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Figure 1. We introduce ScribbleLight, a generative model designed for indoor scene relighting from a single RGB image, that allows users
to iteratively refine lighting effects in a photo using simple scribble annotations. For the first scribble example, the natural lighting coming
from the window changes from nighttime to daytime by turning off both lamps and brightening the area near the window (left side) and
casting a soft glow on the bed. In the second scribble example, only the right lamp is turned on. In the third scribble example, the natural
lighting intensifies, thereby increasing the gloss on the bed’s surface. For the final scribble example, adding the split in the light cast from
the window causes the angle of the incoming light to change, creating a strong contrast with the warm glow of the bedside lamp.

Abstract

Image-based relighting of indoor rooms creates an immer-
sive virtual understanding of the space, which is useful for
interior design, virtual staging, and real estate. Relight-
ing indoor rooms from a single image is especially chal-
lenging due to complex illumination interactions between
multiple lights and cluttered objects featuring a large vari-
ety in geometrical and material complexity. Recently, gen-
erative models have been successfully applied to image-
based relighting conditioned on a target image or a la-
tent code, albeit without detailed local lighting control.
In this paper, we introduce ScribbleLight, a generative
model that supports local fine-grained control of lighting
effects through scribbles that describe changes in light-
ing. Our key technical novelty is an Albedo-conditioned
Stable Image Diffusion model that preserves the intrinsic
color and texture of the original image after relighting and
an encoder-decoder-based ControlNet architecture that en-
ables geometry-preserving lighting effects with normal map

and scribble annotations. We demonstrate ScribbleLight’s
ability to create different lighting effects (e.g., turning lights
on/off, adding highlights, cast shadows, or indirect lighting
from unseen lights) from sparse scribble annotations.

1. Introduction
In today’s digital age, the ability to control and visualize
lighting in indoor spaces is crucial, especially in down-
stream applications such as real estate, virtual staging, and
interior design. Traditional static images of indoor scenes
often fail to show how a room would look under differ-
ent lighting conditions, missing key elements that affect the
space’s aesthetics and mood. Scene relighting techniques
offer a solution by enabling dynamic lighting adjustments
within an image, letting users envision how a room trans-
forms under various lighting scenarios, such as natural sun-
light or with different lamps in the room turned on. The
ability to relight provides a deeper and immersive under-
standing of the space, without needing a physical visit.

https://chedgekorea.github.io/ScribbleLight


Indoor relighting presents unique challenges compared
to outdoor settings, where a single, predictable light source
(i.e., Sun) yields consistent and directional shadows; the re-
sulting limited model space has been successfully exploited
in prior outdoor relighting methods [29, 38, 61, 73, 77].
In contrast, indoor environments involve multiple light
sources, such as ceiling lights, lamps, window-filtered day-
light, as well as invisible light sources, each with unique
characteristics in intensity, direction, and diffusion. These
overlapping light sources create intricate, soft, layered shad-
ows which create a challenging relighting environment. In-
door scenes are also composed of multiple objects made of
different materials (e.g., furniture and doors), making in-
door relighting more difficult than single-object relighting.

Despite recent advances, existing state-of-the-art indoor
3D relighting methods still require significant effort in
dense scene capture [42, 48, 49, 81, 89]. Conversely, im-
plicit relighting methods that use a latent space [8] or a ref-
erence image [85] to control lighting can only induce coarse
global lighting changes and cannot control local details.
Motivated by the success of using scribbles to guide vari-
ous image manipulation tasks [41, 52, 53, 65], we propose
ScribbleLight, where a user can intuitively and directly con-
trol relative lighting adjustments in an image with scribbles.
ScribbleLight enables the user to iteratively indicate areas
in the image they wish to brighten or darken with scribbles,
from coarse to fine-grained, based on their preferences. Our
generative model can relight an image from scribble input
to create diverse illumination effects - turning lights on and
off, adding cast shadows, highlights, inter-reflections, etc.
Our method bridges the gap between technical complexity
and creative flexibility, offering a streamlined, user-friendly
way to achieve professional-quality lighting adjustments in
intricate indoor scenes.

