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Sampling Reflectance Functions for
Image-based Relighting

Pieter Peers

Department of Computer Science,
Katholieke Universiteit Leuven

ABSTRACT

A popular research topic in computer graphics is the aciisof the appearance
of real-world objects. An important aspect of the appeagasfcan object is how it
reacts to incident illumination.

The goal of image-based relighting is to visualize real oisj@inder novel inci-
dent illumination, and this without explicit knowledge bt object's geometry or its
material properties. The appearance of an object undatentillumination is char-
acterized by itgeflectance field To acquire such a reflectance field, a series of pho-
tographs, from a fixed viewpoint, of the object is recordederrdifferent controlled
illumination conditions. Applying different illuminatio conditions to an object is
mathematically equivalent to sampling its reflectance field

In the first part of this work, the physical and practical dosisits imposed on
image-based relighting are studied, and a mathematicadefrerk is derived that
encodes these constraints. This framework allows to descstudy, and compare
existing relighting techniques, and allows to develop maare efficient, methods.

In the second part, the implications of sampling the reflemdfield are studied
in detail, and several reconstruction techniques are pteddo enhance the visual
and numerical quality of the relit results. Additionallyjs shown that an equivalent
downsampling operator can be defined on the incident illation that yields iden-
tical results with less computations as the advanced rafieetfield reconstruction
techniques.

Two novel acquisition methods are presented in the third piathis disserta-
tion. These methods differ from other acquisition methadshiat they sample a
wavelet represented reflectance field directly. The firshesé methods samples the
reflectance field selectively in the wavelet domain by pregikely emitting selected
wavelet basis illumination conditions. A feedback loop sed during acquisition
to determine what part of the wavelet transformed refleetdietd is worthwhile to
sample in greater detail. The second technique also sathglesflectance field selec-
tively in the wavelet domain, but decouples the acquisipoocess and the sampling
of the wavelet represented reflectance field. To achieve ttisobject is observed
under a fixed number of wavelet noise illumination condisioAfterwards, a progres-
sive algorithm is used to determine the reflectance funaifoeach pixel separately
using the observed wavelet noise responses of this pixel.

All of the previous techniques are restricted @ iAcident light fields. In the final
part of this work, a novel method is presented that is ablelight objects with D
incident illumination. This allows to visualize objectstiwvspatially varying illumina-
tion effects such as spotlights effects and partial shaalgpwi
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Notations and Symbols

Notations
s scalar value
Vv a vector of scalar values of lengitlii.e., anl x 1 matrix)
Vi or (V) thei-th element of a vecto/
[Vili a vector defined by the scalar valugsvithi € {1,...,1}
M a matrix of scalar values of size< k
Mi thei-th row of a matrixM. The row is a Ix k matrix.
Mi-s thei-th row upto thes-th row of a matrixM.
The resultis gs—i+ 1) x kmatrix.
M. the j-th column of a matriXM. The column is ah x 1 matrix.
M.t the j-th column upto theé-th column of a matrixv .
The resultis ah x (t — j + 1) matrix.
mi,j or (m); ; | the matrix element at thpth column and-th row.
[M1;..;M{] the matrixM defined by the row;.
Note that a semicolon “;” is used to seperate different rows.
[M.1]...IM ] | the matrixM defined by the columnid! ;.
Note that a vertical line|” is used to seperate different columns.
R(") an operator on a scalar, vector, matrix, or other operator.
s a set of lengthn.
s|i] thei-th element of a sed.
[IV]]2 the length of a vector.
B an approximation of a scalar, vector, matrix, or operator.
M the dual of a matri (i.e., MM = 1.

Important Symbols

= unor

SIS

incident illumination vector.
outgoing illumination vector.
self-emitted illumination vector.
light transport matrix.

serialization operator.
resample operator.
upsample operator.

general basis transformation.

wavelet basis transformation.
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Introduction

The “digital age” is perhaps how contemporary society wélrbferred to in a few cen-
turies. Since the rise of electronics and computers, thédvesound us has changed
tremendously. Shapes have become richer thanks to CADy<ata color combi-
nations are more vibrant thanks to desktop publishing; esi@hing and producing
goods, buildings, clothes, ... practically everythingyimghinkable without digital aid.

A very active, and relatively young research domain, isdlgitalization of the
real world. The impact of this digitalization is already olging everyday life. Digital
cameras and the omni-present mp3-player are examples stic@n devices aimed
at capturing instances, images and music respectiveljyeofvorld around us. The
instances captured by these devices are not necessatilgtezbto instances created
with the aid of a digital device, but can also be digitalizedgshots of any real entity.
Although these devices are only the beginning, they heralehaand exciting era to
come.

This dissertation discusses and contributes to recentnaduaents in thaligi-
talization of the appearance of real objects image-based relighting, a young but
important research topic within the field of computer graphi

1.1 Image-based Graphics

A famous computer graphics saying proclaims ttieality is 80 million polygons
per second’(Alvy Ray Smith quoted in Rheingold [84], p.168). But | mustaree:
when saying that reality isnly 80 million polygons per second, more than half of re-
ality is omitted: the reflection behavior, textures, illumation, ... The reality of reality
is that it is an enormously complex, if not impossible, thingnodel.

The proverb thata picture says more than a thousand wordis’the essence of
image-based graphics, offering an alternative approacacide the problem of the
abundance of detail in reality. Taking a photograph of a-veald scene or object
automatically contains all the details, so why not use tidgpending on the goal,
image-based graphics can be subdivided in a number of suiaide: image-based

1



2 CHAPTER 1. INTRODUCTION

modeling, image-based rendering, and image-based lghtin

Image-based modeling.  The goal of image-based modeling, is to extract all
kinds of properties from a set of images of a real-world sc@ihese properties range
from: scene appearance, scene geometry, lighting, refleetaroperties, ... Image-
based modeling is an extremely large research sub-domasnwitvhighlight a few
methods to give an impression of the diversity and richnésaage-based modeling.
Providing a complete overview of all image-based modelirghads would fall be-
yond the scope of this dissertation.

In 1996, Debevec et al. [23] presented a method to model amdkrearchitec-
ture from photographs. In this paper, three image-baseckelimgdtechniques are
presented: photogrammetric modeling, view-dependemitexnapping, and model-
based stereo. By providing minimal building blocks, phegmgmetric modeling opti-
mizes the user-provided correspondences to obtain a mbtlet scene. To improve
the quality of the visualizations, view-dependent tex$uaee used. Depending on the
view-direction, different textures extracted from the s@uphotographs are blended.
Finally, model-based stereo can be used to add detailtstis¢he obtained model.

Another example is image-based visual hulls, presenteddtysik et al. [60]. A
visual hull is a conservative shell bounding an object, defiby the silhouette infor-
mation from a series of reference photographs of the obfesstuming a pinhole cam-
era, each silhouette forms a cone with its apex at the cannigjia,cand spreading out
along the silhouette edges. The intersection of these dones the visual hull. In-
stead of computing this intersecting hull explicitly (ugiexpensive CSG operations),
image-based visual hulls are created directly in imageefimm the reference im-
ages. Each pixel in a novel view defines a ray starting at teepoint, and going
through the pixel. By exploiting the epipolar geometry,sheays can be projected
onto the silhouettes in the reference photographs. Thowalto determine, on the fly,
where the visual hull begins and ends along this ray.

A last example is by Lensch et al. [49], who measured spgtialtying reflection
properties of an object without making additional assuonsj from a small set of
photographs (16-25) and a geometric model of the object. A key observation is
that man-made objects contain very few different materidlkis allows to cluster
the different materials. Each cluster contains multipldaze points, and thus more
information regarding the reflection properties is avddahan when a single surface
point is used. From the reflection information in a clustet,afortune reflectance
model can be fitted.

