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Figure 1: Rendering of SVBRDFs reconstructed by our method. (a) Satin with complex needlework. (b) Velvet with complex reflectance.
(c) Brushed metal exhibiting rich tangent variations. (d) Anisotropic paper with bumpy geometric details.

Abstract

We present a generalized linear light source solution to estimate
both the local shading frame and anisotropic surface reflectance of
a planar spatially varying material sample.

We generalize linear light source reflectometry by modulating the
intensity along the linear light source, and show that a constant and
two sinusoidal lighting patterns are sufficient for estimating the lo-
cal shading frame and anisotropic surface reflectance. We propose
a novel reconstruction algorithm based on the key observation that
after factoring out the tangent rotation, the anisotropic surface re-
flectance lies in a low rank subspace. We exploit the differences in
tangent rotation between surface points to infer the low rank sub-
space and fit each surface point’s reflectance function in the pro-
jected low rank subspace to the observations. We propose two pro-
totype acquisition devices for capturing surface reflectance that dif-
fer on whether the camera is fixed with respect to the linear light
source or fixed with respect to the material sample.

We demonstrate convincing results obtained from reflectance scans
of surfaces with different reflectance and shading frame variations.
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1 Introduction

Digitally reproducing the visual richness of the appearance of
real-world materials is a challenging and important problem in
computer graphics. Recent developments in measurement-based
appearance modeling have produced more convenient, more ro-
bust, and more portable techniques for capturing isotropic sur-
face reflectance. However, robustly characterizing spatially varying
anisotropic surface reflectance and the local shading frame remains
largely an open problem.

In contrast to spatially varying isotropic surface reflectance acquisi-
tion methods, only a handful of practical methods for characterizing
spatially varying anisotropic surface reflectance have been devel-
oped. Existing methods either rely on analytical surface reflectance
models [Aittala et al. 2013; Ghosh et al. 2009; Tunwattanapong
et al. 2013] or require a dense sampling in both the spatial and the
angular domain [Wang et al. 2008; Dong et al. 2010]. The former
is limited by the representational power of the analytical models
and it can fail to accurately characterize complex anisotropic mate-
rials such as velvet. The latter often requires complex acquisition
setups and its accuracy is limited by the acquisition effort – ac-
curately modeling sharp specular surface reflectance requires very
dense sampling.

In this paper we introduce a novel generalized linear light
source reflectometry framework for reconstructing spatially vary-
ing anisotropic surface reflectance and accurate local shading
frames from reflectance observations of scanning three intensity-
modulated linear sources – a constant linear light source and two
phase-shifted sinusoidally modulated linear light sources – over the
reflectance sample. Our framework, in concert with a novel data-
driven reflectance representation, supports a broad range of surface
reflectance properties ranging from diffuse to sharp specular materi-
als, while minimizing acquisition cost without sacrificing accuracy.
A key observation is that local shading frame alignment (a non-
linear transformation) projects the global anisotropic appearance
subspace into a lower rank subspace. This observation suggests that
separating shading frame estimation and reflectance modeling can
reduce acquisition complexity. We exploit the spatial variation of
local shading frames to aid in inferring the low rank linear appear-
ance subspace in the canonical shading frame, and estimate both the
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local shading frame as well as the location in the linear appearance
subspace of each surface point’s BRDF.

We demonstrate the effectiveness of our framework using two novel
generalized linear light source reflectometers comparable in form
and usage to a desktop document scanner and a handheld document
scanner respectively. We validate the accuracy and robustness of
our framework on a variety of different spatially varying materials.

In summary, our contributions are:

• a generalized linear light source reflectometry framework
with an O(N) acquisition complexity (compared to O(N2)
for competing direct sampling methods such as [Wang et al.
2008]);

• a novel reflectance reconstruction algorithm based on a flex-
ible data-driven microfacet reflectance model that takes as
input projections of anisotropic surface reflectance with un-
known relative shading frames;

• a compact set of sinusoidal linear light source conditions that
support robust estimation of local shading frames and surface
reflectance; and

• two practical generalized linear light source reflectometer de-
signs that are compatible with desktop and handheld docu-
ment scanner form factors.

2 Related Work

Measurement-based reflectance modeling techniques can roughly
be categorized based on their acquisition strategy: direct sampling
methods, and methods that employ complex lighting patterns.

Direct Sampling Direct sampling methods probe the appearance
of a material sample from multiple viewpoints and multiple light-
ing directions. It is a natural and straightforward acquisition strat-
egy that only requires moving a camera and/or a light source, and it
aligns best with classical sampling theory. Several strategies have
been employed to sample different view and lighting directions,
ranging from full mechanical positioning using a gonioreflectome-
ter [Dana et al. 1999; Lawrence et al. 2006], to specialized devices
that eliminate mechanical motion of view and/or lighting [Han and
Perlin 2003; Mukaigawa et al. 2007; Ben-Ezra et al. 2008]. How-
ever, these acquisition methods densely sample view and lighting
directions, and are consequently time-consuming. The captured
data is directly used or fit to an analytical reflectance model.

