
Tradeoffs Between False Sharing and Aggregation
in Software Distributed Shared Memory

Cristiana Amzat, Alan Coxt, Karthick Rajamani$, and Wil.ly Zwaenepoelt
t Department of Computer Science

$ Department of Electrical and Computer Engineering

Rice University

{amza, ale, karthick, willy}(l)cs.rice.edu

Abstract

Software Distributed Shared Memory (DSM) systems based
on virtual memory techniques traditionally use the hardware
page as the consistency unit. The large size of the hardware
page ia considered to be a performance bottleneck because
of the implied false sharing overheads. Instead, we show
that in the presence of a relaxed consistency model and a
multiple writer protocol, a large consistency unit is generally
not detrimental to performance. We study the tradeoffs be-
tween false sharing and aggregation effects when using large
consistency units. In this context, this paper makes three
separate contributions:

1. We document the cost of false sharing in terms of ex-
tra messages and extra data being communicated. We
find that, for the applications considered, when the vir-
tual memory page ia used aa the consistency unit, the
number of extra messages is small, while the amount
of extra data can be substantial.

2. We evaluate the performance when the consistency
unit is increased to a multiple of the virtual memory
page size. For most applications and data sets, the
performance improves, except when the false sharing
effects include extra messages or a large amount of ex-
tra data.

3. We present a new algorithm for dynamically aggregat-
ing pages. In our algorithm, the aggregated pages do
not necessarily need to be contiguous. In all cases, the
performance of our dynamic aggregation algorithm is
similar to that achieved with the best static page size.

These results were obtained by measuring the perfor-
mance of eight applications on the TreadMarks distributed
shared memory system. The hardware platform used is
a network of 166Mhz Pentiums connected by a switched
100Mbps Ethernet network.

1 Introduction

Since Li and Hudak’s seminal work [14] on software &-
tributed shared memory (DSM) in 1985, the “Battle Against
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False Sharing” has been a dominant, if not the dominant,
theme of research in this area. Today, it is generally ac-
cepted that the ill effects of false sharing can be reduced, but
not entirely eliminated, using a relaxed memory consistency
model and a multiple writer protocol [1, 3, 9, 13]. Despite
this, the conventional wisdom remains that the overhead of
false sharing, as well as fine-grained true sharing, in page-
baeed consistency protocols is the primary factor limiting
the performance of software DSM.

In a software DSM that uses lazy release consistency
(LRC) [13] and multiple writer protocols [3], such as Tread-
Marks [I], false sharing can have two harmful effects: it can
cause extra meseages to be sent, and it can cause additional
data to be sent on messages that also carry truly shared
data. We refer to these as useless messages and useless
data. For the applications in our test suite, when the virtual
memory page is used as the consistency unit, the number of
useless messages is small, while the amount of useless data
can be substantial. The reason is that for most Dazes for

.U

which there is false sharing, there is also true sharing on
the page, making the message necessary, but any extra data
useless.

Next, we consider increasing the consistency unit to a
multiple of the virtual memory page size. Increasing the
consistency unit size has both positive and negative effects.
It reduces the number of page faults and consistency oper-
ations, and the number of messages because of aggregation.
It may, however, increase false sharing, and in turn increase
the number of messaees and the amount of data excharuzed.
For the majority of ~he applications and the data sets ~on-
sidered in this paper, performance gets better or stays the
same with larger consistency units. Only when false shar-
ing induces extra useless messages or when there is a large
amount of useless data does performance degrade.

Motivated by the generally positive effect of increasing
the size of the consistency unit, we present an algorithm that
dynamically aggregates pages into larger page groups. On a
page fault, all pages in a page group are validated at the
same time. The pagea in page groups need not necessarily
be contiguous. The algorithm monitors the page faulting be-
havior of the individual pages, and decides whether to aggre-
gate pages into page groups or whether to split page groups
into pages. Dynamic aggregation avoids an increaee in false
sharing, while still aggregating pages into larger units. It
does, however, incur a cost for monitoring the page fault-
ing behavior. We found this cost to be small relative to the
gains achieved. For all applications and data seta, the dy-
namic aggregation algorithm performs nearly as well as the
best static page size.
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Our application suite consists of eight programs. Barnes
and Water are from the SPLASH benchmark suite [17];
3D-FFT is from the NAS benchmark suite [2]; Ilink is a
widely used genetic linkage analysis program [5]; Shallow is a
benchmark developed at NCAR [16]; and Modified Gramm-
Schmidt (MGS), Jacobi, and Traveling Salesman Problem
(TSP) are simple computational kernels. Our platform is a
100Mbps switched Ethernet connecting 8 166Mhz Pentium
machines. We use the TreadMarks software DSM [I] as the
basis for our experiments. TreadMarks implements a lazy
relesse consistent memory model [13]. It uses virtual mem-
ory page faults to detect access misses, and twinning and
diffing to record modifications to a page and to implement
a multiple writer protocol [3].