Image-based rendering.  The goal of image-based rendering, is to create realistic
novel views of a scene at interactive rates, without perfiogna full global illumina-

tion simulation. The scene properties, such as lightingngary, ... are kept constant,
except of course the viewpoint.
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Image-based rendering techniques can be subdivided ia tategories [94]: ren-
dering with no geometry, rendering with implicit geometgd rendering with explicit
geometry. This should not be seen as three discrete cagsgbrit as a continuum.
A lot of work has been done in this area, and providing an estiazioverview falls
beyond the scope of this dissertation. We will review forteeategory one technique.
For a thorough overview see [94] and [116].

Light field rendering [50] falls in the first category: rentgy with no geometry.
Light field rendering can generate novel views of real-wotlfects from a set of pho-
tographs of this object, without using any geometry, or dépfiormation. Key to this
technique is the interpretation of the photographs of aedaitas D slices of a D
function: the light field. This abstraction reduces the gatien of a novel image to a
resampling and interpolation problem. Because of thitliggld rendering is also a
popular research topic in signal processing.

The lumigraph [33], is related to light field rendering [5SBlit uses an approxima-
tive geometry, and therefore belongs to the second categaemgering with implicit
geometry. The approximative geometry is used to countendimeuniform sampling
of the 2D slices to improve rendering quality.

Layered depth images [92] fall in the last category: remdgrith explicit ge-
ometry. Layered depth images are a view of an object from glesivantage point,
containing multiple pixel and depth values along each lifisight. Layered depth
images allow to render the object from novel viewpoints.

Image-based lighting.  The goal of image-based lighting, is to create novel real-
istic images of a scene or object with light obtained fromreed world. Image-based
lighting is analogous to image-based modeling, exceptrtbatillumination is mod-
eled in an image-based fashion.

A popular tool to capture real-world lighting is a light peaka specular ball that is
placed in a scene. By taking a photograph of this light prabdjumination incident
at this point is captured (see [83], chapter 9, for an in dep#rview).

Debevec [19] used image-based lighting to render syntbbjects into real scenes.
This is also called augmented reality. This method worksikigihg the scene into
three parts: the distant scene, the local scene, and thieesignbbjects. The distant
scene is considered not to be influenced by the syntheticishgnd is modeled using
image-based lighting. The local scene is image-based rmadmhd a global illumina-
tion simulation is used to visualize this local scene togettith the synthetic objects.
The obtained rendered image is merged into a photograple acééne.

A sub-domain in image-based lighting, is image-basdidhting and has as goal
to create novel realistic images of a real-world scene, undeel illumination con-
ditions, and this without computing a full global illuminah simulation. The scene
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properties, geometry, reflectance properties, ... areda@ptant.

Popular work on image-based relighting was performed byebeb et al. [20].
By combining different basis images of an object, each aeduinder different con-
trolled illumination conditions, a novel image of the olijean be created under novel
incident illumination. Thigelit image is created by weighting and summing the basis
images. The weights are determined from a light probe imé&geealestination light-

ing.

Image-based relighting is the main focus of this dissentatand an in depth in-
troduction into this topic is given in chapter 2.

1.2 State-of-the-art and Goals

Scientific advancement does not happen overnight, it takes af time and effort.

When | started my research, the state-of-the-art was diftehan it is now. At that
time, the Light Stage was introduced at SIGGRAPH 2000 in airs&paper by De-

bevec et al. [20]. It was a huge leap forward in terms of reilighquality and practical
efficiency. Itis currently still the most widely used metifodimage-based relighting,
and has been used in numerous Hollywood movies. The preyearsat SIGGRAPH
'99 in another seminal work by Zongker et al. [119], envir@mhmatting was pre-
sented. This work initiated a renewed interest in intersteatting techniques. Al-
though not apparent at that time, it also has some relatigthsinvage-based relight-

ing.
The following observations can be made about the statbeshtt at that time:

e Not only did the acquisition setup for image-based religt{using a Light
Stage) and for environment matting (using a CRT monitofedsignificantly,
they also had a different theoretical and historical baskgd. Although some
“combinations” of environment matting and image-baseiiting had been
attempted (among others in [20] and [63]), it was not appaatthat time that
both actually solve a similar problem.

e Most relighting and environment matting techniques warétéd to a subset of
material types that they could handle correctly (i.e.,usiff to glossy for [20],
and glossy to specular for [12, 119]). No technique existeti¢ould handle all
kinds of materials without imposing any additional regtons.

e All image-based relighting techniques used a brute-foppr@ach to capture
and relight real-world objects.

e Incident illumination and reflectance functions were iiestd to D instead of
the complete B incident domain.

These observations resulted in the following researchsgoal
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e A unifying mathematical framework is pursued that coverthbenvironment
matting as well as image-based relighting. This framewbiusd be extensi-
ble to cover both P approximated incident illumination and the complei2 4
incident illumination. Furthermore, this framework shile flexible enough
such that new techniques can be easily incorporated.

e To develop an image-based relighting technique that catuagcenes and
objects without placing any restrictions on the types oferiats present.

e A compact representation of the reflection properties ofitmpiired objects is
desired.

e Sub-linear acquisition complexity with respect to the asigion resolution, in
order to minimize acquisition duration.

e To develop a method to capture and relight scenes viltmdident light fields.

All these goals are met in this dissertation, although nloinad single unifying
solution.

1.3 Overview

This dissertation is organized as follows:

Chapter 2  begins with an intuitive description of image-based rdligin

An important element in image-based relightingnisident illumination a 4D en-
tity. For practical reasons, &@approximation of incident illumination is preferred.
Therefore, a discussion is included on what kinds of appnations can be made in
order to reduce the dimensionality ob4ncident illumination to a two dimensional
one. A commonly used method for capturing@ idcident light field approximation
is by means of a light probe. The obtained approximatiorg aeldled an environ-
ment map, is described and discussed. Next, environmerg arap/alidated against
the proposed theoreticaD?approximations. To conclude the discussion on incident
illumination, methods for the acquisition of the complef ihcident light field are
discussed.

Image-based relighting is intuitively introduced througb Light Stage [20]. An
overview of an image-based relighting pipeline, using tight Stage, is explained in
detail. Important terms such asflectance fieldandreflectance functionare illus-
trated.

Chapter 3. In this chapter, the intuitive notion of image-based reiigdis given a
theoretical foundation.
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First, the physical constraints and conditions to whichgexdased relighting must
adhere are discussed. On these constraints, a mathernfratinalvork is based. Some
additional operators are defined that effectively remoealtpendency on the dimen-
sionality of the incident illumination. Finally, this fraework is illustrated on Dual
Photography [91], and on the Light Stage [20].

Chapter 4. The acquired reflectance functions, captured by a LighteStqpara-

tus, are basically a sampling of real continuous reflectéumetions. In this chapter,
we explore the implications of Nyquist's sampling theoremreflectance functions.
Next, different reconstruction methods for sampled redlecé functions are com-
pared. Their performance and efficiency with respect tb atitl animated incident
illumination is qualitatively and quantitatively validzd.

Finally, using the mathematical framework presented irpt#re3, it is shown that
for image-based relighting it is possible to define, for gdaclass of reconstruction
methods (i.e., upsampling operators), an equivalent damp$ng operator on the
incident illumination. Downsampling the incident illungition offers a significant
speed-up in computations compared to upsampling the sdmgflectance functions
while maintaining relighting quality.

Chapter 5. High resolution, acquired or upsampled, reflectance fonstihave
huge storage requirements. This chapter studies a pairticlalss of lossy compres-
sion methods to reduce the required storage space.