Scribbles only offer high-level guidance. Consequently,
to resolve the inherent guidance-ambiguities, we exploit the
general image priors embedded in large pretrained gener-
ative diffusion model (i.e., Stable Diffusion v2 [60]) and
control the lighting effects with ControlNet [82]. However,
a naive implementation fails to preserve the color and tex-
ture, i.e., intrinsic albedo, of the original image in the re-
lit image. We therefore introduce an Albedo-conditioned
Stable Image Diffusion model that generates realistic im-
ages conditioned on the intrinsic albedo of the scene. To
support large lighting changes and to improve robustness
with respect to an imperfect albedo (predicted by an In-
trinsic Image Decomposition [11]) we inject uncertainty in
the training process by adding noise to the (albedo) condi-
tion, thereby reducing dependency on the exact content of
the albedo and forcing the diffusion model to rely more on
the embedded image priors. We add lighting control dur-
ing the albedo-conditioned diffusion process via a Scrib-
bleLight ControlNet, where the control signal is the latent

embedding of the scribbles and normals obtained from an
encoder-decoder network that reconstructs the normal and
shading map from the input. The decoder’s ability to pre-
dict the intended shading (from scribles) and reconstruct
the normals improves the likelihood that the latent code in-
cludes all the necessary information for relighting.

ScribbleLight enables flexible lighting control while re-
taining the intricate color and texture details of the original
scene, overcoming challenges that arise due to the sparsity
of scribbles. As no other prior indoor relighting method
performs scribble-driven single-image relighting of indoor
rooms, we compare our approach to baselines derived from
existing approaches [38, 80] that also use Stable Diffusion
and ControlNet for relighting. Quantitative and qualita-
tive evaluations show that our method significantly outper-
forms the baseline methods, which often fail to preserve the
albedo of the input image and control local lighting details.
We also perform an extensive ablation study to demonstrate
the effectiveness of ScribbleLight.

2. Related work
Image-based relighting aims to alter the lighting in pho-
tographs post-capture. Specialized methods have been pro-
posed for relighting isolated objects [6, 22, 25, 27, 36, 56,
67, 69, 71, 78, 86, 87], human portraits [17, 18, 32, 37,
52, 54, 57, 59, 64], human bodies [9, 15, 68], outdoor
scenes [29, 38, 61, 73, 77], and indoor scenes [8, 39, 51, 74,
80, 85]. Indoor scene relighting is especially challenging
due to mixed natural and artificial light sources, occlusions,
and intricate light interactions in a cluttered scene creating
cast shadows, strong highlights, and inter-reflections.

Image-based relighting research has explored different
lighting representations to control illumination in the ren-
dered image. Explicit lighting representations such as
shadow-maps [51], spherical Gaussians [39], or irradiance
fields [80] directly specify the lighting, thereby offering the
user only indirect control on the effects of lighting in the
scene (i.e., the goal of the user). Alternatively, Xing et
al. [74], Zhang et al. [85] and Bhattad et al. [8] use im-
plicit lighting representations instead and navigate the la-
tent space to control lighting effects. However, latent space
editing only offers coarse global control and cannot control
local details, making it difficult for the user to achieve their
exact goal. In this paper, we use user-friendly scribbles to
enable more fine-grained control of the lighting effects.
Image manipulation using scribbles offers an intuitive in-
terface for specifying a user’s intent. Scribbles have been
used as a guide in a wide variety of tasks such as: segmen-
tation [16, 33, 50, 66], image generation [13, 14, 26, 30, 34],
image editing [21, 55, 58, 72, 75, 79], inpainting [53, 65],
retrieval[19, 70] , and colorization [41]. Similar to us,
Mei et al. [52] use scribbles to control relighting of human
portraits. However, the geometrical complexity and mate-



Figure 2. ScribbleLight consists of an Albedo-conditioned Stable image Diffusion model (trained in Stage 1), and a ControlNet (trained
in Stage 2) that guides the albedo-conditioned diffusion model for relighting through a latent encoding of the scribbles and normals. To
regularize the latent encoding, we jointly train a decoder that predicts the target shading (and normals) from the scribbles (and normals).

rial and lighting variations in indoor scenes make scribble-
based relighting guidance more challenging.
Intrinsic image decomposition (IID) is a fundamental
problem in computer vision that aims to separate an im-
age into an illumination-dependent component (i.e., shad-
ing) and an illumination-independent component (i.e., re-
flectance or albedo). Early IID methods rely on heuristics
based on physical properties or empirical observations [2,
3, 12, 28, 31, 40], often limited to Lambertian or simple
scenes. Recent IID methods leverage machine learning
trained on synthetic data [5, 10, 20, 35, 39, 44–46, 63, 88]
to support more complex scenes and non-Lambertian re-
flectance. Other studies have shown that intrinsic images
emerge within generative models and can be easily recov-
ered [7, 24]. Relighting, a common downstream task of IID,
is achieved by changing the illumination-dependent compo-
nent and recompositing the intrinsic components. However,
to achieve a plausible relit result, the modified illumination-
dependent component has to contain all the details, making
it a cumbersome and error-prone interface for relighting. In
contrast, scribbles do not require the user to provide pixel-
precise shading details, providing a more convenient and
user-friendly control interface.

