Introduction to Deep Learning

WM CS
Zeyi (Tim) Tao
11/01/2019



References

Introduction to Deep Learning CMU 11-785 http://deeplearning.cs.cmu.edu/

Introduction to Deep Learning MIT 6.S191 http://introtodeeplearning.com/

MIT Deep Learning Collections https://deeplearning.mit.edu/

Deep Learning Stanford CS230 (Andrew Ng) https://cs230.stanford.edu/

Convolutional Neural Networks Stanford CS231n http://cs23 1n.stanford.edu/

Others (Books, Papers, Talks, Videos, etc


http://deeplearning.cs.cmu.edu/
http://introtodeeplearning.com/
https://deeplearning.mit.edu/
https://cs230.stanford.edu/
http://cs231n.stanford.edu/

What is Deep Learning

Al: Any technique that enables computers to
mimic human behavior

ML.: Ability to learn without explicitly being
programmed

DL.: Extract patterns from data using
neural networks

[PDF]
Some Studies in Machine Learning_Using the Game of Checkers
citeseerx.ist.psu.edu » viewdoc » download ~

Cited by 3030 - Related articles

Abstract: Two machine-learning procedures have been investigated in some detail usi'Jg the

game of checkers. Enough work has been done to verify the fact ...




Deep Learning: state-of-the-art

Exciting Progress:

e Face recognition

e Image classification

e Speech recognition

e Text-to-speech generation

e Handwriting transcription

e Machine translation

e Medical diagnosis

e Cars: drivable area, lane keeping
* Digital assistants

* Ads, search, social recommendations

e Game playing with deep RL

Art generation (Neural Style Transfer)



Traditional Machine Learning

Machine Learning

Feature extraction Classification Low Level Features Mid Level Features High Level Features

Deep Learning

Not Car

C ) O

Feature extraction + Classification Output

Lines & Edges Eyes & Nose & Ears Facial Structure

Hand engineered features are time consuming, brittle and not scalable in practice.

Can we learn the directly from data”



History of Deep Learning ldeas

History of Deep Learning Ideas and Milestones

e 1943: Neural Networks

e 2009: ImageNet

e 2012: AlexNet, Dropout

e 2014: GANs

e 2014: DeepFace

e 2016: AlphaGo

e 2017: AlphaZero, Capsule Networks

e 2018: BERT

History of DL Tools

Mark 1 Perceptron — 1960
Torch — 2002

CUDA - 2007

Theano — 2008

Caffe — 2014

DistBelief — 2011
TensorFlow 0.1 — 2015
PyTorch 0.1 — 2017
TensorFlow 1.0 — 2017
PyTorch 1.0 — 2017

TensorFlow 2.0 — 2019



History of Deep Learning ldeas

Backpropagation

SVM
\ B l

1943 1957 1986 1989 1993 | 2006

Geoff Hinton et al:
NN Feed forward neural network

Perceptron  y;nn LeCun et al: Zip code



Deep Learning Today

Big Data

Larger Datasets

Easier Collection & Storage

[0}
o
c
©
£
—
S
‘=
[}
o

Amount of Data

Scale drives deep learning
progress

Hardware

Graphics Processing Units (GPUSs)

Massively Parallelizable

Software

Improved Techniques

New Models Toolboxes

TensorFlow

O PyTorch



5 Stages in Gartner Hype Cycle

* Peak of Inflated Expectation

DL
* Self-Driving Cars

Plateau of Productivity
Slope of Enlightenment

Trough of Disillusionment

Technology Trigger



Again, What is Deep Learning?