By projecting the reflectance functions in a suitable (mathiécal) basis, a sparse
representation can be obtained. By further applying noeali lossy approximations,
this can be reduced even further. An advantage of basisgiimjemethods is that
they are basically linear operators with respect to ligahsport. As a consequence,
relighting computations can be performed directly in thgjgeted space, and the (lin-
ear) image-based relighting process does not incur a tenelfy to compute a relit
image.

Chapter 6.  Compression by means of basis projection helps to reducgtdnage
requirements, but it still require a complete sampling @ taflectance field during
acquisition. Sampling reflectance fields at a high resatytioses two practical prob-
lems. First, it is practically difficult to extend a Light $& such that it can sample
these high resolutions (i.e., 48amples). Second, taking a sample requires a fixed
amount of time. The use of high-speed cameras can redudeihegquired to take a
single sample, but at extremely high resolutions, everethegh-speed cameras can-
not sample the full reflectance field in an acceptable time.

Based on environment matting, two new acquisition techescare presented that
use a CRT monitor instead of a Light Stage to acquire a refieetéield. Sub-linear
acquisition (in terms of resolution) is attained by usingoaithms based on the com-
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pression techniques of the previous chapter.

The first method explictly samples the reflectance field esqeé in the wavelet
domain. To reduce the number of samples which need to be,takgngressive algo-
rithm is used that, depending on the current approximatienides what part of the
reflectance field is important enough to sample in greateiildet

The second method, uses wavelet noise illumination patteWidavelet noise is
a dense slice through the whole wavelet domain. This all@isplicitly sample
the wavelet domain after acquisition from the observedarses under wavelet noise
illumination. By acquiring a number of wavelet noise resges) an approximation of
the reflectance functions can be computed for each pixelatha

Chapter 7. Previous acquisition methods all captui@ dpproximations of the®
reflectance field (from a fixed vantage point). In this chaptaovel acquisition de-
vice, based on the Light Stage, capable of acquiring Deedlectance field is pre-
sented. Acquiring the completé6reflectance field in a naive manner is too time
consuming. Therefore, an acquisition acceleration meihpdesented that can cap-
ture a @ reflectance field iro (n) time complexity (instead ab (n%)).

Chapter 8. This chapter concludes this dissertation with a summaryseudsion
of the contributions, and avenues for future research igévaased relighting.
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2
Image-based Relighting

This chapter introduces the basic concepts of image-badigghting in an intuitive
manner. The goal is to give the reader a basic understandlithg @oncepts which
will be discussed more rigorously in chapter 3.

2.1 Introduction

Image-based relighting tries to solve the problem of how réitrary object or sub-

ject’s appearance changes when the illumination is altekdaby difference between
image-based relighting and classic modeling techniquiatsmage-based relighting
does not require the shape of the object to be measured anam@ated, but decou-
ples the relighting process from the underlying geometng @stead directly uses
photographs of the object to create relit images of thisaibje

In a classic modeling approach, the appearance of an olsjempletely de-
fined by describing each of the specific characteristics efdhject by a model.
The geometry of an object is usually described by a mesh ¢fgoois or a cloud of
points [77], and the material (reflection) properties ararahterized by bidirectional
reflectance distribution functions [68], which are dendbgdhe acronym BRDF. A
BRDF describes how a ray of light is scattered when hittirgy ghrface of the ob-
ject at some point (figure 2.1). A BRDF is &4unction, i.e., a B incoming light
direction and a P outgoing light direction. This B function is usually compactly
represented by an analytical model. A number of analyticadlets for BRDFs ex-
ist [2, 8, 14, 37, 41, 46, 72, 78, 80, 88, 103, 107], each tunedescribe a small
subset of material types, and each depending on a small nushlbeer-controlled
parameters.

Ak

Figure 2.1: A BRDF describes how a ray of light is directionally scattexhen hitting the
surface at a specific point. The directional scatteringasiically depicted by the blue lobe.

9



10 CHAPTER 2. IMAGE-BASED RELIGHTING

To visualize the model under some illumination conditiofylascale global illu-
mination simulation needs to be computed [29]. There arengbeun of problems with
this approach:

e Micro-geometric details. Many objects have sub-geometrical details, such as
dirt, wrinkles, rust, etc... Each of these sub-geometrieddils can alter the
reflection properties locally in an unpredictable way. Withthese details, a
model would look too clean, but modeling all these detailsotly is in most
cases impractical.

¢ lll-defined geometry. Not all shapes can be easily represented by a mesh of
polygons. Objects covered by hair or fur are notoriouslfidaift to represent
using a mesh of polygons or point clouds.

o BRDF parameters.BRDFs are analytical models each describing a small sub-
set of material types, e.g., plastic. Each BRDF model hasébeu of param-
eters, representing the properties of the material thateénfie the appearance.
When modeling a real-world material, these parameters ttebd tuned such
that the approximation error between the model and reaitginimized. Tun-
ing these parameters is usually a complex matter, requingrgy measurements
of the reflection properties of the material with varyingwjmints and illumi-
nation directions. Furthermore, the algorithms used te these parameters are
very sensitive to the initial starting conditions, and deé alavays converge to a
globally optimal solution.

e BRDF selection. The representational power of a model is limited. E.g., a
BRDF model for describing metallic materials cannot actalyaepresent plas-
tic materials. Selecting a suitable model is not a triviallgem. Materials for
which no model exists, or materials which behave abnormediynot be repre-
sented accurately, and need to be approximated by the “tesstinbling model.

e Degree of realism depends on the method of visualizationA full global
illumination simulation is necessary to create a visuétireof the object under
novel incident illumination. Such a global illuminationailation is a lengthy
process and the efficiency depends greatly on the algorited.u

Image-based techniques overcome these problems by takliffgr@nt approach.
Instead of representing the complete object by compactaeal models, image-
based techniques start from the observation that a phqtbgantains all the details
of an object seen from a single viewpoint at a specific momeiinme discretized
at a specific resolution. By directly using the informati@mtained in multiple pho-
tographs of the object, the need for an analytical modelogd®d, while all the details
are implicitly present. In the specific case of image-baséidhting, a series of pho-
tographs of the object are recorded, each under diffetantiihation conditions. From
the information present in the different photographs, #sponse of each pixel to in-
coming illumination is inferred, independently of the respes of other pixels. By
directly using the information contained in the acquiredtolgraphs, the relighting
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process is decoupled from the underlying geometry of thesorea object. An ad-
ditional advantage of image-based relighting technigsiés&t no global illumination
simulation is required, because they use the informatictty from the photographs
which already contain the full global illumination solutio

In this thesis only the relighting of objects seen from a fixeglvpoint is consid-
ered. A different branch of computer graphics, called imbggsed rendering, actually
tries to solve the complementary problem: how does an objestibject’s appearance
change when the viewpoint is altered, keeping all otherrpatars, such as incident
illumination fixed.

The remainder of this chapter is organized as follows; Inige@.2 the acquisi-
tion and representation of incident illumination is disse$. Based on this captured
incidentillumination, image-based relighting is intra@ed in an intuitive manner (sec-
tion 2.3). Next, the concepts of reflectance fields and reiffeet functions are intro-
duced in section 2.4. We conclude this chapter in section 2.5

2.2 Incident lllumination

As mentioned in the previous section, the goal of image-dbeslgghting is to visual-
ize an object under novel incident illumination. In this aedj it is important to first
discuss ways to represent and capture incident illuminatio

To define incident illumination, we first have to consider thatthis illumina-
tion is incident to. In the case of image-based relightihg, ittumination is defined
incident to the object being relit. This implies, that foichgoint on the surface of
the object, illumination coming from all directions needse known. However, this
is not a flexible definition, because we do not want to tie thguésition and repre-
sentation of incident illumination to a single specific athjenstead, a more general,
geometry-independent definition is required.

