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Figure 1: A factored composite wax material model applied to the Stanford dragon. The material is composed of two kinds of wax with different scattering properties. Left:
illuminated by an area light source from above. Middle: the material's diffuse albedo (no subsurface scattering). Right: illuminated from above by a texture projection light.

Abstract
Many translucent materials exhibit heterogeneous subsurface scat-
tering, which arises from complex internal structures. The acqui-
sition and representation of these scattering functions is a complex
problem that has been only partially addressed in previous tech-
niques. Unlike homogeneous materials, the spatial component of
heterogeneous subsurface scattering can vary arbitrarily over sur-
face locations. Storing the spatial component without compression
leads to impractically large datasets. In this paper, we address the
problem of acquiring and compactly representing the spatial com-
ponent of heterogeneous subsurface scattering functions. We pro-
pose a material model based on matrix factorization that can be
mapped onto arbitrary geometry, and, due to its compact form, can
be incorporated into most visualization systems with little over-
head. We present results of several real-world datasets that are ac-
quired using a projector and a digital camera.

Keywords: Subsurface scattering, Non-negative matrix factoriza-
tion, Image-based acquisition

1 Introduction
In recent years, subsurface scattering has received much attention
in computer graphics. Initial research focused on the visualization
and simulation of subsurface scattering materials [Hanrahan and
Krueger 1993; Dorsey et al. 1999; Jensen et al. 2001; Lensch et al.
2003; Mertens et al. 2003]. With the rapid advancement of visu-
alization algorithms, however, the need for measuring subsurface
scattering properties of physical materials has increased.

Homogeneous subsurface scattering, such as that observed in milk,
can be easily measured and �tted to an analytical model like the
dipole approximation [Jensen et al. 2001]. But it is still an open

problem to acquire and represent general non-homogeneous sub-
surface scattering, observed in materials such as veined marble.
Tong et al. [2005] identi�ed two approaches to represent subsurface
scattering: anobject model representationand amaterial model
representation. The object model approach captures the subsurface
properties coupled to a speci�c geometry [Goesele et al. 2004]. The
material model approach captures the subsurface scattering proper-
ties independent of the underlying geometrical shape. Unlike ob-
ject model representations, a material model representation can be
applied to any geometry at the cost of additional computations or
approximations [Tong et al. 2005]. This paper focuses on the ac-
quisition and compact representation of a material model for the
spatial component of highly heterogeneous subsurface scattering
materials.

We present a novel compact representation based on non-negative
matrix factorization. A non-negative factored representation of-
fers several advantages: the result of any light transport calcula-
tion will remain positive, the non-negative terms enable importance
sampling, and could potentially allow user-guided editing. In the
context of large multi-dimensional datasets, factorization has been
a popular tool [Fournier 1995; Heidrich and Seidel 1999; Kautz
and Seidel 2000; Kautz and McCool 1999; Latta and Kolb 2002;
Suykens et al. 2003; Lawrence et al. 2004]. However, these tech-
niques are designed for representing BRDFs and are not suited for
representing the spatial component of heterogeneous subsurface
scattering. A key observation is that most heterogeneous materi-
als are a mix of a limited number of homogeneous basis materials.
The spatial responses of these homogeneous basis materials are de-
formed by spatial discontinuities in the material. We will show that
by eliminating the effect of the homogeneous subsurface scattering,
a more suitable form for factorization can be found.

Synthetic datasets are free from calibration errors or measurement
noise and are often too clean. It is therefore essential to validate the
developed factorization method on real-world data. Since we are
interested in obtaining amaterial model, we restrict the acquisition
to planar samples in order to avoid geometrical spatial dependen-
cies. Rather than the commonly used camera-laser systems, we
employ a camera-projector system to acquire the spatial subsurface
scattering component of a planar material sample. Our approach
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speeds up acquisition by sampling multiple points in parallel, with
minimal tradeoffs.

2 Related Work
The work presented in this paper is closely related to the fol-
lowing sub-domains in computer graphics: factorization of multi-
dimensional functions, modeling and simulation/visualization of
subsurface scattering, and image-based acquisition and represen-
tations of translucent objects and materials.

