Introduction to Deep Learning

WM CS

Zeyi (Tim) Tao
11/01/2019

References

- Introduction to Deep Learning CMU 11-785 http://deeplearning.cs.cmu.edu/
- Introduction to Deep Learning MIT 6.S191 http://introtodeeplearning.com/
- MIT Deep Learning Collections https://deeplearning.mit.edu/
- Deep Learning Stanford CS230 (Andrew Ng) https://cs230.stanford.edu/
- Convolutional Neural Networks Stanford CS231n http://cs231n.stanford.edu/
- Others (Books, Papers, Talks, Videos, etc

What is Deep Learning

AI: Any technique that enables computers to mimic human behavior

ML: Ability to learn without explicitly being programmed

DL: Extract patterns from data using neural networks

$$
\begin{aligned}
& 313472 \\
& 174235
\end{aligned}
$$

[PDF]

Some Studies in Machine Learning Using the Game of Checkers

citeseerx.ist.psu.edu) viewdoc) download v
by AL Samuel - Cited by 3030 - Related articles
Abstract: Two machine-learning procedures have been investigated in some detail usi!Jg the game of checkers. Enough work has been done to verify the fact ..

Deep Learning: state-of-the-art

Exciting Progress:

- Face recognition
- Image classification
- Speech recognition
- Text-to-speech generation
- Handwriting transcription
- Machine translation
- Medical diagnosis
- Cars: drivable area, lane keeping

Art generation (Neural Style Transfer)

- Digital assistants
- Ads, search, social recommendations
- Game playing with deep RL

Traditional Machine Learning

Hand engineered features are time consuming, brittle and not scalable in practice. Can we learn the underlying features directly from data?

History of Deep Learning Ideas

History of Deep Learning Ideas and Milestones

- 1943: Neural Networks
- 1957: Perceptron
- 1974-86: Backpropagation, RNN
- 1989-98: CNN, MNIST, LSTM, Bidirectional RNN
- 2006: "Deep Learning", DBN, by Geoff Hinton et al
- 2009: ImageNet
- 2012: AlexNet, Dropout
- 2014: GANs
- 2014: DeepFace
- 2016: AlphaGo
- 2017: AlphaZero, Capsule Networks
- 2018: BERT

History of DL Tools

- Mark 1 Perceptron - 1960
- Torch - 2002
- CUDA - 2007
- Theano - 2008
- Caffe - 2014
- DistBelief - 2011
- TensorFlow 0.1-2015
- PyTorch 0.1-2017
- TensorFlow 1.0 - 2017
- PyTorch 1.0-2017
- TensorFlow 2.0-2019

History of Deep Learning Ideas

Deep Learning Today

Big Data

Larger Datasets

Easier Collection \& Storage

Scale drives deep learning progress

Hardware

Graphics Processing Units (GPUs)

Massively Parallelizable

Software

Improved Techniques

New Models Toolboxes

5 Stages in Gartner Hype Cycle

Again, What is Deep Learning?

Deep learning is a class of machine learning algorithms that uses multiple layers to progressively extract higher level features from the raw input.(wiki)

Observations: The Brain and Neurons

The Perceptron

- Frank Rosenblatt
- Psychologist, Logician
- Inventor of the solution to everything, aka the Perceptron (1957)

Rosenblatt's Perceptron (math model)

- Number of inputs combine linearly
- Threshold logic: Fire if combined input exceeds threshold

Rosenblatt's Perceptron

- Originally assumed could represent any Boolean circuit and perform any logic
- "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence," New YorkTimes (8 July) 1958
- "Frankenstein Monster Designed by Navy That Thinks," Tulsa, Oklahoma Times 1958

Rosenblatt's Learning Algorithm

$$
w=w+\eta(d(x)-y(x)) x
$$

Sequential Learning:
$d(x)$ is the desired output in response to input x
$y(x)$ is the actual output in response to x

- Boolean tasks
- Update the weights whenever the perceptron output is wrong
- Proved convergence for linearly separable classes

The Perceptron (gate)

Values shown on edges are weights, numbers in the circles are thresholds

$$
X \xrightarrow{-1} \longrightarrow \bar{X}
$$

However, the single perceptron ...

