packet loss happens. Our experiment results, how-

ever, show the packet loss is rare after the payload size

extension. It could be the reason that our sensor deploy-

ment condition is too ideal to show the difference after

payload size extension. It is one of our future work to study

the communication efficiency in an outdoor and realistic

deployment condition.

With all security components implemented, the program

has the code size (ROM) of 35,108 bytes and the data size

(RAM) of 2,648 bytes. Given the capacity of 128KB pro-

gramming (ROM) size and 4KB data (RAM) size, we only

use less than 30% of the programming size. The rest space

can be reserved for other applications or future expansion.

One may be concerned that we have consumed about 65%

of the data size so that other applications may have

memory shortage. One feasible solution is to move the

constant variables (for ECC parameters) from RAM to

on-board permanent storage (EPROM or flash). Further,

more optimized and careful programming can also ease the

memory shortage.

Our evaluation focuses on the time consumption,

including the communication delay and the computation

Table 1 The performance 160-bit ECC on MICAz mote, including

fix point multiplication (FPM), random point multiplication (RPM),

signature generation (Sign) and signature verification (Verify)

Platform FPM RPM Sign Verify

MICAz 1.24 s 1.35 s 1.35 s 1.96 s

Wireless Netw (2010) 16:999–1009 1005

123

delay. We do not explicitly give the performance of power

consumption, because the combination of message com-

plexity and time consumption can always be approximately

translated to the power consumption. In the experiment, we

have also adopted the simple scheduling scheme so that the

probability for the packet corruption due to the collision is

very small. During the experiment, we repeat each test for

20 times, and record the average time consumption. We

finally discuss the PDF scheme message overhead and its

scalability when the network size grows.

5.2 Evaluation of local pair-wise key establishment

To build the secure communication channels, pair-wise

keys have to be established among the sensors. In the

implementation, we adopt the ECC-based pair-wise key

establishing scheme proposed in our previous work [39].

To ease the explanation, we show the slightly tweaked key

establishment protocol in Fig. 2. The adjustment is to

optimize the key establishing time consumption.

We suppose the key establishment protocol is running

between two neighboring sensors u and v. Each sensor is

pre-loaded with its public key and privacy key pair as long

as the system security credentials. For example, sensor u is

pre-loaded with qu, Qu and Cu, which are the private key,

the public key and the public key certificate, respectively.

Qu can be verified from Cu by following formula: Qu ¼
euCu þ Q; where eu ¼ hashðIDjjCuÞ; and Q is the system

public key. In general, Cu is used to verify the public key

Qu. Steps (1) and (2) of the protocol showed in Fig. 2

present how v verifies u. Interested readers are referred to

[39] for detail explanation of the sensor certificate gener-

ation and verification.

After verifying sensor u, sensor v immediately sends Yv

to u after generating Yv, so that the calculation of Rv by v

and quYv by u, the two time consuming ECC exponentia-

tion, can be performed simultaneously. In step (7) and (8),

only u, who has the private keyqu, can recover rv from nv:

Finally, u and v agree on rv as the secret key.

Our experiment shows it takes 4.1 s to share a pair-wise

key between two MICAz motes. The performance can be

improved under the circumstance. For example, Yv in step

(3) can be pre-computed. In that case, the optimized

scheme only takes 1.5 s to establish the secret between two

MICAz sensors.

In the next experiment, we test the time consumption for

multiple neighboring sensors to establish keys with other

sensors in the same neighborhood area (achieving full

connectivity). Since the ECC operation time is much

longer than the message transmission delay, we schedule

the communications among the sensors in such a way that

allows all sensors to do ECC operation simultaneously. In

particular, each sensor first broadcasts its certificate and

public key. After all certificates and public keys are

received, the group of sensors simultaneously verify other

certificates and compute the challenges for all other parties.