The rest of thw paper is organized as follows. Section 2
discusses the effects of false sharing when the consistency
unit is a virtual memory page. Section 3 describes the trade-
off between false sharing and aggregation when the consis-
tency unit is statically incressed to a multiple of the page
size. Section 4 presents the dynamic aggregation algorithm.
Section 5 d~usses our performance measurements. Sec-
tion 6 discusses related work. Section 7 provides our con-

2 False Sharing Effects

The dmcussion of false sharing in this paper concerns page-
bssed software DSM systems that use lazy release consis-
tency (LRC) and multiple writer protocols, such as Tread-
Marks. With relesse consistency [9, 13], the modifications
of processor p become visible to processor g only after g
synchronizes with p. If an invalidate protocol is used, mod-
ifications cause a page to be invalidated after the synchro-
nization. Access to an invalidated page causes a page fault,
which in turn causes page fault request messages to be sent
out to all of the processors that wrote the page concurrently
before the synchronization.

In multiple writer protocols [3], write detection is done
by twinning, and dfing. On the first write to a shared
page, an identical copy of the page (a twin) is made. The
twin is then compared with the modified copy of the page to
generate a diif, a record of modifications to the page. This
cliff is returned in response to a page fault request.

Lazy release consistency and multiple writer protocols
alleviate the worst effects of false sharing. In particular,
concurrent reads and writes to the same page do not cause
communication at the time of the access. False sharing may,
however, still cause extra communication, either in the form
of useless messages or in the form of useless data carried on
messages that also carry useful data.

Useless messages are produced by write-write false shar-
ing. For instance, sssurne that processors PI and PZ write
to the same page, pi to the top half and p2 to the bottom
half. After all processors come to a barrier, processor PS
reads the top hslf of the page. Logically, processor PS only
needs the data produced by pl, and therefore a single mes-
sage exchange with PI would suffice. The barrier, however,
causes ps’s copy of the page to be invalidated by both PI
and pz. When PS reads the page and incurs an access miss,
it must therefore request cliffs from both pi and pz. The
messagez exchanged with P2 are useless messages caused by
write-write false sharing.

The useiess data occurs in conjunction with true sharing.
However, we clsssify this effect as false sharing, because it
implies communication not strictly required by true sharing.
For instance, assume processor pi modifies the entire page,

and then synchronizes with processor pz. Assume that pz
wants to read only the top half of the page. The synchro-
nization causes pz’s copy of the page to be invalidated, in
turn causing pz to take an access fault and request a cliff
from PI. This cliff contains the entire page, although p2 will
only read the top half. The bottom half of the page sent in
the cliff is useless data.

Previous research [15] has studied the extra communica-
tion in software DSM induced by false sharing. We argue
that the study of false sharing, in isolation, is not a very
good indicator of the effect of false sharing on program per-
formance. Instead, we argue that the key to understanding
the effect of false sharing is its relationship to true sharing.
If, between two processors, both true and false sharing occur
on the same page, then false sharing only causes an incresse
in data, in the form of useless data. Only when there is no
true sharing between the two processors does false sharing
cause extra messages.

In current networks of workstations, the cost of send-
ing extra messages is typically much higher than the cost of
sending some additional data on a message. The effect of
false sharing is therefore primarily determined by the num-
ber of useless messages, and only to a second order by the
amount of useless data. In Section 5 we illustrate the ef-
fects of false sharing on the applications in our test suite
by breaking up the total number of messages and the total
amount of data in useful and useless messages and data. As
will be seen, two patterns emerge. For one clsss of appli-
cations, there is little false sharing, indicated by low values
for both useless messages and useless data. For the other
class, there are few useless messages, but the amount of use-
less data is substantial. This Dattern indicates that there is
fslse sharing, but that it occ~rs mostly on pages on which
there is also true sharing.

