Introduction to Deep Learning (Optimization Algorithms)

WM CS Zeyi (Tim) Tao 11/01/2019

Topics

SGD

Robbins, Monro: A Stochastic Approximation Method

https://projecteuclid.org > euclid.aoms ▼

by H Robbins - 1951 - Cited by 6678 - Related articles

Let M(x) denote the expected value at level x of the response to a certain experiment. M(x) is assumed to be a monotone function of x but is unknown to the ...

SGDM

On the momentum term in gradient descent learning algorithms

https://www.sciencedirect.com > science > article > pii

by N Qian - 1999 - Cited by 855 - Related articles

The behavior of **gradient descent** near a local minimum is equivalent to a set of coupled and damped harmonic oscillators. Within a reasonable parameter range, the **momentum term** can improve the speed of convergence for most eigen components in the system by bringing them closer to critical damping.

AdaGrad

[PDF] Adaptive Subgradient Methods for Online Learning and ...

www.jmlr.org > papers > volume12 ▼

by J Duchi - 2011 - Cited by 5323 - Related articles

Before introducing our adaptive gradient algorithm, which we term **ADAGRAD**, we establish notation. Vectors and scalars are lower case italic letters, such as x ...

Adaptive LR

AdaDelta

ADADELTA: An Adaptive Learning Rate Method

https://arxiv.org > cs ▼

by MD Zeiler - 2012 - Cited by 3495 - Related articles

Dec 22, 2012 - Abstract: We present a novel per-dimension learning rate method for gradient descent called **ADADELTA**. The method dynamically adapts over ...

Adam

Adam: A Method for Stochastic Optimization

https://arxiv.org > cs ▼

by DP Kingma - 2014 - Cited by 33005 - Related articles

Some connections to related **algorithms**, on which **Adam** was inspired, are ... We also analyze the theoretical convergence properties of the **algorithm** and ...

Cite as: arXiv:1412.6980

RMSprop

Neural Networks for Machine Learning

Lecture 6a
Overview of mini-batch gradient descent

Geoffrey Hinton

ERM problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_N, d_N)$
- Minimize the following function (w.r.t W)

This is problem of function minimization

Prediction Mode: $f_w(x_i) = wx_i + b$

Square Loss:
$$Loss_{w} = \frac{1}{N} \sum_{i}^{N} (d_{i} - f_{x}(x_{i}))^{2}$$

Suppose: $d_i = w_i x_i + b + n$ where $n \sim Nomal(0,1)$

$$E[d_i] = E[w_i x_i + b + n] = w_i x_i + b$$

$$Var[d_i] = Var[w_i x_i + b + n] = 1$$

The probability of observing a single (x_i, d_i)

$$p(d_i | x_i) = e^{-\frac{(d_i - (wx_i + b))^2}{2}}$$

The Max Likelihood:

$$Like(d, x) = \prod_{i=1}^{N} e^{-\frac{(d_i - (wx_i + b))^2}{2}}$$

$$Like(d, x) = \prod_{i=1}^{N} e^{-\frac{(d_i - (wx_i + b))^2}{2}}$$

$$l(d, x) = -\frac{1}{2} \sum_{i=1}^{N} (d_i - (wx_i + b))^2 \text{ (MAX)}$$

$$MSE(d, x) = \frac{1}{2} \sum_{i=1}^{N} (d_i - f_w(x_i))^2$$
 (MIN)

Prediction Mode: $f_w(x_i) = \sigma(wx_i + b)$ assume $\sigma()$ is softmax liked

$$p(d_i = 1 | x_i) = f_w(x_i) \qquad p(d_i = 0 | x_i) = 1 - f_w(x_i)$$

$$p(d_i | x_i) = [f_w(x_i)]^{d_i} [1 - f_w(x_i)]^{(1-d_i)}$$

$$Like(d, x) = \prod_{i=1}^{N} [f_w(x_i)]^{d_i} [1 - f_w(x_i)]^{(1-d_i)}$$

$$Like(d, x) = \prod_{i=1}^{N} [f_w(x_i)]^{d_i} [1 - f_w(x_i)]^{(1-d_i)}$$

$$like(d, x) = -\sum_{i=1}^{N} d_i \log(f_w(x_i)) + (1 - d_i) \log(1 - f_w(x_i))$$
 (binary)

$$like(d, x) = -\sum_{i=1}^{N} \sum_{j=1}^{N} d_{ij} \log(f_w(x_i)_j) + (1 - d_{ij}) \log(1 - f_w(x_i)_j)$$
 (multi-class)

$$f_{w}(x_{i}) = \sigma(wx_{i} + b) = \hat{d}_{i}$$

$$Loss = \frac{1}{2} \sum_{i=1}^{N} (\hat{d}_{i} - d_{i})^{2} \qquad Loss = -\sum_{i=1}^{N} d_{i} \log(\hat{d}_{i}) + (1 - d_{i}) \log(1 - \hat{d}_{i})$$

$$\frac{dLoss}{dw} = \sum_{i=1}^{N} (\hat{d}_{i} - d_{i})\sigma'(wx_{i} + b)x_{i} \qquad \frac{dLoss}{dw} = \sum_{i=1}^{N} x_{i}(\sigma(wx_{i} + b) - d_{i})$$