No solution for XOR!
Not universal!

The Multi-layer Perceptron (gate)

- XOR
- The first layer is a "hidden" layer
- Also originally suggested by Minsky and Papert 1968

The Multi-layer Perceptron (gate)

- A"multi-layer" perceptron
- Can compose arbitrarily complicated Boolean functions!
- In cognitive terms: Can compute arbitrary Boolean functions over sensory input
- More on this in the next class

But our brain is not Boolean

- We have real inputs
- We make non-Boolean inferences/predictions

The Perceptron (real inputs)

- $x_{1} \ldots x_{N}$ are real valued
- $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{N}}$ are real valued
- Unit "fires" if weighted input exceeds a threshold

The Perceptron (real inputs)

- $x_{1} \ldots x_{N}$ are real valued
- $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{N}}$ are real valued
- Unit "fires" if weighted input exceeds a threshold
- The output y can be real valued
- Sometimes viewed as the "probability" of firing

Other activations

sigmoid

Tanh

ReLU

- Does not always have to be a squashing function
- We will hear more about activationslater
- We will continue to assume a "threshold" activation right now

The Perceptron (real inputs)

- This is a linear classifier

"Decision" Boundaries

- Build a network of units with a single output that fires if the input is in the coloured area

"Decision" Boundaries

"Decision" Boundaries

"Decision" Boundaries

"Decision" Boundaries

- Network to fire if the input is in the yellow area
- "OR" two polygons
- A third layer is required

A summary

- MLPs are connectionist computational models
- Individual perceptrons are computational equivalent of neurons
- The MLPis a layered composition of many perceptrons
- MLPs can model Boolean functions
- Individual perceptrons can act as Boolean gates
- Networks of perceptrons are Boolean functions
- MLPs are Boolean machines
- They represent Boolean functions over linear boundaries
- They can represent arbitrary decisionboundaries
- They can be used to classify data

"Decision" Boundaries

- How would you compose the decision boundary to the left with only one hidden layer?

Composing decision boundaries

"Decision" Boundaries

- MLPs can capture any classification boundary
- Aone-layer MLPcan model any classification boundary
- MLPs are universal classifiers

However...

- Anaïve one-hidden-layer neural network will required infinite hidden neurons

How to improve

- Two hidden-layer network: 56 hidden neurons

How to improve

- Two layer network: 56 hidden neurons
- 16 neurons in hidden layer 1

How to improve

- Two-layer network: 56 hidden neurons
- 16 in hidden layer 1
- 40 in hidden layer $2\left(\left\lfloor(n+2)^{2} / 8\right\rfloor\right)$
- 57 total neurons, including output neuron

Depth

- "Shallow vs deep sum-product networks,"

Oliver Dellaleau and YoshuaBengio

- For networks where layers alternately perform either sums or products, a deep network may require an exponentially fewer number of layers than a shallow one.
- The number of neurons required in a shallow network is potentially exponential in the dimensionality of the input
- Alternately, exponential in the number of statistically independent

The features

Not independent features

- Deep neural network can extract the features

A summary

- Multi-layer perceptrons are Universal Boolean Machines
- Even a network with a single hidden layer is a universal Boolean machine
- Multi-layer perceptrons are Universal Classification Functions
- Even a network with a single hidden layer is a universal classifier
- But a single-layer network may require an exponentially large number of perceptrons than a deep one
- Deeper networks may require far fewer neurons than shallower networks to express the same function
- Could be exponentially smaller
- Deeper networks are more expressive

Function Approximation (single input)

How to approximate function above by using threshold MLPs?