An important principle, widely applied in computer graphits that radiance trav-
eling along a direction (in vacuum), does not change in sitgror color. This princi-
ple allows to decouple incident illumination from a specdigect, assuming that the
object is surrounded by free space. In practice, a boundihgne is considered in
which the object, to which the incident illumination will lagplied, fit. If a complete
description of the incident illumination is known for eaabift on this bounding sur-
face, the incoming illumination is known for each directemd point on the object’s
surface (see figure 2.2). Incident illumination is thudafdnction, dependent on po-
sition (2D), and direction (B). This 4D incident illumination function is also called
a“ 4D incident light field”[58].

Capturing and representing ®4unction is a huge undertaking, and the practical
problems are significant. Therefore an idealized redu€edroximation of the B
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Figure 2.2: Decoupling incident illumination from a specific object.ft:ehe incident illumi-
nation on an object. Middle: incident illumination on a bding volume decoupled from the
object’s geometry. Right: The incident illumination on theunding volume can be applied to
any object fitting in this bounding volume.

incident light field is mostly used. We can distinguish tweatized D approxima-
tions:

e Directional incident illumination, spatially constant. This implies that the
incident illumination only varies directionally, and that each point on the
bounding volume the same incident illumination occurs (&g2.3.a). Another
way of looking at this is that the incident illumination cosnfom far away
(infinity), and in effect reduces the object and boundinguwue to a single
point.

e Spatial incident illumination, directionally constant. This is basically the in-
verse of the previous. In this case we assume that the illatioim varies spa-
tially, but that im each point it is angularly constant orfdge (figure 2.3.b).

The accuracy of both approximations depends completehhercharacteristics
of the incident illumination. If the bounding volume is sinalth respect to the sur-
rounding environment, then the directional approach wéllabbetter approximation
of the incident illumination. On the other hand, if the boimgdvolume is a close
match to the surrounding geometry, then the spatial intitlamination approxima-
tion would probably be a better match. Both cases are iitestirin figure 2.4.
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Figure 2.3: Different 2D approximations of the full B incident light field. Directional incident
illumination (a): corresponding directions at differewipts have the same color and intensity.
Spatial incident illumination (b): each direction for a sifie point on the bounding surface has
the same color and intensity.
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Figure 2.4: The accuracy of the2 approximation depends on the type of approximation, and
the nature of the incident illumination. A determining farcis the solid angle from which
incident illumination hits the bounding volume. This degsron the distance between the
origin of the incident illumination and the bounding volum&wo different cases of incident
illumination are depicted; the yellow light source, lochtdosely to the bounding volume, is
best approximated by a spatial approximation, while themgrght source, position further
away from the bounding volume, is better approximated byditectional approximation.

Next, the acquisition of so callezhvironment mapis discussed (subsection 2.2.1),
followed by an illustration of the relation between envinoent maps and thelRap-
proximations of incident illumination (subsection 2.2.Bjnally, a method is detailed
to capture D incident illumination (subsection 2.2.3).

2.2.1 Environment Maps

An environment map is a spherical map, representing illatom incident at (approx-
imately) a single point in space. The most common ways toucan environment
map are:

e Fish-eye lens. A digital camera, equipped with a fish-eye lens, is positibne
at the location for which an environment map is desired. Bseaa fish-eye
lens only deflects a part of the surrounding sphere of doast{i.e., a hemi-
sphere) to the camera sensor, multiple photographs have tedorded, each
with a different orientation, to capture the whole sphermoident illumination
(figure 2.5.a).

\\:\\\ ' //{;
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Figure 2.5: Capturing an environment map. Figure (a) depicts the capifian environment
map using a fish-eye lens. The environment lighting is onlyigéy captured. In figure (b)
the acquisition of an environment map using a specular balepicted. Figure (c) depicts a
close-up of the specular ball and how incoming illuminat®reflected towards the camera.
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e Light probe. A light probe is in essence a specular ball. By positionirgigjht
probe at the location for which an environment map needs waptured, and
taking a photograph of this light probe with a zoom lens, arirenment map
can be obtained (figure 2.5.b). Figure 2.5.c depicts hownithation coming
from the whole environment to the light probe is reflectedams the camera.

Each of the two methods to capture an environment map hasétsgths. The
acquisition of an environment map using a fish-eye lens hastlvantage that the
camera is never visible in the environment map, but has asldstage that the lens
distortions and chromatic aberration near the edge of ti®dan be significant. Fur-
thermore, fish-eye lenses are expensive and only capturecaming hemisphere
instead of a full sphere of incoming directions. Capturingegavironment map using
a light probe has the advantage that almost the whole emaeahmap is captured
in a single shot. A disadvantage is that the camera is vigibike light probe. The
camera can be removed from the environment map by taking hwtographs of the
light probe from different positions and merging the parftshe environment maps
in which the camera is not visible. Furthermore, the derdfitgflected rays is much
greater near the edge of the specular ball, resulting isiatigartefacts. The cost of
a specular ball, however, is minimal, making a light probed®al tool for capturing
environment maps.

Both techniques capture an environment map by taking a phapd. In order
to create physically plausible results using the acquiradrenment maps, it is im-
portant to express the intensity of each pixel in a photdgiagerms of a physical
unit. Incident illumination on a small area (pixel), alsondéed by “irradiance”, is
expressed iﬁr’r"—'z. A consumer digital camera converts the measured irradismeon-
linear pixel intensity values. Debevec and Malik [22] dedainethod for undoing this
non-linear transformation, and transform it back to (ie@tirradiance values. The
process of undoing this non-linear transformation is ciitéigh dynamic range pho-
tography” and the resulting photograph is calledhigh dynamic range photograph
or, HDR photograpHor short. In the remainder of this thesis we will always ugafR
photography when acquiring data. A detailed overview of H®tography can be
found in [83], chapter 4.

To store the environment map in an acquisition device indépet manner, a repa-
rameterization of the acquired data is required. The reparerization will maximize
the amount of significant pixels (i.e., pixels correspogdmpoints on the light probe),
and try to minimize distortions. Different spherical andrigpherical parameteriza-
tion schemes can be found in [56]. In the remainder of thiskywae will implicitly
assume that environment maps are parameterized in a &libnditude parameteri-
zation, unless noted differently.

In figure 2.6, an example acquired by a light probe is showrth Bee captured
photograph of the light probe (left) and a latitude-londéureparameterization are
shown.



2.2. INCIDENT ILLUMINATION 15

Light Probe Latitude-Longitude Parameterization

Figure 2.6: An example of a photograph of a light probe, acquired in acuand a latitude-
longitude reparameterization of the light probe image ofBtraphs: courtesy of Vincent Mas-
selus)

2.2.2 Relationto 2D Incident lllumination

The question remaining, is how an environment map relatélset@D idealized ap-
proximations of incident illumination. It is clear that anvironment map is a2
representation of incident illumination, but it is unlilgeghat it exactly corresponds to
one of the idealized2 approximations: a directional or a spatial approximation.

Both techniques for acquiring environment maps defleamihation incident at a
single point towards the camera sensor. This implies thararonment map does
not encode any spatial information. Furthermore, it alspli@s that an environment
map does not encode any directional information of the echittumination, since for
each point of the environment, at most a single directiomoéming illumination is
deflected towards the camera. As expected, an environmenismet a directional
2D approximation, nor is it a positionalapproximation. See figure 2.7 for an iconic
illustration.