SCHRODINGER'S CAT IS
A'LA-VE

Model = Architecture + Parameters Output
x~DcCcR"  fl-) R > R y = f(x)

Deep learning is a class of machine learning algorithms that uses multiple layers to
progressively extract higher level features from the raw input.(wiki)



A mostly complete chart of

Backfed Input Cell N e u ra l N EtWO r kS Deep Feed Forward (DFF)

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

2 / )
Noisy | , . .
oisy Input Cell y 0 Feed Forward (FF) Radial Basis Network (RBF)
Hidden Cell | E g
: ) Q

X0 X0

© Probablistic Hidden Cell W | = &

- Apikng HidaerCal Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
- - o o '

- -6
TS TN
@) Match Input Output Cell '(’\}", W "’\"”\"
’ Reode LA
‘ Recurrent Cell 3 "‘ \n"\“"

!Q Output Cell

R

O Memory Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE)

° Different Memory Cell

Kernel

(O Convolution or Pool

o

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

®
O\O/ \O/ \o

O
g/o\ SN\




Observations: The Brain and Neurons

Axon

Dendrites




The Perceptron

-

Perceptrc -« : 'Y
aS O ‘ol -~ =
| C.. " O.A
I * rRvis
S B -y '
| | | ! |
5 A U9 AT
ST Tl TS
[
i b il
el i
2l afe =

- e

 Frank Rosenblatt

— Psychologist, Logician
— Inventor of the solution to everything, aka the Perceptron (1957)



Rosenblatt’s Perceptron (math model)

Inputs  Weights

else

* Number of inputs combinelinearly
— Threshold logic: Fire if combined input exceeds threshold



Rosenblatt’s Perceptron

» Originally assumed could represent any Boolean circuitand perform any logic

— “the embryo of an electronic computer that [the Navy] expects will be able to

walk, talk, see, write, reproduce itself and be conscious of its existence,” New
York Times (8 July) 1958

— “Frankenstein Monster Designed by Navy That Thinks,” Tulsa, Oklahoma Times
1958

Inputs  Weights




Rosenblatt’s Learning Algorithm

w=w +n(d(x) — y(x))x

Sequential Learning:
d(x) is the desired output in response to input x
y(x) is the actual output in response to x

 Boolean tasks

- Update the weights whenever the perceptron
output iswrong

» Proved convergence for linearly separable classes



The Perceptron (gate)

X, X
>Qﬁx Ay >¢ﬁx vy
Y~ Yy~

Values shown on edges are weights, numbers inthe circles are thresholds




However, the single perceptron ...

X2
@ ver
Y ?



The Multi-layer Perceptron (gate)

X — ‘ XVY
1

« XOR
— The first layer is a “hidden” layer
— Also originally suggested by Minsky and Papert 1968



The Multi-layer Perceptron (gate)

((A&X&Z)|(A&Y))&((X & YV)|(X&Z))

- A'multi-layer” perceptron
« Can compose arbitrarily complicated Boolean functions!

— In cognitive terms: Can compute arbitrary Boolean functionsover sensory input
— More on this in the next class



But our brain is not Boolean

Touch, hot-cold, pain

* We have real inputs
* We make non-Boolean inferences/predictions



The Perceptron (real inputs)

Inputs  Weights

W,
X1 - ~

W \

* X4...Xyare real valued

- W,...Wyare real valued



The Perceptron (real inputs)

Inputs  Weights

W,
X1 - ‘\

ﬁ \} bum
Threbnom ]

* X4...Xyare real valued

- W,...Wyare real valued



Other activations

Inputs  Weights
W,
X1

Output

\\\
LNy —
e AN 7

~ Sum

Y5 e
W5 —

—

/

Threshold T

/

sigmoid Tan RelLU

Does not always have to be a squashing function
- We will hear more about activationslater
We will continue to assume a “threshold” activation right now



The Perceptron (real inputs)

Inputs  Weights 1
X1




“Decision” Boundaries

Can now be composed 1nto
X9t “networks” to compute arbitrary
classification “boundaries”

A1

« Build a network of units with a single output that fires if the input is in the coloured area



“Decision” Boundaries

Xnt




“Decision” Boundaries




“Decision” Boundaries




“Decision” Boundaries

X5t !