3. Method

We aim to generate plausible relit images of indoor scenes
from a single photograph and guided by user-provided

scribbles. Instead of viewing the guidance as target pixel
or shading values, we instead view scribbles as a way for
the user to indicate which areas need to be brightened (e.g.,
turning on a light) and which areas need to be darkened
(e.g., adding a cast shadow). Therefore, we employ a binary
scribble with ‘1’ indicating brightening, and ‘0’ indicating
darkening. Unlabeled areas are left to the relighting model
to determine the most plausible action.

Inspired by recent successes in using generative diffu-
sion models for relighting tasks [4, 23, 38, 57, 78], we in-
troduce ScribbleLight, a ControlNet-based single-image re-
lighting solution for guiding an albedo-conditioned diffu-
sion model (Section 3.1) with scribbles and normals (Sec-
tion 3.2). Our training pipeline involves two distinct stages:
first, fine-tuning an albedo-conditioned Stable Diffusion
model, followed by separate training of the scribble-guided
ControlNet. Figure 2 summarizes our pipeline.

3.1. Albedo-conditioned Image Diffusion
A key observation underpinning ScribbleLight is that re-
lighting should preserve the underlying albedo intrinsic,
i.e., color and texture, of the input photograph. While Sta-
ble Diffusion v2 [60] trained on LAION-5B [62] provides
a strong image prior, it lacks a strong constraint on the un-
derlying albedo intrinsic. Therefore, we refine Stable Dif-
fusion to produce an image I conditioned on an additional
albedo image A. This will help the diffusion model to main-
tain the input image’s color and texture information during



relighting. Concretely, we employ the pre-trained Latent
VAE Encoder EL to encode both the image I and the corre-
sponding albedo A into the latent space, i.e., Image Latent
(zI = EL(I)) and Albedo Latent (zA = EL(A)).

We follow Stable Diffusion’s training process by adding
ϵIt noise to the image latents zI for a randomly sampled
time step t ∈ {1, ..., T} and learning to denoise to zIt−1.
However, directly conditioning the diffusion process on the
albedo image poses two problems. First, because the scrib-
bles do not encode any spatially varying intensity changes,
the diffusion model tends to produce relit regions with little
variation. Second, any errors present in the albedo map are
included in the diffusion process yielding visually notice-
able artifacts. We resolve both problems by also adding a
fixed amount of noise ϵAT to the albedo latents zA (i.e., in-
troduce uncertainty) to preserve the fundamental color and
structure of the scene while providing enough uncertainty
to render different lighting conditions. In contrast to the
image noise which varies per time step t, ϵAT remains fixed
at the level of T = 200, an optimal value we observed em-
pirically. Next, we concatenate zIt and zAT into a single in-
put, zt, along the feature dimension. This results in a dou-
bling of the input channels of the latent denoising U-net in
Stable Diffusion, and we zero-initialize the additional con-
volution weights. Finally, we train the albedo-conditioned
Stable Diffusion model (θS) with text prompt p using the
following modified loss function:

L = EzI
t ,z

A
T ,ϵI∼N (0,1),t,p

[∥∥ϵ− ϵθS (zIt , z
A
T , t, p)

∥∥2
2

]
. (1)

3.2. ScribbleLight ControlNet

We employ ControlNet [82] to guide the albedo-
conditioned image diffusion using a user-provided scribble
map M and normal map N to generate a relit image. We first
concatenate and encode the scribble map M and normals
N into a lighting feature map (f = EC([M,N])) using a
learnable control encoder EC . To regularize the control en-
coder, we introduce an additional control decoder DC that
recovers the normal map N and predicts a monochromatic
intrinsic shading component Smono from the lighting fea-
ture map:

LD =
∥∥DC(EC(M,N))− (Smono,N)

∥∥2
2
. (2)

The Control Encoder-Decoder architecture ensures that the
latent lighting features contain the scene geometry and
shading information necessary for relighting.