Actually, an environment map is d&lice of the D incident light field. Depend-

A BN
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Figure 2.7: An environment map captures incident illumination at a kirgpint (red), it does
not capture directional outgoing illumination from the gomment, but only captures a single
direction for each point in the environment (green). Nordliteapture spatial, directionally
constant information (blue).
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Figure 2.8: The effect of taking D slices (i.e., vertical lines) of a2function, illustrated on the
well-known Lena image. Areas with low horizontal complgxieed to be less densely sampled
to be faithfully approximated (e.g., shoulder), than areitls abrupt changes (e.g., near edges).
The reconstructions are computed by linearly interpotatiorizontally between neighboring
slices. The percentages indicate the sampling densityobf iesage.

ing on the situation, it is a good approximation of eitherladrectional or spatial
approximation. As shown in figure 2.4, an environment mapge@d approximation
of directional incident illumination if the surrounding\eronment is large in compar-
ison to the bounding volume. Likewise, if the surroundingissnment is of similar
size as the bounding volume, then a spatial approximatidraanenvironment map
are a close match (assuming that the environment emits ectefllumination dif-
fusely).

We will show in the next section, that botD2approximations are handled iden-
tically by image-based relighting. This implies that thésenot really a difference
between both approximations visually, but rather in therptetation of the approx-
imation. The accuracy of thel2approximation is more related to the size of the
bounding volume, and the geometry and reflection propesfi¢ise surrounding en-
vironment. In the remainder of this thesis, when usingaapproximation of the B
incident light field, we will omit the interpretation of thgproximation.

2.2.3 Acquisition of 4D Incident Light Fields

Until now, only the acquisition of environment maps, 2 &lice of the & incident
light field, has been discussed. The argument for usirg agbroximation is that the
full 4D incident illumination is huge in size and difficult to capturHowever, with
the advancement of image-based relighting techniquesigld for acquiring B in-
cident light fields is growing. In this section a brief oveawiis given of the technique
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Figure 2.9: Two devices for the acquisition oDincident light fields. Left: a camera with
a fish-eye lens mounted on agtable. Right: an array of specular balls. Both devices can
capture the B incident illumination on a plane. (Photographs: Courteflsymger et al. [104])

of Unger et al. [104] for the acquisition oincident illumination.

In Unger et al. [104], two methods for acquirin@4ncident light fields are out-
lined. At the core of both methods is the observation thatmirenment map is a2
slice of the D incident light field. By capturing multiple2 slices, a reconstruction of
the full 4D function can be made. What happens mathematically, is &mapkes (i.e.,
2D slices) are taken from aDifunction. The sampling frequency and the frequency
response of the sampled dimensions of tBeidcident illumination function deter-
mine the accuracy of the approximation. Figure 2.8 illussahis principle on a2
image from which D slices are extracted. Increasing the sampling densitgasas
the reconstruction quality. Note, that the quality of thpm@ximation converges faster
in areas where the original image varies little (horizdgjal

Both methods for capturingRtincident illumination take one of the devices for
acquiring an environment map as a basis. Figure 2.9 showdreiliees developed by
Unger et al. to captureBtincident light fields. The left device in figure 2.9 shows a
camera with fish-eye lens mounted onxgrtable. Thexy-table enables to accurately
position the camera at different positions on a plane. Foh easition a high dynamic
range photograph R2slice) can be recorded. This approach can sample Ehin4
cident illumination very densely, at the cost of a long asijiain cycle. On the right
in figure 2.9, an array of specular balls is shown. A singletpy@aph of this array
gives a coarse sampling of th®4ncident illumination. In effect the resolution of
the 2D slices is traded-off with the sampling resolution. It is ionfant to realize, that
although the latter method captures a low resolution samgif the 4 incident light
field, it is captured in a single photograph, as opposed téirstenethod, which needs
to record multiple photographs.
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Figure 2.10: A photograph and schematic illustration of a Light Stageiaeyas presented
in [59]). A number of computer controlled light sources areumted on a quarter arc, while the
object and camera are placed (relatively fixed) on a turata®y switching individual lights on
and off, a latitudinal movement of light sources is attainelile rotating the turntable provides
longitudinal movement.

2.3 Intuitive Description of Image-based Relight-
ing

In the previous section the acquisition, approximatiomnl, spresentation of incident
illumination is discussed. In this section image-baseiginéhg is introduced in an
intuitive manner. This description is based on the Lighg8tf20], an apparatus for
efficiently capturing the reflectance field of an object (itke way the appearance of
an object reacts to incident illumination).

To capture how an object reacts to incident illuminationedes of HDR pho-
tographs of the object, each under different lighting ctiods, are recorded, while
maintaining a fixed viewpoint. These lighting conditione @enerated by a Light
Stage device. There are a number of different incarnatibtieed_ight Stage [20, 34,
57,62, 21,110, 59, 109]. Although these devices are mechalnvery different, the
basic idea is the same: to be able to illuminate the objemty fifferent light source
positions on a bounding sphere. The main difference bettveedevices is how they
sample light source positions. In this thesis we use a Ligdy&device as presented
in [59], depicted in figure 2.10. This device consists of artpraarc on which a num-
ber of light sources are mounted (i.e., 20). Each of the$e §igurces can be turned
on or off remotely by a computer. A turntable is mounted atdeeter point of the
quarter arc. On this turntable the to-be-captured objedttha camera are placed.
Different lighting conditions can be obtained in two ways:

e Latitudinal light source movement. The repositioning of the light source
along the latitudinal direction (i.e., from top to bottora)dchieved by switching
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Figure 2.11: A subset of the photographs of a Formula One toy car (showerged in the
left-top) acquired with a Light Stage. For each photogragliffarent light source is turned on.
Note that the dark anomaly &57.5,108) longitude-latitude is caused by the camera partially
occluding the light source for that position.

the correct light sources on or off. No mechanical movem&m¢quired, and
hence it can be done very rapidly.

e Longitudinal light source movement. To move a light source along a longi-
tudinal direction, the turntable is rotated in the oppoditection. Since the
camera is mounted on the turntable, the net result is sintalestating the arc.
This requires some mechanical movement, and requiredisemtiy more time
than a latitudinal movement.

To minimize mechanical movement, and optimize efficierfog,acquisition scans
at each longitude position, all latitude positions firsmar to this setup is the Light
Stage v2 [34], which rotates the arc instead of the objectadwantage of the setup
used here, and in [59], is the ease of mechanical constryctia relatively fast ac-
quisition.

Figure 2.11 shows a subset of acquired photographs of a Far@ne toy car.
Each photograph shows the effect of illuminating the Foen@ihe car from a specific
position on the bounding sphere.

Before introducing the general image-based relightingratigm, a number of spe-
cific cases are examined. Suppose that the novel incidentiflation, used to create
relit images, coincides with one of the sampled light sosrpesition and intensity.
In that case, the relit image of the object is simply the asglphotograph of the
object lit by that specific light source. In the case of a maymplex illumination
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(e.g., the incident illumination consists of two light soes, coinciding with two dif-
ferent sampled light source positions), the relit imagénesgum of the photographs
associated with the respective light sources, due to thighagdof light. The additiv-
ity of light stems from the superposition principle, whicliliee discussed in detail
in chapter 3. Finally, consider the case in which the incidéumination coincides
with a light source at a sampled position, but with a différietensity, e.g., 50% of
the acquisition intensity. Since the observed intensityesponds linearly with the
intensity of the light source, a relit image can be createdimply multiplying the
acquired photograph corresponding to the respective dightce, by the relative ratio
of the desired intensity versus the acquired intensity.eNbét color can be seen as
having, in the case of RGB photographs, three independtantsities, one for each
color channel.