« Network to fire if the input is in the yellow area
- “OR” two polygons
— A third layer is required



A summary

- MLPs are connectionist computational models

- Individual perceptrons are computational equivalent of
neurons

- The MLPis a layered composition of many perceptrons

« MLPs can model Boolean functions
- Individual perceptrons can act asBoolean gates
— Networks of perceptrons are Boolean functions

- MLPs are Boolean machines
- They represent Boolean functions over linearboundaries
— They can represent arbitrary decisionboundaries
— They can be used to classify data



“Decision” Boundaries

XHt T

X W
A1 %%

- How would you compose the decision boundary to the left
with only one hidden layer?



Composing decision boundaries




“Decision” Boundaries

X1 [

= M
A1 A)

 MLPs can capture any classificationboundary
- Aone-layer MLP can model any classification boundary
- MLPs are universal classifiers




However...

-
(@ @ o000 (O
S~ ——

\y><

* Anaive one-hidden-layer neural network will required infinite
hidden neurons



How to improve

* Two hidden-layer network: 56 hidden neurons



How to improve

» Two layer network: 56 hidden neurons
— 16 neurons in hidden layer1



How to improve

- Two-layer network: 56 hidden neurons
- 16 In hidden layer1
- 40 in hidden layer2 ( [(n+2)*/8])
- 57 total neurons, including outputneuron



Depth

- “Shallow vs deep sum-product networks,”
Oliver Dellaleau and Yoshua Bengio
— For networks where layers alternately perform either sums or products,

a deep network may require number of layers
than a shallow one.

- The number of neurons required in a shallow network is potentially
exponential in the dimensionality of the input

— Alternately, exponential in the number of statistically



The features

- Deep neural network can extract the features



A summary

Multi-layer perceptrons are Universal Boolean Machines

- Even a network with a is a universal Boolean
machine

Multi-layer perceptrons are Universal Classification Functions
— Even a network with Is a universal classifier

But a single-layer network may require number
of perceptrons than a deep one

Deeper networks may require far fewer neurons than shallower
networks to express the same function

— Could be
— Deeper networks are



Function Approximation (single input)

How to approximate function above by using threshold MLPs?



Function Approximation (single input)

/ A
\. / No activation ~ _| .

I, T, X

» Asimple 3-unit MLPwith a “summing” output unitcan
generate a “square pulse” over an input

— Output is 1 only if the input lies between T;and T,
- Tyand T,can be arbitrarily specified



Function Approximation(single input)

- Asimple 3-unit MLP can generate a “square pulse” over an input
- A MLP with many units can model an arbitrary function over an input
- To arbitrary precision
- Simply make the individual pulses narrower
- This generalizes to functions of any number of inputs



Think the network as a function

7:1{0,1} - {0,1}

_ fiR"—> {01}

f:R"— (0,1)

f:R" - (-1,1)

f:R" - [0,00)

« Output unit with activation function
— Threshold or Sigmoid, ReLU orany other

- The network is actually a universal map from the entire domain of input
values to the entire range of the output activation

— All values the activation function of the output neuron



A summary

Multi-layer perceptrons are Universal Boolean Machines

- Even a network with a IS a universal Boolean
NEWINE

Multi-layer perceptrons are Universal Classification Functions
- Even a network with Is a universal classifier

Multi-layer perceptrons are Universal Function approximate for entires
class of functions (maps) it represents

L In summary, a feedforward network with a
|| At abiay < single layer is to represent any

and Aaron Courville

function, but the layer may be infeasibly
large and may fail to learn and generalize

correctly.
-P.193




Think the network as a function

See Code



A summary

) ’
p

S

|
R 0“0
N

Output layer

s .‘.U..

