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Abstract
In order to overcome several limitations of structured light
3D acquisition methods, the colors, intensities, and shapes
of the projected patterns are adapted to the scene. Based
on a crude estimate of the scene geometry and reflectance
characteristics, the local intensity ranges in the projected
patterns are adapted, in order to avoid over- and under-
exposure in the image. This avoids the infamous specularity
problems and generally increases accuracy. The estimated
geometry also helps to limit the effect of aliasing caused
by the sampling of foreshortened patterns. Furthermore,
the approach also acounts for the adverse effects that small
motions during scanning would normally have. Moreover,
the approach yields a confidence measure at every pixel of
the range image. Last but not least, the scanner consists of
consumer products only, and therefore is cheap.

1. Introduction
1.1. Rationale
Noncontact optical surface digitization techniques have
evolved substantially during the last decades [1]. Struc-
tured light techniques, based upon the projection of 2D pat-
terns [2], form an interesting subset. One of the more ad-
vanced instances combines a time series of binary or color
coded patterns with a limited number of shifted 2D sine
waves [3]. The former yield robust but low resolution 3D
information. The latter, through a technique often referred
to asprofilometryor phase shifting[4], are used to boost
the local resolution. We follow a similar strategy, but with
patterns that self-adapt to the scene.

Structured light techniques offer interesting features.
The cost is low, as consumer hardware is used (a combi-
nation of cameras and projectors), and there are no fragile,
moving parts. This also yields higher speeds. Eye-safety is
no issue, and the setup is usually easy to reconfigure. This
said, there are also some serious limitations. Specular ob-
jects or scenes with very bright and dark parts may lead
to dynamic ranges that the camera(s) cannot handle. As
a consequence, parts of the patterns will go undetected or

are misread. Also, the projected fringe patterns may appear
foreshortened to the point where the camera can no longer
correctly pick up their high, spatial frequencies (aliasing).
Also, the scene and system are assumed to be perfectly
static while the series of patterns are projected. Blais et
al. [5] noted that this may be unexpectedly hard to achieve
in practice. Finally, nonlinearities in both cameras and pro-
jectors are most often completely ignored, again leading to
distorted models. Even worse, all but the saturation prob-
lem risk to remain undetected. These problems are often
addressed through more conservative system design, at the
cost of rendering the devices slower, more expensive, and
bulkier. Even then, quite some manual intervention may be
required, e.g. spraying or powdering the objects.

What we envision is a system which rather adapts it-
self to the scene. Ranges are acquired in a two step pro-
cedure. First the scene is analyzed. This comprises a crude
estimation of scene geometry and measures to take surface
reflectance into account. Then, the projection patterns are
adapted to avoid under- or over-exposure, as well as aliasing
problems. This leads to an iterative process, where the de-
viation between expected and observed patterns allows the
system to refine the geometry and provides it with confi-
dence measures. The process stops when neither the geom-
etry nor the confidences are updated. The estimated geom-
etry also facilitates the detection and compensation of mo-
tion between consecutive frames. On the photometric side,
nonlinearities and crosstalk between the color channels are
modeled for both the camera and projector. The outcome
still is a very low cost system, based on one normal camera
and one LCD projector, that now can deal with a wider cat-
egory of objects (e.g. metal industrial workpieces) and that
requires fewer interactive settings.

1.2. Related work
The work of Caspi et al. [6] is one of the first structured light
approaches which explicitly models the camera-projector
path. The main purpose however is robust color coding.
More recent work on color coded structured light [7] fo-
cuses mainly on limiting the number of projection planes
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for fast 3D. A four shot real-time structured light approach
was suggested in [8], and in [9] single-shot 3D with adapted
patterns is used. In the seminal work of [10] the question of
an optimal set of patterns is formulated for the first time.
Online feedback to the scene however is not yet included,
and conclusions about good patterns are applied uniformly
to the entire scene, not locally. We propose a more complete
projector-camera model which will allow to adapt patterns
online and on a per pixel basis. This is a bit similar to the
work proposed in [11] in which a projector is used to change
an object’s appearance. However, only very crude geome-
try is used, and no difference between reflectance and color
crosstalk seems to be made.