Factorization. Factorization has been a successful tool in de-
composing BRDFs into sets of lower dimensional factors and terms,
enabling interactive rendering [Fournier 1995; Heidrich and Seidel
1999; Kautz and Seidel 2000; Kautz and McCool 1999; Latta and
Kolb 2002], and improved importance sampling [Lawrence et al.
2004]. Suykens et al. [2003] extend the idea of homomorphic
factorization to interactively render BTFs. Recently, Lawrence et
al. [2006] used constrained matrix factorization to represent and
edit spatially varying BRDFs. These techniques rely on the assump-
tion that the BRDF is a separable function, which we will show is
not the case for subsurface scattering effects.

Rendering, Modeling and Simulation. A number of ap-
proaches simulate subsurface scattering by explicitly modeling
the physical properties of each point inside a volume. In com-
puter graphics, subsurface scattering was pioneered by Hanrahan
and Krueger [1993]. Dorsey et al. [1999] and Pharr and Han-
rahan [2000] successfully simulate heterogeneous materials using
Monte Carlo methods by explicitly modeling the interactions inside
the volume. Jensen et al. [2001] presented a practical model for ho-
mogeneous materials based on a dipole approximation. With the
advent of powerful graphics hardware, interactive rendering tech-
niques for translucent materials have been developed [Mertens et al.
2003; Lensch et al. 2003]. More recently Chen et al. [2004] pre-
sented a technique to render synthetic heterogeneous materials by
partially pre-computing light transport near the surface and using a
dipole approximation for the material's inner core. None of these
approaches are suited to model or visualize real-world heteroge-
neous translucent materials.

Acquisition and Representation. A number of image-based
techniques are able to capture and render translucent objects. Light-
�elds [Levoy and Hanrahan 1996] or lumigraphs [Gortler et al.
1996] capture the view-dependent appearance of objects under
�xed lighting conditions. Surface light-�elds [Miller et al. 1998;
Wood et al. 2000] further improve on this approach. Re�ectance
�elds [Debevec et al. 2000; Masselus et al. 2003] are capable of
representing an object from a �xed viewpoint but under variable
lighting conditions. However, none of these systems are geared to-
wards acquiring and compactly representing subsurface scattering.

The recently proposed DISCO acquisition system [Goesele et al.
2004], an example of an object model representation, measures a
4D subsurface scattering function over an object with respect to in-
coming and outgoing surface points. The system assumes a smooth
global subsurface scattering component, which is interpolated over
the object's mesh. Tong et al. [2005] presented a technique to
capture quasi-homogeneous materials, i.e., translucent materials
with evenly-distributed heterogeneous elements. The authors base
their system on the key observation that quasi-homogeneous mate-
rials exhibit a difference in subsurface scattering properties at local
and global scales: locally, the non-uniformity in physical material
properties leads to heterogeneous subsurface scattering, while at a
global scale, the even distribution of heterogeneous elements leads
to homogeneous scattering. Neither approach, however, is suited to
accurately represent general heterogeneous translucent materials.

Fuchs et al. [2005] developed an empirical model for represent-
ing heterogeneous subsurface scattering based on the DISCO sys-
tem [Goesele et al. 2004]. The response at each surface location is a
linear combination of exponentials, modulated by a single spatially-
varying texture map. To further compensate for anisotropic scat-
tering behavior, the domain around each response is radially sub-
divided and the approximations over the different domains are
blended together. Our method differs from this work in two ways.
First, by using a data-driven approach based on matrix factoriza-
tion, it can handle more general scattering behaviors than those rep-
resentable by exponential fall-offs. Second, by using several spatial
textures (i.e., factorization terms), it can model a greater range of
spatial scattering variations, such as heterogeneities due to veins in
marble.

