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Topics

Robbins , Monro : A Stochastic Approximation Method
https://projecteuclid.org » euclid.aoms ~

by H Robbins - 1951 - Cited by 6678 - Related articles

Let M(x) denote the expected value at level x of the response to a certain experiment. M(x) is
assumed to be a monotone function of x but is unknown to the ...

On the momentum term in gradient descent learning algorithms
https://www.sciencedirect.com » science » article » pii

by N Qian - 1999 - Cited by 855 - Related articles

The behavior of gradient descent near a local minimum is equivalent to a set of coupled and
damped harmonic oscillators. Within a reasonable parameter range, the momentum term can
improve the speed of convergence for most eigen components in the system by bringing them
closer to critical damping.

PoF1 Adaptive Subgradient Methods for Online Learning and ...
AdaG rad www.jmir.org » papers > volume12 ~

by J Duchi - 2011 - Cited by 5323 - Related articles
Before introducing our adaptive gradient algorithm, which we term ADAGRAD, we establish no-
tation. Vectors and scalars are lower case italic letters, such as X ...

ADADELTA: An Adaptive Learning Rate Method Neural Networks for Machine Learning
AdaDeIta https://arxiv.org»cs v

Lecture 6a
Dec 22, 2012 - Abstract: We present a novel per-dimension learning rate method for gradient

descent called ADADELTA. The method dynamically adapts over ...

Adam Adam: A Method for Stochastic Optimization
https://arxiv.org>cs v

by DP Kingma - 2014 - Cited by 33005 - Related articles
Some connections to related algorithms, on which Adam was inspired, are ... We also analyze

Geoffrey Hinton

the theoretical convergence properties of the algorithm and ...

Cite as: arXiv:1412.6980




ERM problem Statement

- Given a training set of input-outputpairs (X;,d)),(X,,d,), -+, Xy, dy)

- Minimize the following function (w.r.t W)

f
Output of net in response Desired output (Iabel)
to |nput

Sum over all

Total Loss training instances

Loss(W) = %Z div(f(W;X),d /
-y

)t ;/(W)

!

Measurement functions

 This is problem of function minimization

Regularlzer



Choice of div() functions
VS CrossEntropy

Prediction Mode: fi(x) =wx;+b
|
Square Loss: Loss,, = N Z (d; — f.(x)))

Suppose: d; =wx;+b+n where n~ Nomal(0,1)
Eld] = Elwx;+b+n]=wx;+ b

Varld] = Varlwx; + b +n] = 1



Choice of div() functions
VS CrossEntropy

The probability of observing a single (X,-, d,’)

(d; — (wx; + b))?
pd|x;) =e 2

The Max Likelihood:

N 2
. (di — (le' + b))
Like(d, x) = I I % 2

=1




Choice of div() functions
VS CrossEntropy

N >
. (d; — (wx; + b))
Like(d, x) = I Ie 2

=1

1 N
[(d,x) = — 5 Z (dz — (W)Cl- + b))z (MAX)
=1

1 N
MSE(d, x) — 5 Z (di —fw(xi))z (MIN)
=1



Choice of div() functions
Mean Square Loss VS

Prediction Mode: ., (X)) = 6(wx; + b) assume O() is softmax liked

pld;=1]x) =f,(x) pd;=0[x)=1-1,(x)

e

pd;| x) = [£,)1401 = f, 6]~

N
Like(d, x) = H | fw(xi)]di[l _ fw(xi)](l—d,-)
i=1



Choice of div() functions
Mean Square Loss VS

N
Like(d, x) = [ | U, D141 — £, (x)] =
=1

N
like(d,x) = — Z d;log(f,(x;) + (1 — dplog(l — f,.(x,))
i=1

(binary)

N N
like(d, x) = — ) ) d;log(f,(x)) + (1 = dlog(l - £,(x)))

i=1 j=1 (multi-class)



