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What is Deep Learning

Artificial 
Intelligence

Machine 
Learning

Representation 
Learning

Deep 
LearningAI: Any technique that enables  computers to 

mimic  human behavior

ML: Ability to learn without explicitly being  
programmed

DL: Extract patterns from data using   
neural networks

!3



Deep Learning: state-of-the-art
Exciting Progress:

• Face recognition  

• Image classification  

• Speech recognition  

• Text-to-speech generation  

• Handwriting transcription  

• Machine translation  

• Medical diagnosis 

• Cars: drivable area, lane keeping  

• Digital assistants 

• Ads, search, social recommendations 

• Game playing with deep RL

Art generation (Neural Style Transfer)
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Traditional Machine Learning

Hand engineered features are time consuming, brittle and not scalable in practice.  

Can we learn the underlying features directly from data?



History of Deep Learning Ideas
History of Deep Learning Ideas and Milestones

• 1943: Neural Networks 

• 1957: Perceptron 

• 1974-86: Backpropagation, RNN 

• 1989-98: CNN, MNIST, LSTM, Bidirectional RNN 

• 2006: “Deep Learning”, DBN, by Geoff Hinton et al 

• 2009: ImageNet 

• 2012: AlexNet, Dropout 

• 2014: GANs 

• 2014: DeepFace 

• 2016: AlphaGo 

• 2017: AlphaZero, Capsule Networks 

• 2018: BERT 

History of DL Tools

• Mark 1 Perceptron – 1960  

• Torch – 2002  

• CUDA – 2007  

• Theano – 2008 

• Caffe – 2014  

• DistBelief – 2011  

• TensorFlow 0.1 – 2015  

• PyTorch 0.1 – 2017  

• TensorFlow 1.0 – 2017  

• PyTorch 1.0 – 2017  

• TensorFlow 2.0 – 2019



History of Deep Learning Ideas

1943

NN

1957

Perceptron

1986

Backpropagation

1989

Yann LeCun et al: Zip code

1993

SVM

2006

Geoff Hinton et al:  
Feed forward neural network



Deep Learning Today

Big Data                   Hardware                        Software 

Larger Datasets                            Graphics  Processing Units  (GPUs)        Improved Techniques  

Easier Collection & Storage          Massively  Parallelizable                          New Models Toolboxes 

Scale drives deep learning 
progress



Technology Trigger

Peak of Inflated Expectation

Trough of Disillusionment

Slope of Enlightenment

Plateau of Productivity

5 Stages in Gartner Hype Cycle

DL
Self-Driving Cars



Again, What is Deep Learning?

Input Model = Architecture + Parameters Output

0 or 1

x ∼ 𝒟 ⊂ ℛm f( ⋅ ) : ℛm → ℛc ̂y = f(x)

Deep learning is a class of machine learning algorithms that uses multiple layers to 
progressively extract higher level features from the raw input.(wiki)





Observations: The Brain and Neurons

Soma

Dendrites

Axon



The Perceptron

• Frank Rosenblatt

– Psychologist, Logician

– Inventor of the solution to everything, aka the Perceptron (1957)



Rosenblatt’s Perceptron (math model)

∑
i

wixi − T > 0

• Number of inputs combine linearly

– Threshold logic: Fire if combined input exceeds threshold



• Originally assumed could represent any Boolean circuit and perform any logic

– “the embryo of an electronic computer that [the Navy] expects  will be able to 

walk, talk, see, write, reproduce itself and be  conscious of its existence,” New 
York Times (8 July) 1958


– “Frankenstein Monster Designed by Navy That Thinks,” Tulsa,  Oklahoma Times 
1958

Rosenblatt’s Perceptron



Rosenblatt’s Learning Algorithm

w = w + η(d(x) − y(x))x
Sequential Learning:


is the desired output in response to input x

is the actual output in response to x

d(x)
y(x)

• Boolean tasks

• Update the weights whenever the perceptron  

output is wrong

• Proved convergence for linearly separable classes



The Perceptron (gate)
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Values shown on edges are weights, numbers in the  circles are thresholds

?X X̄-1



However, the single perceptron …

?