Function Approximation (single input)

- Asimple 3-unit MLP with a "summing" output unit can generate a "square pulse" over an input
- Output is 1 only if the input lies between T_{1} and T_{2}
$-T_{1}$ and T_{2} can be arbitrarily specified

Function Approximation(single input)

- A simple 3-unit MLP can generate a "square pulse" over an input
- A MLP with many units can model an arbitrary function over an input
- To arbitrary precision
- Simply make the individual pulses narrower
- This generalizes to functions of any number of inputs

Think the network as a function

$$
\begin{aligned}
& f:\{0,1\} \rightarrow\{0,1\} \\
& f: R^{n} \rightarrow\{0,1\} \\
& f: R^{n} \rightarrow(0,1) \\
& f: R^{n} \rightarrow(-1,1)
\end{aligned}
$$

- Output unit with activation function

$$
f: R^{n} \rightarrow[0, \infty)
$$

- Threshold or Sigmoid, ReLU or any other
- The network is actually a universal map from the entire domain of input values to the entire range of the output activation
- All values the activation function of the output neuron

A summary

- Multi-layer perceptrons are Universal Boolean Machines
- Even a network with a single hidden layer is a universal Boolean machine
- Multi-layer perceptrons are Universal ClassificationFunctions
- Even a network with a single hidden layer is a universal classifier
- Multi-layer perceptrons are Universal Function approximate for entires class of functions (maps) it represents

In summary, a feedforward network with a single layer is sufficient to represent any function, but the layer may be infeasibly large and may fail to learn and generalize correctly.

Think the network as a function

See Code

A summary

- Neural networks are universal function approximators
- Can model any Boolean function
- Can model any classification boundary
- Can model any continuous valuedfunction

The "capacity" of a network

- VC dimension
- SomePapers
- Koiran and Sontag (1998): For "linear" or threshold units, VC dimension is proportional to the number of weights
- For units with piecewise linear activation it is proportional to the square of the number of weights
- Batlett, Harvey, Liaw, Mehrabian "Nearly-tight VC-dimension bounds for piecewise linear neural networks" (2017):
- For any W, L s.t W> CL > C^2, there exists a ReLU network with less Players, less W weights with VC dimension $>\frac{W L}{C} \log _{2}\left(\frac{W}{L}\right)$
- Networkcapaciygenere'retionabily,etc

The Perceptron

The structural building block of deep learning

The Perceptron: Bias

The structural building block of deep learning

Are you going to have lunch in Sadler Center?
Weather: $\mathbf{0}$ or $\mathbf{1} \quad w_{1}=1 \quad$ If $\mathbf{b}=\mathbf{0}$

Foods: $\mathbf{0}$ or $\mathbf{1} \quad w_{2}=1 \quad$ If $\mathbf{b}=\mathbf{1}$
Dinning Dollar: 0 or $1 \quad w_{3}=1 \quad$ If $\mathbf{b}>4$

The Perceptron: Activations

The structural building block of deep learning

The Perceptron: Activations

The structural building block of deep learning

The purpose of activation functions is to introduce non-linearities into the network

The Perceptron: Activations

The structural building block of deep learning

See Code

Activation Functions: Properties

Nonlinearity Differentiability
 Easiness
 Monotonicity
 Non-saturation
 Identity(near the origin)
 Ranging
 Less coefficients
 Zero-centered or not

Activation Functions: Properties

Non-saturation:
simply understand as some interval where the gradient equals to 0

$$
\left(\left|\lim _{x \rightarrow-\infty} \sigma(x) \rightarrow+\infty\right|\right) \vee\left(\left|\lim _{x \rightarrow+\infty} \sigma(x) \rightarrow+\infty\right|\right)
$$

Identity(near the origin): $\sigma(x) \approx x$
Ranging
Less coefficients
zero-centered: ensure the mean activation value is around zero

The Perceptron

The structural building block of deep learning

Think the network as a function

- We will assume a feed-forward network
- No loops: Neuron outputs do not feed back to their inputs directly or indirectly
- Part of the design of a network: Thearchitecture
- How many layers/neurons, which neuron connects to which and how, etc.
- For now, assume the architecture of the network is capable of representing the needed function

What we learn: The parameters of the network


```
The network is a function f()
with parameters W which must
be set to the appropriate
values to get the desired
behavior from the net
```

- Given: the architecture of the network
- The parameters of the network: The weights and biases
- Learning the network : Determining the values of these parameters such that the network computes the desired function

How to learn a network

$$
f(\cdot): \mathscr{R}^{m} \rightarrow \mathscr{R}^{c}
$$

Suppose $g(\cdot)$ is given

When $f(W ; X)$ has the capacity to exactly represent $g(\cdot)$

$$
\hat{W}=\operatorname{argmin}_{w} \int_{X} \operatorname{div}(f(W ; X), g(\cdot)) d X
$$

div(0) is a divergence function that goes to $\mathbf{0}$ when $f(W ; X)=g(X)$

However...