The vanishing gradient problem

$$Y = \sigma_k(W_k \sigma_{k-1}(\cdots(\sigma_2(W_2 \sigma_1(W_1 x + b_1)\cdots))\cdots) + b_k)$$

$$\frac{dLoss}{d_w} = \sum_{i=1}^{N} (\hat{d}_i - d_i)\sigma'(wx_i + b)x_i \qquad \frac{dLoss}{d_w} = \sum_{i=1}^{N} x_i(\sigma(wx_i + b) - d_i)$$

Regularization

$$Loss(W) = \frac{1}{N} \sum_{i=1}^{N} div(f(W_i; X), d_i) + \lambda \gamma(w)$$

$$\gamma(w) = \frac{1}{2} ||w||^2 = \frac{1}{2} ||w - 0||^2$$

Regularization

Regularization

$$\begin{aligned} \min_{w} \frac{1}{N} \sum_{i=1}^{N} div(f(W_{i}; X), d_{i}) + \lambda \gamma(w) \\ \min_{w} \frac{1}{N} \sum_{i=1}^{N} div(f(W_{i}; X), d_{i}) + 100w_{n}^{2} + 100w_{n-1}^{2} + \cdots \end{aligned}$$

Deep neuron network

Unconstrained First-order Optimization

• For real-valued output vectors, the (scaled) L_2 divergence is popular

$$Div(\hat{d}, d) = \frac{1}{2} ||\hat{d} - d||^2 = \frac{1}{2} \sum_{i} (\hat{d} - d_i)^2$$

Unconstrained First-order Optimization

ERM: convex

Local optimal = Global optimal

First Order: Gradient Descent

$$f(w + \triangle w) = f(w) + f'(w) \triangle w$$
 Linear approximation

Second Order: Newton Method

$$f(w + \triangle w) = f(w) + f'(w) \triangle w + \frac{1}{2}f''(w)(\triangle x)^2$$

Gradient descent variants

Batch gradient descent

$$w_t = w_{t-1} - \eta^k \nabla_w f(W; X = \{(x_1, d_1), (x_2, d_2), \dots\})$$

MNIST: 60k x 28 x28

```
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
```


Gradient descent variants

Batch gradient descent

$$w_t = w_{t-1} - \eta^k \nabla_w f(W; X = \{(x_1, d_1), (x_2, d_2), \dots\})$$

Stochastic gradient descent

$$w_{t} = w_{t-1} - \eta^{k} \nabla_{w} f(W; (x_{i}, d_{i}))$$

Mini-batch gradient descent

$$w_t = w_{t-1} - \eta^k \nabla_w f(W; X = \{(x_i, d_i) | i = 1, 2, \dots b\})$$

Batch Gradient descent VS SGD

Gradient descent variants

Batch gradient descent

- Pro
- Less oscillations and noise
- Vectorization
- Stable

- Con
- Local optimal
- Not memory friendly

Stochastic gradient descent

- Pro
- Computationally fast
- Fast convergence(large dataset)
- Fit into memory
- · Con
- Noisy
- Longer training time
- No vectorization

Mini-batch gradient descent

Mini-batch gradient descent (Vanilla SGD)

$$w_t = w_{t-1} - \eta^k \nabla_w f(W; (x_i, d_i))$$

Learning Rate I

Learning Rate II

Learning Rate III: Strategies

Step decay

• last_epoch (int) - The index of last epoch. Default: -1.

CLASS torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1) [SOURCE]

Sets the learning rate of each parameter group to the initial lr decayed by gamma every step_size epochs. When last_epoch=-1, sets initial lr as lr.

Parameters

• optimizer (Optimizer) – Wrapped optimizer.

• step_size (int) – Period of learning rate decay.

• gamma (float) – Multiplicative factor of learning rate decay. Default: 0.1.

Cyclical Learning Rate

SGD to SGD with Momentum(SGDM)

On the momentum term in gradient descent learning algorithms

https://www.sciencedirect.com > science > article > pii

by N Qian - 1999 - Cited by 855 - Related articles

The behavior of **gradient descent** near a local minimum is equivalent to a set of coupled and damped harmonic oscillators. Within a reasonable parameter range, the **momentum term** can improve the speed of convergence for most eigen components in the system by bringing them closer to critical damping.

$$v_{t} = \beta v_{t-1} + \eta g_{t}$$

$$w_{t} = w_{t-1} - v_{t}$$

Pro:

- Accelerate SGD
- Overcome local minima
- Dampen oscillations (begin)

Con:

oscillations (end)

The momentum term increases for dimensions whose gradients point in the same directions and reduces updates for dimensions whose gradients change directions.