To reduce acquisition cost, several methods share reflectance
information across different surface points. Image-based ap-
proaches [Marschner et al. 1999; Lu et al. 1998; Matusik et al.
2003] capture the surface reflectance of a homogeneous convex
object from a fixed viewpoint, and rely on normal variations be-
tween surface points to sample the surface reflectance sufficiently.
Zickler et al. [2005] share reflectance information over view, light-
ing, and surface, and treat the reconstruction of the reflectance as
a scattered-data interpolation problem by assuming smooth varia-
tion over the space. Lensch et al. [2003] and Goldman et al. [2005]
model spatially varying surface reflectance of an object of known
geometry as a linear combination of a set of basis materials
modeled by a Lafortune [Lafortune et al. 1997] and isotropic
Ward [1992] reflectance model respectively. Alldrin et al. [2008]
infer reflectance and geometry simultaneously. They model the
surface reflectance as a linear combination of basis functions, but
recognize the limitations of using an analytical model for describ-
ing surface reflectance, and instead employ a data-driven bivariate
function. All of these techniques are restricted to isotropic sur-
face reflectance, and cannot be easily extended to accommodate
anisotropic reflectance.

Wang et al. [2008] model anisotropic surface reflectance using a
general microfacet model from single-view observations under a
dense sampling of lighting directions. Because only a partial mi-
crofacet distribution can be directly recovered from the measure-
ments, Wang et al. gather information from overlapping microfacet
distributions to infer a complete microfacet distribution per surface
point. Manifold bootstrapping [Dong et al. 2010] employs a two-
phase acquisition scheme to estimate spatially varying anisotropic
surface reflectance. A specialized device directly captures the sur-
face reflectance at a moderate number of surface points, from which
the appearance manifold is computed. In a second step a sparse
sampling of lighting directions provides a mapping for each sur-
face point to a point on the appearance manifold. Both methods
handle anisotropic reflectance by extending the representative set
to include rotated versions, and then find the best match in the
global shading frame. The proposed method, in contrast, exploits
reflectance coherence between surface points with different shading
frame orientations to obtain a more compact appearance space, and
thus a more efficient acquisition.

Holroyd et al. [2008] estimate per-surface point shading frames
by exploiting symmetries across the normal-tangent and normal-
binormal planes. However, to accurately estimate shading frames,
a dense sampling of lighting directions is needed. The proposed
method, on the other hand, can estimate local shading frames from
a sparse set of measurements.

Complex Lighting Patterns An alternative acquisition strategy
to taking point samples of surface reflectance, is to record the
responses of surface reflectance under complex lighting patterns.
This corresponds to observing the inner-product of the incident
lighting with the reflectance functions.

Ghosh et al. [2009] and Tunwattanapong et al. [2013] extend the
polarized spherical gradient method of Ma et al. [2007] to estimate
surface shape, specular and diffuse albedo, local shading frame, and
anisotropic roughness parameters. Both methods rely on a fragile
inverse lookup based on an analytical proxy model to relate the ob-
served radiance to model parameters. The result of such an inverse
lookup can be unpredictable when the surface reflectance lies out-
side the space spanned by the analytical model. In contrast, the
proposed method employs a flexible data-driven model that spans a
significantly larger appearance space.

Aittala et al. [2013] present a practical method for SVBRDF capture
that only uses low-cost commodity parts. Key to their method is the
tight coupling between the design of the acquisition lighting and the
reflectance model. Similar to us, Aittala et al. also rely on Gaussian
models to reduce the degrees of freedom. While their method re-
quires very few illumination patterns (and thus measurements), it
is, in contrast to our method, limited to isotropic reflections only.

The acquisition setups of Gardner et al. [2003] and Ren et al. [2011]
are most similar to ours. Similar to us, both Gardner et al. and
Ren et al. scan a linear light source over the material sample. Us-
ing a linear light source has the advantage that it increases the
likelihood of capturing the specular peak response and, simultane-
ously, decreases the acquisition complexity. However, both Gard-
ner et al.’s and Ren et al.’s method are limited to isotropic surface
reflectance only. In contrast, the proposed method follows a signif-
icantly different reconstruction strategy based on a sample-specific
appearance subspace using a more expressive data-driven represen-
tation for anisotropic surface reflectance. Furthermore, to recon-
struct the appearance subspace and estimate local shading frames,
we use sinusoidal intensity-modulated linear light sources in addi-
tion to Gardner et al.’s and Ren et al.’s constant-intensity linear light
source.



3 Acquisition Devices

The reflectance behavior at a surface point is described by the 4D
Bidirectional Reflectance Distribution Function (BRDF) [Nicode-
mus et al. 1977] that expresses the ratio of exitant radiance to inci-
dent irradiance. In this paper we assume that the anisotropic surface
reflectance can be accurately modeled using microfacet theory, re-
ducing the estimation from a full 4D BRDF to the estimation of a
2D microfacet normal distribution function (NDF). Our goal is to
estimate this NDF for each surface point of a planar spatially vary-
ing anisotropic material.

Accurately handling sharp specular reflections requires a dense an-
gular sampling of the incident or outgoing light field. Point-sample
based methods, such as [Wang et al. 2008], typically have an ac-
quisition complexity of O(N2), and do not scale well to dense sam-
pling rates. Linear light source reflectometry [Gardner et al. 2003;
Ren et al. 2011] is an attractive alternative with an O(N) acquisi-
tion complexity, and is well suited to capture sharp specular mate-
rials. However, existing linear light source reflectometry methods
are limited to isotropic surface reflectance.

