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Figure 1. Neural re-renders of input photographs. Appearance properties estimated from a single HDR photograph with
co-located light and view, then re-visualized using a trained neural renderer.

Abstract
We propose a material appearance modeling neural network
for visualizing plausible, spatially-varying materials under
diverse view and lighting conditions, utilizing only a single
photograph of a material under co-located light and view
as input for appearance estimation. Our neural architecture
is composed of two network stages: a network that infers
learned per-pixel neural parameters of a material from a
single input photograph, and a network that renders the
material utilizing these neural parameters, similar to a BRDF.
We train our model on a set of 312,165 synthetic spatially-
varying exemplars. Since our method infers learned neural
parameters rather than analytical BRDF parameters, our
method is capable of encoding anisotropic and global illumi-
nation (inter-pixel interaction) information into individual
pixel parameters. We demonstrate our model’s performance
compared to prior work and demonstrate the feasibility of
the render network as a BRDF by implementing it into the
Mitsuba3 rendering engine. Finally, we briefly discuss the
capability of neural parameters to encode global illumination
information.

Keywords: BRDF, Neural Networks, Relighting, Appearance
Estimation

1 Introduction
Plausibly modeling the appearance of spatially varying ma-
terials from a single photograph is a challenging problem.
Perfect appearance reconstruction from a single photograph
is notably under-constrained; an uninteresting solution that
always perfectly recreates the initial photograph’s appear-
ance would be to assume it is a photograph of a completely

non-glossy colored print-out of a prior photograph of the
actual material, thus disregarding more complex observed
reflectance properties. It is thus beneficial to seek to estimate
plausible, ’interesting’ underlying materials of single pho-
tographs, rather than finding a solution which best matches
the input photograph.

In an optimistic best-case scenario for single image appear-
ance estimation, the photograph is of a material which varies
minimally in reflectance properties across its surface, and
provides comprehensive data that accurately captures both
diffuse and specular properties of the material’s reflectance
properties. In other words, the image contains information
about how light interacts with the material both in the case
of mirror-like reflections (specular effects) and scattered re-
flections (diffuse effects). Assuming the spatially-varying
reflective properties of the material vary predictably across
the surface and can thus be correlated, an estimation method
could fit material parameters to multiple data points (mul-
tiple pixels in a single photograph), where the lighting and
viewing conditions differ. In reality, this is far too optimistic
and several primary challenges must be addressed to fully
utilize a single photograph for appearance estimation. One
primary issue is accurately segmenting the material surface
into regions representing fundamentally different reflectance
properties, such as distinguishing diffuse painted areas from
glossy metallic areas. This requires techniques capable of
recognizing diverse material types within the same photo-
graph, a challenge further exacerbated by pixels that may
capture and blend multiple sub-materials of a surface. Addi-
tionally, understanding how these ’macro’ sub-materials of
a surface are locally perturbed, such as by dents in metal or
variations in paint thickness, necessitates methods that can
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infer (or hallucinate) fine-scale surface details from limited
visual information.

Most existing appearance modeling solutions attempt to
estimate the parameters of an analytical Bidirectional Re-
flectance Distribution Function (BRDF). A BRDF is a func-
tion which takes an incident light direction and outgoing
view direction as input and returns the ratio of incident
irradiance to outgoing radiance for a single point on a sur-
face. Spatially Varying Bidirectional Reflectance Distribution
Functions (SVBRDFs) model the ratio of reflected radiance
to incident irradiance across different points on a surface,
capturing variations in reflectance properties across the sur-
face. Common isotropic BRDFs like GGX are modeled as
SVBRDFs by parameterizing a material surface based on
each surface position’s diffuse reflectance (scattering light
uniformly) and specular reflectance (scattering light in a spe-
cific mirror directions based on microfacet perturbations).
Within the parameter space of SVBRDFs, different SVBRDF
parameter maps for a material surface may result in the same
visual appearance under the same lighting conditions. Many
single image appearance modeling methods, including ours,
attempt to produce plausible, ’interesting’ material appear-
ances from known lighting, rather than truly reproducing a
surface’s underlying material properties or perfectly recreat-
ing the input photograph [1].
In recent years, machine learning has driven significant

advancements in successful techniques for single image ap-
pearance modeling. Most of these techniques center on the
’estimation’ of per-pixel analytical (derived) SVBRDF parame-
ter maps [2, 4, 27]. In addition to suffering from the aforemen-
tioned under-constrained nature of single image appearance
modeling, analytical SVBRDFs also do not perfectly model all
the complex reflectance properties of real surfaces [3] nor do
they directly capture complex inter-pixel light transport ef-
fects like shadows. In contrast to direct parameter inference
methods, neural re-rendering methods seek to re-visualize
photographed materials without explicit analytical parame-
ter estimation, instead utilizing learned neural networks to
estimate the visual appearance of a photographed material
without explicit analytical BRDF parameters. These methods
are thus wholly dependent on the training data to determine
the reflectance effects which they model [1]. Existing neural
re-rendering methods relight whole images, making them
unsuitable and inefficient for path-tracing rendering engines,
which require per-pixel reflectance evaluation for efficient
use.
We propose a neural re-rendering method which gener-