3 Background
The behavior of subsurface scattering materials is described by
the generalbidirectional surface scattering re�ectance distribution
function(BSSRDF)S(xi ;wi ;xo;wo) [Nicodemus et al. 1977], which
relates outgoing radianceL(xo;wo) at a pointxo in a directionwo
to the incident illuminationL(xi ;wi) at a locationxi and incoming
directionwi :

L(xo;wo) =
Z

A

Z

W
S(xi ;wi ;xo;wo)L(xi ;wi)dwidxi ;

whereA is an area around the pointxo, andW denotes the upper
hemisphere aroundxi . We separate this integral into a local com-
ponentLl , which accounts for light immediately re�ected from a
surface, and a global componentLg:

L(xo;wo) = Ll (xo;wo) + Lg(xo;wo):

The local and global componentLl andLg are de�ned as:

Ll (xo;wo) =
Z

W
fs(xo;wo;wi)L(xo;wi)(No � wi)dwi ;

Lg(xo;wo) =
Z

A

Z

W
Sd(xi ;wi ;xo;wo)L(xi ;wi)dwidxi ;

wherefs can be interpreted as a spatially varying BRDF,Sd is called
the diffuse BSSRDF, andNo is the surface normal atxo. The diffuse
BSSRDF is often decomposed into a product of lower-dimensional
functions. A commonly used decomposition forSd [Donner and
Jensen 2005] is:

Sd(xi ;wi ;xo;wo) =
1
p

fi(xi ;wi)Rd(xi ;xo) fo(xo;wo);

where fo and fi are directionally dependent components, and
Rd(xi ;xo) is the spatial subsurface scattering component. As
in [Goesele et al. 2004] we will focus exclusively on the acquisition
of the 4D spatial componentRd of heterogeneous subsurface scat-
tering materials, ignoring any directional dependency (fo and fi).
The acquisition of these angular components can be accomplished
in a manner similar to that described by Tong et al. [2005].

4 Acquisition
In this section we discuss the acquisition of the spatial subsurface
scattering component of a real-world sample. First, we describe
the setup (a projector-camera pair) and compare this system to a
camera-laser setup. Then we discuss the calibration required and
�nally, the acquisition process itself.
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4.1 Acquisition Setup

The acquisition setup consists of a digital video camera and a pro-
jector. We position the sample approximately half a meter away
from the projector, taking special care to ensure that the sample
surface is perpendicular to the projector. The camera is positioned
above the projector, such that no specular highlights from the sam-
ple are visible to the camera. During acquisition, we assume that
there is no local componentLl . We acknowledge that this is in-
accurate; but it does not affect the developed factorization method
signi�cantly.

In our setup we use an Allied Vision Technologies (AVT) Dolphin
F-145C CCD FireWire camera equipped with a 12:0� 36:0mm C-
mount lens. We capture all photographs at the maximum resolution
of 1392� 1040 using 10 bits per pixel. For the projector we use an
Optoma EP739H DLP projector with a 1 : 2000 contrast ratio and a
digital DVI connection to avoid AD/DA conversion artifacts.

Previous approaches [Goesele et al. 2004; Tong et al. 2005; Fuchs
et al. 2005] use a laser to sample the spatial subsurface scattering
component. Replacing the laser with a projector offers the follow-
ing advantages:

� Multi-chromatic: A laser system samples the color spectrum
very sparsely (e.g., 3 wavelengths). Depending on the spectral
response of the sample, a signi�cant portion of the re�ectance
properties could be lost. Furthermore, laser speckle can oc-
curs due to the coherent nature of laser light. These concerns
are absent when using a projector.

� Complex patterns: A projector setup can emit any illumina-
tion pattern without resorting to time multiplexing or using a
complex additional lens system.

� Cost: A projector costs considerably less than a laser system.
In addition, a projector can be bought off the shelf, and does
not require special controller hardware.

A projector, however, also has disadvantages with respect to a laser
system:

� Refresh rate: By construction, a projector refreshes the im-
age at regular intervals. To avoid artifacts, only the exposure
times that are a multiple of this refresh rate should be used.
This places a lower bound on the exposure times when cap-
turing high dynamic range (HDR) images. In principle, a laser
system is not constrained by a minimum exposure time. How-
ever, unless a high speed camera (e.g., [Wenger et al. 2005])
is used, the projector's refresh rate is faster than the maximum
frame rate of most high-resolution digital cameras.

� Limited contrast ratio: A noticeable amount of illumination
is visible when emitting a black image from a projector. This
background illumination places an upper limit on the expo-
sure times before a photograph is over-saturated. In our setup,
this was found to be in excess of 4 seconds, a point at which
thermal noise in the camera already introduces signi�cant ar-
tifacts.

4.2 Calibration

The camera and projector require careful calibration before the sub-
surface scattering of a sample can be accurately acquired.