Then, each sensor in turn transmits the challenges. After all

challenges are received, the group of sensors simulta-

neously decrypt the challenge, and finally establish the

pair-wise keys. Figure 3 shows the time consumption of

both pair-wise key establishing schemes for up to 16 sen-

sors. Even though the number of edges increase quadrati-

cally when the number of sensors increases, we find the

overall time consumption for key establishment grows

linearly. This is because sensors compute ECC exponen-

tiation in parallel. When there are 16 sensors, it takes

around 35 s to achieve full key connectivity. Our optimized

key establishing scheme again shows the superior effi-

ciency, it only takes 14 s to establish pair-wise key among

16 sensors, almost one third of time consumption compared

to non-optimized scheme.

5.3 Evaluation of threshold signature generation

In this subsection, we evaluate the false data filtering per-

formance. We first present the performance of the two

Fig. 2 ECC-based pair-wise key establishment scheme between two

neighboring sensors: u and v

4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

Group Size: Number of Sensors

T
im

e
to

 a
ch

ie
ve

 fu
ll

ke
y

co
nn

ec
tiv

ity
 (

s)

Optimized Key Est.
ECC−based Key Est.

Fig. 3 The time duration for multiple neighboring sensors to achieve

full key connectivity

1006 Wireless Netw (2010) 16:999–1009

123

components in PDF: threshold signature generation and

signature verification. We then use the results to estimate

the overall performance with different hop-by-hop authen-

tication probabilities.

It is important that, in the threshold signature generation,

the group of t local sensors need to share a different ran-

dom secret k for each signature. Therefore, we first eval-

uate the cost for random secret (k) sharing. In the

experiment, we first schedule all the motes to generate their

random secret polynomials simultaneously, as well as the

20 byte secret shares for each of the other sensors in the

group. Then, all the motes in turn unicast their secret shares

to the corresponding sensors. We measure the time con-

sumption in the whole process. The experiment results are

illustrated in Fig. 4. We find the cost for sharing a random

secret is not negligible but reasonable. For a group of 8

sensors, it takes only 1.8 s. The time consumption increases

quadratically with the sensor group growing because the

key graph edges increase with Oðn2Þ (suppose n is the

number of endorsing sensors). As the result, the commu-

nication complexity is Oðn2Þ: For a sensor group with 16

nodes, it then takes 5.8 s to share a random k.

Note the random k sharing protocol can be executed in

the idle time before the event is detected, so that the ran-

dom secret can be immediately used for endorsing the

event upon detection. Therefore, the time duration for the

threshold signature usually does not include the time delay

for sharing k unless more than one different events occur

simultaneously at the same location. Based on the above

reason, our experiment for measuring the time delay for the

threshold signature generation does not include the random

k sharing time. We present the experiment results in Fig. 5.

In general, the threshold signature generation is efficient

because each endorsing sensor only needs to do one ECC

point multiplication. With 8 local endorsing sensors, the

time duration is 2.3 s. The time linearly increases to 3.3 s

when the number of endorsing sensors becomes 16.

The system signature verification is equivalent to an

ECC signature verification operation. The verification time

for an intermediate forwarding sensor is 1.96 s.

We are eager to investigate the overall performance of

PDF, including threshold signature generation and the

probabilistic false data filtering. In our evaluation, we

assume that the event detecting sensors have already

established pair-wise key with their neighbor endorsing

sensors. We also assume these sensors have already shared

a random secret k, which is used to generate the threshold

signature. We fix the number of endorsing sensors to 16.

Figure 6 demonstrates the overall performance of the false

data filtering scheme under different hop-by-hop verifica-

tion probabilities. As we can see, as long as the system

parameter is properly selected, e.g., the verification prob-

ability is 10% or 20%, the overall performance of PDF is

reasonably practical. Given the event report destination

within less than 20 hops, the end-to-end delivery time is

less than 10 s. While the delivery distance increases to

50 hops, the delivery time moderately increases to around

20 s.