Parts of the work here is akin to recent advances in high
dynamic range imaging. Recently Nayar et al. [12] imple-
mented such process by lookingthrough a modified data
projector. Albeit for completely different applications,this
demonstrates the power of a per pixel intensity modulation.
Various techniques for high dynamic range imaging and the
estimation of response curves have been proposed. See e.g.
[13, 14] for an implementation working on stills, or [15] for
streaming video.

The rest of the paper is organized as follows: section 2
deploys the camera-projector model and the resulting tech-
nique to overcome camera saturation, while section 3 dis-
cusses the pattern geometry. In section 4 we explain how
patterns are decoded and how motion during the acquisi-
tion is taken into account. Results are shown in section 5.
Section 6 concludes the paper.

2. Active Dynamic Range Compensa-
tion

This section models the radiometric chain from projector
values to image intensities. This model will be used to boost
the precision of profilometry, by avoiding saturation in the
camera image.

2.1. Trichromatic projector-camera model
Suppose we illuminate a scene withM projection patterns.
Thenth ‘pixel’ of the mth, m = 1 . . . M pattern will be
be denoted asxp

n,m,b, with the superscriptp referring to the
projector andb ∈ {R,G,B} to the color band.xp

n,m is
the corresponding R,G,B-triplet. A similar notationxc

n′,m

is used for then′th pixel in the camera. In this section,
the relation is derived between the applied projector color
signalxp

n,m and corresponding camera image color values
xc
n′,m. An overview of the different steps is shown in fig. 1.

Cameras typically respond nonlinearly to the incoming
irradiance. Similarly, the radiant flux generated by the pro-
jector depends nonlinearly on the signal that is applied to
its different ‘pixels’. These nonlinearities tend to boostper-
ceptual quality, but complicate profilometry which needs to

Figure 1: The projector-camera model. Bottom right: the
projection pattern is transformed by the inverse projector
response curve. Top right: reflection by the scene. Top mid-
dle: crosstalk between the color channels of the camera and
the projector Top left: from irradiance to pixel values via
the camera response function.

take them into account. In the sequel we will denote the
effective radiant fluxes for the three color bands at pixelsn

andn′ asyp
n,m andyc

n′,m, resp. The nonlinear response
curves for both camera and projector map these fluxes to
a discrete set of pixel values, and this for the three color
bands. For an 8 bit image:

Fb : R+ → [0, 255], b ∈ {R,G,B}. (1)

The first step in our model therefore is the transition of
projector pixel valuesxp

n,m to the resulting radiant fluxes
yp
n,m = Fp−1(xp

n,m).
Of course, the scene will modulate how much of the ra-

diant flux coming from the projector will actually reach the
camera lens. Of this fluxyp

n′,m only part will be reflected
towards the camera. We assume a simple, linear reflectance
model. At each 3D point[X,Y,Z] of the scene these re-
flected fluxes are obtained as:

ȳ
p

n′,m = R(yp
n,m,X,Y,Z) =





r1,1(X,Y,Z) 0 0
0 r2,2(X,Y,Z) 0
0 0 r3,3(X,Y,Z)









y
p
n,m,R

y
p
n,m,G

y
p
n,m,B





(2)
Although both the spectral channels of projector and

camera have been referred to as ‘R’, ‘G’, and ‘B’, their spec-
tral compositions will by no means be identical. This ’mis-
match’ between generated and recorded light is modeled by
a crosstalk functionC:

yc
n′,m = C(ȳp

n′,m) + ya
n′,m. (3)

For C a quadratic model is chosen in contrast to the usual
first order model. This choice has been experimentally justi-
fied, as will be shown later. As we don’t want to work under
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darkened conditions, also a per pixel ambient light contri-
butionya

n′,m will reach the camera, which is also added at
this stage of the model.

The last step translates the incoming radiant fluxyc
n′,m

at the camera back into the pixel intensitiesxc
n′,m for the

three camera color bands, via the camera response function:
xc
n′,m = Fc(tyc

n′,m), with t the exposure time of the cam-
era.