Radiometric response. We directly read out the raw Bayer data
from the camera, which has a linear radiometric response. A linear
regression is applied to determine the slope for each pixel sepa-
rately. After combining the raw Bayer photographs into a high dy-
namic range image, high-quality demosaicing [Malvar et al. 2004]
is performed.

Intrinsic and extrinsic camera and projector parameters.
Both the intrinsic and extrinsic camera and projector parameters
must be calibrated. Rather than calibrating each device indepen-
dently (e.g., [Zhang 2000]), a simultaneous calibration process is
used. First, the sample is covered by a white diffuse layer. Next,
a series of calibration patterns are projected on the diffuse sample.
Each calibration pattern consists of a set of regularly spaced dots;
these dots are slightly shifted in consecutive calibration patterns.
For each dot, the center position in the camera image is computed.
Using the known positions of the dots in both camera and projector
space, a homography can be recovered between both devices.

Camera and projector lens vignetting. In order to compen-
sate for camera and projector lens vignetting, each recorded image
is divided by an HDR photograph of a projected white image on the
diffuse sample surface.

Color calibration is limited to white balancing that relates the ob-
served white of the projector to a reference white.

Refresh rate of the projector. DLP projectors use a color
wheel to induce color sensations. To avoid interference, the camera
exposure times must be a multiple of the rotational frequency of the
color wheel. The rotational frequency was empirically determined
to be 30 Hertz.

Black level of the projector. To measure the black level, a
large number (� 100) of HDR Bayer images of the sample are
recorded while emitting only a black pattern from the projector. For
each pixel, the average and variance of the pixel intensity are com-
puted. Each pixel in a newly recorded HDR photograph that falls
below a con�dence limit of 99% is set to zero. The average is sub-
tracted from the remaining pixels to eliminate as much as possible
the effect of background illumination.

4.3 Data Acquisition

As with a laser setup, individual surface points can be illuminated
by a projector. By recording HDR photographs, 2D slices of the
BSSRDF are obtained. This approach, however, results in imprac-
tically long acquisition times when a dense spatial resolution is re-
quired.

Theoretically, illuminating a single surface point yields an in�nitely
large response. In practice, the extent of this observed footprint is
limited by the dynamic range of the recorded HDR photographs.
This observation can be exploited to accelerate the acquisition pro-
cess by emitting multiple beams in parallel and extracting the indi-
vidual responses afterwards. Rather than illuminating a single sur-
face point, a regular grid is projected onto the sample. The spacing
in the grid is manually set to avoid in�uence between neighboring
footprints.

The acquisition pipeline is as follows: For each emitted pattern, a
HDR Bayer image is recorded. Next, the in�uence of the projec-
tor background illumination, lens vignetting, and thermal camera
noise is removed and the resulting Bayer image is demosaiced. Us-
ing the camera-projector homography, we compensate for the off-
center camera position so that there is a one-to-one mapping be-
tween camera and projector pixels. Finally, individual responses
are extracted and white balanced.

Instead of shifting the consecutive grid patterns sequentially, we
use a random order to minimize the effect of temporal �uctuations
in projected intensity. For all the examples in this paper, exposures
ranging from 1=30 to 2 seconds were used to capture HDR images.
In conjunction with the 10 bit raw camera data, this yields a theoret-
ical dynamic range of 100;000 : 1. However, after removing camera
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Figure 2: The subsurface scattering matrixRd. (a) An illustration of a homogeneous
material containing a light blocking vein. (b) The corresponding subsurface scattering
matrixRd. The effect of the light blocking vein is expressed by horizontal and vertical
discontinuities. (c) A sheared reparameterization ofRd.

noise and subtracting the black level of the projector, an average dy-
namic range of 10;000 : 1 is maintained. Acquisition timings range
from 3 to 6 hours, depending on the spatial resolution and the grid
spacing. For comparison, illuminating each surface point sequen-
tially requires 50 hours or more.

5 Factorization
In this section we introduce our compact factored form, suitable for
representing and rendering the spatial component of heterogeneous
subsurface scattering materials acquired using the setup described
in the previous section.