SGD to Adaptive Subgradient Methods (AdaGrad)

[PDF] Adaptive Subgradient Methods for Online Learning and ...

www.jmlr.org > papers > volume12 ▼

by J Duchi - 2011 - Cited by 5323 - Related articles

Before introducing our adaptive gradient algorithm, which we term **ADAGRAD**, we establish notation. Vectors and scalars are lower case italic letters, such as x ...

$$g_{t,i} = \nabla_{w_{t,i}} f$$

$$G_{t,i} = \sum_{i=1}^{t} g_{t,i}^2$$

$$w_{t+1,i} = w_{t,i} - \frac{\eta_0}{\sqrt{G_{t,i} + \epsilon}} \odot g_{t,i}$$

Pro:

Suit for dealing with sparse data

Con:

Monotonically decreasing LR

Performing smaller updates (i.e. low learning rates) for parameters associated with frequently occurring features, and larger updates (i.e. high learning rates) for parameters associated with infrequent features.

AdaGrad to AdaDelta

ADADELTA: An Adaptive Learning Rate Method

https://arxiv.org > cs ▼

by MD Zeiler - 2012 - Cited by 3495 - Related articles

Dec 22, 2012 - Abstract: We present a novel per-dimension learning rate method for gradient descent called **ADADELTA**. The method dynamically adapts over ...

$$g_{t,i} = \nabla_{w_{t,i}} f$$

$$v_{t,i} = \beta v_{t-1,i} + (1 - \beta) g_{t,i}^{2}$$

$$w_{t+1,i} = w_{t,i} - \frac{\eta_{0}}{\sqrt{v_{t,i} + \epsilon}} \odot g_{t,i}$$

Pro:

- Suit for dealing with sparse data
- Using a sliding window

Instead of accumulating all past squared gradients, Adadelta restricts the window of accumulated past gradients to some fixed size

AdaGrad to Adam

Adam: A Method for Stochastic Optimization

https://arxiv.org > cs ▼

by DP Kingma - 2014 - Cited by 33005 - Related articles

Some connections to related **algorithms**, on which **Adam** was inspired, are ... We also analyze the theoretical convergence properties of the **algorithm** and ...

Cite as: arXiv:1412.6980

Pro:

- Super fast (current)
- Exponential Moving exponential (EMA)

$$g_{t,i} = \nabla_{w_{t,i}} f$$

$$m_{t,i} = \beta_1 m_{t-1,i} + (1 - \beta_1) g_{t,i}$$

$$v_{t,i} = \beta_2 v_{t-1,i} + (1 - \beta_2) g_{t,i}^2$$

$$w_{t+1,i} = w_{t,i} - \frac{\eta_0}{\sqrt{v_{t,i} + \epsilon}} \odot m_{t,i}$$

Con:

- Suboptimal solution
- EMA diminishes the changes of gradients

Adam to?

[PDF] on the convergence of adam and beyond - OpenReview

https://openreview.net → pdf ▼

by SJ Reddi - 2018 - Cited by 425 - Related articles

ON THE CONVERGENCE OF ADAM AND BEYOND. Sashank J. Reddi, Satyen Kale & Sanjiv Kumar.

Google New York. New York, NY 10011, USA. {sashank ...

You've visited this page many times. Last visit: 10/21/19

The Marginal Value of Adaptive Gradient Methods in Machine ...

https://papers.nips.cc > paper > 7003-the-marginal-value-of-adaptive-gradi... ▼

by AC Wilson - 2017 - Cited by 288 - Related articles

The Marginal Value of Adaptive Gradient Methods in Machine Learning. Part of: Advances in

Neural Information Processing Systems 30 (NIPS 2017).

You've visited this page 3 times. Last visit: 11/9/19

Improving Generalization Performance by Switching from Adam to SGD

Nitish Shirish Keskar, Richard Socher

(Submitted on 20 Dec 2017)

Decoupled Weight Decay Regularization

Ilya Loshchilov, Frank Hutter

(Submitted on 14 Nov 2017 (v1), last revised 4 Jan 2019 (this version, v3))

Which to use?

An empirical analysis of the optimization of deep network loss surfaces

Daniel Jiwoong Im, Michael Tao, Kristin Branson

(Submitted on 13 Dec 2016 (v1), last revised 7 Dec 2017 (this version, v4))

- SGD + SGDM
- Familiar with
- Knowing your data
- Test on small batch
- Adam + SGD
- Shuffle
- Choosing prop LR