X

Y
X Y

?

?
⨁

No solution fo r  XOR! 
Not universal!



The Multi-layer Perceptron (gate)
1X

Y

1

1

-1

1

-1

-1

2

1

X Y⨁

• XOR

– The first layer is a “hidden” layer

– Also originally suggested by Minsky and Papert 1968

X Y⋁

Ȳ⋁X̄



The Multi-layer Perceptron (gate)

2 1

Y Z

0 1

2

1 -1 1 1

11

X A

1
1 1 1 1-1 -12 2

11

• A “multi-layer” perceptron

• Can compose arbitrarily complicated Boolean functions!


– In cognitive terms: Can compute arbitrary Boolean functions over sensory input

– More on this in the next class



But our brain is not Boolean

• We have real inputs 
• We make non-Boolean inferences/predictions



The Perceptron (real inputs)

• x1…xN are real valued

• w1…wN are real valued

• Unit “fires” if weighted input exceeds a threshold



The Perceptron (real inputs)

• x1…xN are real valued

• w1…wN are real valued

• Unit “fires” if weighted input exceeds a threshold

• The output y can be real valued

- Sometimes viewed as the “probability” of firing

y = sigmoid(∑ wixi + b)



Other activations

sigmoid Tanh ReLU

• Does not always have to be a squashing function 
– We will hear more about activations later 

• We will continue to assume a “threshold” activation right now



The Perceptron (real inputs)

x1

x2

1

0
w1x1 + w2x2 = T

∑
i

wixi − T > 0

– This is a linear classifier



“Decision” Boundaries

x1

x2
Can now be composed into  
“networks” to  compute arbi trary  
classification “boundaries”

• Build a network of units with a single output that fires if the input is in the coloured area

0

1



“Decision” Boundaries

x1

x2

T

x2x1



“Decision” Boundaries

x1

x2

T

x2x1

T



“Decision” Boundaries

x1

x2

T

x2x1

T T T T

AND

y1 y2 y5

∑ yi ≥ 5
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3
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3

3
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x1

0

1

“Decision” Boundaries

1

x2

x2x1 x2x1

OR

• Network to fire if the input is in the yellow area

– “OR”  two polygons

– A   third layer is required



A summary

• MLPs are connectionist computational models 
– Individual perceptrons are computational equivalent of 

neurons 
– The MLP is a layered composition of many perceptrons 

• MLPs can model Boolean functions 
– Individual perceptrons can act as Boolean gates 
– Networks of perceptrons are Boolean functions 

• MLPs are Boolean machines 
– They represent Boolean functions over linear boundaries 
– They can represent arbitrary decision boundaries 
– They can be used to classify data



“Decision” Boundaries

x1

0

1

1

x2

T

x2x1

T T T T

T

⋯

• How would you compose the decision  boundary to the left 
with only one hidden layer?
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Composing decision boundaries
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“Decision” Boundaries

x1

x2

T

x2x1

T T T T

T

⋯

• MLPs can capture any classification boundary 
• A  one-layer MLP can model any classification boundary 
• MLPs are universal classifiers



However…

• A  naïve one-hidden-layer neural network will  required infinite 
hidden neurons



• Two hidden-layer network: 56 hidden neurons

How to improve



• Two layer network: 56 hidden neurons 
– 16 neurons in hidden layer 1

How to improve



How to improve

• Two-layer network: 56 hidden neurons 
– 16 in hidden layer 1 
– 40 in hidden layer 2 (                 ) 
– 57 total neurons, including output neuron

⌊(n + 2)2/8⌋



Depth

• “Shallow vs deep sum-product networks,”  
                                                                                               Oliver Dellaleau and Yoshua Bengio 
– For networks where layers alternately perform either sums or products, 

a deep network may require an exponentially fewer number of layers 
than a shallow one.