For the latter class of applications, it appears promtilng
to increase the consistency unit. Since most pages are truly
shared (in addition to possibly being fslsely shared), aggre-
gation should be beneficial, with little additional false shar-
ing being introduced. For the former class of applications,
the tradeoff is less clear, given the potential for introducing
false sharing where there previously was none. This tradeoff
is explored in more detzil in the next section.

3 Static Aggregation

Choosing a larger consistency unit has a number of advan-
tages unrelated to communication such as reducing the num-
ber of access faults and the number of consistency operations
including memory protection operations, twinning and diff-
ing. Disadvantages include the need to twin and cliff larger
consistency units.

In terms of communication, larger consistency units form
a tradeoff between aggregation and potentially increased
false sharing. As with the d~ussion of false sharing with a
particular size of consistency unit, this tradeoff needs to be
understood in connection with true sharing. For inst ante,
assume processor pl writes to two contiguous pages, then
synchronizes with pz, after which pz reads both pages. With
pages w the consistency unit, th~ causes two message ex-
changes. If the consistency unit is doubled, only a single
message exchange is necessary, and the amount of data ex-
changed remains the same. Some of the data in this mes-
sage may be useless, but the amount of useless data remsins
the same as before. If we change the example slightly so
that pz only reads the first page after synchronization, then
the number of messages remains constant at one, but the
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amount of data exchanged increases when the consistency
unit is doubled. When the consistencey unit is a page, the
modified data in the second page is not communicated, but
when the consistency unit is twice the page size, it traverses
the network (and becomes useless data). As a second ex-
ample, consider the case where processor pl writes the first
page, processor pz writes the second page, PI, P2, and P3 syn-

chronize, and finally PS reads both pages. Here, the number
of message exchanges and the amount of data remain the
same. There is still an advantage to the larger consistency
unit, because P3 can request both cliffs in parallel, whereas
with the page as the consistency unit, they would be re-
quested in sequence. If we modify this second example, so
that ps reads only the first page, there is only one message
exchange, between p] and ps, when the consistency unit is
a page. When the consistency unit is doubled, there is an
additional and useless message exchange between PZ and pa.

In general, the number of message exchanges occurring
in response to a page fault is equal to the number of concur-
rent writers seen by the faulting processor at the previous
synchronization, or

messages = access(P) x carri(CW(P))

in which access(P) is 1 if the page is accessed and O other-
wise, and card(CW(P)) is the cardinality of the set CW(P)
of concurrent writers to the page P before synchronization.
When two contiguous pages Pa and pb are aggregated into
a single consistency unit (~~, ~b), the number of message
exchanges occurring in response to a page fault on the new
consistency unit is

messages = acce99(P., f’b) x card(CW(P.) U CW(Pb))

The potential increase or decrease in the number of messages
in going from the smaller to the larger consistency unit is
then

~CCeSS(p.) x CUd(c~(~.)) + Qccf?SS(pb) x cUd(Cw(pb))

–access(P., Pb) x card(CW(P. ) U CW(Pb))

Thii formula can be generalized to any larger consistency
unit, and a similar formula can be derived for the amount
of data exchanged.

Clearly, the evolution of the number of concurrent writ-
ers to the consistency unit is the critical performance factor.
If there is a drastic increase in the number of concurrent
writers to the larger consistency unit, then false sharing
dominates, the number of useless messages increases, and
performance deteriorates. Conversely, if the number of con-
current writers stays constant or increases slightly, then the
benefits of aggregation result in an improvement of overall
performance.

In order to capture this behavior, we characterize our ap
placations by a false sharing signature, a histogram denoting
the distribution of the number of concurrent writers (and
therefore the number of message exchanges) observed at a
page fault. A sizable shift in false sharing signature towards
larger numbers when going to larger consistency units pre-
dicts a loss in performance. Conversely, if the false sharing
signature largely remains invariant, performance increases
with increasing size of consistency unit.

4 Dynamic Aggregation

Clearly, some applications may benefit from a larger con-
sistency unit, while for others performance may deteriorate.