- Function $g(\cdot)$ must be fullyspecified
- Known everywhere, i.e. for every input
- In practice we will not have such specification

Sampling

- Sample $g(\cdot)$
- Basically, get input-output pairs for a number of samples of input
- Many samples (X_{i}, d_{i}) where $d_{i}=g\left(X_{i}\right)+\epsilon$
- Good sampling: the samples of X will be drawn from $P(X)$
- Very easy to do in most problems: just gather training data
- E.g. set of images and their class labels
- E.g. speech recordings and their transcription

Minimizing expected error

$$
f(\cdot): \mathscr{R}^{m} \rightarrow \mathscr{R}^{c}
$$

More generally, assuming X is a random variable

$$
\begin{aligned}
W & =\operatorname{argmin}_{w} \int_{X} \operatorname{div}(f(W ; X), g(\cdot)) P(X) d X \\
& =\operatorname{argmin}_{W} E[\operatorname{div}(f(W ; X), g(\cdot))]
\end{aligned}
$$

The Empirical Risk

The expected error (or risk) is the average error over the entire input space

$$
E[\operatorname{div}(f(W ; X), g(X))]=\int_{X} \operatorname{div}(f(W ; X), g(X)) P(X) d X
$$

The empirical estimate of the expected error is the average error over the samples

$$
E[\operatorname{div}(f(W ; X), g(X))] \approx \frac{1}{N} \sum_{i=1}^{N} \operatorname{div}\left(f\left(W_{i} ; X\right), d_{i}\right)
$$

The Empirical Risk Minimization problem

$$
f(W ; X)
$$

- Given a training set of input-output pairs $\left(X_{1}, d_{1}\right),\left(x_{2}, d_{2}\right), \cdots,\left(x_{N}, d_{N}\right)$
- Error on the ith instance: $\operatorname{div}\left(f\left(W ; x_{i}\right), d_{i}\right)$
- Empirical average error (Empirical Risk) on all training data:

$$
\operatorname{Loss}(W)=\frac{1}{N} \sum_{i=1}^{N} \operatorname{div}\left(f\left(W_{i} ; X\right), d_{i}\right)
$$

- Estimate the parameters to minimize the empirical estimate of expected error

$$
\hat{W}=\operatorname{argmin}_{W} \operatorname{Loss}(W)
$$

I.e. minimize the empirical risk over the drawn samples

ERM problem Statement

- Given a training set of input-output pairs $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right), \cdots,\left(X_{N}, d_{N}\right)$
- Minimize the following function (w.r.t W)

$$
\operatorname{Loss}(W)=\frac{1}{N} \sum_{i=1}^{N} \operatorname{div}\left(f\left(W_{i} ; X\right), d_{i}\right)+\gamma(w)
$$

- This is problem of function minimization

How to solve ERM problem?

Gradient Descent Algorithm (GD)

- In order to minimize any function $f(w)$ w.r.t w

Do
For every component i

$$
\begin{aligned}
& w_{i, t}=w_{i, t-1}-\eta^{t} \frac{d f}{d w_{i, t-1}} \\
& t \rightarrow t+1
\end{aligned}
$$

While $\left|f\left(w_{t}\right)-f\left(w_{t-1}\right)\right|>\epsilon$

- See later lecture

What is f(): Typical network

Notation

- The input layer is the $0^{t h}$ layer
- We will represent the output of the $i^{\text {th }}$ perceptron of the $k^{\text {th }}$ layer as y_{i}^{k}
- Input to network: $y_{i}^{(0)}=x_{i}$
- Output to network: $y_{i}=y_{i}^{N}$
- We will represent the weight of the connection between the $i^{\text {th }}$ unit of the $(k-1)^{t h}$ layer and the $j^{t h}$ unit of the $k^{t h}$ layer as $w_{i j}^{(k)}$
- The bias to the $j^{\text {th }}$ unit of the $k^{\text {th }}$ layer is $b_{j}^{(k)}$