We propose to generalize linear light source reflectometry to han-
dle anisotropic reflectance by modulating the illumination along the
linear light source according to several modulation patterns. It is
straightforward to see that the limit case, where each modulation
pattern corresponds to a point light at a different location, reverts to
a direct sampling method and thus can characterize anisotropic sur-
face reflectance, but at the cost of increasing the acquisition com-
plexity to O(N2). However, the modulation patterns do not nec-
essarily need to correspond to point samples or linear basis func-
tions, but they can be any lighting pattern. In Section 7 we will
introduce a compact set of just 3 modulation patterns –a constant
and 2 phase-shifted sinosoids– that allow us to accurately estimate
surface reflectance, using the novel reconstruction algorithm pre-
sented in Section 5, from spatially varying anisotropic materials,
while maintaining an O(N) acquisition complexity.

Acquisition Devices We have built two different generalized lin-
ear light source reflectometer prototypes inspired by the form fac-
tors of typical document scanners:

1. Desktop scanner form factor: This device is an evolution
of the classic linear light source reflectometer [Gardner et al.
2003]. The camera observes the SVBRDF from a fixed van-
tage point while the linear light source is scanned over the
sample. Figure 2(a) shows our setup.

2. Handheld scanner form factor: In this device the relative
positions of the camera and linear light source are fixed, and
the sample moves with respect to both (or vice versa). We
employ a cylindrical lens to image a single scanline of the ma-
terial sample from different view directions in a single photo-
graph. In other words, the captured image’s x-coordinate cor-
responds with surface location directly below the lens, while
the y-coordinate varies with view direction (in the plane per-
pendicular to the scanline). Figure 2(b) shows our setup.

Both devices use the same set of camera, linear light sources, and
slider. The camera is a Canon 5D Mark II equipped with an EF
100 F2.8 Micro lens, and the linear light source is based on a 35cm
CCFL typically used for backlighting an LCD display and which is
positioned 6cm above the material sample. We print the modula-
tion function as a transparent mask for the linear light source using
a calibrated flatbed UV ink printer, however, other more dynamic
solutions such as an LCD array are also possible. The slider is a
motorized Linear Slides, Zaber T-LSR300A with a microstep size
of 0.09µm, which we use to move the light source (desktop form
factor) or to move the sample relative to the camera/light source

Material Sample

Light Moving
Direction

(a) Desktop scanner setup

Material Sample

Sample Moving
Direction

Trace

(b) Handheld scanner setup

Figure 2: Acquisition Devices. (a) Acquisition device inspired by
the classical linear light source reflectometer [Gardner et al. 2003].
The linear light source moves relative to the camera, while the cam-
era is fixed with respect to the material sample. (b) Acquisition de-
vice inspired by handheld document scanners. The sample moves
relative to the camera and light source, and both camera and linear
light source are fixed with respect to each other.

(handheld form factor). Finally, for the second device we use an Ed-
mund Optics cylindrical Fresnel lens with a focal length of 0.25”,
yielding a view angle range of about 50 degrees.

Our prototype devices use multiple linear light sources (each with a
different modulation pattern) and perform a separate scanning pass
for each light source. Ideally, future revisions of the prototype de-
vices would employ a single time-multiplexed linear light source to
minimize mechanical translation passes and speed up acquisition.
For the desktop scanner form factor with 3 modulation patterns, a
single reflectance scan consists of recording 240 single-exposure
radiometrically linear RAW images (80 linear light source posi-
tions per lighting pattern). For the handheld scanner form factor,
the number of recorded images is tailored to the desired number of
scanlines.

Calibration Both setups only need to be calibrated at construc-
tion. The desktop form factor device primarily relies on the repeata-
bility of the slider to avoid recalibration, whereas the handheld form
factor device keeps the light source/camera configuration fixed.

We calibrate the camera geometrically using the method of
Zhang [2000]. For the handheld device, we also calibrate the
transmittance and geometrical distortions of the cylindrical lens by
densely sampling a mirrored surface (as SVBRDF) illuminated by
a collimated beam with known incident direction.

In addition, we measure the actual emitted radiance for each of the
modulated linear light source patterns by scanning a mirrored sur-
face. We measure the luminance along the length of the linear light
source for each of the patterns, and model the linear light source as
a uniform emitter perpendicular to length of the linear light source.
We include the effects of foreshortening and distance-falloff to ob-
tain a physically accurate estimate of the radiance at the observed
surface points for each relative linear light source position.
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Figure 3: Reflectance Projection Trace: (a) A projection trace P is the projection along a 1D path of the reflectance function modulated
by a function L. (b) The original reflectance function can be reconstructed from a set of projection traces obtained from a sufficiently
dense sampling of projection directions. (c) Instead of explicitly sampling multiple projection directions, we exploit variation in the tangent
directions between surface points to implicitly sample multiple projection directions.

4 Reflectance Model

Projection Traces Both acquisition devices presented in Sec-
tion 3 produce a 1D sequence of measurements for each surface
point per modulation pattern. For the desktop scanner, this se-
quence is obtained by observing the temporal change (i.e., for each
linear light source position) of a camera pixel (i.e., surface point).
For the handheld scanner, the sequence is obtained from the differ-
ent views of a surface point (i.e., corresponding y-scanline when the
scanner is above the surface point). We denote such a 1D sequence
as a projection trace. Formally, the formation of a projection trace
can be expressed as:

p = Lr, (1)

where p is a vector representing the projection trace discretized in m
steps. r is the discretized reflectance function stacked in a v-length
vector. L is an m× v projection matrix that projects the reflectance
function to the projection trace. The exact form of this projection
matrix depends on (a) the illumination modulation pattern, and (b)
the geometry of the acquisition setup (view and light position). In
practice, to compensate for differences between the ideal and actual
modulation pattern, we infer L from the calibrated radiance of the
modulated linear light source (Section 3).