2.2. Calibrating the projector-camera chain
In what follows we need explicit knowledge ofFc , Fp

andC. This calibration step should be done only once, and
can be computed offline.R and the geometry are scene
dependent and therefore part of the online process.

Determination of Fc , Fp : In our experiments we will
use the technique proposed by Debevecet al. [13] to deter-
mineFc. It requires a set of images of a static scene with a
varying but known integration time.

For the determination ofFp, a similar approach can be
followed, as a projector is an ’inverse camera’. A compli-
cating factor is that the relation between the projected pat-
terns (i.e. between the radiant fluxes) needs to be analyzed
via the camera. Hence, we have to work our way back from
camera observationsxc

n′,m,b to y
p
n,m,b. This requires go-

ing viaFc−1, C−1, andR−1. Fc is known already andR
we can basically eliminate by projecting uniform patterns
onto a white, planar, uniform, and diffuse surface. We have
used 30 patterns, each uniform but of 10 different inten-
sity levelsi

p
m,b and activating only one of the three color

channels of the projector at a time. Each pattern was only
observed in the corresponding camera color band. By per-
forming the analysis for each color channel separately, we
have tried to minimize the effect of not takingC into ac-
count as it is not known yet. For each of the patterns, we
have avoided to saturate the camera by adjusting the integra-
tion timestm accordingly. Undoing the camera nonlinearity
by yc

n′,m,b = Fc−1(xc
n′,m,b) and correctingipm,b for the dif-

ferences in integration timestm yields an approximation of
the radiances. From there, discarding the influence ofC, we
apply the same procedures for the projector as used for the
camera. In the next paragraphC will be determined, and we
could in fact iterate through repeatedFp andC estimations.
As corroborated later, this was not necessary.

Fig. 2 shows the result for our Sharp XGC55x data pro-
jector, and AVT Marlin F080C IEEE1394 camera.

Determination of C: In order to estimateC we add to the
earlier set of images a series of shots with illumination in all
three of the color channels so that a total of10 × 10 × 10
combinations of intensity levels are applied. This yields a
uniform sampling of the color space. The projection pat-
terns and the corresponding radiance maps of the images
minus the ambient light{yp

n,m,yc
n′,m − ya

n′,m} are used to
estimate a least squares solution which maps both datasets
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Figure 2: Camera and projector response curves. Left:
camera; close to linear. Right: projector; clearly nonlin-
ear behavior.

to each other. Eq. ( 4) gives the result asC−1 (camera→
projector):

[

ȳ
p
R

ȳ
p
G

ȳ
p
B

]

=

[

1.52 0.11 0.08
0.20 1.24 0.16
−0.06 0.09 1.43

]

×

[

yc
R

yc
G

yc
B

]

+

[

0.15 −0.01 0.13
0.14 0.10 0.48
0.03 0.03 0.37

]

×

[

yc
Ryc

G
yc

Gyc
B

yc
Byc

G

]

+

[

−0.24 −0.36 −0.16
−0.23 −0.44 −0.45
−0.05 −0.42 −0.32

]

×

[

yc
R

2

yc
G

2

yc
B

2

]

(4)

The relative size of the second row of the first order coeffi-
cients indicates that crosstalk from red and blue to green is
considerable. Also the second order coefficients cannot be
neglected. We have tested for higher order models, but the
corresponding components were negligible.

Dealing with R: In order to perform profilometry safely,
one has to avoid getting into the saturation regions – dark
and bright – of the camera. It is therefore important to de-
termine which input levels at the projector side give rise
to such conditions, i.e. we need to know the intensities at
every pixel in the projectorypsat+

n andy
psat−

n which will
generate these saturation levels, for resp. over and under
exposure. As this analysis is dependent on the scene geom-
etry and reflectance properties (summarized asR), it is part
of the online, 3D acquisition process.