As a solution, we present a dynamic aggregation algorithm
that coalesces pages into page groups, based on their access
patterns. The algorithm monitors the access patterns on
each processor, and tries to construct page groups so as to
increase aggregation without incurring the harmful effects
of false sharing.

The cliffs for all the pages of the group are requested at
the first fault on any page that is a member of the group.
Multiple requests addressed to the same processor are com-
bined, resulting in fewer messages for the data transfer for
the group as a whole. Even if the cliffs need to come from
different processors, there is still an advantage to requesting
the cliffs for all pages in the group at once, because those
processors can return the cliffs in parallel rather than in se-
quence.

Page groups are computed at each synchronization. Es-
sentially, the algorithm groups pages that were accessed
prior to the synchronization (up to some implementation-
dependent maximum number of pages per group), so that it
can request them as a group should they be accessed agsin
after the synchronization.

In orde~ to track the access pattern for a page, the alg~
rithm keeps each page invalid until the first access to that
page. The occurrence of a page fault signifies an access to
the page. Note that a page may be kept invalid, even though
it may already have been updated on the first access to an-
other page of the group. If there is a fault for such a page
in the group, then no data is requested because all updates
have already been received. This strategy allows the rdgo-
rithm to detect any change in the program’s access patterns
over the course of the execution.

Compared to the static use of a larger consistency unit,
this simple dynamic algorithm captures the “good” cases of
aggregation and avoids the “bad” cases of false sharing (see

Section 3). When multiple pages are accessed by a processor,
the algorithm records this fact, and fetches them together
after the next synchronization, irrespective of the number
of concurrent writers. This is exactly the behavior of static
aggregation, when it is successful. Conversely, when the
processor does not (or does no longer) access several pages
together, the algorithm observes this behavior as well, and
reverts to using pages, thereby avoiding the scenarios where
false sharing hzs a detrimental effect on performance with
static aggregation. In addition, the dynamic aggregation
algorithm benefits from not being restricted to aggregating
only contiguous pages.

The disadvantage of dynamic aggregation compared to
the static use of large pages is the extra faults and mem-
ory protection operations necessary to keep track of the ac-
cess patterns. Furthermore, there is a hysteresis effect in
detecting changes to the access patterns which may cause
some useless messages while the scheme reconstitutes the
page groups. However, these useless messages are over-
lapped with the dti requests for the faulting page. Overall,
these drawback are minor compared to the gains achieved
by avoiding false sharing, as wifl be demonstrated by the
performance results in Section 5.

5 Performance Results

5.1 Platform

Our experimental platform is a network of eight 166MHz
Pentiums running FreeBSD 2.1.6. Each machine has 512
Kbytes of cache and 64 Mbytes of memory. The hardware
page size is 4 Kbytes. The network connecting the machines
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r
Program Input Size Seq. Time Speedup

Barnes 16K 69.8 4.25

ILINK CLP 2x4x4x4 1127.9 5.54

64x64x32 18.7 4.07
3D-FFT 64x64x64 38.2 4.31

128x128x128 — —

lKxIK 120.9 5.64
MGS 2KX2K 1112.4 6.51

1KX4K 560.3 6.11

lKXO.5K 179.1 5.01
ShaJlow 2Kx0.5K — .

4KX0.5K — —

Table 1: Applications, data sets, sequential execution times
(in seconds), and speedups. No sequential execution times
and speedups are presented when theproblem size exceeded
the available memory for one processor and paging wasob
served for the sequential run.

is a 100Mbps switched Ethernet.
TreadMarks uses the UDP/IP protocol forinterproces-

sor communication. The round trip latency for a l-byte
message using the UDP/IP protocol is 296 microseconds on
thw platform. Thetime toacquire alockvaries from 374to
574 microseconds. The time for an eight processor barrier
is 861 microseconds. The time to obtain a cliff varies from
579 to 1,746 microseconds.

5.2 Applications

We used eight applications in this study: Barnes and Wa-
ter [17], 3D-FFT [2], Ilink [5], Shallow [16], Modified Gramm-
Schmidt (MGS), Jacobi, and Traveling Salesman Problem
(TSP).