ates ’neural material parameters’ at a per-pixel granularity.
Unlike rigid analytical SVBRDF parameters, these parame-
ters are learned during training alongside a neural renderer
which is trained to utilize these learned parameters for (re-
)rendering. Inspired by work in Neural BRDFs (NBRDFs)
and neural Apparent-SVBRDF compression [1, 16, 26], we

jointly train two neural networks. Together, the full archi-
tecture is trained to perform image relighting, transforming
an input photograph of a planar material exemplar into a
re-visualization of the photographed material under differ-
ent light and view conditions. The first and larger network
transforms an input photograph into a spatially varying map
of view-and-light-independent neural material parameters
(or SV-NBRDF parameters) with equal resolution to the input
photograph. The second, smaller network takes a per-pixel
neural parameter vector, the incoming light position, and
outgoing view position as inputs to generate an RGB output
color. This smaller network is shared across all pixels and
acts as a function of light and view directions parameterized
by a pixel’s estimated neural material parameters.

Importantly, our model’s second network returns the ratio
of the reflected radiance to the incident irradiance, multiplied
by the projected area of the pixel with respect to the incident
light direction. It is thus easily refactored into a BRDF by
dividing by the projected area of the pixel with respect to
the incident light direction. This property of the network
and the two-stage modularity of our architecture allows our
neural rendering network to be efficiently implemented into
rendering engines at the pixel granularity. We envision that
our neural BRDF parameters can further be made editable
[7], just as analytical BRDF parameters are.
In conclusion, our primary contributions are:

1. A novel two-stage neural network strategy for plausi-
ble appearance modeling from a single photograph;

2. a demonstration of our method’s potential to encode
and model global illumination effects like shadows via
its parameters, which is not possible by naively using
analytical BRDFs; and

3. a demonstration of the feasibility of implementing
our neural renderer into the path-tracing rendering
engine, Mitsuba3 [8].

Code for this project, as well as a simple Jupyter Notebook
demo, can be found at https://github.com/APeculiarCamber/
neural_appearance_estimation.

2 Related Work
Single Image SVBRDF Estimation.Due to its under-const-
rained nature, inferring SVBRDF parameters from a single
photograph is a very challenging problem. Nascent machine
learning work demonstrated the feasibility of neural network
solutions for inferring SVBRDF parameters from a single pho-
tograph; Li et al. [10] utilize a convolutional neural network
to infer the GGX SVBRDF parameters of unlabelled single
images under natural lighting, for a small category of mate-
rials. They illustrated that the problem could be classified
as the inverse of the rendering algorithm and highlighted
the capability of neural networks to address the inherent
ambiguities in estimating single image appearance.

https://github.com/APeculiarCamber/neural_appearance_estimation
https://github.com/APeculiarCamber/neural_appearance_estimation
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Subsequent research has focused on guiding neural net-
works to more plausibly resolve ambiguities, particular ambi-
guities caused by specular highlights and lossy low dynamic
range (LDR) image clamping. Deschaintre et al. [2] compile a
dataset of over 200,000 synthetic SVBRDFs to train a network
on sufficient materials such that appearance ambiguities are
resolved plausibly by the model; they further proposed using
a rendering loss as a alternative similarity metric compared
to a direct SVBRDF parameter comparison loss. To manage
over-saturated highlights in LDR images, Guo et al. [4] utilize
highlight-aware (HA) convolutions, which operate similar
to gated convolutions [24]. Alternatively, other approaches
seek optimization-based solutions. Li et al. [11] utilize a ‘re-
finement’ step to combat over-saturation. Zhou and Kalantari
[28] perform test-time optimization on estimated SVBRDF
parameters to minimize test error. MatFusion [18] utilizes
an iterative diffusion model to synthesize multiple SVBRDF
parameter estimations, allowing for user or heuristic selec-
tion between multiple parameter estimations. MatFusion
also augments Deschaintre et al.’s synthetic SVBRDF dataset
[2] with mask-based material parameter map blending.

Other similar work has attempted to improve finer-detail
quality, which poses a fundamental issue for neural net-
works and their tendency to prioritize low-frequency signals.
Neural discriminator strategies (which jointly train discrim-
inator networks to distinguish ground truth renders from
neural renders) appear particularly effective at encourag-
ing finer detail. ‘SurfaceNet’ [22] is a GAN-based network
trained using a neural discriminator loss. Zhou and Kalan-
tari [27] use per-channel neural discriminator networks on
both real and synthetic materials. Focusing on fidelity via
higher resolution, other methods [5, 12] have been proposed
to estimate SVBRDFs for ’ultra’ high resolution photographs,
using stitching techniques to process smaller tiles of high
resolution photographs.

These advancements have been instrumental in improving
the quality of appearance estimation. Notably, our training
process harnesses the Matfusion dataset [18] augmented
from Deschaintre et al.’s dataset [2]; and our architecture
utilizes highlight-aware convolutions [4]. However, these
methods focus on directly inferring analytical SVBRDF pa-
rameters. Despite their ubiquity, these rigid analytical pa-
rameters exhibit limitations in their capacity to represent
intricate anisotropic reflectance characteristics and to incor-
porate inter-pixel reflectance interactions, such as material-
wide light transport (global illumination). Our method, when
provided with training data featuring these complexities, can
theoretically remain robust.