Hence, before the projection of the patterns used for the
3D acquisition, several patterns are projected first, specifi-
cally with this goal in mind. These are uniform, gray pat-
terns of different intensity. We used three, with an intensity
of resp. 10%, 50% and 90% of the projector’s maximal out-
put. This yields a triplet{yc

n′,1,yc
n′,2,yc

n′,3} that reach the
camera. For the sequel, it is important that at least one of
these three values keeps the camera out of saturation. For
over exposure, these levels can be calculated for the three

spectral channels asycsat+ = Fc−1
[

240
240
240

]

. Note that we

took a small safety margin with respect to the true maxi-
mal level of 255. This can be translated into maximal levels
ȳpsat+ in each of the projector’s spectral channels by lifting
the crosstalk:ȳpsat+ = C−1(ycsat+). Similarly, starting
from a safe minimal level of 15, the lower thresholdsȳpsat−

are determined.
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In the previous paragraphs we have modeled the nonlin-
earities in the projector-camera radiant flux transfer. This
knowledge will be exploited now. Given an observed re-
lation betweenyc

n′,m and yp
n,m – obtained directly from

the camera readings and projection pattern values through
Fc−1 andFp−1 resp. – we can compute the linearized
relation between̄yp

n′,m = C−1(yc
n′,m) andyp

n,m. The ra-
tio between these values -being the reflectanceR- should
be constant for a fixed image pixel over all patternsm and
fluxesyp

n,m as long as it is correctly exposed. It is now
an easy matter to compute the saturation levelsypsat+/−

from C−1(Fc−1(240)) andC−1(Fc−1(10)). For the sake
of precision, this process is repeated for multiple patterns
and a weighted least squares regression yields the final crit-
ical projection levelsypsat+/− .

Knowledge about the nonlinearities and saturation levels
will be used in the next section for per pixel optimisation
of the mean and amplitude of the sine patterns used in pro-
filometry. Through the use of the multiple projection pat-
terns and our radiometric camera calibration, we also get a
high dynamic range texture map at no extra cost.

So far, we have glossed over the correspondence between
projector pixelsn and camera pixelsn′, in order not to un-
necessarily complicate the discussion. Indeed, this is notan
issue as long as the projection patterns are uniform, as was
the case in this section.

3. Geometry Driven Patterns
In the previous section, we have derived what the acceptable
range of pattern values is at the projector in order to avoid
saturation in the image. This knowledge will be exploited
for profilometry here. This section also deals with a simi-
lar, geometrical issue: how to choose acceptable projector
pattern frequencies to avoid aliasing in the camera image.
This will be a fully online process, as again scene geome-
try will play a pivotal role in this pattern deformation from
projector to camera. These considerations lead to a reversal
of what is usual: starting from what would be ideal patterns
for the camera to accurately pick up – uniform sine waves
centered around 128 with maximal amplitude and with a pe-
riod between 10 to 20 pixels – the projector patterns are to
be designed so as to yield these very image patterns.

Camera-projector pattern transfer: In optical pro-
filometry a series of L phase shifted 2D sine patterns is pro-
jected. Them’th pattern is imaged by the camera as:

xc
n′,m = An′ + Bn′cos(φn′ + mδ), (5)

with An′ the albedo,Bn′ the sine amplitude of pixeln′,
m = 1 . . . L, andδ = 2π

L
the phase shift.

Minimization for every pixeln′ of:

L
∑

m=0

(xn′,m − An′ − A′

n′cos(mδ) + A′′

n′sin(mδ))
2
, (6)

yields the unknownsAn′ , A′

n′ = Bn′cos(φn′) and

A′′

n′ =Bn′sin(φn′). The phaseφn′ = atan
(

A′′

n′

A′

n′

)

cor-

responds to a subpixel location in the pattern, and as such
solves the correspondence problem for every pixel up to an
unknown number of sine periods. These offsets can be com-
puted by phase unwrapping for continuous surfaces [4], by
the use of multiple periods [3] or by a binary/Gray coded
sequence preceding the sine waves [2].