The ControlNet takes as input the lighting feature map f ,
image latent code zIt at time-step t, and the text prompt p.
Because our ControlNet is not conditioned on the albedo A,
we instead initialize it with the original prompt-conditioned
Stable Diffusion v2 weights, and train it jointly with the

Control Encoder-Decoder using the following loss:

L = LD + Ezt,f,ϵI∼N (0,1),t,p

[
∥ϵ− ϵθC (zt, f, t, p)∥22

]
.

(3)
3.3. Training Data and Scribble Generation
Existing large-scale indoor relighting datasets such as In-
teriorVerse [88] and OpenRooms [47] consist of synthetic
scenes rendered from different views under two or more
lighting conditions. There is a significant domain gap be-
tween these datasets and real photographs. To reduce the
domain gap we opt to train ScribbleLight on the real indoor
images from LSUN Bedrooms [76].

To train the albedo-conditioned image diffusion model
(Section 3.1), we require an albedo map A for each image
I from the training set. We compute A using a state-of-the-
art IID [11]. We also require a corresponding text prompt p
that we generate using BLIP-2 [43] from the image I.

Training the ControlNet (Section 3.2) requires the nor-
mals N and scribbles M. Additionally, to train the Control-
decoder, we also require a corresponding monochromatic
shading image Smono. The normal N are computed us-
ing DSINE [1] and the shading Smono are provided by an
IID method [11]. We generate the scribbles M automati-
cally from the shading Smono by setting M(x) = 1 when
I(x) > µ + σ, M(x) = 0, when I(x) < µ − σ, and
M(x) = 0.5 otherwise, where µ and σ are the mean and
standard deviation of the pixel intensity distribution in the
training data. However, the thresholded scribbles exhibit
edges that strongly align with the content in the input image
I, something unlikely to happen with user-drawn scribbles.
Therefore, we perform an additional dilation and erosion
with a kernel size randomly sampled between 3 and 19.

4. Experiment
4.1. Evaluation Framework
Dataset. We use a subset of 100K images from the LSUN
Bedrooms dataset [76] as our training data, and we select
206 pairs of indoor room images, each pair with the same
environment but two different lighting conditions, from the
BigTime time-lapse dataset [44] for testing. We generate
automatic scribble annotations from the IID generated shad-
ing map following Section 3.3. We also manually create
hand-drawn scribble annotations for a small selection of im-
ages from LSUN Bedrooms and publicly available internet
images. To differentiate between both, we denote the for-
mer as ‘auto-generated scribbles’ and the latter as ‘user
scribbles’. For illustration purposes, we display the scribble
annotations overlaid over the source image; we use clean
scribbles for computations.
Baselines. To our knowledge no prior method can guide
indoor room relighting with scribble annotations. There-
fore, we adapt two existing image-based relighting algo-



Figure 3. Qualitative comparison of relighting quality between LightIt* [38], RGB↔X [80] and ScribbleLight (Ours) with auto-generated
scribbles given a target (GT) image.

RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓
LightIt* 0.341(0.302) 9.61(10.65) 0.232(0.332) 0.564(0.518)
RGB↔X 0.269(0.251) 12.47(12.99) 0.416(0.437) 0.439(0.425)
Ours 0.206(0.190) 14.29(15.01) 0.436(0.504) 0.394(0.370)

Table 1. Quantitative comparison of relighting accuracy between
our ScribbleLight, RGB↔X [80] and LightIt* [38]. We compute
the mean(best) errors with respect to a target image.

rithms as a comparison baseline. As a first baseline method,
we retrain LightIt [38] on our training dataset, and di-
rectly pass the auto-generated scribble annotations as in-
put to the control-encoder instead of the monochromatic
shading map; we denote our retrained version as ‘LightIt*’.
We employ RGB↔X [80] without retraining as our sec-
ond baseline method; we first generate the intrinsic com-
ponents (normal, albedo, roughness, and metallicity) using
RGB→X, and then recompose the image using X→RGB
with the shading map replaced by the scribble annotations.
Metrics. We employ four error metrics to assess perfor-
mance: RMSE, PSNR, SSIM, and LPIPS [84]. Lower
RMSE and higher PSNR indicate better per-pixel similarity
to the reference. SSIM (higher is better) assesses structural

similarity, while LPIPS (lower is better) evaluates intrinsic
feature similarity. We compute both the average and best
values for each metric over 5 replicates (i.e., different diffu-
sion seeds). Note that raw metric values do not necessarily
capture the full relighting quality of the different outputs,
but rather only measure the error with respect to a single
reference image. For example, a low PSNR does not neces-
sarily indicate poor performance since a relit result can be
realistic while at the same time differ from the reference.