Neural Appearance Modeling. Single image neural ap-
pearancemodelingmethods forego inferring analytical SVBRDF
parameter maps and instead investigate neural parameter
spaces. PhotoMat [26] is a method for fine-tuning a genera-
tive model on single images to construct spatially varying
implicit neural materials; these implicit neural materials are

rendered per-pixel by a jointly trained conditional neural ren-
derer. Notably, PhotoMat is not a inverse rendering method,
but instead a generative model which uses a single image for
tuning material generation. Within the domain of inverse
rendering, Bieron et al. [1] propose injecting lighting infor-
mation into the decoder of a U-Net to relight single images
directly without implicit or explicit per-pixel material pa-
rameters. As the decoder is convolutional, it has no per-pixel
parameter map, neither neural nor analytical.
Our work utilizes a similar encoder-decoder model to

Bieron et al.’s, but instead of a relit image, we train our U-
Net to output neural parameter maps similar to PhotoMat’s.
This greatly increases the efficiency and usability of our
model over both PhotoMat (which only generates similar
materials via a fine-tuning process) and Bieron et al.’s Neural
Relighting method (which is only able to relight an image in
full, requiring processing of its entire decoder for each and
every desired light and view conditions).

NBRDFs. Neural networks further offer a novel range of
methods for encoding material properties beyond analyti-
cal SVBRDFs. Most research on neural representations of
reflectance properties centers on compression and interpola-
tion of Apparent BRDFs (ABRDFs). ABRDFs aremeasurement-
based representations, encapsulating the reflective charac-
teristics of a materials through extensive capture of pho-
tographs of a material surface for exhaustively many light
and view conditions. DeepBRDF [7] is a direct neural com-
pression method using an encoder-decoder architecture to
encoding and decoding full ABRDFs. Rainer et al. [15] use
an asymmetric encoder-decoder in which a sorted ABRDF
is compressed into an implicit neural feature vector. These
neural features are rendered by the decoder when coupled
with injected light and view information, returning an RGB
color. Most similar to our work, NeuBTF trains a two-stage
encoder-decoder model to infer a map of implicit neural
material parameters alongside a renderer MLP [16]. How-
ever, this model is trained on individual materials and input
photographs only serve to augment appearance within the
limited bounds of its trained single material.
Although NeuBTF shares clear architectural similarities

to our model, none of the related neural material representa-
tion methods perform single image appearance estimation.
Instead, they all necessitate a complete ABRDF for training
and/or compression. Our method is trained on hundreds of
thousands of different spatially-varying materials; and our
method does not require full ABRDFs for training nor for
appearance estimation.

3 Method
3.1 General Overview
Our method takes as input a single photograph of a near-
planar material surface, captured from known co-located
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view and light positions, and outputs per-pixel neural pa-
rameters which encode the appearance properties of the
material. These parameters can be used to re-visualize the
material from novel light and view positions, including non-
co-located light and view configurations, using a neural ren-
derer. Both input photographs and output visualizations are
high-dynamic range (HDR) images, which capture a wider
range of brightness levels than many camera sensors are
capable of processing as distinct brightness levels; in con-
trast to low dynamic range (LDR) images which clamp high
reflectance values to a range that most camera sensors can
record as distinct. Common image file formats like Portable
Network Graphics (PNGs) store photographs in a clamped
low dynamic range.
All visualizations of material surfaces are perspective-

rectified to ensure the material visualizations appear as if
viewed from the top down, regardless of the actual viewing
direction, which may be from any direction. In other words,
perspective effects from the view direction are not applied
to visualizations. For rendering purposes, we achieve per-
spective rectification by treating each pixel of a spatially
varying surface as an independent BRDF at varied positions
between the surface bounds of (-1,-1) for the ’top-left’ corner
and (1,1) for the ’bottom-right’ corner. For a 256x256 image
example: given a matrix of the positions of the image’s pixels
P ∈ R256×256×3 and a source point light L ∈ R3, the matrix
of normalized light directions to each pixel from the light
source 𝜔i ∈ R256×256×3 can be computed as follows:

𝜔i
𝑥𝑦 =

T − P𝑥𝑦
∥T − P𝑥𝑦 ∥

where P𝑥𝑦 represents the position vector at the (𝑥,𝑦) entry of
P, and ∥ · ∥ denotes the Euclidean norm. The view directions
(𝜔𝑜 ) can be similar computed. This results in perspective-
rectified light and view directions per-pixel without fore-
shortening (visual distortion that occurs when a surface is
viewed from an angle rather than straight on, causing it to
appear compressed along the line of sight). Like an analyt-
ical BRDF, our neural renderer is thus a function only of
material parameters, incident light direction, and outgoing
view direction; not light and view positions.

3.2 Radiometric Compression
All synthetic (possessing artificial SVBRDF parameter maps)
materials are rendered using the isotropic GGX BRDF model
[21, 23] in linear RGB color-space.

In order to avoid large values dominating themodel and its
losses during training (and to encourage training to prioritize
the more visually importance lower brightness range [0, 1]),
we further apply a simple, reversible log-scaling function to
all reflectance values, R, during processing:

R𝑙𝑜𝑔 = log(𝑅 + 1)

In order to accurately display a visualization, it must be
converted out of log-scale space and then out of linear RGB
color-space, by applying a gamma correction of 2.2:

R𝑣𝑖𝑠 = (𝑒𝑅𝑙𝑜𝑔 − 1) 1
2.2

𝑅𝑣𝑖𝑠 can then be rendered to a screen at a perceptually ap-
propriate brightness.