Choice of div() functions
Mean Square Loss VS CrossEntropy

fx) =o(wx;+b) =d

RN

IS~ N :
Loss = — Y (d; - d) Loss = = Y d;log(d) + (1 - d)log(l - )
=1

i=1

; v
v , dLoss Al
— d)6' (wx; + b)x, = ) x(o(wx; +b) — d)

dLoss N
=) (,
i=1

dw dw =



The vanishing gradient problem

2z (1)1,

Y = o,(W,01,_(++-(6,(Wr0,(W,x + by)+++))-++) + b})



Choice of div() functions
Mean Square Loss VS CrossEntropy

dLoss Al dLoss

; Z(d d)o (wx; + b)x; y Zx(a(wx +b) — d)

w = w =1




Regularization

N
Loss(W) = Y div(fW; X),d) + 27w
=1

) == |wlP==||w=0]
w)y=—||wl|"==||w-
4 2 2




Regularization

wixt + wyx; + b
Wl.xl —+ b

wx + wyx"+ ew x4+ wx, + b



Regularization

1 N
min, — Z:, div(f(W;; X), d)) + Ay(w)

S , ,
min,— N div(f(W;; X), d)) + 100w? + 100w?_, + ---
N =




Deep neuron network

dy d,
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Unconstrained First-order Optimization

 For real-valued output vectors, the (scaled) L, divergence is popular

. 1 . ] .
Dividd)=—||ld—d||°=—=) (d-d)>
ivid,d)=—|ld=d||"=— ) (d-d)

l




Unconstrained First-order Optimization

ERM: convex

Local optimal = Global optimal

First Order: Gradient Descent

fow+ Aw) =fw)+f(w) /A w Linear approximation

Second Order: Newton Method

: |
fw+ Aw) =fw) +fw) Aw + Ef (W) (Ax)”



Gradient descent variants

Batch gradient descent

Wy =W — nkVWf(W;X = (X, d)), (X, dy), -+ })

A NRANRST NN

MNIST: 60k x 28 x28
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Gradient descent variants

Batch gradient descent

Wt — Wl‘—l i kawf(WaX — {(xla dl)a (x29 d2)9 Tt })
Stochastic gradient descent
W= W1 — nkVWf(W; (x;, d;))

Mini-batch gradient descent

W= W1 — ﬂkvwf(W;X — {(xia dl) ‘ [ = 1929'“[7})

Shuffle



Batch Gradient descent VS SGD

Stochastic Gradient
Descent (SGD) . ---—"""
(SGD) r
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Gradient descent variants

Batch gradient descent Stochastic gradient descent

* Pro
- Computationally fast
- Fast convergence(large dataset)

* Pro
* Less oscillations and noise
* Vectorization

. Stable - Fit into memory
- Con
- Con * Noisy
- Local optimal * Longer training time
* Not memory friendly * No vectorization

Mini-batch gradient descent



Mini-batch gradient descent
(Vanilla SGD)

wt — Wt—l I ﬂkvwf(Wa (xia dl))

Wy = W1 — i8¢

gradient

(direction)

¢,

Learning Rate
(Step Size)



Too low

A small learning rate
requires many updates
before reaching the
minimum point

Learning Rate |

Just right

y,

“

-

The optimal learning
rate swiftly reaches the
minimum point

Too high

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors




Learning Rate li

Loss

n way too high: diverges

n too high: suboptimal

n just right
1 g Epoch

Start with a high learning rate then reduce it: perfect




L)
-
n
-
o
=
=
=
o
w
-

Learning Rate lll: Strategies

Step decay of learning rate

Step decay

torch.optim.lxr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

Sets the learning rate of each parameter group to the initial Ir decayed by gamma every step_size epochs. When
last_epoch=-1, sets initial Ir as Ir.

Parameters

optimizer (Optimizer) - Wrapped optimizer.

step_size (int) - Period of learning rate decay.
gamma t) - Multiplicative factor of learning rate decay. Default: 0.1.

last_epoch (int) - The index of last epoch. Default: -1.