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

The number of neighboring sensors

T
im

e
to

 s
ha

re
 a

 r
an

do
m

 k
 (

s)

Fig. 4 The time duration for the group of sensors to share a random

secret k

2 4 6 8 10 12 14 16
1

1.5

2

2.5

3

3.5

The Number of Local Endorsing Sensors

T
im

e
D

ur
at

io
n

(s
)

Fig. 5 The time duration for the group of local sensors to generate

threshold system signature for the event report

10 20 30 40 50
0

20

40

60

80

100

120

Number of Hops

T
im

e
D

ur
at

io
n

(s
)

prob=0.1
prob=0.2
prob=0.4
prob=0.6
prob=0.8
prob=1.0

Fig. 6 The overall time duration of false data filtering performance

under different probabilistic filtering value

Wireless Netw (2010) 16:999–1009 1007

123

5.4 PDF message overhead and its scalability

In addition to the time delay, PDF scheme also introduces

extra messages to the sensor network. Since message

complexity analysis for each group sensor was presented in

the previous section, we here discuss the overall message

overhead that PDF brings to the system. The overall mes-

sage overhead is important because it shows how much

communication cost the system has to pay to deploy PDF

scheme to defend against the adversary’s DoS attack.

The extra messages required in PDF scheme are used to

share the random secret k, generate the group signature and

the event signature attached to each event report message.

Note we do not count the message overhead in pair-wise

key establishing because it provides basic security infra-

structure to the sensor network and can be included in any

other security scheme besides PDF. Suppose there are t

sensors in the group. As we indicated in the previous

section, to share a random secret k, each sensor needs to

send t - 1 messages, so t sensors totally send t(t - 1)

messages. As showed in Fig. 1, the signature generation

scheme, each group sensor sends two messages to the

group leader, and the group leader sends one message to

the rest of group. The number of message combined is

3(t - 1). In total, the number of extra messages to generate

a signature in PDF scheme is (t ? 3)(t - 1).

As the ECPVS scheme shows in Sect. 4.2, once the sig-

nature is generated, the group leader sends the event report

message in the format of (V, e, r), where V is the public part

of the message, e is the encrypted C, and r is the group

signature. Since the original message is CjjV; the extra part

sent in PDF scheme is just r, which has the length of 20 bytes

in 160-bit ECC system. Note this overhead is counted as per

hop. If the average hop number is h, the total amount of

message overhead for signature transmission is 20h.

The above analysis reveals that the message overhead

for signature generation is not related to the network size,

and is only determined by the size of group (t). In event

report transmission, PDF puts 20 bytes overhead in each

event report. Considering that the average event report

delivery distance may increase when the network size

grows, PDF scheme may introduce the network size related

message overhead. This overhead, however, can be very

minimal as 20 bytes can be transmitted in the same mes-

sage with the moderate payload size inflation.

6 Conclusion

Compared to the symmetric-key based solutions, the pub-

lic-key based scheme offers much more solid security

resilience. However, it is a challenge to design and

implement the public-key scheme in resource constrained

sensor networks. In this paper, we show our effort in

designing the public-key based false data filtering scheme

(PDF) in wireless sensor networks. Our scheme takes the

advantage of recent progress in efficient implementation of

ECC primitives on sensor devices. PDF allows each event

report to be attached with a system signature jointly gen-

erated by a group of sensors nearby. This signature then is

conveniently and efficiently verified by forwarding sensors

along the routing path to the destination. We implemented

all security components in PDF on MICAz sensor motes

and run the protocol on our laboratory test bed. Our results

demonstrated that the event report signature can be gen-

erated and delivered to the destination within 20 hops in

10 s. This result also supports we are the first to design and

implement the practical public-key based false data filter-

ing scheme in sensor networks.

Acknowledgments The authors would like to thank all the

reviewers for their insightful comments and kind guidances to

improve the paper. This project was supported in part by US National

Science Foundation grants CNS-0721443, CNS-0831904, and

CAREER Award CNS-0747108.

References

1. Yang, H., Ye, F., Yuan, Y., Lu, S., & Arbaugh, W. (2005, May).

Toward resilient security in wireless sensor networks. Urbana-

Champaign, IL: Mobihoc.