Table 1 includes for each application, the data set sizes
used, the sequential execution time, and the speedup on 8
processors using the hardware page size as the consistency
unit. No sequential execution times and speedups are pre-
sented when the problem size exceeded the available memory
for one processor and paging was observed for the sequen-
tial run. The applications and data set sizes were chosen
to display a large variation in the amount and the effect of
false sharing, ss well as a large variation in the granular-
ity with which shared data is accessed. For Barnes, Ilink,
TSP and Water, the false sharing behavior is largely inde-
pendent of the problem size, and thus we show results with
only one input size. For Jacobi, 3D-FFT, MGS and Shallow,
false sharing behavior varies with the problem size, and we
present all the relevant cases. A detailed discussion of the
applications is deferred until Section 5.5.

5.3 Measurement Results

Figure 1 shows the execution times, the number of messages,
and the amount of data for Barnes, Ilink, TSP, and Water,
with consistency units of 4, 8, and 16 Kbytes, and with the
dynamic aggregation algorithm. All results are normalized
to those with the virtual memory page size of 4 Kbytes. The
messages and the data are broken down into useful and use-

less messages, and useful data and useless data. Useless data
is in turn broken down into useless data carried in useless

messages, and useless data carried in useful messages, which
we refer to m piggybacked useless data. Figure 2 shows the

same results for Jacobi, 3D-FFT, MGS, and Shallow. Fig-
ure 3 shows the evolution of the false sharing signature for
Barnes, Ilink, Water, and MGS for 4 and 16 Kbytes. Each
bar is broken down to reflect the number of useful and use-
less messages corresponding to that entry in the histogram.

The breakdowns of messages and data are obtained by
instrumenting the programs. The instrumentation records
all reads (loads) and writes (stores), and the application of
all cliffs. After applying a cliff to a region of a page, if a
word from that region is read before being overwritten, that
word is counted as useful data. If a word is never read or
overwnt ten before being read, it is counted as useless data.
A useless message is a message that carries no useful data.
Otherwise, a message is characterized as useful.

5.4 Overall Discussion

The results for Barnes, Ilink, TSP, and Water are similar.
Performance improves with increasing consistency unit size.
The execution time decreases, the number of messages de-
creases, and the amount of data either stays constant (for
Ilink and TSP) or shows a very slight increase (for Barnes
and Water). The evolution of the false sharing signature is
also similar for these applications. Barnes, Ilink and Water
are shown as examples in Figure 3. For Barnes and Wa-
ter, there is a very slight shift to the right going from 4 to
16 Kbytes. For Ilink, there is virtually no change.

At 4 Kbytes, all of these applications have a relatively
small number of useless messages, but a substantial amount
of useless data. This indicates false sharing, but in such a
way that false sharing is usually mixed with true sharing on
the same page. It may seem paradoxical that increasing the
consistency unit size improves performance for applications
that already incur a substantial amount of false sharing at
the smzdest consistence unit size. The Daradox is exrda.ined
by the fact that in the~ applications, e’uh processo~ makes
fine-grained accesses to a large shared memory region. Thus,
by increasing the consistency unit size, the aggregation ef-
fect plays its role, reducing the number of messages. False
sharing does not incre~e, because each processor sJready
accessed most of the shared memory region with the small-
est consistency units. Thus, no extra useless messages and
useless data are introduced by going to a larger size.

For Jacobi, 3D-FFT, MGS, and Shallow, the results are
highly dependent on the problem sizes. For the smallest
problem size, Jacobi, 3D-FFT, MGS, and Shallow show worse
performance when going from 4 to 8 and 16 Kbyte consis-
tency unit sizes. However, for the medium input sizes, 3D-
FFT 64x64x64, MGS 2Kx2K, and Shallow 2Kx0.5K show
improvement when going from 4 Kbytes to 8 Kbytes, but de-
teriorate when going to 16 Kbytes. Finally, Jacobi 2Kx2K,
3D-FFT 128x128x128, MGS 1Kx4K, and Shallow 4Kx0.5K
improve when going to larger consistency units.

The only dramatic performance deterioration occurs with
MGS, because of a very large increase in the number of use-
less messages. This behavior is SJSOindicated by the sizable
shift to the right in the false sharing signature for MGS, as
shown in Figure 3. For the smaller data set sizes for Jacobi
and 3D- FFT, the performance deterioration is due to an in-
crewe in the amount of useless data. For the smaller data
set in Shallow, it is due to a combination of extra useless
messages and useless data.
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With their smallest input size, all these applications have
coarsegrain reads with the granularity of each read roughly
matching the 4 Kbyte page size. This is demonstrated by
the absence of piggybacked useless data at the 4 Kbyte page
size. Thus, by increasing the consistency unit, we may intro-
duce piggybacked useless data, or, worse, we may introduce
useless messages, resulting from increase in the number of
concurrent writers (a shift in the false sharing signature).