4.2. Evaluation with Auto-Generated Scribbles
We first quantitatively compare the relighting quality with
auto-generated scribble annotations over the test set. The
results are summarized in Table 1 and show that Scribble-
Light significantly outperforms the baseline methods across
all metrics. Figure 3 qualitatively confirms the superior
performance. Even though the rough scribble annotations
do not include detailed shadow and shading information,
ScribbleLight is able to produce a relighting result similar
to the target image. In contrast, the RGB↔X results appear
to overlay the coarse scribble annotation yielding an unreal-
istic result. LightIt* is able to interpret the scribble annota-



Figure 4. Qualitative comparison of relighting quality of LightIt* [38], RGB↔X [80] and ScribbleLight (Ours) with user-provided hand-
drawn scribbles.

tions correctly, but fails to preserve the albedo of the source
image, resulting in lighting that differs significantly from
the target. In the supplementary material, we demonstrate
that even with Smono (instead of scribbles), ScribbleLight
outperforms RGB↔X and LightIt*.

4.3. Evaluation with User Scribbles
We perform a number of qualitative tests to demonstrate
that ScribbleLight also performs well on hand-drawn user
scribbles. Figure 4 shows examples of turning lights on and
off (rows 1 & 2), as well as to brighten or darken the in-
coming light from outside (rows 3 & 4) using scribble an-
notations. In addition, we also edit shadows by marking
areas for darkening (rows 1-4). While ScribbleLight pro-
duces plausible results, RGB↔X and LightIt* fail to cre-
ate realistic relighting results, producing similar artifacts as

seen in Section 4.2. We observe that even when the scrib-
bles are physically inconsistent (e.g., the bright annotation
on the side of the bed (row 4) is unlikely to be cast from
a small light on the ceiling), ScribbleLight creates a physi-
cally plausible result by imagining a light source outside the
image with appropriate shading effects such as the gradually
decreasing lighting intensity on the side of the bed.

Despite the simplicity of the scribble annotations, Scrib-
bleLight can still exert precise control over lighting condi-
tions/effects. Figure 5 shows relit results of a source image
with two lights turned on (row 1) or off (row 2), which can
be separately toggled on or off with the appropriate scrib-
bles. In both cases, ScribbleLight produces realistic soft
highlights on the nearby walls from the lamps, even though
this is not specified in the scribble annotations.

We also demonstrate in Figure 1 and Figure 6 how users



Figure 5. Demonstration of ScribbleLight’s ability to generate different plausible relit images by turning on and off different lights while
maintaining the intrinsics of the input photograph.

Figure 6. Minor changes to the scribbles yield proportional changes in the relit results, enabling a user to iteratively refine the scribbles to
achieve the desired results.

can progressively refine the scribble annotations to improve
the relit results, yielding a flexible and intuitive indoor scene
relighting experience. For instance, in Figure 6 row 1, start-
ing from a source image with the lamp turned off, we first
turn on the lamp (user scribble 1), then add ambient light-
ing around the lit lamp (user scribble 2) creating a soft glow
effect, and finally enhance realism by adding cast shadows
near the bed and darkening the window.
Comparison with IC-Light. IC-Light [83] is a harmo-
nization model that extracts the foreground from an image
and edits the background lighting using a prompt or image.
In contrast, our method does not require any foreground-
background separation and can relight the image using
scribbles. We provide a fair comparison between both tech-
niques by carefully crafting prompts for lighting modifica-
tions. We observe (Table 2, Figure 8 in supplementary) that
while IC-Light generates realistic images, it often fails to
adhere to ‘turn on/off’-prompts and changes geometry and
texture of background elements.
User Study. We conducted a user study in which each user
was presented with the relighting results of RGB↔X [80]
and ScribbleLight in randomized order. The user was asked

RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓
IC-Light 0.278 11.46 0.357 0.505
ScribbleLight 0.210 14.21 0.443 0.397

Table 2. We compare ScribbleLight, which utilizes auto-generated
scribbles, with IC-light, with carefully crafted prompts that reflect
the scribbles, across 50 test images.

to pick the best relit image conforming to the scribble, while
preserving the geometry and texture of the original image.
We evaluated 30 test examples, each judged by 30 partici-
pants. We note that 95.6% of the participants prefer Scrib-
bleLight over RGB↔X [80], supporting the observations of
quantitative evaluation with user scribbles.