2. Ye, F., Luo, H., Lu, S., & Zhang, L. (2004). Statistical en-route
filtering of injected false data in sensor networks. INFOCOM.

3. Yu, Z., & Guan, Y. (2006, April). A dynamic en-route scheme for
filtering false data in wireless sensor networks. INFOCOM’06,

Spain.

4. Zhu, S., Setia, S., Jajodia, S., & Ning, P. (2004, May). An

interleaved hop-by-hop authentication scheme for filtering of

injected false data in sensor networks. In Proceedings of the IEEE
symposium on security and privacy, Oakland, CA.

5. Zhang, Y., Liu, W., Lou, W., & Fang, Y. (2006). Location-based

compromise-tolerant security mechanisms for wireless sensor

networks. IEEE Journal on Selected Areas in Communications
(Special Issue on Security in Wireless Ad Hoc Networks), 24(2),

247–260.

6. Eschenauer, L., & Gligor, V. D. (2002, November). A key-man-

agement scheme for distributed sensor networks. In Proceedings of
the 9th ACM conference on computer and communication security.

7. Chan, H., & Perrig, A. (2005, March). Pike: Peer intermediaries
for key establishment in sensor networks. Miami, FL: INFOCOM.

8. Chan, H., Perrig, A., & Song, D. (2003, May). Random key

predistribution schemes for sensor networks. In IEEE symposium
on Security and Privacy (pp. 197–213). Berkeley, California.

9. Du, W., & Deng, J. (2003). A pairwise key pre-distribution
scheme for wireless sensor networks. ACM CCS.

10. Liu, D., & Ning, P. (2003, October). Establishing pairwise keys
in distributed sensor networks. Washington, DC: ACM CCS.

11. Liu, D. & Ning, P. (2005). Improving key pre-distribution with

deployment knowledge in static sensor networks. ACM Trans-
action on Sensor Networks, 20, 1–32.

12. Traynor, P., Choi, H., Cao, G., Zhu, S., & T. L. Porta. (2006,

April). Establishing pair-wise keys in heterogeneous sensor net-
works. Barcelona, Spain: INFOCOM.

1008 Wireless Netw (2010) 16:999–1009

123

13. Traynor, P., Kumar, R., Saad, H. B., Cao, G., & Porta, T. L. (2006,

June). Liger: Implementing efficient hybrid security mechanisms
for heterogeneous sensor networks. Uppsala, Sweden: Mobisys.

14. Zhang, Y., Liu, W., Lou, W., & Fang, Y. (2005, March). Securing
sensor networks with location-based keys. New Orleans, Louisi-

ana: WCNC’05.

15. Kong, J., Zerfos, P., Luo, H., Lu, S., & Zhang, L. (2001). Pro-

viding robust and ubiquitous security support for mobile ad hoc

networks. In Proceedings of the ninth international conference on
network protocols (p. 251). Washington, DC, USA: IEEE Com-

puter Society.

16. Zhou, L., & Haas, Z. J. (1999). Securing ad hoc networks. IEEE
network, special issue on network security, 13(2), 24–30

17. Amis, A. D., Prakash, R., Vuong, T. H. P., & Huynh, D. T.

(2000). Max-min D-cluster formation in wireless ad hoc net-
works. INFOCOM.

18. Bandyopadhyay, S., & Coyle, E. (2003). An energy-efficient
hierarchical clustering algorithm for wireless sensor networks.

INFOCOM.

19. Bannerjee, S., & Khuller, S. (2001). A clustering scheme for
hierarchical control in multi-hop wireless networks. INFOCOM.

20. Basagni, S. (1999). Distributed clustering algorithm for ad-hoc
networks. I-SPAN.

21. Chatterjee, M., Das, S. K., & Turgut, D. (2002). WCA: A
weighted clustering algorithm for mobile ad hoc networks.

Cluster Computing.

22. Heinzelman, W. R., Chandrakasan, A., & Baladrishnan, H.

(2002). An application-specific protocol architecture for wireless

microsensor networks. IEEE Transaction on Wireless Commu-
nication, 1(4), 660–670.