In all cases, the dynamic aggregation algorithm performs
very well. For all applications and data sets, its performance
is at worst a few percent below that of the best choice of the
static consistency unit size.

5.5 Detailed Discussion of the Applications

Barnes simulates the evolution of a system of bodies under
the influence of gravitational forces. It uses a hierarchical
tree-based method to compute forces between bodies. The
tree is constructed sequentially by a master processor, and
the force computation is done in parallel by all processors.
Reads and writes are to small individual particle data struc-
tures, with fine granularity. The fine-grained writes lead to a
high write-write false sharing pattern for all pages on which
bodies are allocated. However, there is also extensive true
sharing, and thus there are relatively few useless messages.
The master processor reads essentially the entire region of
memory in which bodies are allocated. All other processors
also read parts of the body array according to the partition
computed by the master processor. Useful messages typi-
cally carry a large amount of useless data. Aggregation is
beneficial because of the large region of memory accessed by
each processor.

IIink is a genetic linkage analysis program that locates
specific disease genes. The main data structure is a pool
of sparse arrays called genarraya. The sharing pattern is
master/slave. The master processor assigns the non-zero
elements to all processors in a round-robin fashion. After
each processor has worked on its share of non-zero values,
the master processor sums up the contributions. The pool
of sparse gensrrays is in shared memory, and all processors
write to it concurrently. Both the read and write granularity
are very small, and there is extensive writ~write false shar-
ing. All processors access every page of the genarrays. The
master processor reads the genarrays from all the slaves,
and, afterwards, all slaves read them from the master. This
behavior explains the shape of the false sharing signature,
with roost messages falling either into the 1 or the 7 category,
and very few useless messages. Aggregation is beneficial for
Hink, for the same reason ss in Barnes. A large region is ac-
cessed, and little false sharing is added by going to a larger
consistency unit.

TSP uses a branch-and-bound algorithm to find the min-
imum cost tour. The major shared data structures are the
pool of partially evaluated tours, a priority queue containing
pointers to tours in the pool, and the current shortest path.
All the major data structures migrate among the processors.
Both the useless messages and data result from bringing in
dlffs corresponding to tours allocated by other processors
but not read by the faulting processor. The tour pool and
the priority queue are both multi-page data structures, and
accesses to these data structures are scattered and irregular.
Aggregation thus reduces the number of messages with an
improvement in the execution time.

Water is a molecular dynamics simulation. It com-
putes the intra- and inter-molecular forces using an 0(n2)
algorithm with a cut-off radius. The array of molecules is

shared, allocated contiguously, and partitioned among pro-
cessors. A lock protects access to each molecule. Write-write
false sharing occurs in the intra-molecular force computation
phase, at the boundaries between regions owned by different
processors. In the inter-molecular force computation phase,
each processor computes and updates the force between each
of its molecules and each of n/2 molecules following it in
the array in a wrap-around fashion. Thus, although each
read is fine-grained (one molecule), the region read by each
processor covers half the shared array. There may also be
write-write false sharing in this phase, if two processors up-
date molecules colocated on the same page. However, this
is highly unlikely because of the staggered update pattern.
Useless messages occur mostly in the intra-molecular phase,
when a processor receives data for molecules that belong to
the preceding neighbor’s region. Useless messages can also
occur in the inter-molecular comDut ation rrha.sewhen the. .
end of the region read by a processor falls on a write-write
falsely shared page. In this case, requests for updates may
be sent to two processors when only one request is useful.
For larger page sizes, this is more likely to happen, w shown
in the false sharing signature in Figure 3. Overall, there is
a slight increase in the number of useless messages when
going to larger consistency units. Other than useless data
carried in useless messages, private data in each molecule
data structure causes a large amount of useless data carried
in useful messages. Aggregation is beneficial because of the
large region accessed by each processor. The hysteresis ef-
fect of the dynamic scheme, while it adapts to a new access
pattern, causes the extra useless messages compared to the
4 Kbyte page size.