»xw@wmwﬂ//rl

A
N

.
W

@
7 (/ %\\‘V“\

X \) A A DA XN A
ORRAA
PP
BRI
) v‘» ARANAAD \0 ’
.é‘s\ «00\.600 /,o
\ \/A‘\\/e\\.ﬁ‘v //

/ RORPAAT
N ‘

97 RN
P ININ
000Moo

\§

Wf
OO
\ /

W
L

Hidden layer

7

[nput layer

- Neural networks are universal function approximators

— Can model any Boolean function

— Can model any classification boundary

— Can model any continuous valued function



The “capacity” of a network

« VW Cdimension

- SomePapers
— Koiran and Sontag (1998): For “linear” or threshold units, V\C
dimension is proportional to the number of weights

* For units with piecewise linear activation it is proportional tothe
square of the number of weights

— Batlett, Harvey, Liaw, Mehrabian “Nearly-tight VC-dimension
bounds for piecewise linear neural networks” (2017):

 Forany W, L s.t W> CL > C/"2, there exists a ReLU network with less
Players, less W weights with VC dimension > %mgz(%)

*  Network capacily, generalization abiity , elc



The Perceptron

The structural building block of deep learning

Forward pass

aka, Forward propagation, FP
n-1 layer neuron ‘ X

Bias Activation Function



The Perceptron: Bias

The structural building block of deep learning

Are you going to have lunch in Sadler Center?

Weather: O or 1 Wl =] Ifb=0

Foods: O or 1 w, =1 If b =1

Dinning Dollar: 0 or1 w3 = 1 If b >4




The Perceptron: Activations

The structural building block of deep learning

Sigmoid Function Tanh Function

Relu Function Leaky ReLu Function




The Perceptron: Activations

The structural building block of deep learning

>3y

o,

o
° 20¢ .'@J 00 ¢
c-%%%go% T fe %l

°

b

o
°

%o

o e  ©

8,.
Y

°

020
® o %04,

& }"‘:o.

o

=

into the network

W11

wix; + by
Wo1

\ WhrX; + b,

W3 q

wsX| + by
Wy

W4x1 + b4

y =wp(wixy + by) +wy WXy + by) + wy (Wsxy + by)wyy ((Wexy + by)



The Perceptron: Activations

The structural building block of deep learning

See Code



Activation Functions: Properties

Nonlinearity
Differentiability

Easiness

Monotonicity

Non-saturation
Identity(near the origin)
Ranging
Less coefficients
Zero-centered or not



Activation Functions: Properties

Non-saturation:
simply understand as some interval where the gradient equals to 0

(| Im o(x) > +00]) V(] IlIm o(x) > + 0|)

X——00 X—>+00

Identity(near the origin): 6(x) =~ x
Ranging
Less coefficients

zero-centered: ensure the mean activation value is around zero



The Perceptron

The structural building block of deep learning

Forward pass

aka, Forward propagation, FP
n-1 layer neuron ‘ X

Bias Activation Function



Think the network as a function

7A N XANS A\

\\v vI 'y ‘\‘ N\ X4 ~
‘ \\4/ \‘\ (// \\» :[/‘
AN " /. A\’\ '/. 4\\ U '/. ‘ "I\

\u Hl' “00
/
\ b‘

v/‘ ‘ \\v v/' ‘v‘\v "I ‘ \\v
ﬁ/' «\ / I» \\ / I» Q\} \'/

NP2 AT AN T/ A
\v;“\v;“d/

We will assume a

— No loops: Neuron outputs do not feed back to their inputs directly or
indirectly

Part of the design of a network: Thearchitecture
- How many layers/neurons, which neuron connects to which and how, etc.