5.1 Motivation

In order to �nd a suitable factored form for the spatial component of
the BSSRDF, we �rst storeRd(xi ;xo) in a matrix. Studying the gen-
eral form of this matrix helps to determine a suitable factorization
form. The global subsurface scattering matrixRd is a linearized
matrix of 2D surface points, where rows are overxi and columns
over xo. Each element contains the ratio of light transferred from
xi to xo, and vice versa. For simplicity we will assume that bothxi
andxo are parameterized over the surface with the same resolution.

The construction and form of the subsurface scattering matrixRd is
illustrated in Figure 2. For illustration purposes, only 2D subsurface
scattering functions are considered; that is, bothxi andxo are on a
single line (1D). The conclusions drawn from this example, how-
ever, are analogous when using linearized 2D coordinates forxi and
xo. Figure 2.a shows a material exhibiting homogeneous subsurface
scattering, except in the middle, where a vein obstructs light prop-
agation. Two responses are depicted; the left is unaffected by the
vein, while the right response is cut off. In Figure 2.b the resulting
subsurface scattering matrixRd(xi ;xo) is shown. This is a banded
matrix, in which the homogeneous response is shifted along the di-
agonal. In the middle of this matrix a discontinuity can be observed,
caused by the light blocking vein. In general, heterogeneities are
expressed as horizontal and vertical discontinuities in the diagonal
structure, which is the result of the subsurface light transport.

Using classical factorization methods, such as singular value de-
composition (SVD) or non-negative matrix factorization (NMF),
directly on the matrixRd(xi ;xo) does not yield satisfactory results.
The matrixRd(xi ;xo) is dominated by a diagonal structure. Ma-
trices with these kinds of structures usually have a high rank, and
consequently do not decompose very well into lower order terms. A
standard solution to such a problem is to reparameterize the matrix
so that it becomes more suitable for factorization. An obvious repa-
rameterization would be to shear the matrix, such that the diagonal
becomes aligned to one of the axes. In Figure 2.c, a reparameter-
ized R0

d(xi ;d) is shown, withd = xo � xi . The diagonal structure
that hindered factorization is now recti�ed. However, the hetero-
geneities are now expressed in features along the horizontal and

Rd(xi;xo) R0
d(xi;d)

Figure 3: A marble material sample illustrating the structure of the subsurface scatter-
ing matrix Rd. The responses are measured on a single line, indicated in green. The
discontinuities are not as pronounced in the subsurface matrixRd(xi ;xo), but are clearly
visible in the reparameterized matrixR0

d(xi ;d) (marked in red in the reparameterized
matrix). Regardless of the geometrical from of the heterogeneity (e.g., the blue marked
vein), the effects onRd are always expressed as horizontal and vertical discontinuities.

skew diagonal direction, reducing the effectiveness of a classical
factorization.

We veri�ed the structure of the subsurface scattering matrix
Rd(xi ;xo) on a slab of marble, shown in Figure 3. The marble re-
sponses are measured for different points on a single line, indicated
in green. The discontinuities are not as pronounced as expected in
the subsurface matrixRd(xi ;xo), because the veins through the mar-
ble do not block the light completely. However, the horizontal and
skew diagonal discontinuities, highlighted in red, are clearly visible
in the reparameterized matrixR0

d(xi ;d). This empirically con�rms
our conclusions of the experiment in Figure 2, regarding the struc-
ture and form of the subsurface scattering matrixRd.

5.2 Factorization Formula

In this paper, we will not use a reparameterization to make the sub-
surface matrixRd(xi ;xo) more suitable for factorization, but will
instead divide out as much as possible the diagonal structure that
hinders ef�cient factorization.

From the reparameterized matrixR0
d(xi ;d), an average response

function g(d) can be computed by simply taking the average re-
sponse or by taking the maximum value over each column (Fig-
ure 4.a). This average response functiong(d) is a good approxima-
tion for the homogeneous subsurface scattering kernel, and can be
used to create a homogeneous approximationG(xi ;xo) of Rd(xi ;xo)
(Figure 4.b):

G(xi ;xo) = g(d) = g(xo � xi):

An interesting result can be obtained by dividing the subsurface
scattering matrixRd(xi ;xo) component-wiseby G(xi ;xo), effec-
tively dividing out the diagonal subsurface scattering features.
This is depicted in Figure 5 (left). The dashed elements of
Rd(xi ;xo)=G(xi ;xo) in Figure 5 mark elements that are the result of
a division by zero. As a consequence, a matrix suitable for factor-
ization can be obtained by careful selection of the values of these
elements inRd=G. In Figure 5, the dashed elements are �lled in
such that the resulting matrix can be easily separated into a 2-term
factorization.