To illustrate Equation (1), consider the following simplified case
where we directly work on the 2D NDF domain, and ignore mask-
ing, shadowing and Fresnel reflectance. Furthermore, let us assume
that the illumination function is a constant function and that the pro-
jection of the linear light source onto the NDF domain corresponds
to a line that moves for the different observations in a perpendic-
ular direction (i.e., moving the linear light source corresponds to
moving the projected line in the NDF domain). Thus, each ob-
servation corresponds to the integral of the NDF over a line, or
the projection trace corresponds to the projection of the NDF along
the direction of the projected line (Figure 3.a). This is akin to the
Radon transform, and can be easily inverted if a sufficiently dense
sampling of projection directions is available (Figure 3.b). This
suggests that surface reflectance can be recovered by scanning the
material sample along many directions (assuming perfect alignment
between the scans). However, such an approach is not practical and
would increase the acquisition complexity to O(N2). A key ob-
servation is that instead of explicitly sampling multiple projection
directions, we can exploit the natural variation in tangent directions
between surface points to implicitly sample projection directions
(Figure 3.c). While conceptually straightforward for homogeneous
materials, it is less obvious how to exploit this observation for spa-
tially varying materials where the observations of each surface point
are projections with an unknown projection direction of potentially
different reflectance functions.

Representative BRDFs Prior work has shown that the appear-
ance space spanned by a spatially varying material can be efficiently
modeled by a hyperplane [Lawrence et al. 2006] for isotropic
BRDFs, and a low-dimensional manifold [Dong et al. 2010] for
isotropic and anisotropic BRDFs. However, for anisotropic re-
flectance we posit that the main source of non-linearity of the man-
ifold is due to the tangent rotation. Similarly to isotropic BRDFs,
the appearance space for a fixed tangent direction can be efficiently
modeled by a linear low rank subspace. We will therefore model
the appearance space of spatially varying materials as a linear sub-
space formed by a set of representative BRDFs in the canonical
tangent frame, and include the tangent transformation separately:

r = T(t)Bwb, (2)

where B is a v×b matrix of b representative (basis) BRDFs, wb are
the respective weights, and T(t) the v×v matrix that transforms the
resulting reflectance vector into the tangent frame (from the canon-
ical frame).

We can extend Equation (2) for a single surface point to compactly
describe the SVBRDF over multiple (p) surface points:

R = T(t)BWb, (3)

where R is a v× p matrix (each column corresponds to a sur-
face point’s reflectance function r), and Wb are the corresponding
weights (b× p matrix). For compactness, we abuse notation for
T(t) which is not a fixed matrix as in Equation (2), but a matrix-
valued function that varies depending on which surface point we
are computing – each surface point can have a different tangent t.

Similarly, we can also extend Equation (1) to describe the projec-
tion trace observations over the SVBRDF: P = LR.

Gaussian Mixture Model Given the reflectance projection traces
P for each surface point of the material sample, our goal is to infer
the shading frames t, the weights Wb and the representative BRDFs
B.

As noted before, we assume an underlying microfacet BRDF
model for B. In particular we employ a Cook-Torrance BRDF
model [Cook and Torrance 1982] with a data-driven microfacet
distribution. However, pure data-driven (i.e., tabulated) 2D NDF
models have too many degrees of freedom to reliably solve from
the sparse set of 1D reflectance traces. Instead we propose to em-
ploy a novel data-driven Gaussian mixture model for representing
the NDFs:

B = GWg, s.t. Wg ≥ 0. (4)

Each column in G contains a discretization (similar to r) of an
atomic Cook-Torrance BRDF, i.e., where the data-driven NDF is



formed by a single Gaussian (with varying position and standard
deviation). Hence, G forms an dictionary of atomic BRDFs. Also
note that each column of G contains the discretization of the micro-
facet BRDF and thus includes shadowing, masking and Fresnel ef-
fects (i.e., the aggregate reflectance effect of the data-driven NDF).
We constrain the weights Wg to be non-negative to avoid negative
probabilities in the NDF. Furthermore, we add a Lambertian BRDF
to G to model diffuse reflections accurately.

Including all possible atomic BRDFs (i.e., all possible positions and
sizes of the NDF Gaussians), in G is impractical. This raises the
question of which atomic BRDF to include in G. On one hand we
want to maximize the representational power, and thus include as
many atomic BRDFs as possible in G. On the other hand we want to
maximize the stability of the estimation of the BRDFs from as few
as possible measurements. This implies that the number of coeffi-
cients (and thus atomic BRDFs in G) should be minimized. Instead
of fixing the content of the dictionary beforehand (with the excep-
tion of the Lambertian BRDF), we will include this as a variable in
the estimation process.