Notation

- Given a training set ofinput-output pairs $\left(X_{1}, d_{1}\right),\left(x_{2}, d_{2}\right), \cdots,\left(x_{N}, d_{N}\right)$
- $X_{n}=\left[x_{n 1}, x_{n 2}, \cdots, x_{n D}\right]$ is the nth input vector
- $d_{n}=\left[d_{n 1}, d_{n 2}, \cdots, d_{n L}\right]$ is the nth desired output
- $Y_{n}=\left[y_{n 1}, y_{n 2}, \cdots, y_{n L}\right]$ is the nth vector of actual outputs of the network
- We will sometimes drop the first subscript when refering to a specific instance

Representing the input

- Vectors of numbers
- (or may even be just a scalar, if input layer is of size 1)
- E.g. vector of pixel values
- We will see how this happens later in the course (CNN)
- E.g. vector of speechfeatures
- E.g. real-valued vector representing text
- Other real valued vectors

Representing the output

- If the desired output is real-valued, no special tricks are necessary
- Scalar Output : single outputneuron
- d = scalar (real value)
- Vector Output : as many output neurons as the dimension of the desired output
- $d=\left[d_{1} d_{2} . . d_{l}\right]$ (vector of real values)

Representing the output

- If the desired output is binary (is this a cat or not), use a simple $1 / 0$ representation of the desired output
$-1=$ Yes it's acat
$-0=$ No it's not a cat.

Multi-class output: one-hot representations

- Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat, or a flower
- We can represent this set as the following vector:

> [cat dog camel hat flower]T

- For inputs of each of the five classes the desired output is:

$$
\begin{array}{ll}
\text { cat: } & {\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right]^{\top}} \\
\text { dog: } & {\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}}} \\
\text { came:: } & {\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0
\end{array}\right]^{\mathrm{T}}} \\
\text { hat: } & {\left[\begin{array}{llllll}
0 & 0 & 1 & 0
\end{array}\right]^{\mathrm{T}}} \\
\text { flower: } & {\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1
\end{array}\right]^{\mathrm{T}}}
\end{array}
$$

- For an input of any class, we will have a five-dimensional vector output with four zeros and a single 1 at the position of that class
- This is a one hot vector

Multi-class networks

- For a multi-class classifier with N classes, the one-hot representation will have Nbinary outputs
- An N-dimensional binaryvector
- The neural network's output too must ideally be binary ($\mathrm{N}-1$ zeros and a single 1 in the right place)
- Morerealistically, it will be a probability vector
- N probability values that sum to 1

Multi-class classification: Output

- Softmax vector activation is often used at the output of multi-class classifier nets

$$
z_{i}=\sum_{j} w_{j i}^{(n)} y_{j}^{(n-1)} \quad y_{i}=\frac{\exp \left(z_{i}\right)}{\sum_{j} \exp \left(z_{i}\right)}
$$

- This can be viewed as the probability $y_{i}=P($ class $=i \mid X)$

Typical Problem: binary classification

$\begin{array}{llll}5 & 0 & 2 & 1 \\ 2 & 1 & 4 & 0 \\ 0 & 0 & 2 & 0\end{array}$

- Given, many positive and negative examples (training data), - learn all weights such that the network does the desired job

Typical Problem: multi-class classification

ERM problem Statement

- Given a training set of input-output pairs $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$,
- Minimize the following function (w.r.t W)

$$
\operatorname{Loss}(W)=\frac{1}{N} \sum_{i=1}^{N} \operatorname{div}\left(f\left(W_{;} ; X\right) d_{i}\right)+\gamma(w)
$$

- This is problem of function minimization

```
What is the divergence function: \(\operatorname{div}()\) ?
```

Note: For Loss(W) to be differentiable w.r.t W, div() must be differentiable.