Using the additivity and the scaling of the intensity, a gahienage-based relight-
ing algorithm can be formulated. Assume that the incidéutrilnation is given as a
2D approximation in the form of a latitude-longitude enviroemhmap. This param-
eterization is a convenient form, since the light sourcespasitioned on a latitude-
longitude grid on the bounding volume due to the constractibthe Light Stage.
Note that the resolution of the latitude-longitude envimamt map, is probably much
higher than the sampling rate of the acquisition setup. &foee, we downsample
the environment map to the sampling resolution of the se&sguilting in a one-to-one
mapping of intensities in the downsampled environment nmaisampled light source
positions. However, the intensity values in the downsanhple/ironment map do not
take into account that the Light Stage acquisition devicgmes light source positions
more densely near the top than down at the base. This can feetat by taking into
account the Jacobian of the reparameterization from a spibéhe latitude-longitude
mapping. Thus, by scaling each photograph with the corredipg pixel intensity in
the downsampled environment map times the Jacobian, aridgattee scaled pho-
tographs, a relit image of the object can be computed.

The complete relighting process is schematically sumradria figure 2.12. In
figure 2.13 some additional results of relighting the Fom@he toy car under differ-
ent incident illuminations are shown.

2.4 Reflectance Fields and Functions

The reader should now have an intuitive understanding of@évtzased relighting. Be-
fore introducing a well-defined mathematical frameworkifilage-based relighting in
the following chapter, two very important concepts needadnroducedreflectance
fieldsandreflectance functions

Reflectance Field. A reflectance field describes how an object’'s appearance is
influenced by incident illumination. In caséZncident illumination is used, and
the viewpoint is fixed, this is al function (i.e., D pixel position and P incident
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Figure 2.12: The image-based relighting process schematically itistt. Red: the incident
illumination is scaled by the Jacobian to compensate fontimeuniform sampling of the spher-
ical bounding volumeGreen: The scaled incident illumination is downsampled to matah th
Light Stage sampling resolutiorBlue: The recorded images are scaled by the downsampled
incident illumination.Orange: The intensity-scaled recorded photographs are summethiato
resulting relitimage.
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Figure 2.13: Some results of relighting the Formula One toy car examjavifonment maps:
courtesy of Vincent Masselus)

illumination). In fact, figure 2.11 can be seen as a visutibrneof the reflectance field
of the Formula One toy car. Once the reflectance field of ancbijeknown, a relit
image can be easily computed. Thus, image-based religtaimippe redefined dthe
capturing of the reflectance field of a real object”

Reflectance Functions. A reflectance field is a difficult concept to visualize
mentally, because it is &>4(or higher dimensional) function. A reflectance function,
on the other hand, is d&¥slice (in case of P incident illumination) of the reflectance
field, and is much easier to handle. A reflectance functiorefindd for each pixel
of the viewpoint, and is parameterized over incident illnation. Consider again the
Formula One toy car example. In figure 2.14, the reflectancetions of a number of
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Reflectance Functions

Figure 2.14: Four selected reflectance functions. Note that the dark\@piltle in each of
the reflectance functions, corresponds to the dark sposecaly the camera blocking a light
source, in figure 2.11. Each reflectance function is creatembpying the pixel values from the
same location in each of the recorded photographs.

pixels are shown. Basically, copying intensity values frithie same pixel location of
each recorded photograph, results in the reflectance &amotithat specific pixel.

Interpreting the relighting process in terms of reflectamioetions yields an inter-
esting view on image-based relighting. In the previousiseéage-based relighting
is achieved by summing the recorded photographs scaledivéttorresponding (cor-
rected) incident illumination intensities. Since thesempions are performed per
pixel, it is easy to see that the same operations can be dppli¢he intensities in
the reflectance functions (figure 2.15). The main differdveteveen computing a relit
image from the recorded photographs directly and compuairajit image using the
reflectance functions, is the order of processing. In thedase the outer loop goes
over the incident illumination, while the inner loop goespthe different pixels. In
the second case, the outer loop goes over the reflectancigofusicand thus pixels,
while the inner loop goes over the reflectance functionfitseld thus the incident
illumination.

A reflectance function is sometimes called an apparent BRDRever, it is im-
portant to realize that a reflectance functiomig a real BRDF. The main difference
between both is that a BRDF only contains local reflectioact# due to direct illumi-
nation, while a reflectance function can also contain thecgffof indirect reflections
through the scene. A BRDF is associated with a single matnid is independent
of the object’'s geometry. A reflectance function, on the pttand, can be the cumu-
lative effect of multiple interactions with different maits in the scene. To avoid
confusion we will always use “reflectance function” and napparent BRDF”".
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Figure 2.15: Image-based relighting using reflectance functiofiareen: Identical to fig-
ure 2.12 from the start until the green arro@range: For each reflectance function th&ie
part is repeatedBlue: The reflectance function is multiplied, and summed into #ig pixel
value. This pixel value is copied into the final image.

2.5 Conclusion

In this chapter an intuitive description of image-basedjieing was presented. The
acquisition, approximation, representation, and in&tgiron of incident illumination
formed the basis on which image-based relighting were leetarhe core idea behind
all modern relighting techniques is the summation of reflece values scaled by
the incident illumination. Finally, the important concemf reflectance fields and
reflectance functions were presented.
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Theoretical Framework

In this chapter a theoretical framework for image-basedhéhg is introduced. The
goal is to create a solid theoretical basis on which the nisthboesented and discussed
in this work will be founded. This framework enables to explthe limits of existing
and novel methods, while keeping the notational overheadhtimum.

3.1 Introduction

Although the number of publications on image-based raligfis already significant,

a single unifying framework has not yet been proposed. Eagieipuses its own, in
many cases incompatible, notations, approximations, andations. Sometimes the
theoretical context is so different, that at first, it is nigtas that they are dealing with
the same problem.

Early papers [26, 27, 31, 52, 69, 70] on image-based refightise theoretical
derivations based on threndering equatiorf42]. The rendering equation, however,
is not a good basis for developing a general image-baseghtielg theory, because
it requires a detailed knowledge of the scene geometry. @migecfew exceptions
are [51, 113, 114], which found inspiration in image-bassdlering techniques, more
specifically the Lumigraph [33] and Light Fields [50].

Most image-based rendering methods start with the plenéyntiction [1]. It also
forms the basis of the theoretical framework of the Light®tdeveloped by Debevec
et al. [20]. The plenoptic function is aDrfunction (i.e., I position, D direction,
1D wavelength and 2 time) describing the flow of light in a scene. The framework
developed in [20] forms the basis of a whole family of imageséxd relighting tech-
niques such as [21, 30, 34, 36, 57, 58, 59, 65, 66, 87], andeaoisidered to be the
de-facto standard theory of image-based relighting.

However, the framework developed by Debevec et al. [20] ecsjgally geared
towards the Light Stage. In chapter 6, an acquisition sefftgrent from a Light Stage
is introduced. To accommodate both the Light Stage and #vidyndeveloped setup,
a more general theoretical framework of image-based ritiglis required.

The basic idea is to view the scene as a black box system (sge gl for an
iconic illustration). This idea was already present in Dedaeet al.’s framework, but
to a lesser extent than in our framework. A theoretical fraor& must be supported

25
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N / Incoming lllumination
O/
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System

\ Outgoing lllumination

Figure 3.1: In this thesis the light transport is considered to be a blawk system. The goal
of image-based relighting is to predict how the output of $listem reacts to novel input. In
our case, the input is incident illumination (red arrows)d @ahe output is exitant illumination
(green arrows).

by a well-defined mathematical notation. In this work we witroduce a notationally
light framework. Furthermore, the apparent dimensiopalitthe system is reduced
by means of serialization functions, which enable to dgv#heories and techniques
on low dimensional functions, that can be extended to tHalfiensional plenoptic
setting.