Moving theG term to the other side yields the �nal factored form:

Rd(xi ;xo) � ( F(xi ; t)H(t;xo) ) ?G(xi ;xo);

where? denotes acomponent-wisematrix multiplication de�ned
by: (A?B) i j = ai j bi j . The width ofF and height ofH are user
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Figure 4: By computing the average responseg(d), a homogeneous approximation
G(xi ;xo) of the subsurface scattering matrixRd(xi ;xo) can be obtained.

selected (i.e., number of terms), and determine the compression ra-
tio and the degree of approximation. AlthoughG(xi ;xo) has the
same dimensions asRd(xi ;xo), the storage requirements are mini-
mal, since onlyg(d) needs to be stored.

As mentioned previously, the conclusions from this 2D example
also hold for general 4D subsurface scattering functions. It is im-
portant to realize that, regardless of the speci�c geometrical form
of a heterogeneity (e.g., the blue marked vein on the marble slab in
Figure 3), the effects on the subsurface scattering matrixRd(xi ;xo)
are always expressed as horizontal and vertical discontinuities.

5.3 Update Rules

As detailed in the previous section, the homogeneous subsurface
scattering matrixG can be easily determined ifRd is known. The
F andH terms, however, cannot be determined directly and need to
be factored out. In this paper, we employ a variant of iterative non-
negative matrix factorization [Lee and Seung 2000] to decompose
the matrixRd(xi ;xo). F and H are initialized to random values,
and subsequently iteratively updated, using the multiplicative up-
date rules presented below, until convergence is reached.

More speci�cally, the factorization should minimize the following
error function, keeping in mind the non-negativity constraint:

E2 =
1
2

jjW ?(Rd � ((FH) ?G)) jj2F ;

wherejj � jj F is the Frobenius norm andW a weighting matrix. By
following a similar strategy as Lee and Seung [2000], multiplicative
update rules can be derived:

H  H ?
FT (W2 ?G?Rd)

FT (W2 ?G?((FH) ?G))
;

F  F ?
(W2 ?G?Rd)HT

(W2 ?G?((FH) ?G))HT ;

where the division iscomponent-wiseandW2 = W ?W. A formal
derivation and proof of convergence can be found in [Peers and
Dutré 2006].

Due to sub-pixel errors in the camera-projector calibration, it is pos-
sible that the peak of the average exponential fall-off functiong(d)
is slightly off-center. This will have a signi�cant impact on the er-
ror E2, and the factorization process will spend a large percentage
of all iteration steps trying to keep the peak as close as possible to
the center. A suitable weighting matrixW can minimize the effect
of a misaligned peak, and convergence can be attained in fewer it-
erations. Settingwi j = 1=p gi j has this desired effect. Moreover, it
simpli�es the update rules:

H  H ?
FTRd

FT ((FH) ?G)
;
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Figure 5: The homogeneous approximationG(xi ;xo) can be used to eliminate the diag-
onal subsurface scattering features inRd(xi ;xo) by a component-wise division. Dashed
elements are the result of a division by zero. The values of these elements can be set
such that the resulting matrix is better suited for factorization.

F  F ?
RdHT

((FH) ?G)HT :

To regularize the update rules above, we follow the method of Ci-
chocki et al. [2006]. Furthermore, to avoid dividing by zero, a small
e-value is added to each element ing(d).

5.4 Clustering

We have thus far assumed that the subsurface scattering sample con-
sists of a homogeneous material, where the heterogeneities are the
result of geometrical de�ciencies. This works well for materials
such as marble but fails when the sample contains a combination
of basis materials, such as a chess board made of two interlocking
materials (see Figure 7.b).