Examples of divergence functions

- For real-valued output vectors, the (scaled) L_{2} divergence is popular

$$
\operatorname{Div}(Y, d)=\frac{1}{2}\|Y-d\|^{2}=\frac{1}{2} \sum_{i}\left(y_{i}-d_{i}\right)^{2}
$$

- Squared Euclidean distance between true and desired output
- Note: this isdifferentiable

$$
\frac{\operatorname{Div}(Y, d)}{d y_{i}}=\left(y_{i}-d_{i}\right)
$$

Training Neural Network with GD

Loss:

$$
\operatorname{Loss}(W)=\frac{1}{N} \sum_{i=1}^{N} \operatorname{div}\left(f\left(W_{i} ; X\right), d_{i}\right)
$$

Algorithm:

$$
w_{i, t}=w_{i, t-1}-\eta^{k} \frac{d f}{d w_{i, t-1}}
$$

For every layer k, for all i, j, update:

$$
w_{i j, t}^{(k)}=w_{i j, t-1}^{(k)}-\eta \frac{d L o s s}{d w_{i j, t-1}^{(k)}}
$$

Chain rule

- For any nested function $y=f(g(w))$

$$
\frac{d y}{d w}=\frac{\partial f}{\partial g(w)} \frac{d g(w)}{d w}
$$

- Check

$$
\begin{aligned}
& \triangle y=\frac{d y}{d w} \triangle w \\
& z=g(w) \rightarrow \triangle z=\frac{d g(w)}{d w} \triangle w \\
& y=f(z) \rightarrow \triangle y=\frac{d f}{d z} \triangle z=\frac{d f}{d x} \frac{d g(w)}{d w} \triangle w
\end{aligned}
$$

How

Chain rule

$$
w_{i j, t}^{(k)}=w_{i j, t-1}^{(k)}-\eta \frac{d \operatorname{LosS}}{d w_{i j, t-1}^{(k)}}
$$

Example

$$
y^{(0)}=x
$$

$z_{1}^{1}=\sum_{i} w_{i 1}^{(1)} y_{i}^{(0)} y_{1}^{1}=\sigma_{1}\left(z_{1}^{1}\right) \Rightarrow z_{j}^{2}=\sum_{i} w_{i j}^{(2)} y_{i}^{(1)} y_{1}^{2}=\sigma\left(z_{1}^{2}\right)$
$\rightarrow \rightarrow+y$

Forward Computation

$$
y^{(0)}=x
$$

$$
Z_{j}^{(k)}=\sum_{i} w_{i j}^{(k)} y_{i}^{(k-1)} \quad y_{j}^{(k)}=\sigma\left(z_{j}^{(k)}\right)
$$

Backward Computation: derivatives

$$
y^{(0)}=x
$$

The derivative wrst the actual output of the network is simply the derivative w.rt to the output of the final layer of the network

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}}=\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}^{(k)}}
$$

Backward Computation: derivatives

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial z_{1}^{(k)}}=\frac{\partial y_{1}^{(k)}}{\partial z_{1}^{(k)}} \frac{\partial \operatorname{Div}(Y, d)}{\partial y_{1}^{(k)}}
$$

Backward Computation: derivatives

Backward Computation: derivatives

$$
y^{(0)}=x
$$

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial z_{1}^{(k)}}=\frac{\partial y_{1}^{(k)}}{\partial z_{1}^{(k)}} \frac{\partial \operatorname{Div}(Y, d)}{\partial y_{1}^{(k)}}=\sigma_{k}^{\prime}\left(z_{1}^{(k)}\right) \frac{\partial \operatorname{Div}}{\partial y_{1}^{(k)}}
$$

Backward Computation: derivatives

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial w_{11}^{(k)}}=\frac{\partial z_{1}^{(k)}}{\partial w_{11}^{(k)}} \frac{\partial D i v}{\partial z_{1}^{(k)}}
$$

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial z_{1}^{(k)}}=\frac{\partial y_{1}^{(k)}}{\partial z_{1}^{(k)}} \frac{\partial \operatorname{Div}(Y, d)}{\partial y_{1}^{(k)}}=\sigma_{k}^{\prime}\left(z_{1}^{(k)}\right) \frac{\partial \operatorname{Div}}{\partial y_{1}^{(k)}}
$$