• The number of neurons required in a shallow network is potentially 
exponential in the dimensionality of the input 
– Alternately, exponential in the number of  statistically independent 

features



The features

Not independent features

• Deep neural network can extract the features



A summary

• Multi-layer perceptrons are Universal Boolean Machines 
– Even a network with a single hidden layer is a universal Boolean 

machine 

• Multi-layer perceptrons are Universal Classification Functions 
– Even a network with a single hidden layer is a universal classifier 

• But a single-layer network may require an exponentially large number  
of perceptrons than a deep one 

• Deeper networks may require far fewer neurons than shallower  
networks to express the same function 
– Could be exponentially smaller 
– Deeper networks are more expressive



Function Approximation (single input)

x

ℎ□

ℎ□

ℎ□

How to approximate function above by using threshold MLPs?



x
1

1

1

-1

T1

T2

+

T1 T2 x

• A simple 3-unit MLP with a “summing” output unit can  
generate a “square pulse” over an input 
– Output is 1 only if the input lies between T1 and T2 

– T1 and T2 can be arbitrarily specified

Function Approximation (single input)

No activation



x

ℎ□

ℎ□

ℎ□

• A  simple 3-unit MLP can generate a “square pulse” over an input 
• A MLP with many units can model an arbitrary function over an input 

– To  arbitrary precision 
• Simply make the individual pulses  narrower 

• This generalizes to functions of any number of inputs

Function Approximation(single input)



Think the network as a function

f : {0,1} → {0,1}

f : Rn → {0,1}

f : Rn → (0,1)

f : Rn → (−1,1)

f : Rn → [0,∞)• Output unit with activation function 
– Threshold or Sigmoid, ReLU or any other 

• The network is actually a universal map from the entire domain of input 
values to the entire range of the output activation 
– All values the activation function of the output neuron



A summary
• Multi-layer perceptrons are Universal Boolean Machines 

– Even a network with a single hidden layer is a universal Boolean 
machine 

• Multi-layer perceptrons are Universal Classification Functions 
– Even a network with a single hidden layer is a universal classifier 

• Multi-layer perceptrons are Universal Function approximate for entires 
class of functions (maps) it represents

In summary, a feedforward network with a 
single layer is sufficient to represent any 
function, but the layer may be infeasibly 
large and may fail to learn and generalize 
correctly.

                                                             -P.193




See Code

Think the network as a function



A summary

• Neural networks are universal function approximators 
– Can model any Boolean function 
– Can model any classification boundary 
– Can model any continuous valued function



The “capacity” of a network

• VC  dimension 
• Some Papers 

– Koiran and Sontag (1998): For “linear” or threshold units, VC  
dimension is proportional to the number of weights 
• For units with piecewise linear activation it is proportional to the 

square of the number of weights 
– Batlett, Harvey, Liaw, Mehrabian “Nearly-tight VC-dimension  

bounds for piecewise linear neural networks” (2017):
• For any W, L s.t W> CL > C^2, there exists a ReLU network with less 

Players, less W weights with VC dimension > WL
C

log2(
W
L

)

• Network capacity, generalization ability , etc



The Perceptron
The structural building block of deep learning

x1

x2

x3

w1

w2

w3

k

∑
i=1

xi ⋅ wi + b σ( ⋅ )
y = σ(∑

i

xi ⋅ wi + b)

n-1 layer neuron

Input
Other functional  

structure(pooling)

Bias Activation Function

Forward pass 
aka, Forward propagation, FP



The Perceptron: Bias
The structural building block of deep learning

Are you going to have lunch in Sadler Center?

Weather: 0 or 1

Foods: 0 or 1

Dinning Dollar: 0 or 1

w1 = 1

w2 = 1

w3 = 1

If b = 0

If b = 1

If b > 4



The Perceptron: Activations
The structural building block of deep learning



The Perceptron: Activations
The structural building block of deep learning

The purpose of activation functions is to introduce non-linearities into the network 

x1

w1

w2

w3

w4
b3

b2

b1

w1,1

w2,1

w3,1

w4,1

b

w1x1 + b1
w2x1 + b2
w3x1 + b3
w4x1 + b4

y = w1,1(w1x1 + b1) + w2,1(w2x1 + b2) + w3,1(w3x1 + b3)w14,1(w4x1 + b4)