Having a solid theoretical framework and a well-defined reathtical notation
has a number of advantages:

e Firstof all, it helps to understand other image-basedhélg techniques, even
if these do not use the same theoretical framework. Not oabsdt help in
understanding these other techniques, but also helpsidatialy and exploring
the limits of these other methods.

e Second, new, non-trivial, methods can be easily developed the rules and
constraints of the problem are well defined. For exampleibkthods devel-
oped in this work are all designed using the framework depedan this chapter.

e Third, having a solid mathematical notation makes it easiexchange funda-
mental ideas with other research domains such as discrétematics, physics,
computer vision, ...

This chapter begins, in section 3.2, with a thorough studh@tinderlying physi-
cal principles and constraints that come into play in imbgsed relighting. Next, an
elegant compact mathematical notation used throughoaitntbik is derived in sec-
tion 3.3. Finally, this framework is applied (section 3.d)te Light Stage algorithm
intuitively presented in chapter 2.

3.2 Physical Constraints

Before developing a mathematical framework, the physioaktraints that apply to
image-based relighting need to be investigated in detgilumlerstanding these con-
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4

Reference Photograph

Figure 3.2: An empirical demonstration of linearity of light transpo# red and a green light
source are aimed at a color checker chart. Two HDR photograplthe color checker are
recorded, each lit by a different light source. Due to thedirty of light transport, the sum of
these two images equals an HDR photograph of the color chéitks both light sources at
the same time. Both the sum and a reference HDR photograpi l§aih light sources lit) are
shown.

straints, a better understanding of the accuracy and lohas image-based relighting
method is reached.

In this work the following physical and practical constitaiare imposed: linearity
of light transport, a time-statical scene, an orthogd®@B colors pace, and a fixed
vantage point.

3.2.1 Linearity of Light Transport

Linearity of light transport is the core physical princifiehind image-based relight-
ing and is based on the superposition principle. The sugéipo principle basically

states that when two light waves (electromagnetic radigticavel through a linear
medium, the resultant apparent wave at any point can beidedaas the algebraic
sum of the two light waves. This is illustrated in figure 3.2m@re fundamental prin-
ciple that lies at the basis of the superposition principled thus of the linearity of

light transport, is the conservation of energy, implyingtth light wave cannot loose
or gain energy, without interacting with matter. This ingslifurthermore that a light
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wave cannot influence the state of another wave

More formally, linearity of light transport implies:

Waf(a) + Wy f(b) = f(waa+wyb),

wherew, andw, are scalar weights andb are illumination conditions (i.e., a light
source at a specific position, emitting light at a specifiensity and with a specific
color), andf(-) is the light transport of an illumination condition throughscene.
Furthermore, we assume that this scene does not emit amynlidion. Or in words:
the net effect ofw, times the effect of illumination conditioa on a scene, plugs,
times the effect of illumination conditiolm on the same scene, equals the effeat.of
times illumination conditiora pluswy, times illumination conditiorb on the scene.

In everyday life, this superposition principle holds. Hawe a recent branch of
optics research, calledon-linear opticg9] focuses on the exceptions in which this
is not the case. By focusing a very intense laser beam on actv® material, the
index of refraction can change depending on the intensity,$ also called the “Kerr
effect”. Other examples include four-wave mixing, selfaph modulation, Raman
scattering, ... (see [9] for an overview). However, mostladse effects are only
significant in the presence of very intense laser light,dafae these effects can be
safely ignored in the context of image-based relightingerigday light effects such as
reflection, diffraction, dispersion, interference, .e afl linear optical effects.

3.2.2 Static Scene

In this work we assume that a scene does not change, and dtis ater time (or
at least during acquisition). Furthermore, we assume iflat transport is instanta-
neous. The rationale behind this constraint is that, aligwd scene to change over
time, introduces an extra dimension, i.e., time, of the gj#it function which needs
to be captured.

This constraint is broken, among others, in the followingesa

e Moving objects. All objects in a scene must have zero velocity during the
duration of the acquisition. Care has to be taken when a snehmles objects
which contain fur or hair. Even a faint breeze might move safthe fur or
hair, resulting in blurred relit images.

e Organic material. Special attention has to be taken when capturing organic
materials such as plants and leaves. Organic material dayddse, and thus
alter significantly in reflectance properties. The heat flight sources could
accelerate this process.

1This also holds for constructive and destructive interfeee In both cases, it describes thet effect
of the superposition principle applied to both waves. lt<dnet imply that the two waves areplacedby
a new wave.
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e Phosphorescence.Phosphorescence is a chemical process in which light is
“absorbed” by a material, and after a delay, re-emitted. This breakstime
straint of instantaneous light transport. Practicallis froblem can be solved
by waiting until the effect of the previous illumination adition has expired
before applying a novel illumination condition.

Recently, a number of papers [66, 109] try to remove this traim in order to
capture the reflectance field of a video sequence. Theseiteesstill use the same
image-based relighting algorithm, but try to minimize tlegaisition period such that
the dynamic scene is quasi-static.

3.2.3 RGB Color Space

Color is a complicated topic, which is ignored or greatly giifired in much of the
computer graphics literature, to great annoyance of caliensists. For an overview
of color and color theory, see [99]. Color sensations araded by light waves with
different wavelengths, ranging from 380400nm (violet) to 706- 780nm (red). This
wavelength interval is called the visible spectrum. The homye consists of three dif-
ferent types of “sensors”, each is (significantly more) gemsto a limited sub-range
of the visible spectrum, and thus light with a wavelengttsalé these sub-ranges can-
not be seen. Because of this, the perceived colors can belezbas a 3 dimensional
space of colors. A consequence of this is that a great nunfildéferent color spectra
are seen by the human eye as the same color, and are callederieteolors.

The space of all perceived colors can be represented by ltlsée color spectra,
since colors are perceived as B 8olor space, This principle is called trichromacy.
In consumer electronics, such as computer screens, digitaéras, ..., the most com-
monly used basis spectra correspond to Rddreen G) and blue B) observed (ba-
sis) colors. A new color sensation is generated by weighdimgj adding these basis
spectra:

C =wrR+ wsG + wgB,

whereC is the resulting spectrum amgk, wg, wg are the scalar weights of respectively
red, green and blue. Itis important to realize that althahgtspace of perceived col-
ors can be (partially) generated (usiRgG, andB), this does not include all visible
spectra.

In computer graphics all computations are performed diremt RGB vectors.
This implies that the scene characteristics are specifi@dBcomponents: BRDF
evaluations are directly performedRGB light source colors and intensities are spec-
ified in RGRB ... In other words, the simulated world is completely sfiediin RGB
tuples. In image-based techniques the same assumptiordis idawever, this is not
completely accurate.
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Real world light sources, for instance, can have a complelifflerent spectrum,
but still look identical (i.e., metameric colors). lllund@ting a surface with these iden-
tical looking light sources does not necessarily yield gras result, depending on the
spectral response of the surface. This is illustrated inréi@u3. This particular prob-
lem was also noted by Wenger et al. [110]. Wenger et al. pexgptwee different so-
lutions: spectral illuminant matching, metameric illurairt matching, and metameric
reflectance matchingpectral illuminant matchingies to match the spectrum of the
desired illumination as closely as possible to the avadléight sources. However, due
to the limited freedom, the match is far from perfedetameric illuminant matching
takes a similar approach as the previous one, except thigisitd match the perceived
(by the camera) color as closely as possible. Finallgtameric reflectance matching
takes the spectral response of the whole light transpoteésys account. Although
the results of the latter are very impressive, the usalilitierms of general image-
based relighting is limited, since we are actually tryinggoover the response of the
system with respect to incident illumination.