5 Reflectance Reconstruction

Our goal is to reconstruct the SVBRDF from the observations of
reflectance projection traces:

argmin
R
||P−LR||2. (5)

Applying the representative BRDF assumption (Equation (3)) mod-
eled by the data-driven Gaussian Mixture Model (Equation (4))
yields the following minimization target:

argmin
Wb,Wg,t,G

||P−LT(t)GWgWb||2. (6)

We posit that W = WgWb must be a low rank matrix, as we desire
few representative BRDFs and thus a low rank appearance space.
We therefore constrain the above minimization as:

argmin
W,t,G

||P−LT(t)GW||2 +λ rank(W) s.t. W > 0, (7)

We enforce W to be non-negative to avoid negative values in the
NDF. Note that Wg and Wb can be recovered from W via a (non-
negative) low-rank decomposition (e.g., using ACLS [Lawrence
et al. 2006] with non-negativity and sparsity constraints). A com-
mon practice in rank minimization problems is to replace the “rank”
operator by the nuclear norm | · |∗ [Liu et al. 2013]:

argmin
W,t,G

||P−LT(t)GW||2 +λ |W|∗ s.t. W > 0. (8)

Equation 8 is highly non-linear due to the tangent rotation trans-
formation T(t) and the dictionary G. We therefore, separate the
computation of W, t and G, and iteratively solve for one, while
keeping the others fixed.

Solving t: When keeping W and G fixed, we solve for t for each
surface point separately:

argmin
t
||p−LT(t)Gw||2. (9)

We minimize this expression by performing a full search through all
tangent directions t. In practice, we search among 360 discretized
tangent directions.

Solving W: Keeping t and G fixed, reduces Equation (8) to a
convex problem that can be efficiently solved via an Augmented
Lagrange Multiplier (ALM) method [Liu et al. 2013; Nocedal and
Wright 2006]. In particular we adapt the inexact ALM solver pro-
posed by Liu et al. [2013]. For this we first introduce the equivalent
form with an additional variable J = W:

argmin
W
||P−LT(t)GW||2 +λ |J|∗, s.t. W > 0, W = J. (10)

Next, we replace the W = J constraint by a Lagrange multiplier Y
and penalty parameter µ > 0:

argmin
W
||P−LT(t)GW||2 +λ |J|∗+ tr(YT (W−J))

+
µ

2
(||W−J||2), s.t. W > 0.

(11)

This problem is convex (and only has a non-negativity constraint),
and can be efficiently solved by alternating between minimizing
with respect to W and J respectively. We solve for J using sin-
gular value thresholding [Cai et al. 2010], and we solve for W
using a non-negative L2 solver. The Lagrange multipliers and
penalty parameters can be adjusted according to the classical ALM
method [Nocedal and Wright 2006]. Algorithm 1 summarizes the
adapted ALM algorithm.

Data: measurement P, parameter λ

Result: weight W
initialization
W = J = 0,Y = 0,µ = 0.001,µmax = 106,ρ = 1.1, and ε = 10−8

while not converged do
- fix W and update J by:

argminJ
1
µ
|J|∗+ 1

2 ||J−W+Y/µ||2
- fix J and update W by:

argminW
1
µ
||P−LT(t)GW||2+ 1

2 ||J−W+Y/µ||2 s.t. W> 0
- update multiplier: Y = Y+µ(W−J)
- update penalty: µ = min(ρµ,µmax)
- check convergence: ||W−J||∞ < ε

end
Algorithm 1: Inexact ALM algorithm

Solving G: Finally, we adjust the dictionary G by fixing the
weight W and tangent t and solving for the number of Gaussians
and their positions and sizes in the NDF domain:

argmin
G
||p−LT(t)Gw||2. (12)

This is a problem similar to radial basis function interpolation, ex-
cept that fitness of the interpolation is computed on projections of
the target function and projections of the radial basis function (i.e.,
Gaussians). We optimize G by alternating between (1) optimizing
for position and size (keeping the number of Gaussians fixed), and
(2) refining (i.e., splitting) Gaussians when the approximation is too
coarse. We repeat this process until a maximum number of Gaus-
sians (500) is reached or when the reconstruction error drops below
some threshold (0.01).

Optimize position and size: We perform a greedy optimization
where we tentatively modify each Gaussian in G and only effec-
tively apply the change to the Gaussian, that after modification, re-
duced the error the most. Note that a column of G does not contain
the Gaussian NDF directly, but the resulting (discretized) BRDF
of the Gaussian NDF. To accelerate the optimization, we discretize
the positions and sizes of the Gaussians and precompute all BRDFs
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Figure 4: NDF Evolution. Top-left: NDF reconstruction with
the initial (randomly assigned) dictionary and shading frame. Mid-
dle: the subsequent reconstructions at selected points during the
reflectance recovery process. Bottom-right: ground truth NDF.

(i.e., potential columns). In our implementation we consider 9801
precomputed atomic BRDFs (33×33 discrete positions, and 9 dif-
ferent standard deviations ranging form 0.02 to 0.3 for the Gaussian
NDF) with a fixed index of refraction of 1.3. Modifying a Gaussian
now becomes replacing it with the next/previous discretized posi-
tion/size. We repeat this greedy optimization until the error cannot
be reduced any further.

Refinement: We employ a greedy refinement criterion where we
split each Gaussian in G and keep the K = 10 splits that reduce
the reconstruction error most. We split each Gaussian (with po-
sition (x,y) and size σ ) into 4 smaller Gaussians (with positions
(x± σ

4 ,y±
σ

4 ) and size σ

2 ), and compute the corresponding optimal
weights (Algorithm 1 with the weights of other (unmodified) Gaus-
sians fixed). Thus, each pass increases the number of Gaussians by
30 (i.e., 4×10 new Gaussians minus 10 parent Gaussians).