The Perceptron: Activations
The structural building block of deep learning

See Code



Activation Functions:  Properties

Nonlinearity 
Differentiability 

Easiness 
Monotonicity 
Non-saturation 

Identity(near the origin) 
Ranging  

Less coefficients 
Zero-centered or not



Activation Functions:  Properties

Non-saturation:  
simply understand as some interval where the gradient equals to 0 

Identity(near the origin): 

Ranging 

Less coefficients 

zero-centered: ensure the mean activation value is around zero

σ(x) ≈ x

( | lim
x→−∞

σ(x) → + ∞ | ) ∨ ( | lim
x→+∞

σ(x) → + ∞ | )



The Perceptron
The structural building block of deep learning

x1

x2

x3

w1

w2

w3

k

∑
i=1

xi ⋅ wi + b σ( ⋅ )
y = σ(∑

i

xi ⋅ wi + b)

n-1 layer neuron

Input
Other functional  

structure(pooling)

Bias Activation Function

Forward pass 
aka, Forward propagation, FP



Think the network as a function

• We will assume a feed-forward network 
– No loops: Neuron outputs do not feed back to their inputs directly or  

indirectly 
• Part of the design of a network: The architecture 

– How many layers/neurons, which neuron connects to which and how, etc. 
• For now, assume the architecture of the network is capable of  

representing the needed function



What we learn: The parameters of the 
network

• Given: the architecture of the network 
• The parameters of the network: The weights and biases 
• Learning the network : Determining the values of these parameters  

such that the network computes the desired function

The network is a function f()  
with parameters W which must  
be set  to the  appropriate 
values  to get  the  desired 
behavior from the net

w1

f(W; X)



f( ⋅ ) : ℛm → ℛc

How to learn a network

When                has the capacity to exactly representf(W; X) g( ⋅ )

Ŵ = argminw ∫X
div( f(W; X), g( ⋅ ))dX

div() is a divergence function that goes to 0 when f(W; X) = g(X)

g( ⋅ )

Suppose         is giveng( ⋅ )



However…

g( ⋅ )

• Function    must be fully specified 
– Known everywhere, i.e. for every input

g( ⋅ )

• In practice we will not have such specification



Sampling

• Sample 
– Basically, get input-output pairs for a number of samples of input 

• Many samples                where 
– Good sampling: the samples of      will be drawn from  

• Very easy to do in most problems: just gather training data 
– E.g. set of images and their class labels 
– E.g. speech recordings and their transcription

Xi

di

g( ⋅ )

(Xi, di) di = g(Xi) + ϵ

X P(X)



f( ⋅ ) : ℛm → ℛc

Minimizing expected error

More generally, assuming  X is a random variable

W = argminw ∫X
div( f(W; X), g( ⋅ ))P(X)dX

= argminWE[div( f(W; X), g( ⋅ ))]

g( ⋅ )



The Empirical Risk

Xi

di

The expected error (or risk) is the average error over the entire input space

E[div( f(W; X), g(X))] = ∫X
div( f(W; X), g(X))P(X)dX

The empirical estimate of the expected error is the average error over the samples

E[div( f(W; X), g(X))] ≈
1
N

N

∑
i=1

div( f(Wi; X), di)



The Empirical Risk Minimization problem

f(W; X)

• Given a training set of input-output pairs (X1, d1), (x2, d2), ⋯, (xN, dN)

– Error on the ith instance: 
– Empirical average error (Empirical Risk) on all training data:

div( f(W; xi), di)

Loss(W ) =
1
N

N

∑
i=1

div( f(Wi; X), di)

• Estimate the parameters to minimize the empirical estimate of 
expected  error

Ŵ = argminWLoss(W )
I.e. minimize the empirical risk over the drawn samples



ERM problem Statement

• Given a training set of input-output pairs (X1, d1), (X2, d2), ⋯, (XN, dN)

Loss(W ) =
1
N

N

∑
i=1

div( f(Wi; X), di) + γ(w)

• Minimize the following function (w.r.t W)

• This is problem of function minimization



How to solve ERM problem?