For now, assume the architecture of the network is capable of
representing the needed function



What we learn: The parameters of the
hetwork

I;A \',l/,‘a\\:l,;f,A\t‘\,’,lly, \ The network is a function f()
\ / N ‘s\:m m\w‘h“‘w with parameters W which must

be set to the appropriate

v §og¢o .‘v K2 §“ 'o,’v

A <
>»,\\‘ JABRK R JERA '
/68 "‘0 \\'« YOS ": N

/r «\ \ Ir \‘ lr «\
\\ Z’A A\\% ﬁ/'A A\\

VA VA YAV

Za\
f(W; X)

values to get the desired
behavior from the net

- Given: the architecture of the network
. : The weights and biases

« Learning the network : Determining the values of these parameters
such that the network computes the desired function



How to learn a network

\

IR

,r “'¢' §;,0 * ® m a C
I‘g’a"‘; 4‘0‘: 4/’( f( * ) % {%
o‘\\' SONY ‘IQ\‘ *
,:‘l& Z,,““\ /,},‘o‘l&';’

V/\ ANVAY,

When f(W;X) has the capacity to exactly represent g( -)

re

A\

W =argmin, | div(f(W;X),g(-))dX
Jx

div() is a divergence function that goes to 0 when f(W; X) = g(X)



However...

* Function g(-) must be fullyspecified
- Known everywhere, i.e. for everyinput



Sampling

- Sample g(-)
— Basically, get input-output pairs for a number of samples of input
- Many samples (X, d,) where d. =g(X)) +¢

— Good sampling: the samples of X willbe drawn from P(X)
* Very easy to do inmost problems: just gather training data

- E.g. set of images and their class labels

- E.g. speech recordings and theirtranscription



Minimizing expected error

/A\\ INANG

%Q/ §*:%1rp’dz §sup'

AT
4" -4&'\

X o’ ‘s\'i' §§¢0 m C
' \‘ /‘ I‘\;’Q}"Q 6"‘:\ 4/0( f( ¢ ) : % % {%
o‘\' ‘10 . ‘1‘\
\‘/;“l& Z}, 0‘1& Z}, . ‘l&'/’
NI

More generally, assuming X is a random variable

re

W =argmin, | div(f(W;X),g(-))P(X)dX
Jx

= argminy E[div(f(W; X), g(-))]




The Empirical Risk

The expected error (or risk) is the average error over the entire input space

Eldiv(f(W; X), g(X)] = | div(f(W;X),g(X))P(X)dX
JX
The of the expected error is the average error over the samples

N
Eldiv(f(W: X), g(X))] ~ % z} div(f(W; X), d)




The Empirical Risk Minimization problem

'\\'l 4 A R\ ‘\\\'{//.A\\

\\\vzl/ Q\ 'l//‘ \t’, /“V/

V\ v \ MR
'w'o; ;s u; ) o “"’A\

‘w" W, .
23 u;.‘oh;';’n:;: 4; ‘( f(W7 X)

’l 4 (N 'IOQ

A

/' ‘

N ﬁ,a NN ‘A:\\Vif
78N ot T8N vt 7O

V/‘\V/‘\V/‘\\V

- Given a training set of input-outputpairs (X;.d)). (x,,d,), -+, (xy, dy)
— Error on the ithinstance: div(f(W;x),d)
— Empirical average error (Empirical Risk) on all training data:

N
Loss(W) = % Z div(f(W; X),d))
=1

- Estimate the parameters to minimize the empirical estimate of
expected error

A

W = argminy,Loss(W)

l.e. minimize the empirical risk over the drawn samples



ERM problem Statement

- Given a training set of input-outputpairs (X;,d)),(X,,d,), -+, Xy, dy)

«  Minimize the following function (w.r.t W)

1 N
Loss(W) = — Y div(f(W;: X). d)) + y(w)
=1

 This is problem of function minimization



How to solve ERM problem?