It remains however unclear which period to use in the
design of the sine patterns. Fig. 3 illustrates the problem.A
pattern projected from point B onto the right plane is fore-
shortened when observed from a viewpoint A. There is a
risk of observing distorted patterns both due to aliasing be-
cause of the discrete sampling in the camera (picking up
wrong frequencies) and because of integration over finite
pixels (frequencies being washed out). In the literature this
problem has been dealt with by hand-picking a conserva-
tive choice for the highest projected frequency. Here, we
propose pattern adaptation. A location specific threshold
for distortions to start can be computed given approximate
knowledge of the geometry. To obtain the latter, a Gray
coded pattern sequence is used after the three online test
patterns of the previous section. As a matter of fact, the
dark and bright one of these would normally be part of Gray
coding and don’t have to be repeated. The Gray sequence is
limited to low frequencies as only approximate geometry is
needed in this bootstrapping stage.

With approximate geometry at our disposal, we can warp
the camera image to the one which would have been ‘seen’
at the projector. But first the geometry is filtered to remove
noise through a combination of median, bilateral, and mor-
phological filters, and to fill holes, though thin-plate spline
interpolation. Finally, the geometry is triangulated, such
that warping can be carried out extremely efficient with the
GPU. The camera to projector warping function will be de-
noted asW. At this point, it is useful to note that we also
take the radial distortions of camera and projector into ac-
count.

Figure 3:Left: top view of a projector and a camera looking
at a perpendicular jig. Right: aliasing of a sine pattern due
to the foreshortening by the scene.

Pattern generation: Given the warping functionW, a
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pattern with desired geometry at the side of the camera can
be generated and projected. As we want to apply profilome-
try, ideally the camera irradiances resulting from the camera
should be sine waves aroundFc−1(128), swinging between
the saturation levelsypsat− andypsat+ . In particular, the
pattern values at the projector will take the form :

Fp

(

y
psat+
n − y

psat−

n

2
cos (φn + mδ) +

y
psat+
n + y

psat−

n

2

)

(7)
but before applying it, this pattern is warped byW. As a
result, at the side of the projector a pattern withspatially
dependent frequency and intensityappears.

Referring again to fig. 3, the setup clearly is symmetri-
cal. As much as we did improve the pattern for the camera,
aliasing problems may now appear at the projector’s side.
Frequencies may get to high there to be generated. There-
fore, the system works with a dual process. Apart from the
deformed patterns, uniform sines are also projected, but still
with the necessary intensity modulation of eq. 7. Aliasing
for camera and projector will occur at different locations
in the scene, thereby providing complementary information
with the camera-based and projector-based sine projections.
Also, as we can push more closely towards the resolution
limits of both devices, the spatial resolution of our 3D re-
construction will increase.

The result of both series of sine waves are combined in a
principled way.W andW−1 allow to predict the closeness
to the Nyquist frequency at every location for each of the
two schemes. This yields weights used in a linear combina-
tion of both reconstructions.

4. Decoding and Motion Compensa-
tion

After removing the influence of the response curve of the
cameraFc, equation 6 is used to compute the phaseφn′ at
every camera pixel. These phase values will be used to up-
date the initial geometry which was used to bootstrap the
process. As we designed the projection pattern the way it
should be reflected to the camera, the corresponding ’de-
sired’ phaseφ∗

n′ expected at each pixel is known. The sum
of absolute differences between ’reflected’ and ’desired’
phase evaluated over a7 × 7 window:

∆φn′ =
∑

|φn′ − φ∗

n′ | ∀n′ (8)

gives a measurement of the error on the initial geometry.
See fig. 4, bottom row.

The translation for every pixel which transforms the de-
coded phase map into the expected phase map, is sufficient
to update the geometry. This can be used to refine the cor-
respondences between camera and projector as the gradi-
ent from geometry to phase is known analytically. We will

search this specific translation which minimizes simultane-
ously the difference between decoded and expected phase
∆φn′ (we assume the measurement to be close to correct)
and the difference between the phase of a pixel and its
neighbors (continuity). Referring to fig. 4, column 3 row
1 & 2: every ’band of equal phase’ will become vertical but
we stay as close as possible to the original solution. A graph
cut algorithm [16] is used to solve this minimization prob-
lem. This results in an update of the geometry both for the
parts with a good initial estimation as for the other parts. It
is optional to use this updated geometry to generate a new
warp functionW, regenerate the patterns and re-iterate the
range acquisition. This iteration can be continued until ge-
ometry and error measurement remain unchanged. Alterna-
tively one can threshold based on∆φn′ , and only retain the
trustworthy parts of the reconstruction. Again referring to
fig. 4 two steps of such an iteration are depicted. Geometry
update and error reduction are clearly visible.