Gradient Descent Algorithm (GD)

• In order to minimize any function f(w) w.r.t w 

Do 
For every component 

While 

i

wi,t = wi,t−1 − ηt df
dwi,t−1

t → t + 1

| f(wt) − f(wt−1) | > ϵ

• See later lecture 



Input Layer Hidden Layer Output LayerData

What is f(): Typical network

0 or 1



Notation

• The input layer is the       layer
• We will represent the output of the      perceptron of the         layer as

0th

kthith yk
i

y(1)
1

y(2)
1

x1

xD

• Input to network: 
• Output to network: 

y(0)
i = xi
yi = yN

i
• We will represent the weight of the connection between the      unit of the               ith

(k − 1)th                    layer and the          unit of the          layer asjth kth w(k)
ij

– The bias to the        unit of the          layer is  jth kth b(k)
j

w(1)
ij w(3)

ijw(2)
ij



• Given a training set of input-output pairs


•                                      is the nth input vector

•                                           is the nth desired output

•                                                                 is the nth vector of actual outputs of the network


• We will sometimes drop the first subscript when referring to a specific

instance

(X1, d1), (x2, d2), ⋯, (xN, dN)

Xn = [xn1, xn2, ⋯, xnD]
dn = [dn1, dn2, ⋯, dnL]
Yn = [yn1, yn2, ⋯, ynL]

x1

xD

y1

yL

Notation



Representing the input

x1

xD

y1

yL

• Vectors of numbers

– (or may even be just a scalar, if input layer is of size 1)

– E.g. vector of pixel values


• We will see how this happens later in the course (CNN)

– E.g. vector of speech features

– E.g. real-valued vector representing text

– Other real valued vectors



Representing the output

x1

xD

y1

yL

• If the desired output is real-valued, no special tricks are necessary

– Scalar Output : single output neuron


• d = scalar (real  value)


– Vector Output : as many output neurons as the dimension of 
the  desired output

• d = [d1 d2 .. dL] (vector of real values)



Representing the output

• If the desired output is binary (is this a cat or not), use  a 
simple 1/0 representation of the desired output

– 1 = Yes it’s a cat

– 0 = No it’s not a cat.



Multi-class output: one-hot  
representations

• Consider a network that must distinguish if an input is a cat, a dog, a  camel, a hat, or a 
flower 

• We can represent this set as the following vector:   
                                                  [cat dog camel hat flower]T 

• For inputs of each of the five classes the desired output is:  
                                       cat:       [1 0 0 0 0] T 

                                                                       dog:           [0 1 0 0 0] T 

                                                                       camel:       [0 0 1 0 0] T 

                                                                       hat:            [0 0 0 1 0] T 

                                                                      flower:       [0 0 0 0 1] T 

• For an input of any class, we will have a five-dimensional vector output  with four zeros 
and a single 1 at the position of that class 

• This is a one hot  vector



x1

xD

y1

yL

Multi-class networks

• For a multi-class classifier with N classes, the one-hot  representation will 
have N binary outputs

– An N-dimensional binary vector


• The neural network’s output too must ideally be binary (N-1 zeros  and a single 1 in 
the right place)


• More realistically, it will be a probability vector

– N probability values that sum to 1



x1

xD

y1

yL

Multi-class classification: Output

• Softmax vector activation is often used at the output of multi-class  classifier 
nets

zi = ∑
j

w(n)
ji y(n−1)

j
yi =

exp(zi)
∑j exp(zi)

• This can be viewed as the probability yi = P(class = i |X)



Typical Problem: binary classification

0

0 0

1
1
0

• Given, many positive and negative examples (training data), 
– learn all weights such that the network does the desired job



Typical Problem:  
multi-class classification

5

0 2

2
2
4

x1

xD

y1

yL



ERM problem Statement

• Given a training set of input-output pairs (X1, d1), (X2, d2), ⋯, (XN, dN)

Loss(W ) =
1
N

N

∑
i=1

div( f(Wi; X), di) + γ(w)

• Minimize the following function (w.r.t W)

• This is problem of function minimization

What is the divergence function: div() ?