Triangular schedule

ey

slep_size

Triangular schedule with fixed decay

Cycie

Triangular schedule with exponential decay

Cycie

p—

N

Cyclical Learning Rate



SGD to SGD with Momentum(SGDM)

On the momentum term in gradient descent learning algorithms
https://www.sciencedirect.com » science » article » pii

| 99 - Cited by 855 - Related articles
The behavior of gradient descent near a local minimum is equivalent to a set of coupled and
damped harmonic oscillators. Within a reasonable parameter range, the momentum term can
improve the speed of convergence for most eigen components in the system by bringing them
closer to critical damping.

v, = pv,_y +ng;
Wy=W,_1— VW

Pro: Con:

. Accelerate SGD - oscillations (end)

- Overcome local minima
- Dampen oscillations (begin)

The momentum term increases for dimensions whose gradients point in

the same directions and reduces updates for dimensions whose
gradients change directions.




SGD to Subgradient Methods (AdaGrad)

P°f1 Adaptive Subgradient Methods for Online Learning and ...
www.jmir.org » papers » volume12 ~

, . Cited by 5323 - Related articles
Before introducing our adaptive gradient algorithm, which we term ADAGRAD, we establish no-
tation. Vectors and scalars are lower case italic letters, such as x ...

8ti = thif Pro:

- Suit for dealing with sparse data

Con:
Ho - Monotonically decreasing LR




AdaGrad to AdaDelta

ADADELTA: An Adaptive Learning Rate Method

https://arxiv.org>cs v

2 - Cited by 3495 - Related articles
Abstract: We present a novel per-dimension learning rate method for gradient

descent called ADADELTA. The method dynamically adapts over ...

gti — thlf Pro.. - -
- Suit for dealing with sparse data
2 » Using a sliding window
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Instead of accumulating all past squared gradients, Adadelta restricts
the window of accumulated past gradients to some fixed size




AdaGrad to Adam

Adam: A Method for Stochastic Optimization g , — V f
https://arxiv.org>cs v l',l WI i

by DP Kingma - 2014 - Cited by 33005 - Related articles

Some connections to related algorithms, on which Adam was inspired, are ... We also analyze

the theoretical convergence properties of the algorithm and ... m , — ﬁ m . _|_ ( 1 — ﬁ )g .
Cite as: arXiv:1412.6980 l,1 1" —1 N/ | l,1

Vii = ﬁz"r—l,i + (1 - ﬁz)gfi

Pro: Wt+1,i — Wt,i O, mt,i
- Super fast (current) \/ Vii + €
- Exponential Moving exponential (EMA)

Con:
- Suboptimal solution
- EMA diminishes the changes of gradients



Adam to ?

[PDF]

on the convergence of adam and beyond - OpenReview
https://openreview.net > pdf

by SJ Reddi - 2018 - Cited by 425 - Related articles

ON THE CONVERGENCE OF ADAM AND BEYOND. Sashank J. Reddi, Satyen Kale & Sanjiv Kumar.
Google New York. New York, NY 10011, USA. {sashank ...

You've visited this page many times. Last visit: 10/21/19

The Marginal Value of Adaptive Gradient Methods in Machine ...
https://papers.nips.cc » paper » 7003-the-marginal-value-of-adaptive-gradi... ~

by AC Wilson - 2017 - Cited by 288 - Related articles

The Marginal Value of Adaptive Gradient Methods in Machine Learning. Part of: Advances in

Neural Information Processing Systems 30 (NIPS 2017).
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Improving Generalization Performance by Switching from Adam to SGD

Nitish Shirish Keskar, Richard Socher
(Submitted on 20 Dec 2017)

Decoupled Weight Decay Regularization

llya Loshchilov, Frank Hutter
(Submitted on 14 Nov 2017 (v1), last revised 4 Jan 2019 (this version, v3))




Which to use?

An empirical analysis of the optimization of deep network loss surfaces

Daniel Jiwoong Im, Michael Tao, Kristin Branson
(Submitted on 13 Dec 2016 (v1), last revised 7 Dec 2017 (this version, v4))

RMSprop Adadelta Adam&RK2

SGD + SGDM
Familiar with
Knowing your data
Test on small batch
Adam + SGD
Shuffle

k Choosing prop LR

Adadelta

RMSprop

RMSprop

Adadelta

Init ¢ nit ¢
©
Adam&RK2 C Adam |Adam&RK2

Adadelta Adam&RK2