Gradient Descent Algorithm (GD)

* |n order to minimize any function f(w) w.r.t w

Do
For every component ;

)

dWi,t—l

Wit =Wir—1 —H

t—tr+1

While |f(w) =fw_p| > €

* See later lecture



What is f(): Typical network

Ve~
N

XYL
AN

Oor 1

a’AY,
1‘, \'»
20,9,

NN

AR
é{;}i X\§

Data Hidden Layer Output Layer



Notation

1 2
yh oy

7N AN

X >
A A A /AN,
| \ i/ / \ »
L XSGR NS 58]
~ P o > A IA
COMOIRCIRCo
% \ / 7 N
.>e o % S S 4[,%\
/,
AD Z JAX

AR SN SRR TN
v IOk ' O ' IORX \' [ =
AN NN ZAXN /i
w,,‘\\ ” '/I,“\"

ANVANV/Z\

The input layer is the 0™ layer

We will represent the output of the ; perceptron of the k™ layer as yl-"
Input to network: yl-(o) =X
Output to network: Y; = le

We will represent the weight of the connection between the i "hynit of the
(k — 1)™ layer and the jth unit of the k”* layer as wg‘)

— The bias to the jth unit of the k" layeris bj(k)



A1
Q’(l, X
\'I‘ a
XX
0“‘\\‘
%9

N
\

Given a training set ofinput-output pairs (X, d)), (x,,d,), -+, (xy, dy)

Xn = [xnl’xn2’ " XuD.
dn — [dnl’ dn2’ B dnL-

Notation

I XA NRANS]

N

NS

\ “" “6'1/ \A A ‘[ VY \ ,‘l

‘\3;50: /1;\ XAV "\\‘a’z'h.\

AR X
INC AT

I 2000

SR SO Y
RIS /';l;’«‘\'/';l;'«\;‘\'/ > s
X X\\%'?/ti‘l\\% RN

\ A

\ ll/n

N7
N

R
X

\

SR N
OCORAK /“Q‘Q 3;0‘\
Z AR

“1//\

IS the nth input vector
Is the nth desired output

Y, = Yo 5 Yl 18 the nth vector of actual outputs of the network

We will sometimes drop the first subbscript when referring to a specific
Instance



Representing the input

‘ ANY,
L AT
2 A X X

KNP0 e
Ry RSN e
Vohihs? w&x’»‘w.\\.*f:ow N XIS

O\ ’ 0 O "b \,‘(‘ ¢, > "b Q’ 0) /N /) (
® \J () ®
LI R LK L0

DA i BRASIT/ A
N A A\ /g A\
x \/,'l/""‘\»“\ /',4'4&‘,\‘“ /I'( '4\‘)‘ \‘\\ \

* \ectors of numbers
— (or may even be just a scalar, if input layer is of size 1)
— E.g. vector of pixel values

* We will see how this happens later in the course (CNN)
— E.g. vector of speechfeatures
— E.g. real-valued vector representing text
— Other real valued vectors



Representing the output

O E Ny

1
|

N AN ANYY A\\~ :

O.Y% /AN 4 \ )
SRS
KX KREH XAARL XA XX
WS 2 S e N4 4,;».\ '

\ / // \
NV NV ANV
E [

* If the desired output is real-valued, no special tricks are necessary
— Scalar Output : single output neuron
* d = scalar (realvalue)

— Vector Output : as many output neurons as the dimension of
the desired output

» d =[d1d>..d ] (vector of real values)



Representing the output

* If the desired output is binary (is this a cat or not), use a
simple 1/0 representation of the desired output

—1 =Yesitsacat
— 0 =No it'snot acat.



Multi-class output: one-hot
representations

Consider a network that must distinguish if an input is a cat,a dog, a camel, a hat, or a
flower
We can represent this set as the following vector:
[cat dog camel hat flower]T

For inputs of each of the five classes the desired output is:

cat [10000]T

dog: [01000]T

camel: [00100]T

hat: [00010]T

flower: [00001]T

For an input of any class, we will have a five-dimensional vector output with four zeros
and a single 1 at the position of that class

This is a one hot vector



Multi-class networks

’ 1
S AN AN \ :
NX X7/ X\/ 3 ’
ARG,y !
vv \\4‘;(/\\¢"\¢§6"(/ V‘ i
B KA X8 f«v}.(ﬁ?é éw}' W,
KX QAN SN %! !
&\ \ / AR /)
xp XN X R X [ v
LA AN LANX
"N
\ / ) \
VANV
E N
~ - E m .