The decoding described above, asks for perfect immo-
bilization of the object in between the consecutive frames.
If this is not the case a sine wave modulation (see fig. 10)
will appear on the resulting geometry. (A similar distor-
tion occurs in case of over exposure, see fig. 5.) If we
approximate the geometry locally as a planar surface, we
know that the phase shifted patterns should be symmetri-
cally interleaved. E.g. in case of 4 patterns every period
of the 3 th pattern should start exactly in the middle of a
period of the first pattern. In reality this will never be the
case, because the assumption of planar underlying geome-
try is invalid. The deviation should in general cases how-
ever be random and non-systematic. This assumption can
be used for detection and correction of motion in between
the shots. For those parts of the phase map with low∆φn′

the reflected sine patterns will be very close to vertical. The
phase map in these areas is used to initialize vertical lines
which correspond to the start of a period in each reflected
sine image, and for every period. Those lines are trimmed
to their subpixel location based on a matched filter. If the
trimmed lines in the different sine images all show a similar
translation, the object did move. A warp of the input images
which applies the inverse translation and a re-estimation of
all phase valuesφ greatly reduces the effect of the motion.
It is self-explanatory that the camera-based patterns, which
will show as vertical sines greatly facilitate this operation
when compared to normal skewed patterns.

5. Results
Fig. 4 shows results and intermediate steps for two consec-
utive iterations of our algorithm. Note that during the first
iteration the geometry between the label on the book and the
rest of the scene is completely interpolated. This interpola-
tion is rather accurate in the region under the label, which
is not the case in the region next to it. During the second it-
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Figure 4:Overview of the algorithm, during two consecutive iterations. Top row, from left to right: visualization of the initial
warp from camera to projector, reflected camera-based sine pattern, decoded camera-based phase and the projector-based
phasewithout use of the photometric model. Second row: same results as above after the second iteration. Third row: left:
interpolated geometry used as input, right refined resulting geometry. Bottom row: uncertainty on the geometry after the first
and second iteration, textured geometry, input image.

eration real measurements replace the interpolated data (see
e.g. the density of the warp in the first shot of the second
row). The per pixel uncertainty, and the ’straightness’ of de-
coded phase and patterns computed in the camera after both
steps confirm this conclusion. The regions with high uncer-
tainty after the second iteration are mainly caused by cast
shadows. This can be verified in the image as seen from the
camera in the bottom right. This last shot also illustrates the
intensity range reflected.

Fig. 5 illustrates the effect of over exposure in the cam-
era. The geometry presented to the scanner was a slightly
specular planar surface. The circular artefact and holes in
the top-left reconstruction are caused by the mirror reflec-
tion of the projector. All of the reconstruction suffers from
a strong sine wave modulation caused by clipping of the re-
flected pattern. The top right reconstruction shows what our
algorithm is capable of.

The model for the crosstalk functionC was validated by
a comparison between predicted and measured camera irra-
diances for a high number (4× 255) of projected intensities
and colors. The result is shown in fig. 6 and demonstrates a

Figure 5: Left: incomplete reconstruction due to camera
over exposure. Right: the corrected planar geometry using
our technique. Bottom: crossection for the line indicated
(scale in this plot top to bottom: 1,5 mm).

close fit between model and data. This test confirms that a
linear model indeed would be insufficient (see also the dis-
cussion of eq. 4), and that the suggested iteration over the
estimation ofC andFp is not necessary.