3.3 Input Photographs
Our method assumes input photographs are captured by a
camera with an FOV of 28◦. We train only on input pho-
tographs lit and viewed from positions directly above the
center of the surface, looking directly towards it. This greatly
simplifies input considerations, allowing the model to fo-
cus on plausible appearance modeling. For co-located light
and view positions, this also creates a large, central specu-
lar highlight, vital for determining the specular reflectance
properties of the input material. We intentionally select a
narrow FOV of 28◦ as photographs with wider FOVs can be
easily cropped to narrower FOVs, while the inverse is more
difficult.

3.4 U-Net
The initial stage of our network,𝑀est, takes a photograph of
a material under co-located view and light conditions and
transforms it into an equal-resolution 2D map consisting of
length-64 parameter vectors (referred to as ’implicit’ neu-
ral material parameters). In order to encode the light and
view information into the input for better generalization
to perturbations in camera position, we concatenate each
log-relative RGB vector of each pixel with the cosine of the
angle between themacro-surface normal, n, and the half-way
direction, 𝜔ℎ , for that pixel. The half-way direction, 𝜔ℎ , is
the normalized sum of the incident light direction 𝜔𝑖 and the
view direction 𝜔𝑜 , i.e. (𝜔ℎ = (𝜔𝑖 + 𝜔𝑜 ) / | |𝜔𝑖 + 𝜔𝑜 | |). This cre-
ates an input tensor of four channels (R, G, B, (𝜔ℎ ·𝑛)), where
· is the dot product of the vectors. Log-scaling is not applied
to the cosine of the half-way angle. To determine n, we ig-
nore potentially unknown spatially-varying perturbations
in surface orientation and assume n is the macro-surface
normal of the entire material, 𝑛 = (0, 0, 1). Thus, (𝜔ℎ · 𝑛) is
equivalent to the z component of 𝜔ℎ .
An encoder-decoder U-Net is chosen for 𝑀est due to a

U-Net’s desirable capabilities for image segmentation and
distribution learning [17]. The architecture of𝑀est is directly
adapted from an U-Net architecture used for single image
material relighting by Bieron et al. [1]. The encoder begins
with a single 7x7 kernel convolution to expand the four input
channels to 64 channels; a typical structure of residual block
convolutions [6] then follows. Downsampling is performed
thrice by 2x2 kernel convolutions.

The convolution layers of the encoder’s residual blocks are
replaced with highlight aware (HA) convolution layers [4]
to mitigate ‘burn-in’ effects, in which overexposed highlight
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Figure 2. The first stage of our architecture,𝑀est, which transforms an input RGB image and map of half-direction cosines
into a map of implicit neural material parameters, to be rendered by 𝑀render. The yellow layers represent Highlight-Aware
residual Convolution blocks of 2 HA convolutions each. The blue layers represent standard residual convolution blocks.

regions of photographs result in poor appearance estima-
tion. Specifically, these ’burn-in’ effects manifest as methods
under- or over-estimating diffuse reflectance in highly bright
specular regions. Real-world, LDR photographs often have
overexposed highlight regions where radiance near the spec-
ular highlight exceed the maximum for low dynamic range
images and are thus clamped. These overexposed regions
correspond to regions in HDR photographs where the ra-
diance values are higher than the maximum radiance of
LDR photographs and are thus clamped to the lower range
when converting to LDR; this results in an unrecoverable
loss of information. The loss of information for the true
reflectance behaviors of materials photographed or saved
in low dynamic range (LDR) causes brighness ambiguities,
as all brightness values above the LDR upper bound are
clamped to the same value. HA layers seek to mitigate the
ambuiguities this causes by utilizing a method similar to
gated convolutions used in image in-painting [24]. Unlike
gated convolutions however, HA layers learn to apply a dy-
namic mask based on learned identification of over-exposed
regions, rather than processing a predefined in-paint mask.

Lastly, the decoder of 𝑀est uses residual blocks with stan-
dard convolutions, under the assumption that the encoder
will sufficiently mask ’burn-in’ inducing highlights. Upsam-
pling in the decoder is performed by 4x4 transposed convo-
lutions. Skip connections between the encoder and decoder
are added after each of the three upsamples in the spatial di-
mensions. The final ’decoded’ output is a 64-channel map of
implicit neural parameters with the same spatial dimensions
as the input photograph. See Figure 2 for a diagram of this
simple network.

3.5 Renderer
A BRDF is a function which takes an incident light direction
and outgoing view direction and returns the ratio of incident
irradiance to outgoing radiance. The second stage of our net-
work,𝑀render, is functionally a parameterized BRDF model
with radiance intensity foreshortening applied (decrease in
reflected area from viewing at an angle). 𝑀render takes as
input each 64-length implicit material parameter vector gen-
erated by𝑀est and any pair of light and view directions, and
generates as output a log-relative, linear-RGB color repre-
senting the appearance of the pixel’s material (corresponding
to its neural parameters) under the conditions of that input
light and view direction.
While neural networks are highly effective at approxi-

mating low frequency functions, they often struggle with
high frequency approximation, such as the sharp transition
into a specular highlights of smooth, shiny materials. To
mitigate this, we generate positional encodings for the x,y,z
components of the incident light direction 𝜔𝑖 , output view
direction𝜔𝑜 , and the half-way direction,𝜔ℎ , at exponentially
increasing frequencies; this technique allows high frequency
information to be encoded in additional dimensions and is di-
rectly inspired by NeRF’s positional encodings [13]. Formally,
we encode 3D directions to a higher-dimensional space us-
ing a set of sinusoidal varied-frequency functions. Given an
input direction (x, y, z) and number of frequencies n, the
position encoding Γ(x, y, z) is defined as:

𝛾𝑘 (x) =
(
sin(2𝑘𝜋𝑥), cos(2𝑘𝜋𝑥)

)
Γ(𝑥,𝑦, 𝑧) = (𝑥,𝑦, 𝑧) ∪

𝑛⋃
𝑘=0

(𝛾𝑘 (x) ∪ 𝛾𝑘 (y) ∪ 𝛾𝑘 (z))
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where the direction (x, y, z) are the directions computed
by Equation 3.1.
These encoded directions are processed through an aux-

iliary MLP network, 𝑁𝐷𝑒𝑛𝑐 , in order to re-compress the in-
formation. This compressed sinusoidal encoding is concate-
nated with the implicit material parameters of a material’s
neural representation to compose the true input to𝑀render.
By trial and error, we choose a frequency count n of 16, re-
sulting in 288 initial values (2 * 16 sinusoidal encodings, of
three directions with three components each); and we choose
a compressed encoding size of 32.

For the architecture of𝑀render, we experimented with dif-
ferent neural renderer architectures, such as Siren MLPs
[19], however we empirically found that a simple 6-layer
fully connected MLP with LeakyRelu activations worked
best. This can trivially be implemented as a convolutional
network where all convolutions have a kernel size of 1 to
enable implicit processing of 2D images. Figure 3 shows a
diagram of our 𝑀render and the process of light and view
encoding.

3.6 Training
Architecture.𝑀render is considerably smaller than𝑀est.𝑀est
possesses 84,008,960 parameters compared to𝑀render’s 387,974
parameters. As a result, the encoder-decoder constitutes both
the primary execution and memory bottleneck for our archi-
tecture. The number of input photographs that can be accom-
modated in a single batch of training is greatly limited by the
size of𝑀est, but the number of output re-visualizations is not
so constrained by𝑀render and its auxiliary 𝑁𝐷𝑒𝑛𝑐 network.
Since𝑀est produces light and view independent representa-
tions of the materials, we can take advantage of the smaller
size of 𝑀render to visualize each estimated implicit neural
material with multiple light and view conditions, allowing
for rendering many more output images than our network
could accept input images, greatly increasing the reliability
of training.

We jointing train𝑀render,𝑀est, and 𝑁𝐷𝑒𝑛𝑐 using the Mat-
Fusion’s synthetic BRDF dataset [18]. This dataset is an ex-
tension of the INRIA synthetic BRDF dataset [2] with mask-
based SVBRDF combinations; it is comprised of 312,165 GGX
SVBRDF parameter maps of near-planar mixed and com-
bined synthetic material surfaces, along with normal maps
to approximate surface angle perturbations. Further, we em-
ploy a test set of 50 unique materials not part of the training
set nor its material combination processes.

Generating Training Batch. All synthetic materials for
training are rendered using the isotropic GGX BRDF model
[21, 23]. For a single batch of training, we randomly select
two material from the MatFusion dataset [18], and generate
one RGB input render and a fixed number of RGB output ren-
dered exemplars for each material. Input renders are always
rendered with co-located light and view positions, positioned
directly downwards towards the center of the material such

Figure 3. MLP Per-pixel Neural Renderer (NBRDF). The
neural parameters (purple) are concatenated with the MLP-
compressed encoding of light and view directions (orange);
this input is fed into a 6-layer MLP to return a log-relative
linear-RGB color (far right).

that a camera with an FOV of 28◦ fully captures the mate-
rial. Assuming a 2x2 unit material, this means positioning
the light and view at a distance 𝑑view from the center of the
material where:

𝑑view =
1.0

tan( 282 )
≈ 4.010781

For output exemplars, the SVBRDF parameters are not
used directly to train our model, only to render training ex-
emplars. Thus, it is critical that training provide as many
challenging rendered exemplars as possible. As specular
highlights are both a desirable visual effect and are high-
frequency in the spatial dimensions of the photograph, most
training output exemplars should include a specular high-
light (in cases where the material is not entirely diffuse). As
such, output exemplar renders are generated identically to
Bieron et al.’s training process [1]. A point, p, is uniformly
selected on the 2x2 unit surface of the material; this point is
then perturbed by a sample from a Gaussian normal distri-
bution with mean 0 and standard deviation 2.