Initialization Our reconstruction algorithm is not particularly
sensitive to the initial input. In our implementation we select a ran-
dom initial tangent direction t and initialize G with 50 Gaussians
with random position and size. Given t and G we then start the iter-
ative process by computing the optimal weights W (Algorithm 1).
Figure 4 shows an example of the evolution of an NDF during the
iterative reflectance estimation process.

6 Reconstruction Acceleration

Applying the proposed reconstruction algorithm to all surface
points is computationally expensive. To speed up the reconstruction
computation, we observe that the number of representative BRDFs
is low (due to the low rank requirement), suggesting that these rep-
resentative BRDFs can be estimated from a subset of surface points.
To ensure that we select a rich enough subset of surface points, we
first perform a k-means clustering on the observed projection traces
P, with k sufficiently large, and select from each cluster (at random)
a sample. In our implementation we set k to 360.

Given the representative BRDFs B, we then want to compute the
tangent directions t and weights wb for every surface point. Simi-
larly as for the estimation of the representative BRDFs, we perform
an iterative optimization where we alternate between optimizing the
tangent direction t and the BRDF weights wb.

The weights wb are estimated for each surface point by minimizing:

argmin
wb

||p−LT(t)Bwb||2 s.t. wb ≥ 0. (13)
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Figure 5: Lighting Patterns Parameters Top: Distance-
preservation distance with respect to the number of (phase-shifted
sinusoidal) illumination conditions. For each subset the optimal
frequencies are chosen (i.e., the combination that resulted in the
best distance preservation). Middle: Reconstructions for 1, 3 and
5 illumination patterns. Bottom: Distance-preservation distance
with respect to lighting frequency for a pair of phase-shifted sine-
wave illumination modulation functions and a constant modulation
function

This minimization problem is convex and can be efficiently com-
puted using a non-negative L2 solver.

To estimate the tangent t we solve a similar minimization problem:

argmin
t
||p−LT(t)Bwb||2. (14)

As for the representative BRDFs, we solve this by performing a full
search through all tangent directions.

7 Illumination Design

The reconstruction algorithm introduced in the previous sections re-
quires a sufficiently rich input to accurately reconstruct anisotropic
surface reflectance. We aim to design a set of lighting modula-
tion patterns that is small enough to support time-multiplexed ac-
quisition. Ideally, to ensure equal information gain at every surface
point, and thus computational robustness, these lighting modulation
functions should be translation invariant (i.e., linear combinations
of the functions can produce any translated version) over the linear
light source.

A well known set of translation invariant functions are phase-
shifted sine functions (i.e., sin( f x) and cos( f x), where x ∈ [0,1]



is the relative position on the linear light source). While practi-
cally too large for our purpose, the limit case of using the full set
of Fourier basis functions as lighting modulation functions is suffi-
cient to estimate both tangent and reflectance (id. point sampling in
the frequency domain). This raises two fundamental questions: (1)
what is the minimal number of phase-shifted sine functions, and (2)
which are the optimal frequencies to accurately reconstruct surface
reflectance.

Distance Preservation Metric We adapt the distance preserva-
tion metric [Dong et al. 2010] to analyze the effects of different
choices on the illumination design. This metric measures how well
the projections (under the illumination conditions) preserve the dis-
tance between different BRDFs:

τ =
∑i, j ||Pi−P j||2

∑i, j ||Ri−R j||2
, (15)

where Pi are the projection traces of the SVBRDF Ri under the
illumination conditions L. We perform our analysis on a repre-
sentative synthetic dataset of 60,000 BRDFs with an anisotropic
Beckman NDF with parameters uniformly sampled (σx ∈ [0.1,0.5],
σx/σy ∈ [1.0,5.0], and tangent rotation t ∈ [0,180] degrees).

Number of Lighting Patterns Figure 5 (top) plots the distance-
preservation distance with respect to the number of illumination
modulation functions. By default we include the DC component (a
constant function) as one of the lighting conditions, and add pairs of
phase-shifted sinusoids with optimal frequency (i.e., that preserve
distance best). As expected, the preservation improves with each
additional pair. However, at just 3 lighting conditions, our algo-
rithm is already capable of reconstructing the surface reflectance
accurately.

Optimal Frequency Figure 5 (bottom) plots the distance-
preservation distance with respect to frequency for the 3 lighting
pattern case (i.e., one constant modulation function, and a pair
of phase-shifted sine-wave functions with shared frequency). The
simulation conditions match the physical setup (i.e., a 35cm linear
light source suspended 6cm above the sample surface). We found
that under these conditions a frequency of f = 5 provides the best
results.

Finite Linear Light Source Length We argued for phase-shifted
sine modulation functions based on their translation invariant prop-
erty. In theory these functions extend infinitely in either direction.
However, in practice, the length of the modulation function is lim-
ited by the length of the linear light source. To better understand the
impact of the length limitation on the modulation function, we plot
the average difference in projection traces with respect to the ideal
infinite illumination condition (Figure 6) on 10cm×10cm samples
of the materials shown in Figures 8 and 14. As can be seen, for the
employed 35cm linear light source, the difference is less than 1%.

Practical Considerations We offset the sinusoidal modulation
functions to ensure non-negative lighting patterns. Our set of illu-
mination conditions also includes a constant modulation function
which, by virtue of linearity of light transport, allows us to undo
this offset after capture by simply subtracting the corresponding
observed images.