Jacobi solves a differential equation on a square grid.
Each processor is assigned a band of rows. The boundary
row is communicated between neighboring processors. The
pages containing the boundary row are entirely written, and
therefore communicated. If the pages contain private data
in addition to the boundary row, this data becomes useless
data. However, there are never useless messages, because
even if there is false sharing at the boundary, there is al-
ways true sharing on those pages as well, With a 4 Kbyte
consistency unit, there is no useless data for the lKxIK data
set, but there is useless data for the 8 and 16 Kbyte consis-
tency unit, causing a very slight degradation in performance.
Similarly, there is useless data in going from 8 to 16 Kbytes
for the 2Kx2K data set.

3D-FFT numerically solves a partisl differential equa-
tion using forward and inverse FFT’s with a transpose being
performed to optimize the computation. Each processor is
assigned a contiguous section of the array. Communication
occurs in performing the transpose, and is of a producer-
consumer nature. During the transpose, a processor may
receive cliffs for a full page of which it only reads a part. The
other parts written that are communicated are useless data
piggybacked on a useful messages. A small data structure
used for a checksum computation is concurrently written by
all processors. This data structure causes a few useless mes-
sages because one master processor reads it while all other
processors only write it. However, because there is only one
page that exhibits this pattern, the fraction of useless mes-
sages is low for non-trivial problem sizes, and the useless
data in these messages is of the order of a few bytes. If, for
a Particular data set size. the consistence units communi-
ca~ed during the transpose contain more {ban the part that
each processor is reading, there is a substantial increase in
the amount of useless data. For example, for the 64x64x64
problem size, each processor reads data at an 8 Kbyte granu-
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larity. This explains both the aggregation effect when going
from 4 to 8 Kbyte pages, and the piggybacked useless data
that occurs when the data for the full 16 Kbyte consistency
unit is transferred. As a result, performance improves from
4 to 8 Kbytes, but deteriorates when going to 16 Kbytes.
This effect can be seen also for the 64x64x32 data set when
going from 4 to 8 and 16 Kbyte consistency units.

MGS computes an orthonormaf basis for a set of N-
dimensional vectors. The vectors are divided between pr-
ocessorsin a cyclic manner. In each iteration, the program
contains two phases. In the first phase, every processor com-
putes its own pivot vector followed by a barrier. Afterwards,
every processor makes all vectors that follow the pivot vec-
tor orthogonal to the pivot vector. Because of the cyclic
distribution, a processor’s write granularity is the size of a
vector. The read granular~ty is the same (the pivot vector is
read). With the lKxIK input size the read and write gran-
ularity correspond exactly to the size of the 4 Kbyte con-
sistency unit. When we incre=e the size of the consistency
unit to 8 or 16 Kbytes, two and four vectors respectively
become colocated on the same page. Thus, each page in
shared memory is written concurrently by at least two pro-
cessors for these page sizes. When the processor writes to
its own vectors, it requests updates from all the concurrent
writers of vectors colocated on the same page. These are
useless messages and constitute most of the communication
as seen from the false sharing signature in Figure 3. Fur-
thermore, when reading the pivot row, a processor receives
useless messages from the concurrent writers of the page
containing the pivot row. The increase in useless messages
causes larger consistency units to perform drastically worse
for MGS. The dynamic scheme performs the same as the
static 4 Kbyte page. There is no repetition in any proces-
sor’s data fetch pattern, and thus no gain from aggregating
pages in page groups.

Shallow is a Fortran code that solves difference equa-
tions on a two dimensional grid, for weather prediction.
Each processor is allocated a chunk of columns from a set
of arrays. There is write-write false sharing at some inter-
processor boundaries for the shared arrays. Whenever data
written by another processor is required, only the one col-
umn at the boundary is needed. So when the boundary page
contains two columns, this may result in either piggybacked
useless data to be sent or useless messages. These two pat-
terns occur independently on different arrays. For some of
the arrays, processors write only to their own columns, and
read the first column of the right neighbor’s chunk. Thus,
the pattern is similar to Jacobi and piggybacked useless data
occurs for large page sizes. For some other arrays, however,
processors write to some of their own columns, but also write
to the first column of the right neighbor’s chunk. On the
other hand they do not read any of the neighbor’s columns.
Thus, the write-write false sharing causes useless messages
if a page becomes large enough to hold two columns. Apart
from the above patterns, there is a wraparound copy pat-
tern where a master processor copies the last column of a
particular array to the first column. Only piggybacked use-
less data results from these accesses. Because of the rather
complex pat tern, going to 8 and 16 Kbyt e consist ency units
for the smallest problem size, we see both an aggregation
effect, decreasing the number of useful messages, and a false
sharing effect, increasing the number of useless messages and
piggybacked useless data. Overall, the combination results
in a slight decrease in performance. For larger data sets,
false sharing subsides, and aggregation causes performance
to improve.