𝑝𝑥 = (𝜉1 ∗ 2) − 1 + 𝜎 (𝜉2,mean = 0, std = 2)

𝑝𝑦 = (𝜉3 ∗ 2) − 1 + 𝜎 (𝜉4,mean = 0, std = 2)
where each 𝜉 is a uniformly sampled value in [0, 1] and 𝜎

is the Gaussian normal distribution. A view position, 𝑣 is
then sampled uniformly from the hemisphere of radius 𝑑view,
centered on the surface. Finally, a light position, 𝑖 , is selected
that achieves a specular highlight centered at point p, i.e.
such that:

𝑖 − 𝑝

| |𝑖 − 𝑝 | | = 𝑟𝑒 𝑓 𝑙𝑒𝑐𝑡𝑝 (
𝑣 − 𝑝

| |𝑣 − 𝑝 | | )

where 𝑟𝑒 𝑓 𝑙𝑒𝑐𝑡𝑝 returns the mirror reflected direction of the
input direction at point p; and | |𝑥 | | is the magnitude of a
vector x. Finally, the light position’s distance from the point
p, | |𝑖 − 𝑝 | |, is sampled by:

| |𝑖 − 𝑝 | | = |𝜎 (𝜉𝑖 ,mean = 0, std = 2) | + 0.5
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Losses. We use a combination of 3 primary losses during
training: a data loss 𝐿𝑑 , a perceptual loss 𝐿𝑝 , and a condi-
tional discriminator loss 𝐿𝑐 . Our data loss, 𝐿𝑑 is the L1 error
between a output exemplar image and the model-rendered
image for the same light and view position. While log-based
losses have been shown to be effective for parameter fitting
tasks with intense specular lobes, our model already operates
fully in log-relative space, rendering a log-based loss less
useful.
𝐿𝑑 directly trains the model towards the GGX-based ap-

pearance of the training set. Unfortunately, the per-pixel
nature of the loss biases the model towards blurring specu-
lar highlights to mitigate high error from the sharp shift in
intensity on a highlight’s edge. We address this using two
additional losses. A ’Learned Perceptual Image Patch Similar-
ity’ (LPIPS) metric [25] grounds the model towards visually
plausible renders, while a neural discriminator loss deter-
mines if the neural-rendered image is of the same ’material’
as the input image. The neural discriminator is a small con-
volutional network of six layers of kernel size 4; it is jointly
trained alongside the main rendering model and empirically
effective at detecting and penalizing blurring. By trial and
error, we found that the best weighting for these losses were:

𝐿 = 1.0 ∗ 𝐿𝑑 + 0.01 ∗ 𝐿𝑝 + 0.03 ∗ 𝐿𝑑

Masking. Unfortunately, two key training problems arise
due to our architecture. First, 𝑀est is prone to instabilities,
likely due to the masking behavior of highlight-aware con-
volutions. These instabilities result in seemingly random,
small patches in the implicit material map which are com-
prised of high-norm, high-noise ’garbage’ parameter vectors.
Without intervention,𝑀render learns to adapt to these non-
sense parameters with average expected values, obscuring
the loss that ought to be applied to such parameters. Second,
𝑀render is a shared, per-pixel renderer; its parameter training
behavior is thus highly affected by the overall appearance of
materials (which tends towards 0 for highly specular materi-
als where only a specular highlight is bright on an otherwise
dark surface). To mitigate these issues, we employ one of
two pixel sampling methods to select only specific pixels to
contribute to the data loss for training of 𝑀render. We pro-
pose two methods to generate a multi-nomial (multivariate)
probability distribution to sample pixels:

1. The inverse norm of the neural parameters of each
pixel;

2. The squared norm of the RGB vector of each pixel of
output exemplars.

We sample these distributions for 60% of the pixels, and use
only those sampled pixels for the data loss of training𝑀render.
The first method samples aggressively away from unstable
neural parameters, while the second samples reasonably
towards specular and high-intensity colors. Our models are

trained on the first probability distribution, generated by
channel-wise neural parameter norms.

4 Results
Implementation. We implemented and trained our neural
network model in PyTorch. We used as starting learning rate
of 10−4 for𝑀est,𝑀render, and 𝑁𝐷𝑒𝑛𝑐 . We employ a learning
rate decay of 1.5% every epoch of 20,000 batches and utilize
the Adam optimizer [9]. We used the full 312,165 SVBRDF
training set (cropped to 192 × 192 resolution). Only 60% of
pixels for each material are used to inform the data loss of
𝑀render. Each batch is comprised of two uniformly sampled
materials from the MatFusion dataset, with one input photo-
graph and eight rendered output exemplars each. We train
for 30 epochs at 192 x 192 resolution on a single Nvidia RTX
A5000 for around 60 hours.

To bring our model up to processing the desired resolution
of 256 x 256 images, we fine-tune our model with a learning
rate of 10−4 and rate decay of 0.8 every 20,000 batches. We
finetune for 200,000 batches at 256 x 256 resolution for 24
hours; these 256 x 256 batches still use two input training
materials but only render four output exemplars per material
due to memory constraints.

Comparison To Prior Work. Figure 9 compares our
neural material estimation technique against the adversar-
ial direct inference method of Zhou and Kalantari [27], the
co-located diffusion model of MatFusion [18], and Neural
Relighting [1]. Qualitatively, our method is comparable to
these other recent methods, albeit does not perform nearly
quite as well. This is supported by Table 4, which tabulates
the average perception-based LPIPS render loss [25] over all
50 testing materials for three render cases. Reflect renders
each exemplar with light and view conditions sampled as
specified in our training section. Identity measures how effec-
tively the model ’recreates’ the input image given the same
light and view as the input photograph. Finally, Hemisphere
render each exemplar over a set of 128 independently and
uniformly sampled point lights and view positions on the
hemisphere with radius 4.0 centered at the middle of the
material, which matches the FOV of 28◦ used for training of
our method and Bieron’s Neural Relighting.

While RMSE errors are common for comparing the SVBRDF
property maps, our method does not generate analytical
SVBRDF maps and so this comparison is not applicable.