4.4. Ablation study
Design of Albedo-conditioned Stable Image Diffusion.
A key contributor to the quality of the relighting is the
albedo-conditioning of the diffusion model, ensuring better
preservation of the intrinsic color and texture of the input.
The robustness of the albedo-conditioned diffusion process
is further improved by adding a noise ϵAT to the latent albedo
condition zA (in addition to the noise ϵIt added to the image



Albedo Add ϵAT RMSE ↓ PSNR ↑ LPIPS ↓
ControlNet – 0.2305 13.19 0.4839
StableDiff – 0.2082 14.07 0.4193
StableDiff ✓ 0.2059 14.29 0.3942

Table 3. Design of Albedo-conditioned Stable Image Diffusion.
We show that adding noise to the albedo latent improves albedo
preservation and generation of realistic lighting effects.

Normal DC RMSE ↓ PSNR ↑ LPIPS ↓
– ✓ 0.2224 13.61 0.4251
✓ – 0.2098 14.06 0.4093
✓ ✓ 0.2059 14.29 0.3942

Table 4. Inclusion of both normals and the control-decoder im-
proves geometry preservation in the relit images.

latent zI ). We ablate the efficacy of both components using
auto-generated scribbles in two experiments: (i) we directly
add the albedo as input to the ControlNet instead of condi-
tioning Stable Diffusion on the albedo, and (ii) we train the
Albedo-conditioned Stable Diffusion without adding noise
to the albedo latent. From Table 3, we observe that albedo
conditioning better preserves the intrinsic colors and tex-
ture than injecting the albedo via ControlNet (2nd row, 1st
column in figure, 1st row in table vs 2nd row, 2nd column
in figure, 2nd row in table). Furthermore, we observe that
adding noise to the albedo latent (2nd row, 3rd column in
the figure, 3rd row in the table) is more robust to inaccura-
cies in the predicted albedo (e.g., the soft glow around the
lamp) and provides larger variations in lighting effects (e.g.,
blue sunlight peeking through the window).
Design of ScribbleLight ControlNet. Another key com-
ponent in ScribbleLight is the control encoder-decoder for
normal and scribble maps. We verify the importance of the

normal map N, and the regularizing role of the control de-
coder DC . Table 4 indicates that omitting the normal map
(2nd column in the figure, 1st row in table) results in the cre-
ation of more random objects, even in empty spaces, due to
the absence of 3D geometric guidance. Furthermore, omit-
ting the regularizing control-decoder DC (3rd column in the
figure, 2nd row in table) also creates hallucinations (4th col-
umn in the figure, 3rd row in table).
Limitations. ScribbleLight struggles to rectify strong phys-
ical inconsistencies in the user-defined scribbles and often
generates realistic but physically implausible lighting ef-
fects (Figure 7). Furthermore, ScribbleLight does not sup-
port colored lighting adjustments, leading to relit results
biased toward commonly seen colors like yellow and blue
from its learned prior or source image colors.

Figure 7. Given a physically incorrect scribble, i.e., the location of
shadow does not match the light source, ScribbleLight often cre-
ates implausible lighting effects that best match the user scribbles.

5. Conclusion
In this paper, we introduce ScribbleLight, a generative
model for scribble-based single-image relighting of indoor
scenes. We show that scribbles are a viable control sig-
nal for realistic and physically plausible relighting while
significantly reducing user efforts and providing flexibil-
ity by enabling progressive coarse-to-fine editing. Our key
technical contributions are the introduction of an Albedo-
conditioned Stable Image Diffusion variant that better pre-
serves the intrinsic color and texture of the input image dur-
ing relighting, and ScribbleLight’s ControlNet that better
preserves geometrical shading information and guides the
relighting based on a latent encoding of the surface nor-
mals and rough scribble annotations. Our method outper-
forms existing image-based relighting algorithms adapted
for scribble-based relighting in both quantitative and qual-
itative evaluations. We demonstrate the effectiveness of
ScribbleLight in generating various lighting effects, e.g.,
turning a light source on or off or adding strong highlights
and cast shadows. We also show that ScribbleLight can gen-
erate multiple replicates that match the scribbles. For future
work we would like to enhance scribble generation to im-
prove user control and precision in relighting. Additional
avenues for future research include incorporating colored
scribbles to allow users to control the color of the lighting.
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ScribbleLight: Single Image Indoor Relighting with Scribbles

Supplementary Material

Along with this supplementary Material, we provide
additional visual materials (e.g., images and videos) in
an websit, accessible via https://chedgekorea.
github.io/ScribbleLight.