8 Full Shading Frame Estimation

Up to this point, we treated the shading frame to be a function of
tangent direction only. We extend reflectance scanning to handle
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Figure 6: Impact of Finite Illumination Modulation Functions
The difference in the projection traces obtained from an infinite lin-
ear light source and a finite linear light source.

surface normal variations by alternating between estimating surface
reflectance and tangent direction (Sections 5 and 6), and refining
surface normal. We repeat this process until the change in surface
normal is less than 1 degree.

Surface Normal Refinement Given converged estimates of the
surface reflectance and tangent directions, we search for the surface
normal that minimizes the reconstruction error in Equation (5). We
first perform a coarse search on a 257× 257 grid (over x and y
coordinates) of normal directions. We further refine this estimate
by performing a local search in a 8×8 grid within the minimizing
coarse grid cell. The correctness of the surface refinement process
depends on the initial starting normal estimate. We empirically val-
idated that the surface normal refinement converges to the correct
normal estimate as long as the initial normal estimate is within 10
degrees of the surface normal.

Initialization We estimate the initial normal direction for each
surface point by finding the normal that together with an isotropic
proxy BRDF (with a single centered Gaussian NDF and a diffuse
component) best explains the observed projection traces. Practi-
cally, we precompute a table of projection traces for different com-
binations of normal directions (257× 257 grid), diffuse/specular
ratios (21 ratios uniformly sampled in [0,1]), and surface rough-
ness (11 uniformly sampled from [0.02,0.2]). We then find the best
matching precomputed projection trace using the error metric in
Equation (5). Note, we only use the estimated normal, and ignore
the estimated diffuse/specular ratio as well as estimated roughness
in the remainder of the reflectance reconstruction process.

Discussion While we only employ an isotropic proxy BRDF for
estimating the initial surface normal, we found that this provides
a sufficiently accurate estimate (< 10 degrees) for a wide range of
diffuse/specular ratios and roughness for NDFs that decrease mono-
tonically with increasing halfway angle. For complex NDFs (e.g.,
velvet) such a simple isotropic proxy BRDF fails to provide a suf-
ficiently accurate initial surface normal. However, note that in such
a case, we can still obtain good reflectance estimates by increasing
the number of representative BRDFs and thus include the normal
shift in the corresponding NDF estimates.

The effect of the diffuse surface reflectance on the projection traces
for the handheld device is a constant offset. Consequently, the es-
timation of the diffuse/specular ratio becomes ambiguous. Instead,
we offset the projection traces by (subtracting) the minimum ob-
served value in the constant illumination projection trace (effec-
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Figure 7: Shading Frame. (a) A false color visualization of the
recovered normal map for the Bumpy Paper dataset. (b) A false
color visualization of the recovered tangent map for the Brushed
Metal dataset.

Re
fe

re
nc

e
Ou

r r
es

ul
ts

Wallpaper dataset Brushed metal dataset

Di
ffe

re
nc

e 
(x

4 
br

ig
ht

ne
ss

)

Figure 8: Validation. We compare renderings of reconstructed
SVBRDFs obtained from simulated measurements on existing
datasets. (a) The Wallpaper dataset [Lawrence et al. 2006] con-
sist of both isotropic and anisotropic reflectance. (b) The Brushed
Metal dataset [Dong et al. 2010] with sharp anisotropic reflectance
and rich tangent variations.

tively removing the diffuse component), and estimate the initial sur-
face normal from specular reflections only.

9 Results

Results We acquired five datasets exhibiting a wide range of tan-
gent variations (e.g., brushed metal), complex surface reflectance
(e.g., velvet and satin), and surface normal variations (e.g., bumpy
anisotropic paper). We also show a challenging circle card with
rich reflectance details as well as tangent and normal variations.
Figures 1 and 14 showcase SVBRDFs acquired using the desktop
scanner, and revisualized under complex natural lighting.

The acquisition of the datasets took approximately 1 to 1.5 hours,
and required approximately 30GB of storage. We reconstructed 6
representative BRDFs for (a subset of) the Anisotropic Paper to
35 representative BRDFs for (a subset of) the Satin dataset, and
which required about 2.5 hours of processing on an Intel Xeon E5-
2643 processor with 16GB of memory. Given the representative
BRDFs, computing the weights and BRDFs of all surface points
(Section 6) took considerably less time (approximately 15 to 45
minutes). We found that the the size of the precomputed dictionary
of atomic BRDFs (9801), as well as the number of atomic BRDFs
(50 to 200 after refinement), were sufficient to accurately repre-
sent both rough as well as very sharp specular reflections. Figure 7

Reference Our result Reference Our result

a

b

c

d

e

Figure 9: Ground Truth Comparisons. Comparison renderings of
the reconstructed SVBRDF and two validation photographs. The
NDFs of the marked surface points are shown in Figure 10.

(a) (b) (c) (d) (e)

Figure 10: Reconstructed NDFs A representative selection of re-
constructed NDFs, with varying degrees of complexity, from the
spatially varying materials shown in Figure 9.

shows false color visualizations of recovered shading frames. The
resulting shading frames are free of artifacts. Full resolution prop-
erty maps of the diffuse and specular albedo, surface normals, and
tangents, as well as the raw input measurements, can be found in
the supplementary materials.

