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Introduction

Experiments like MAST collect vast amounts of diagnostic data, among these imaging data of

the plasma and impurity emissions captured by a high speed camera system. These high tempo-

ral resolution images can be used for plasma monitoring and control, but are underutilised due

to the difficulties in estimating relevant plasma parameters such as the shape and composition

from such images. To that end, we leverage a neural network to estimate the 2D distributions

of neutrals, electrons and temperature from images of plasma obtained from the high speed

cameras inside the MAST vessel.

Our networks infers the plasma parameters by learning the non-linear mapping between syn-

thetic images of the plasma D-alpha emission and the distributions of the neutrals density, elec-

tron density and the electron temperature. These emissions are computed using the equation

nn×ne×PEC(ne,Te) where PEC is the Photon Emissivity Coefficient obtained from ADAS[1].

Our networks are composed of an image encoder net that takes the high speed images and en-

codes them to a latent vector. We also introduce an optional subnetwork to provide encoded

latent vectors of point sample measurements that can be concatenated to the encoded image

latent vectors with the goal of incorporating other diagnostic measurements and further improv-

ing accuracy. This latent vector is then decoded to predict the inputs of our plasma generation

model. The biggest contribution of our networks are in predicting the distribution of neutrals in

the vessel which cannot be measured directly and requires expensive Monte Carlo simulations

to estimate.

Data Generation and Network Training

With real image data it is difficult to curate a dataset for effective training of a neural net-

work due to the large number of images and lack of measured reference. Thus we propose a

plasma data generation model that represents the plasma densities and temperature through 36

parameters that samples a domain representative of MAST experiments.

We then combine the generated plasma data with computer graphics techniques to render

photorealistic images of the interior of the MAST vessel as seen by the high-speed camera.



These renderings are created using the MAST CAD model loaded into the Mitsuba 2[2] render-

ing engine with the materials set to a conductor model with a reflectance of 0.08 and a roughness

of 0.25, and the camera parameters matched to the real camera. The images are monochrome

(as we are simulating the transport of 656.1nm wavelength light) and rendered at a resolution

of 512 by 512 using a null-scattering implementation that incorporates emission[3].

With simulated images and corresponding parameter distributions available, we are able to

train neural networks to learn the aforementioned mapping. The dataset is randomly split into

training, validation and test sets with a 75%/12.5%/12.5% split. The training algorithm used

is Adam with an initial learning rate of 10 -3 and weight decay of 10 -6 with all other parameters

set to their default values as described in [4].

In order to leverage other available diagnostics in MAST, such as the Thomson Scattering

measurements (which provide 1D profiles of ne and Te on the midplane), we incorporate point

sample measurements of the training data, and train a variant of the Image-Only network to eval-

uate the effect of incorporating these measurements. This Point-Sample network differs from the

Image-Only network in that it, in addition to the input image, also encodes and concatenates the

point measurements into the latent vector. Both networks are trained using a weighted mean

square error (MSE) loss over the normalized 36 parameters with weights selected to penalise

discrepancies in the density and temperature scales.

Results

The Image-Only model achieves an unweighted MSE of 0.071 on the synthetic test set while

the Point-Sample model achieves an unweighted MSE of 0.056 on the normalized parameters.

While the test set errors are useful, we also look at the relative sum of errors in the predicted

poloidal cross-sections as well as the relative sum of errors in the predicted profiles which are

shown in Tables 1. Additionally, we take a representative sample from the synthetic test set and

show in Figure 1 how the predicted profiles change between the two models.

In addition to the dataset errors, we also compare the errors of the network as applied to

real measured data as part of the MAST experiment. Specifically, we look at shot 30305 which

was chosen due to the high time resolution of both the camera and Thomson scattering mea-

surements. Figure 3 shows the renders from the predicted poloidal cross-sections and Figure 2

shows a comparison of the density and temperature profiles for the same frame shown in Fig-

ure 3 corresponding to a time of 0.236026s. Figure 4a shows the absolute error and Figure 4b

shows the relative sum of errors between the predicted profiles and the measured values over

the duration of the shot.

Figure 2 also shows the neutrals density, and together with Figure 3, we see that the Image-



Poloidal Cross-Section Point Samples

nn (%) ne (%) Te (%) nn (%) ne (%) Te (%)

Image-Only Model 54.0346 47.2957 47.7827 20.3681 20.1273 4.7822

Point-Sample model 52.7983 45.0586 13.7578 29.1160 19.1003 3.8448

Change 1.2363 2.2370 34.0250 -8.7479 1.0269 0.9373

Table 1: Relative Sum of Errors in the Poloidal Cross-Sections and the Point Samples cor-

responding to Thomson Scattering Measurements. Reduction in error is shown in bold and

regressions shown in red.
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Point Sample Model Predictions vs Diagnostic Measurements

Figure 1: Z = 0 Profiles computed from pre-

dictions of poloidal cross-sections made with

the Point-Sample Model (Orange) and Image-

Only Model (Green) compared to the Ground

Truth profile (Blue crosses)
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Model Predictions vs Diagnostic Measurements of Shot 30305 at Time 0.31s

Figure 2: Z = 0 Profiles computed from pre-

dictions of poloidal cross-sections made with

the Point-Sample Model (Orange) and Image-

Only Model (Green) compared to the Ground

Truth profile (Blue crosses)

Only model attempts to fit the gas puff emissions on the centre column. While the Image-Only

model correctly ascertains that there is an increase in neutrals density somewhere, it misat-

tributes this increase to an increase in core density. For future work, we intend to address this

misattribution by providing the network with data that incorporates emissions due to neutrals

density sources so that the network is better able to distinguish between the plasma equilibrium

shape and composition and localised emissions.

Conclusion & Future Work

We have shown that our networks are successfully able to learn the nonlinear mapping be-

tween the images of the plasma emission and the cross-section profiles. Furthermore, we have

demonstrated that providing the network with additional information in the form of point sam-



Input Fast Camera Image Render from Point Sample Model Prediction Render from Image Only Model Prediction

Figure 3: Input Fast Camera Image (Left), Render from Predicted Poloidal Cross-Sections from Point-

Sample model (Middle) and Image-Only Model (Right)
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(a) Absolute Error of the profile measurements at

each frame time for the Point-Sample Model (Blue)

and the Image-Only Model (Orange
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(b) Relative Sum of Errors of the profile measure-

ments at each frame time for the Point-Sample

Model (Blue) and the Image-Only Model (Orange)

ple measurements allows the network to better locate the plasma edge and better fit to the

temperature. Importantly, our networks achieve these results without ever having seen real data

in neither the training nor the validation sets, and by our results demonstrate that a network

trained on purely synthetic data can generalize well to real world data. For future work, we

would like to further investigate other network architectures as well as improve the networks’

ability to correctly predict the scaling of nn and ne which are anti-correlated as seen in the

emission equation.
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