23. Younis, O. & Fahmy, S. (2004). Distributed clustering in ad-hoc
sensor networks. INFOCOM.

24. Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed
diffusion: A scalable and robust communication paradigm for
sensor networks. MOBICOM.

25. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter
stateless routing for wireless neworks. MOBICOM.

26. Ferreira, A. C., Vilaa, M. A., Oliveira, L. B., Wong, H. C., &

Loureiro, A. A. (2005). Networking-ICN (pp. 449–458).

27. Newsome, J., Shi, E., Song, D., & Perrig, A. (2004). The sybil
attack in sensor networks: Analysis and defenses. IPSN.

28. Certicom. (2004). Code and cipher. Certicom’s Bulletin of
Security and Cryptography, 1(3), 1–5.

29. Shamir, A. (1979). How to share a secret. Communication of the
ACM, 22(11), 612–613.

30. Wang, H., Sheng, B., Tan, C. C., & Li, Q. (2008, June). Com-

paring symmetric-key and public-key based schemes in sensor

networks: A case study for user access control. In Proceedings of
ICDCS, Beijing, China.

31. Du, X. (2008). Detection of compromised sensor nodes in heter-
ogeneous sensor networks (pp. 1446–1450). Beijing, China: ICC.

32. Zhang, Q., Yu, T., & Ning P. (2008). A framework for identifying

compromised nodes in wireless sensor networks. ACM Transac-
tions on Information and System Security, 11(3), 1–37.

33. Zhang, Y., Yang, Y., Jin, L., & Li, W. (2006). Locating com-
promised sensor nodes through incremental hashing authentica-
tion. San Francisco, CA: DCOSS.

34. Crossbow Technology INC. Wireless sensor networks.

http://www.xbow.com/Products/Wireless_Sensor_Networks.htm.

35. Tiny OS. (2006). Tinyos 1.1.10. http://www.tinyos.net.

36. NIST. (2001, October). Key management guideline. In Workshop
document (DRAFT).

37. Malan, D. J., Welsh, M., & Smith, M. D. (2004, October). A

public-key infrastructure for key distribution in tinyos based on

elliptic curve cryptography. In The first IEEE international con-
ference on sensor and ad hoc communications and networks,

Santa Clara, CA.

38. Wang, H., & Li, Q. (2006, December). Efficient implementation

of public key cryptosystems on mote sensors (Short Paper). In

International conference on information and communication
security (ICICS). LNCS 4307 (pp. 519–528). Raleigh, NC.

39. Wang, H., & Li, Q. (2006). Distributed user access control in
sensor networks. San Francisco, CA: DCOSS.

Author Biographies

Haodong Wang is currently a

PhD candidate at Computer

Science Department in the Col-

lege of William and Mary. He

got his BS from Tsinghua Uni-

versity and MS from Penn State

University. His research inter-

ests are sensor network appli-

cations, security and privacy,

security schemes on resource

constrained devices, and wire-

less networks.

Qun Li is an assistant professor

in the Department of Computer

Science at College of William

and Mary. He holds a PhD

degree in Computer Science

from Dartmouth College. His

research interests include wire-

less networks, sensor networks,

RFID, and pervasive computing

systems. He received the NSF

Career award in 2008.

Wireless Netw (2010) 16:999–1009 1009

123

http://www.xbow.com/Products/Wireless_Sensor_Networks.htm
http://www.tinyos.net

	Achieving robust message authentication in sensor networks: a public-key based approach
	Abstract
	Introduction
	Related work
	Network and security model
	Public-key based false data filtering (PDF)
	Shamir’s secret sharing
	ECPVS signature scheme
	Threshold signature generation
	Cost analysis
	Security analysis
	Probabilistic false data filtering

	Performance evaluation
	Experiment testbed and parameter setting
	Evaluation of local pair-wise key establishment
	Evaluation of threshold signature generation
	PDF message overhead and its scalability

	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