Backward Computation: derivatives

$$
\frac{\partial D i v(Y, d)}{\partial w_{11}^{(k)}}=\frac{\partial z_{1}^{(k)}}{\partial w_{11}^{(k)}} \frac{\partial D i v}{\partial z_{1}^{(k)}}
$$

$$
z_{11}^{(k)}=w_{11}^{k} y_{1}^{(k-1)}+b
$$

Backward Computation: derivatives

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial w_{i j}^{(k)}}=y_{i}^{(k-1)} \frac{\partial D i v}{\partial z_{j}^{(k)}}
$$

Backward Computation: derivatives

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{1}^{(k-1)}}=?
$$

Backward Computation: derivatives

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{1}^{(k-1)}}=\sum_{j} \frac{\partial z_{j}(k)}{\partial y_{1}^{(k-1)}} \frac{\partial \operatorname{Div}}{\partial z_{j}^{(k)}} \quad \frac{\partial \operatorname{Div}(Y, d)}{\partial y_{1}^{(k-1)}}=?
$$

Backward Computation: derivatives

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{1}^{(k-1)}}=\sum_{j} w_{1 j}^{(k)} \frac{\partial \operatorname{Div}}{\partial z_{j}^{(k)}}
$$

$$
z_{j}^{(k)}=w_{1 j}^{k} y_{1}^{(k-1)}+b
$$

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{1}^{(k-1)}}=\sum_{j} \frac{\partial z_{j}(k)}{\partial y_{1}^{(k-1)}} \frac{\partial \operatorname{Div}}{\partial z_{j}^{(k)}}
$$

Backward Computation: derivatives

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}^{(k-2)}}=\sum_{j} w_{i j}^{(k-1)} \frac{\partial D i v}{\partial z_{j}^{(k-1)}}
$$

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial w_{i j}^{(k-1)}}=y_{i}^{(k-2)} \frac{\partial D i v}{\partial z_{j}^{(k-1)}}
$$

Backward Computation: derivatives

$$
\frac{\partial D i v(Y, d)}{\partial w_{i j}^{(1)}}=y_{i}^{(1)} \frac{\partial D i v}{\partial z_{j}^{(1)}}
$$

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial z_{i}^{(1)}}=\sigma_{1}^{\prime}\left(z_{i}^{(1)}\right) \frac{\partial \operatorname{Div}}{\partial y_{i}^{(1)}}
$$

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}^{(1)}}=\sum_{j} w_{i j}^{(2)} \frac{\partial D i v}{\partial z_{j}^{(2)}}
$$

Backward Computation: derivatives

For Output layer (k):

$$
\begin{aligned}
& \frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}}=\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}^{(k)}} \\
& \frac{\partial \operatorname{Div}(Y, d)}{\partial z_{i}^{(k)}}=\frac{\partial y_{i}^{(k)}}{\partial z_{i}^{(k)}} \frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}^{(k)}}
\end{aligned}
$$

Called "Backpropagation" because the derivative of the loss is propagated "backwards" through the network

For layer k-1 to 1:

$$
\begin{aligned}
& \frac{\partial D i v(Y, d)}{\partial y_{i}^{(k)}}=\sum_{j} w_{i j}^{(k+1)} \frac{\partial D i v}{\partial z_{j}^{(k+1)}}
\end{aligned} \begin{aligned}
& \text { Backward weighted } \\
& \text { combination of next layer }
\end{aligned}
$$

Scalar activation VS vector activation

Scalar activation: Modifying z only changes corresponding y

Vector activation: Modifying z potentially changes all y

Scalar activation VS vector activation

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial z_{i}^{(k)}}=\frac{d y_{i}^{(k)}}{d z_{i}^{(k)}} \frac{\partial D i v}{\partial y_{i}^{(k)}}
$$

$$
\frac{\partial D i v(Y, d)}{z_{i}^{(k)}}=\sum_{j} \frac{\partial y_{j}^{(k)}}{\partial z_{i}^{(k)}} \frac{\partial D i v}{\partial y_{j}^{(k)}}
$$

vector activation example: Softmax