Due to our method’s similarities to Bieron et al.’s [1] which
performs well here, we posit our slight under-performance is
due to poor hyper-parameter selection, especially in regards
to the number of positional encoding frequencies and degree
of positional encoding compression; this encoding can intro-
duce banded noise from the repetition of frequency signals.
Additionally, the aforementioned instability of𝑀est results
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in small ’black-holes’ where the renderer is provided high-
norm, noisy garbage (see the top-left of our result for the first
row of Figure 9). Investigating more aggressive instability
mitigation strategies appears necessary.

Reflect Identity Hemisphere
Ours 0.273 0.092 0.239
Zhou 21 0.283 0.217 0.200
MatFusion 0.269 0.091 0.207
Bieron 23 - Relit 0.259 0.075 0.219

Figure 4. LPIPS metric comparison of our model, Zhou and
Kalantari’s Adversarial Model [27], Matfusion [18], and Neu-
ral Relighting [1]. Columns correspond to reflection sam-
pling, identity, and random hemisphere sampling.

Real Photographs. We utilize Zhou and Kalantari’s real
photograph dataset [28] to evaluate how our method gener-
alizes to noisy, real-world photographs. These photographs
have no ground truth SVBRDFs to compare re-renders to,
and there are only sparse alternative photographs under
different light and view directions.

Since these real-world photographs are in a low dynamic
range, we train another model identically to the HDR model
but using input photographs clamped to the LDR. Further,
these real-world photographs are taken on a 45◦ FOV camera,
while our model is trained on an FOV of 28◦.

Figure 10 illustrates how our method performs on these
real-world photographs. This demonstrates a limited capac-
ity of our model to generalize to other FOVs and the noise
of real photographs. This FOV limitation could be rectified
by cropping the input photographs to the expected FOV, or
training a model under a different (or variable) FOV.

4.1 Global Illumination
Global illumination (GI) transport play a crucial role in cre-
ating visually plausible renders. Instead of only accounting
for the direct light interaction with points on a surface, GI
considers the inter-pixel interactions of light transport. The
most obvious instance of GI for near-planar surfaces is shad-
ows, in which a point on a surface block incident light to
another point.

Synthetic planar SVBRDF materials are geometrically flat
and thus don’t natively cast shadows. Perturbations in height
(and thus orientation) of a planar material are instead simu-
lated on a per-pixel basis using a normal map to specify the
direction perpendicular to the surface at each pixel position.
In order for a planar material to cast shadows, its normal
map must be integrated to generated a height map, encoding
a height component of each pixel; this height map then facil-
itates simulation of shadows. However, the use of a height
map is computationally intensive and requires run-time de-
termination of inter-pixel interactions, which vary widely
based on the light position.

No-GI GI Our Model

Figure 5. Qualitative comparison of global illumination
transport and shadows, Non-GI render (left), Blender (mid-
dle) against our model (right). Note the shadow effect of
lower orange nubs.

Implicit neural material parameters on the other hand
are capable of encoding shadowing information, gleaned
from the transformation process from input photograph to
neural parameter map. A neural renderer is further capable
of simulating shadows using these parameters on a per-pixel
basis; no inter-pixel interaction is required by the renderer,
only by the first transforming convolutional network.

We demonstrate this capability of our model by over-fitting
it to a training set rendered using Blender 4, an open-source
3D graphics software, which can produce visualizations of
materials with global illumination. Figure 5 demonstrates our
model’s capability to encode and re-visualize photographs
while accounting for global light transport effects.

It is vital to note that due to the highly over-fitted training
process,𝑀est cannot be considered as estimating the appear-
ance nor estimating the global light transport of the material,
since only a single material is present for training. Instead,
we only demonstrate here that shadow information can be
encoded into the neural parameters of a pixel and used by
a shared neural renderer to simulate global illumination ef-
fects.

4.2 Integration to Path Tracing
𝑀render combined with a neural parameter vector for a pixel
is easily refactored into a BRDF by dividing𝑀render’s output
RGB color by the projected area of the pixel of incident
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light direction. To demonstrate the feasibility of𝑀render as a
practical BRDF, we implement it as a custom BRDF in the
Mitsuba3 rendering engine [8]. Figure 6 shows individual
pixels of estimated neural materials rendered as a BRDF
applied isotropically to a sphere.
Implementation. There are two major implementation

concerns: importance sampling and normal correction.
Importance sampling reduces variance in Monte Carlo

rendering by preferentially sampling incident light direc-
tions (given a view direction) with higher BRDF reflectance
values. The probability density function (PDF) describes the
likelihood of sampling each direction given an outgoing view
direction and is used to weight importance sampling. While
solutions exist to construct a PDF from a neural BRDF us-
ing a proxy micro-facet normal distribution PDF [20], we
instead opt for a simple diffuse sampling method not adapted
to individual BRDFs.

Note that Monte Carlo rendering is not utilized in Figure
6, in which only a single infinitesimally small point light
is the only light source which can be sampled directly; in
scenes with natural light from all directions, a reasonable
PDF becomes more relevant for efficient Monte Carlo inte-
gration.