For a multi-class classifier with N classes, the one-hot representation will
have N binary outputs

— An N-dimensional binaryvector

The neural network’s output too must ideally be binary (N-1 zeros and asingle 1 in
the right place)

Morerealistically, it will be a probability vector
— N probability values that sum to 1



Multi-class classification: Output

X1 Y1
N AN AN A\\
B A RS
v ~ '0\'\1 r :\» :“yv"z ,
X KO X Ko XX
A e N e 00 o s SN
. A\\\ VIR T X ;"& v
DN 200N 2480
D RL_NZERNNININ L]/ L

V4

VAV

 Softmax vector activation is often used at the output of multi-class classifier
nets

exp(z)
o= Y ey, l

- Ji 7 B ZJ. exp(z;)
J

» This can be viewed as the probability y; = P(class = i|X)



Typical Problem: binary classification

* Given, many positive and negative examples (training data),
- learn all weights such that the network does the desired job



Typical Problem:
multi-class classification




ERM problem Statement

- Given a training set of input-outputpairs (X;,d)),(X;,d,), ---, (%

«  Minimize the following function (w.r.t W)

| &
Loss(W) = — div oo X ).
(W) NZI (FOW X)s

« This is problem of function minimization

What is the divergence function: div() ?




Examples of divergence functions

dy d, d;

TN NRAN

PR “\t\\"'llfl’%
57\ R N N5
O/ X ‘f‘\ 4, X v‘/~ Q3 ,”‘e 4, \‘
\'A" 2NN AN ANESRANNAN “A X
XS 0% N7 Oy NS
?, %‘& RN AR AW ‘
G RIS A KIS OPIRES

4
\
RN IR
N\ 2R B8R AR

D X K
7K > >

 For real-valued output vectors, the (scaled) L, divergence is popular
Piv(Y,d) =~ 1Y =d| P ==Y (- d”
’ 2 2 i l l

— Squared Euclidean distance between true and desired output
— Note: this is differentiable

Div(Y,d)
dy;

= —d)



Training Neural Network with GD

Loss:
1 & g
Loss(W) = — )" div(f(W; X).d)
N l=1 l? 9 l
Algorithm: Xp

-

Wir=Wir1—1 7
Wir—1

For every layer kK, for all i, J, update:

D ) dLoss
ij,t ij,t—1 4 dw (k)
ij,t—1

7 NS NSNS\

/) a\
v
"(" /“:\X& A Q (“:‘\‘I 02N
“v N 7'\ 78 7 SO
. O O W
\

7N

\' X2/ Y /‘\ 9, /
XD

‘\\‘ ~'¢'I4,;,‘\“\", "&

\ % &Vlf

‘\\v v,/ J ‘\\' N/ N
NN AN/ 7AY
C/\ ¥ ’\"\"'/v "/ 4, ‘\ "
D ISR AWVAN/TS ‘A'IA
XX
\ NN SO

\Viviv
VAV RV AV




Chain rule

» For any nested function y = f(g(w))

dy __of dgw
dw  dg(w) dw

Check
Ay=ﬂAw
A
d
= o) = Az =280 A
dw




T XRANRANR

NS a0 7 aNVY vl/’N
l"\‘%’a;’i‘\}«;\%ﬁ‘\\g\%{/‘\ Y

’ XN ‘
WY A‘}'ﬁ'gx

A A ONAY Y3
SR RNVOR AR

SN A SRS
S Q) o Y S
o“\‘ 20RO K 7 PR
N NN NN N Y 2\
\\ /"«/’»‘"«‘\»“\'/"«l';‘i\"\'/"«i;"«‘\»“\'/, >
NFNTENIINL ]
T 7o <%
\VAAVAAVIAV

Chain rule

dLoss
k
dw© i

1j,I—

w® = &
ij,t ij,1—

.