We solve this problem by �rst clustering the responses (rows ofRd)
and computing a subsurface scattering kernelg(d) for each cluster
separately. The resulting matrixG will be a mix of the different
kernelsg(d). Ideally we would like to cluster on subsurface scat-
tering properties (i.e., exponential fall-off) and not on spatial het-
erogeneities. To minimize the effect of these spatial heterogeneities
we cluster according to the feature vectorsfxi (r):

fxi (r) = max
a

Rd(xi ; pxi (a ; r)) ;

wherepxi (a ; r) is a polar mapping ofxo aroundxi . This function
fxi (r) will be an approximation of the exponential fall-off function
of the response at positionxi , and is further normalized to eliminate
the effect of different response albedos. In our implementation,
we use ak-means clustering algorithm. The number of clustersk
is selected by the user, and should correspond to the number of
distinct materials with different scattering characteristics that are
present in the dataset. Since the clustering is performed beforehand
and the resulting homogeneous approximationG can be computed
without much additional overhead, factorization will not incur a
penalty.

6 Visualization
Our compact material model for subsurface scattering can be easily
incorporated into an existing renderer. The results in this paper are
generated by an adapted photon map [Jensen 2001] implementation
of PBRT [Pharr and Humphreys 2004]. Photons entering a translu-
cent material are stored in a special subsurface scattering map. Pho-
tons not absorbed by a subsurface scattering material are traced as
usual. During rendering, when a ray hits a translucent material, all
photons from the subsurface scattering map, within the range of the
subsurface scattering response, are gathered and weighted by the
response at that point. The weighting can be ef�ciently computed
using the factored representation. In our current implementation we
use standard texture mapping to apply a material model to a mesh.
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But low-distortion texture mapping would be preferable to mini-
mize approximation errors. A texture synthesis technique, such as
Liu et al. [2004], can be adapted to better texture arbitrary geome-
tries.

7 Results and Discussions
We veri�ed our factorization method on several real-world sub-
surface scattering examples, ranging from fairly homogeneous
to highly translucent heterogeneous materials. Table 1 gives an
overview of the acquired and factored materials, the parameters
used, the compression ratio, and relative errors. Although the kernel
size is a slight exaggeration of the subsurface scattering footprint, it
can still be used to show the extent of the subsurface scattering for
each example (i.e.,Kernel Size� Physical Size=Resolution). For
example, the wax candle material used in Figure 7.a has a kernel
radius of approximately 4:5cm, while the kernel radius for marble
is approximately 0:75cm. On average, a compression ratio of 1=50
is obtained. Note, that this ratio compares the size of factored re-
sults with the total storage requirements of only the kernels of each
response. Finally, the relative errors are computed by comparing,
for each surface point, the measured response with the factored re-
sponse, normalized by the energy of the response.

The approximation error is determined by the number of terms, the
number of clusters, and the number of iterations. Similarly to stan-
dard non-negative matrix factorization, the error decays exponen-
tially, and drops signi�cantly during the �rst 50 iterations. The op-
timal number of terms and clusters depends on the speci�c material.
However, due to the rapid error decay, a quick veri�cation of the se-
lected parameters is possible after only a few (i.e., 50) iterations. In
general, we observe that the number of clusters is related to the de-
gree of heterogeneity in the material. It is possible that different
materials are present in a single pixel, resulting in a larger number
of required clusters than initially anticipated. The number of terms,
on the other hand, is related to the degree of discontinuity due to the
heterogeneities. A subsurface scattering material exhibiting sharp
discontinuities requires fewer terms then a material with smooth
features.

A selection of acquired materials and factored results is shown in
Figure 7. For each material, we include a photograph of the orig-
inal sample. We also show the diffuse albedo and a relative error
distribution plot. In addition, for each material a selection of mea-
sured responses and their factored counterparts are shown. The lo-
cations of these responses are marked on the diffuse albedo map.
The dashed square illustrates the relative size of the responses. The
range of errors in the relative error distribution plots can be inferred
from Table 1. The relative error distribution plot and the recon-
structed responses show that our factorization method is able to
faithfully reproduce the heterogeneous discontinuities. An addi-
tional advantage is that the acquired data is denoised by our factor-
ization method.