Our second concern is normal correction. Every material
exemplar is parameterized by a normal map. This normal
map encodes perturbations in the surface normals of the
material, allowing simulation of surface orientation pertur-
bations without considering actual geometry. Neural param-
eters encode estimated information on the normal direction
of each pixel in order to affects the reflectance behavior of the
neural renderer. As such, incident and outgoing directions
must be rotated so that this encoded normal is made equiva-
lent to the expectedmacro-normal of the sphere’s surface (we
assume the sphere has no normal map). For neural-encoded
normal direction, n, and macro-normal m=(0,0,1), this is done
via a Gram-Schmidt orthogonal rotation matrix to rotate n
to m:

u =
n × r
∥n × r∥ . with r = [1.0, 0.0, 0.0] .

v = n × u.

R =


𝑢𝑥 𝑣𝑥 𝑑𝑥
𝑢𝑦 𝑣𝑦 𝑑𝑦
𝑢𝑧 𝑣𝑧 𝑑𝑧

 .
where (x × y) is the cross product and R is the rotation ma-
trix to rotate input directions by. While inferring n from the
encoded neural parameters is possible, we instead choose
for simplicity to use the normal encoding in the ground
truth SVBRDF parameters, which may be different than the
estimated and encoded normal direction of the neural pa-
rameters.
Analysis Figure 6a shows the result of sampling 3 sepa-

rate pixels from a glossy brick exemplar of the testing set
and rendering the estimated neural material parameters and

Input Neural BRDF Ground BRDF

(a) Glossy, specular bricks BRDF Mitsuba3 example.

(b) Glossy and diffuse wood BRDF Mitsuba3 example.

Figure 6. Individual pixels rendered in Mistuba as indepen-
dent BRDFs in Mistuba3. Input photograph to model with
purple pixel indicating rendered BRDF (Left). Neural BRDF
(Middle). Synthetic ground truth BRDF (Right).
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Ground LDR HDR

Figure 7. Qualitative Comparison of LDR and HDR input
appearance estimation on real-world photographs with FOV
45◦. LDR (middle) and HDR (right).

Reflect Identity Hemisphere
HDR 0.273 0.092 0.239
LDR 0.270 0.085 0.242

Figure 8. LPIPS metric comparison of our model, Zhou and
Kalantari’s Adversarial Model [27], Matfusion [18], and Neu-
ral Relighting [1]. Columns correspond to reflection sam-
pling, identity, and random hemisphere sampling.

ground truth BRDFs of those pixels onto a sphere in Mit-
suba3. Figure 6b similarly shows the result of sampling 3
separate pixels from a glossy and diffuse wood exemplar of
the testing set and rendering their estimated neural material
parameters and ground truth BRDFs. Despite predicting the
relative location and size of the bright specular highlights
correctly, our NBRDFs struggle to fully visualize the smooth
variance of diffuse reflectance. Network instability is likely
the root cause of the noise and visible banding in the diffuse
reflectance of Figure 6b’s neural renders.

4.3 Ablation Study
We perform a simple ablation study to investigate the efficacy
of our model to handle the inherent data loss in clamped LDR
photograph values. We train two identical architectures on
HDR photographs and LDR input photographs separately;
all output exemplar renders are still generated as HDR ren-
ders for both models. We validate the impact of LDR and
HDR input photographs via the same method as the prior

work comparison. Figure 7 qualitatively shows some key ex-
amples of differences in performance between the LDR and
HDR models for various materials of the testing dataset of 50
synthetic materials. As with training, the input photographs
from the testing set are also clamped to the low dynamic
range for the LDR model, while the HDR model’s test pho-
tographs are not. Table 8 shows the average perception-based
LPIPS render loss [25] over all 50 synthetic testing materials
for the same three render cases as Table 4.
While the LDR model does estimate overall color less

accurately in some cases (such as the last row of Figure 7)
we see surprisingly minimal variation in the overall LPIPS
performance between the models trained on LDR and HDR
input photographs. We suspect this is a clear testament to
the HA convolution layers’ effectiveness within𝑀est.

5 Conclusion
We present a novel architecture for single image appearance
estimation which foregoes the use of analytical SVBRDF
parameters and instead utilizes learned neural material pa-
rameters. This project acts as a pivotal initial step towards
single image appearance estimation using neural material pa-
rameters across the entire re-rendering pipeline. We demon-
strated the flexibility of a neural renderer to be implemented
in a modern ray-tracing rendering engine, and show the ro-
bustness of a neural renderer to light transport effects not
captured by single-bounce analytical BRDFs. We would have
liked to perform a more in-depth ablation study to investi-
gate the effects of various model architecture features, such
as neural parameter count, highlight-aware convolutions,
and𝑀render’s architecture. Potential future work may train
a two-stage model using the complete MatFusion dataset
[18] rendered with global illumination to determine if such
effects can be estimated; or demonstrate the efficacy of other
architectures for neural parameter estimation, such as an
Image Transformer architecture [14].
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Input Reference Ours Zhou 21 MatFusion Bieron 23 - Relit

Figure 9. Qualitative Comparison of appearance estimation on synthetic photographs. All images are re-rendered with light
source translated 1 unit up and 1 unit to the right from the perspective of the camera (centered at [0, 0, 4]).
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Input Reference Ours - LDR Zhou 21 MatFusion Bieron 23 - Relit

Figure 10. Qualitative Comparison of appearance estimation on real-world LDR photographs with FOV 45◦. Real-world photos
sourced from Zhou and Kalantari’s real-world photos dataset [28].
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