In fig. 7 the results of a test with a Macbeth colorchecker
are shown. Our model was used to compute the projection
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Figure 6:Crosstalk measured vs. modeled. Top left: camera
response for uniform illumination. Rest: camera response
for resp. red, green and blue illumination by the projector.
The thick black line shows the model fitted.

pattern needed to get a uniform gray (20%) camera image.
The histogram for every color channel shows a satisfying
result, given the intense and saturated colors in the scene.
Fig. 8 shows a similar experiment: the over- and under sat-

Figure 7: Top: input image, ’compensated image’ and
’compensation projection pattern’. Bottom: histogram for
the red, green and blue channel.

uration threshold levels are computed, and compared to the
values measured when projecting all possible intensity lev-
els. In fig. 9 a situation similar to the one of the illustration
in fig. 3 shows how taking aliasing into account leads to a
more complete reconstruction. Fig. 10 shows a preliminary
result of our motion compensation strategy. The artefact on
the reconstruction of the water can is greatly reduced. The
technique proposed so far is used to make a complete re-
construction of several objects. Fig. 11 shows a set of 12
aligned shots of a 10 cm long goose statue. The two pho-
tographs on the right of fig. 11 allow to get an idea of the
surface texture and the degree of specularity. For this object
mainly better accuracy and a higher degree of fine detail
(see e.g. the wings) resulted.
Fig. 13 shows a series of scans of a wheel made out of a
specular alloy. Note that in both models the scans are only

Figure 8: Top: projection intensities causing over and un-
der exposure predicted by the model. Bottom: ground truth.

Figure 9:Reconstruction of a calibration jig with and with-
out taking aliasing into account.

alignedand not integrated in a high quality model yet. Both
models are generated using a single iteration for each scan.
This also demonstrates that both the iterated and single pass
application of the technique proposed is useful. In fig. 12
it is illustrated what happens if we try to scan the wheel
without taking surface reflectance into account. The strong
curvature makes that there will always be a mirror reflection
which is cast directly into the camera.

The number of patterns which are added when compared
to similar techniques remains very limited. The three test
patterns needed for takingR into account only introduced
one additional pattern, as the two others could be reused
during the Gray coded sequence. The projection patterns
added to minimize aliasing in the camera effectively dou-
bled the length of the sequence needed for profilometry,
which typically uses 4 shots. This brings the overall length
of a complete sequence on 16 frames, which allow for ac-
quisition at approx. 2 fps. The compactness of the sequence
becomes evident when e.g. compared to the ca. 100 frames
reported in [3], which are needed to take device resolution
and scene reflectance into account by exhaustively testing
all possibilities. In case no additional patterns can be tol-

Figure 10:Right vs. left: with vs. without motion compen-
sation. The bottom left part of each figure shows a zoom-in.
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Figure 11:A complete reconstruction of a small statue.

Figure 12:Left: reconstruction with and without taking sur-
face reflectance into account. Right: uniform sine pattern
and plane white illumination as seen from the camera.

erated it can be still useful to work with the camera based
patterns when compared to the more classical projector ori-
ented approach, because the resolution of the projector is
typically higher than the one of the video camera. This re-
sults in better handling of the aliasing problem.

6. Conclusions and Future Work
We demonstrated that fast and high quality modeling with a
low cost setup is possible. By use of an extended camera-
projector model nonlinearities in both devices, crosstalkand
possible over- and under exposure in the camera are catered
for. This is done online with only limited computational
overhead, and without an excessive increase of the num-
ber of projection patterns. By generating camera based and
projector based patterns we effectively minimize all alias-
ing effects in both devices. An uncertainty for every point
of the reconstruction is computed, and distortions due to

Figure 13:A reconstruction of a specular metal wheel.

motion in between the phase shifted shots can be detected
and partially corrected. The approach can be used both in
an iterated and non-iterated way. This turns an inexpensive
setup into a performant tool for range acquisition, and al-
lows to reconstruct even fairly specular objects.
In this work surface reflectance properties are taken into ac-
count to minimize the influence on the acquisition of the ge-
ometry, and the texture are acquired in high dynamic range
with a corrected color balance for all intensities. Ongoing
research covers the explicit acquisition of the surface re-
flectance properties themselves together with the geometry.
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