6 Related Work

There are both compile-time and run-time schemes to elim-
inate false sharing. The Midway DSM system [19] supports
the entry consistency model, which requires the program-
mer to associate each shared datum exdicitlv with a svn-. .. ––
chronization variable. False sharing can be en&ely avoided,
because the consistency unit is precisely the shared data.
Granston and Wijshoff [11] present compile-time techniques
for a parallelizing Fortran compiler that transforms loops in
order to reduce false sharing. Jeremisssen presents compile-
time techniques to analyze the sharing behavior of explicitly
parallel programs [12]. His analysis determines which data
structures may be susceptible to false sharing. Heuristics
are then applied to determine if it is profitable to pad the
data structures.

Eggers and Katz [6, 7] showed that the performance of
coherent caches for bus-based shared memory multiproces-
sors depends on the relationship between the cache block
size, the granularity of sharing, and the locality exhibited
by a program. They showed that the optimal cache block
size varies for different sets of applications. Gupta and
Weber [18] examined the effect of cache block size on the
number and size of invalidations in a directory-based cache-
coherent multiprocessor system. They too noticed that dif-
ferent applications gave their best performances for different
cache block sizes. They traced the source for this variation
to the different sharing patterns among the applications.

Dubnicki and LeBlanc [4] proposed a scheme to reduce
the impact on performance due to a mismatch between the
cache block size and the sharing patterns exhibited by a
given application. They adjusted the size of the cache block
according to recent reference patterns. They found that the
adjustable cache-block-size implementation did better than
the best fixed-size implementations for most of the programs
in their suite. In an earlier study [1O], Goodman also eval-
uated the effect of the size of the consistency units on the
behavior of a virtual address cache.

Zhou et al. [20] discuss the relationship between relaxed
consistency and coherence granularity in DSM systems. They
conclude that sequential consistency with small consistency
units and lazy rele~e consistency with larger consistency
units perform comparably for the applications used in the
study. They only consider consistency units up to the size of
the virtual memory page, while we study consistency units
that are a multiple of the page size.

Lu et al. [15] analyzed the performance dflerences be-
tween message passing programs, using Parallel Virtual Ma-
chine (PVM) [8], and DSM programs, using TreadMarks.
They identified lack of aggregation, separation between syn-
chronization and data movement, false sharing and cliff ac-
cumulation for migratory data as the primary factors for the
poorer performance of the TreadMarks programs.

7 Conclusions

In this paper, we study the tradeoffs between false shar-
ing aud aggregation in software DSM, for consistency units
larger than the hardware page size.

We first document the effects of false sharing when the
virtual memory page size is used as the consistency unit.
Useless messages and useless data may result. For our ap
placations, the number of useless messages is relatively small,
but the amount of useless data may be substantial.

We then increase the consistency unit to be a multiple of
the page size. Paradoxically, performance improves for the
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applications that already exhibited a fair amount of false
sharing at the virtual memory page size. The paradox is
explained by a combination of two facts. First, these ap-
plications typically access a large region of shared memory,
so that aggregation reduces the number of messages. Sec-
ond, there is only a small increase in useless messages or
useless data induced by false sharing, because there is both
true and false sharing on most pages. Conversely, if there
is little or no false sharing at the virtual memory page size,
then performance can deteriorate when increasing the con-
sistency unit size, sometimes dramatically if a large number
of useless messages are introduced.

We finally demonstrate that it is possible to obtain most
of the benefits of aggregation without the potential problems
of faJsesharing, by using a simple dynamic aggregation S@
rithm. The dynamic scheme automatically aggregates pages
into larger page groups at runtime. No user or compiler sup
port is needed. The results approach those obtained with
the best static consistency unit size.
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