Note: For Loss(W) to be differentiable w.r.t W,  
div() must be differentiable.



Examples of divergence functions

div()L2

d1 d2 d3 ⋯

• For real-valued output vectors, the (scaled) L2 divergence is popular

Div(Y, d) =
1
2

| |Y − d | |2 =
1
2 ∑

i

(yi − di)2

– Squared Euclidean distance between true and desired output 
– Note: this is differentiable

Div(Y, d)
dyi

= (yi − di)



Training Neural Network with GD

Loss(W ) =
1
N

N

∑
i=1

div( f(Wi; X), di)

Loss:

Algorithm:

y(1)
1

x1

xD

w(1)
ij w(3)

ijw(2)
ij

For every layer k, for all i, j, update:

w(k)
ij,t = w(k)

ij,t−1 − η
dLoss
dw(k)

ij,t−1

wi,t = wi,t−1 − ηk df
dwi,t−1



Chain rule

• For any nested function y = f(g(w))

dy
dw

=
∂f

∂g(w)
dg(w)

dw

• Check

z = g(w) → △ z =
dg(w)

dw
△ w

△ y =
dy
dw

△ w

y = f(z) → △ y =
df
dz

△ z =
df
dx

dg(w)
dw

△ w



How

x1

xD

w(k)
ij,t = w(k)

ij,t−1 − η
dLoss
dw(k)

ij,t−1

div()

d1 d2 d3 ⋯

Chain rule



σ1

σ1

σ1

Example

x1

x2

x3

σ2

σ3σ2

σ2

w(1)
11

w(1)
21

w(1)
31

w(2)
11

w(2)
21

w(2)
31

w(3)
11

w(3)
21

w(3)
31

y

b b b

z(1)
1 z(2)

1

z (2)
2

z (2)
3

z1
1 = ∑

i

w(1)
i1 y(0)

i

y(0) = x
y(1)

1

y1
1 = σ1(z1

1) z2
j = ∑

i

w(2)
ij y(1)

i

y(2)
1

y2
1 = σ(z2

1)

y



σ1

σ1

σ1

Forward Computation

x1

x2

x3

σ2

σk

σ2

σ2

w(1)
11

w(1)
21

w(1)
31

w(2)
11

w(2)
21

w(2)
31

y(k)

b b b

z(1)
1 z(2)

1

z (2)
2

z (2)
3

y(0) = x
y(1)

1 y(2)
1 σk−1

⋯
⋯

⋯
σk−1

σk−1

σk

z(k)

Z(k)
j = ∑

i

w(k)
ij y(k−1)

i
y(k)

j = σ(z(k)
j )



Backward Computation: derivatives

σk−1

σk

Div

σk

σk−1

σk−1

σk−2

σk−2

σk−2

σ1

σ1

σ1

x1

x2

x3

y(k)
1

b

⋯
⋯

⋯

b b

y(0) = x

div(yk, d)

z(k)

The derivative w.r.t the actual output of 
the network is simply the derivative 
w.r.t to the output of the final layer of 
the network
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Backward Computation: derivatives
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Backward Computation: derivatives
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Backward Computation: derivatives
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Backward Computation: derivatives
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Backward Computation: derivatives
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Backward Computation: derivatives
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Backward Computation: derivatives
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Backward Computation: derivatives
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Backward Computation: derivatives
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Backward Computation: derivatives
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Backward Computation: derivatives
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Backward Computation: derivatives

For Output layer (k):
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For layer k -1 to 1:
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Called “Backpropagation” because the 
derivative of the loss is  propagated 
“backwards” through  the network

Backward weighted 
combination  of next layer



Scalar activation VS vector activation
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Scalar activation: Modifying z

only changes corresponding  y

Vector activation: Modifying z

 potentially changes all y

z(k)
1 z(k)

1
y(k)

1 y(k)
1



Scalar activation VS vector activation
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vector activation example: Softmax
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