Example

WD 2D g 3Dy Q)

1

2),,(1
7] = wl(ll)y(o) = Gl(Zl) . Z Z W( )y( ) y1 — U(Zl) -3

l

+ > >



Forward Computation

(k)

k) _ k)~ (k—1) (k) — (k)
20 = 2w Y = 0G")



Backward Computation: derivatives

yO = x

xl ® 06 O

iv(y*,d)

The derivative wir.t the actual output of
the network is simply the derivative
wirt to the output of the final layer of
the network




Backward Computation: derivatives

yO = x

X1

oDiv(Y,d) 9y aDiv(Y,d) | oDiv(Y,d) _ oDiv(Y,d)

0 ka) 0z fk) 0y fk) % dy; ayi(k)



Backward Computation: derivatives

0) — 4

Y

xl ® 06 O

o0 o div(y, d)

oDiv(Y,d) ayf"} dDiv(Y,d) | oDiv(Y,d)  oDiv(Y,d)
oz{P oz oy® dy. — dy®



Backward Computation: derivatives

yO = x

X1

oDiv(Y,d)  oy® oDiv(Y,d) :
_ — 5

dz® oz\¥  ay®




Backward Computation: derivatives

yO = x

X1

oDiv(Y,d) 9% oDiv . oDiv(Y,d) _ oy oDin(Y,d) _ :
_ Py _ .

ow®  owh o e P a® oy




Backward Computation: derivatives

yO = x

X1

oDiv(Y.d) * 0z%oDiv -
(Y,d) ' 0z = why®D 4 b

dwﬁ) dwf’? dsz)




Backward Computation: derivatives
0) —

y =X

X1

oDiv(Y,d) .

&Wg)




Backward Computation: derivatives
0) —

y =X




Backward Computation: derivatives

0) — 4

Y

X1

oDiv(Y,d) Z dz(k) oDiv
= ayfk—l) azj(k)

J



Backward Computation: derivatives

0) — 4

Y

X1

k - (k— 0z(k).'0Div

oDiv(Y,d) oDiv
Z Wl(;{) o 2 = Wi Z =10 .0



Backward Computation: derivatives

yO = x

X1

oDiv(Y, d oDiv oDiv(Y, d oDi
(Y.d) k=1 (Y, d) _ yi(k—Z) bl

k=2 / k—1 k—1
ayi( ) ; ij 02]-( ) awlg )

(k—1)
02]-



Backward Computation: derivatives

oDiv(Y, d)

owi)

(1) aDlV ODzv(Y, d) ' (1) oDiv
— ) o - o9&
0z; 0z, 0y,




Backward Computation: derivatives

For Output layer (k): Called “Backpropagation” because the
derivative of the loss is propagated

oDiv(Y,d) _ oDiv(Y,d) "backwards” through the network

ayl' ayl(k)

oDiv(Y,d) 9y oDiv(Y,d)
oz®  0z®  gy®

l

For layer k -1 to 1:

oDiv(Y,d) ' Backward weighted
ay® - Z Wi combination of next layer
i j
oDiv(Y,d)
oz = o3

oDiv(Y,d) ® oDiv
0wl§-k+1) i dzj(kH)




Scalar activation VS vector activation

7 (k)

k
Y (k)

@

Scalar activation: Modifying z Vector activation: Modifying z
only changes corresponding y potentially changes ally



Scalar activation VS vector activation

(k) )

7® (k) <] Yy

(k) oDiv

25 gy®

oDiv(Y,d)  dy® aDiv oDiv(Y, d) Z
= k
oz dz\? ay® 79

J



vector activation example: Softmax

)

k
“ © _ €Xp(zi( ))

4 yl. — Forward Pass

, (k)
oDiv(Y, d) _ Z oDy Backward Pass
7" oz oy

<

X1

ay(k)
=yl =y if i=]
a (k) yl yl ]

(k)
8yj
oz

l

==y i i#]