A. Implementation Details
We fine-tune a pre-trained Stable Diffusion v2 model [60]
for Albedo-conditioned Image Diffusion and ScribbleLight
ControlNet. To reconstruct the monochromatic shading
map Smono and the normal map N from the lighting fea-
ture map f , we utilize a control decoder DC . This control
decoder DC is structured similarly to the control encoder
EC , consisting of 4 residual blocks, but with a transposed
architecture. For training, we use a batch size of 16 and the
AdamW optimizer with a learning rate of 1e–5. All inputs
are resized to 512 × 512. Training each model takes approx-
imately 48 hours on 4 A6000 GPUs. We employ the DDPM
noise scheduler with 1000 diffusion steps during training.
For inference, we apply the DDIM scheduler and sample
only 20 steps.

B. Evaluation with Monochromatic Shading
This section is analogous to Section 4, but instead of using
scribbles, we evaluate indoor scene relighting performance
using the monochromatic shading map Smono.
Dataset and Baselines. As detailed in Section 4.1, we
trained both LightIt* [38] and our method using the LSUN
bedrooms dataset [76]. Instead of using auto-generated
scribbles as the ControlNet input, however, here we uti-
lize the monochromatic shading map instead. For our sec-
ond baseline, we employed RGB↔X [80] without retrain-
ing: intrinsic components (normal, albedo, roughness, and
metallicity) were extracted from the source image, and the
irradiance field was derived from the target image using
RGB→X. The source image was then relit by recomposing
it with its intrinsic components and the target image’s irra-
diance field through X→RGB. Since IIDiffusion [39] em-
ploys spherical Gaussians as its lighting representation, it
was not feasible to perform a comparison based on scrib-
bles. However, we extend the comparison with IIDiffu-
sion by extracting intrinsic components from the source im-
age and the spherical Gaussians from the target image, and
recomposing the source image under the target spherical
Gaussians, similar to RGB↔X.
Evaluation. We quantitatively compare the relighting qual-
ity using the monochromatic shading Smono over the test
set. The results, summarized in Table 5, show that Scribble-
Light outperforms the baseline methods across all metrics.

RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓
IIDiffusion 0.137 18.02 0.690 0.367
LightIt* 0.227 13.17 0.390 0.447
RGB↔X 0.261 13.36 0.570 0.364
Ours 0.132 18.22 0.697 0.275

Table 5. Quantitative comparison of relighting accuracy between
our ScribbleLight, RGB↔X [80], LightIt* [38], and IIDiffu-
sion [39] with monochromatic shading map created from the target
image. We compute the errors with respect to a target image.

Additionally, we present the qualitative results in website
(see the ‘Monochromatic Shading Map’ section).

C. Comparison with IC-Light

Figure 8. IC-Light uses prompt-driven relighting but lacks precise
control, e.g., turn on only 1 light source (row 1) or add direct light-
ing on the bed (row 2). IC-Light also often changes the composi-
tion of the scene by removing or adding any objects, e.g., removes
picture frames on the wall (row 1 & 2) and reshapes the curtains
(row 2). In contrast, ScribbleLight provides precise lighting con-
trol while preserving the composition of the scene.

D. Visual Materials
The structure of website is as follows. As demonstrated in
Figure 1 and Figure 6, the top section presents a demo video
and three iterative examples showcasing how ScribbleLight
iteratively refines lighting effects. The ‘User Scribble’ sec-
tion provides additional examples of user scribble com-
parisons, as illustrated in Figure 4. The ‘Monochromatic
Shading Map’ section features qualitative comparisons ref-
erenced in Appendix B. We also present the target shading
utilized by each method during relighting in Figure 9. Fi-
nally, the ‘Turning On/Off the Light’ section includes addi-
tional examples from Figure 5.

https://chedgekorea.github.io/ScribbleLight
https://chedgekorea.github.io/ScribbleLight


Figure 9. We demonstrate the target lighting representation used by each method—IIDiffusion [39], RGB↔X [80], LightIt* [38], and
Ours—when performing relighting with a monochromatic shading map.
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