Validation We validate our method by simulating the acquisition
on existing measured datasets: the Wallpaper dataset [Lawrence
et al. 2006] and the Brushed Metal dataset [Dong et al. 2010].
Figure 8 compares renderings under two different lighting direc-
tions. The reconstructed SVBRDFs produce results qualitatively
similar to the ground truth visualizations. Furthermore, we also
computed a quantitative error using the BRDF error metric of
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Figure 11: Acquisition Device Comparison A comparison between
rendering results of reconstructed surface reflectance acquired us-
ing the proposed desktop and handheld scanner.
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Figure 12: Sampling rate. Effect of linear light source position
sampling rate on the BRDF reconstruction error [Ngan et al. 2005]
on sythetic and measured NDFs.

Ngan et al. [2005]. The error on the Wallpaper dataset is 8.9%,
and on the Brushed Metal dataset it is 3.7%.

Figure 9 shows qualitative validations on measured materials cap-
tured using the desktop scanner. For each captured dataset, we
recorded two additional photographs from a different viewpoint
and lit by a point light at different locations. We then compare
the capture validation photograph with a visualization of the re-
constructed SVBRDF under similar conditions. The reconstructed
SVBRDFs produce results visually similar to the ground truth. Fig-
ure 10 shows the NDFs of five selected surface points (marked in
Figure 9).

Figure 11 demonstrates the reconstruction consistency between the
two prototype generalized linear light source reflectometers intro-
duced in Section 3. Both the desktop as well as the handheld scan-
ner produce consistent reconstructions.

Discussion Our method relies on having sufficiently rich varia-
tion in tangent orientations. However, if this is not the case, then
additional scans can be performed in different scan directions by
rotating the sample to increase the amount of tangent variation.
Note, we only use the rotated scans for reconstructing the repre-
sentative BRDFs, and the final SVBRDF is reconstructed from a
single selected direction. Since the reconstruction of the representa-
tive BRDFs does not rely on any spatial order, no fragile and error-
prone image registration of the different scan directions is required.

We captured 6 scan directions for the Satin data and 3 directions
for the Bumpy Paper dataset to enrich the tangent variations in the
measurements. Furthermore, we also validated the stability of the
reconstruction with respect to the scanning direction on the brushed
metal dataset and reconstructed the surface reflectance for four scan
directions at 30,45,60, and 90 degrees. We found the differences
to be negligible (< 0.01), and no structured artifacts were present.

For the desktop scanner, the number of sampled linear light source
positions can greatly affect the quality of the reconstructions. We
perform an analysis similar to that in Section 7 to determine the op-
timal sampling rate. Figure 12 plots the average BRDF reconstruc-
tion error [Ngan et al. 2005] on datasets of synthetic (Beckman)
and measured NDFs. Our analysis shows that 64 samples or higher
(on a 10cm× 10cm sample, yielding a step size of ≈ 1.5mm) is
sufficient for accurate reconstructions.

Comparison The method of Wang et al. [2008] can produce sim-
ilar quality results as ours. However, Wang et al. rely on point
sampling incident light positions and therefore have an O(N2) ac-
quisition complexity compared to O(N) for our method which re-
lies on line samples. Because Wang et al. rely on point samples,
dense sampling is required to accurately reconstruct sharp spec-
ular surface reflectance. Figure 13 compares reconstruction re-
sults from our method (using the desktop scanner) and those from
Wang et al. [2008] for a simulated acquisition on the Brushed Metal
dataset [Dong et al. 2010]. Our method only requires 240 im-
ages (80 linear light source positions and 3 illumination modulation
functions) to accurately reconstruct the surface reflectance. How-
ever, at only 240 samples (15×16), Wang et al. fail to reconstruct
the surface reflectance faithfully. To achieve similar quality results,
they require an order of magnitude more samples (6400 images).

10 Conclusion

In this paper we presented “Reflectance Scanning”, a framework
for generalized linear light source reflectometry to capture spatially
varying anisotropic surface reflectance. A novel reconstruction al-
gorithm was introduced for recovering the microfacet BRDFs and
local shading frame from an underconstrained set of reflectance
projection traces. A key observation is that when tangent rotation
is removed, the resulting appearance space is low rank. We de-
signed two new prototype acquisition devices that are comparable
in form to a desktop and a handheld document scanner. Both de-
vices do not require any calibration, except during construction, and
together with the recognizable form factor, lowers the threshold for
non-expert users to easily model the appearance of complex surface
reflectance.

Our current method only works for planar surfaces (i.e., true
SVBRDFs). In the presence of large geometric features, occlusion
begins to play a significant role. For future research, we would like
to extend our method to include occlusion, and use different BRDFs
beyond microfacet models. Finally, we would like to continue re-
fining the design of our prototype devices by replacing the external
camera by an integrated sensor, paving the way for a true consumer
acquisition device.
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Figure 13: Comparisons to Wang et al. [2008] (a) Ground truth material under directional light source. (b) Re-rendering of reconstructions
from 240 images captured with the desktop scanner (80 linear light source positions) (c) Re-rendering of reconstructions with an equal number
of images (240) using the method of Wang et al. [2008] (15×16 LED light positions). (d) Re-rendering of equal quality reconstructions using
the method of Wang et al. (80×80 images).
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Figure 14: Additional Results. (a) Velvet. (b) Wood. (c) Paper and paint. (d) Brushed metal. (e) Bumpy anisotropic paper. (f) Circle card.
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