Figures 1 and 6 show visualizations of compactly factored mate-
rial models mapped onto a novel geometry. The material model
used in the Stanford dragon example of Figure 1 is the candle ma-
terial (�rst column in Figure 7). This material consists of two com-
ponents: red wax, exhibiting little subsurface scattering, and very
translucent yellow wax. Heterogeneities are caused by the internal
structure of the candle, and at the interface between the two ma-
terials. For comparison we also show the dragon textured by the
diffuse albedo map of the candle material (Figure 1, middle). The
right example of Figure 1 is illuminated from above by a texture
projection light. The emitted pattern is still distinguishable on the
red wax and on the ground plate, while on the highly translucent
yellow wax the pattern is almost completely washed out due to the
subsurface scattering. The effect of the heterogeneous subsurface

scattering is most visible at the interface of the red and yellow wax.
In Figure 6, the well known Buddha model is visualized using the
material models for layered white onyx and cracked crystal onyx
(respectively, the third and fourth columns in Figure 7). For both
examples we also included a visualization under a texture projec-
tion light to better illustrate the effects of the subsurface scattering.

8 Conclusions
In this paper we have presented a compact factored representation
for the spatial component of heterogeneous subsurface scattering
materials that is based on non-negative matrix factorization. Our
representation consists of a number of terms that modulate incom-
ing and outgoing radiance and a piece-wise linear homogeneous ap-
proximation of the subsurface scattering core. We observe that the
homogeneous subsurface scattering kernel can be divided out, leav-
ing just the discontinuities caused by the heterogeneities present in
the material. These residual discontinuities can be ef�ciently fac-
torized using a non-negative factorization approach.

We have illustrated the ef�ciency of our factorization technique on
a number of real-world heterogeneous subsurface scattering mate-
rial datasets. These datasets are obtained using a projector-camera
pair. To speed up acquisition, multiple responses are recorded in
parallel. Finally, we have demonstrated that the compact factored
representation of our material models can be easily integrated into
a standard global illumination rendering system, resulting in con-
vincing images.

For future work, we would like to look into out-of-core factorization
methods. Currently our implementation requires the whole subsur-
face scattering matrix to �t in the main memory, limiting the reso-
lution at which the samples can be acquired. Finally, a piece-wise
linear homogeneous approximation is not always well suited to di-
vide out the subsurface scattering kernel. For example, a sample
might fall right on an edge between two different materials. In this
case the resulting sample response would be a linear combination
of the responses of the two materials. Using a linear combination of
multiple subsurface scattering kernels would yield a better approx-
imation. However, it is not clear how this case might be factorized
in a computationally stable manner.
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Sample Material Physical Resolution Kernel Size No of No of Original Factored Ratio Min/Avg/Max
Size (cm2) (pixels) (pixels) Terms Clusters Data Size Data Size Relative Error

Candle (Red and Yellow Wax) (a) 19:8� 14:3 212� 154 49� 49 12 100 898Mb 13Mb 1=69 0:002=0:031=0:050
White and Green Marble (4� 4) (b) 12:6� 12:6 277� 277 39� 39 20 100 1.4Gb 39Mb 1=37 0:003=0:010=0:060
White and Green Marble (8� 8) 25:1� 25:1 222� 222 39� 39 8 10 859Mb 12Mb 1=72 0:003=0:019=0:094

Vertical Lines (White Onyx) (c) 15:2� 15:2 229� 229 39� 39 20 10 914Mb 26Mb 1=35 0:004=0:017=0:100
Cracked Material (Crystal Onyx) (d) 18:5� 17:6 270� 260 45� 45 12 5 1.6Gb 22Mb 1=74 0:011=0:040=0:560

Marble (close up) 2:6� 2:6 128� 128 39� 39 16 1 286Mb 6.6Mb 1=43 0:006=0:013=0:056
Densely Veined Marble 13:0� 13:0 213� 211 29� 29 8 10 433Mb 9.9Mb 1=44 0:003=0:096=0:163
Slightly Veined Marble 17:9� 17:9 207� 207 29� 29 20 1 413Mb 21.0Mb 1=19 0:001=0:005=0:024

Table 1: Statistics and details regarding acquired and factored subsurface scattering materials.
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Figure 7: A selection of acquired and factored materials. For each material, a photograph of the original sample, the diffuse albedo map, a relative error distribution plot, and a
selection of measured responses with the corresponding factored approximations are shown. The locations of the responses are marked on the diffuse albedo map. Thedashed square
illustrates the relative size of the responses. Table 1 gives additional information regarding the range of the relative errors.
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