A related problem is that the spectral response of a matesiahot be directly
observed, and that it is always relative to the spectrum éliminant. Specifically,
in the case of image-based relighting, a series of photbgrafthe scene is recorded,
each under different illumination conditions. These ilination conditions have a
specific spectrum, and the response (spectrum) of the spgea@nce is thus rela-
tive with respect to the color spectrum of the illuminatia@nditions. Theoretically,
if all spectra (of the light sources and surfaces) are kndheneffect of the spectra of
the illumination conditions can be divided out. Howevergnhiepresenting colors in
RGB spectral information is lost and approximation errord i unavoidable. For

Case 1 Case 2
(Spectrum/perceived RGB) (Spectrum/perceived RGB)
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Figure 3.3: The effect on the perceived color, when using light sourciéls mmetameric colors
(i.e., the same perceived color), purple in this case. Ddipgnon the spectrum of the light
sources and the underlying material, a significant portiothe reflected spectrum can differ,
resulting in a different observeRGBcolor.



3.2. PHYSICAL CONSTRAINTS 31

Light Source Material Observed Normalized RGB
(Observed / Light Sourcg)

o —

A | ] LS

g ‘ | [1,1,0]
[ = 7

A ] ] O @

[ 1,1] [1,1,0] [05,1,0] [05,1,0] [05, 1,0

Figure 3.4: The observed color depends on the spectrum of the lights¢see also figure 3.3).
By dividing the observed spectrum with the spectrum of tghtlsource, the true spectrum of
the material can be computed. However, doing this normadizaisingRGB colors, does not
yield the correct result.

example, consider the case in figure 3.4. The light source ffegged spectrum, per-
ceived as a white color. The material’'s spectrum, contaiosgeaks, red and green,
and is perceived as yellow. The observed color (i.e., prodithe light source color

and the material color), is bright green. Dividing out thespum of the light source,

yields the original color of the surface when working musitiectrally. However, com-

puting the normalization iIRGB does not yield the correct color of the material.

Berns et al. [6] state that the only way to ensure a color mfzchll observers
and across changes in light sources is to work multi-spicttdowever, the current
state of hardware does not yet facilitate easy multi-speatrquisition. Therefore, in
image-based relighting these problems are ignored, andsthanption is made that
all components can be exactly represented and computedtimgonalRGBtuples.

3.2.4 Fixed Viewpoint

This final constraint is more a practical one than a physicastraint. Capturing the
appearance of an object for variable viewpoints increasemptexity, because two ex-
tra dimensions need to be captured and represented.

In contrast to image-based relighting, image-based rémgléechniques (for an
overview see [116]) focus on the acquisition of the appezgari real objects under
fixedillumination, but for a variable viewpoint. Because theidant illumination is
fixed beforehand, these methods try to capture and repragenslice of the plenop-
tic function [1]. Although related to image-based religigtj the problems faced in
image-based rendering are significantly different. Thennpadoblem in image-based
rendering is the interpolation or reconstruction of the gl 4D slice of the plenoptic
function without introducing visual artefacts, while m&@iming an as low as possible
sampling rate.

Image-based relighting captures a different slice of tren@ptic function than
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image-based rendering. By limiting image-based relightma single viewpoint, a
number of difficulties are avoided. First of all, as mentidhefore, less dimensions
need to be sampled. Basically, the camera becomes part stéme, and thus is lo-
cated at a fixed position. Since the camera is static, nonsitrand intrinsic camera
calibration is needed, nor is any knowledge of the shapeeobtiject required. Sec-
ond, each pixel can be considered as a single independdyt betause the pixel's
size and location are completely determined by the cameiehvigfixed. This allows
to focus completely on the effects of incident illuminatimmthe scene.

Itis clear that at some point, the fixed-viewpoint constraiitl have to be dropped
in order to achieve full digitalization of real objects. Igebased rendering tech-
niques will without any doubt play an important role in thikitial, but cautious,
steps have already been taken by relighting dynamic scenbséction 3.2.2), and in
work related toopacity hulls[62, 63, 76]. The next, most logical, step in removing
this constraint is probably the relighting of controllafd@imated) dynamic scenes.

3.3 Notations and Operators

As mentioned before, previous work contains a good matheatand physical frame-
work, most notably [20], which is further extended in [56h this work we present
a novel framework, which is in spirit identical, but uses Heatent notation. In our

opinion, this new notation mirrors better the physicalaion, incorporates the con-
straints implicitly, and offers a more flexible frameworkitelude new methods.

In the following section the basis of our mathematical framk is introduced.
At this point we ignore the size/dimensionality of the inpmid output data. In sub-
section 3.3.2 a number of crucial operators are introdu¢éése operators work on
in- and output-data, and transform it into a more suitabienftor the previously in-
troduced notation. Finally, the properties of the wholemeatatical framework are
detailed in subsection 3.3.3.

3.3.1 Notations

As illustrated iconically in figure 3.1, light transport tugh a scene is considered
as a black box system. Additionally, from the linearity cioamt (subsection 3.2.1)
follows that this is dinear black box system. This can be compactly denoted in a
matrix notation:

C=TL+S (3.1)

where:

e Cis avector of lengtlk, representing the total exitant illumination of the black
box system. In this work, this will be a camera image, sergliinto a vector.
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e L is a vector of length, representing the external incident illumination onto the
black box system. This can, for example, be an environmept stacked into
a vector, or a generaDtincident illumination field serialized into a vector. In
case of the Light Stage [20], each element in this vectoorresponds to the
emitted intensity of a single light source at a specific lmrabn the surrounding
sphere.

e Sis avector of lengtlk, representing the self-emitted illumination of the scene.
In other words, this is the exitant illumination of the scemgenno external
incident illumination is applied. The term “self-emittdldimination” should be
interpreted in a broad sense. Any illumination from or ot® $cene, which is
not parameterized by the incident illumination vedtas included in this term.
This term is independent, and thus constant, with respdct ta many cases
we will drop this term or implicitly assume that it is zero.

e T is ak x| matrix, representing the light transport of externallylgpincident
illumination onto the scene.

In subsection 3.2.3 the assumption is made that all compotatan be exactly
represented and computed wRGBtuples. This implies that equation (3.1) can be
used for each color channel separately. Furthermore, ibeaextended for any de-
sired number of color channels (e.g., multi-spectral).

Equation (3.1) can be used to describe the acquisition dighetransport matrix
T. During acquisition, a series of incident illumination ciions {L;}; are applied
to the scene, and the resulting exitant illuminati¢@s}; are captured by taking pho-
tographs. In other words, by applyihgto the scene, nature actually computes equa-
tion (3.1), and return§; which is captured by means of an HDR photograph.

Relighting can also be described using equation (3.1). Wioenmputing a relit
image, the transfer matrik is known, as are the self-emittan8ef the scene and the
incident illuminationL. Filling these in equation (3.1), results in the relit im&age

The previous description allows to reformulate image-daséghting in a more
formal manner:‘Image-based relighting attempts to infer the transporttmaT by
observing the exitant illumination C under a series of usentrolled incident illu-
mination L”. Formulating the relighting problem in this way, allows &gard it as
an abstract mathematical problem. We will show in futureptéies, that by applying
non-trivial mathematical methods to equation (3.1), effitinovel image-based re-
lighting methods can be obtained.

Before discussing the properties of equation (3.1) in Heteifirst need to specify
the serialization and resampling/discretization opegato
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3.3.2 Operators

Equation (3.1) deals witkerialized and discretizedinput and output illumination
vectorsL andC. Until now, this serialization and resampling (discretiiaa) has not
been formalized. In this section operators will be introellito handleserialization of

the incident illuminationserialization of the exitant illuminatigrexitant illumination

resampling andincident illumination resampling

Incident illumination serialization operator SL. A vector is a discrete list,
while incident illumination can be eithe2or 4D. Some form of projection has to
be done to map this high dimensional data onto a vector. Wetdehis by a se-
rialization operatots.. For example, suppose the incident illumination is given as
2D environment map in a latitude-longitude parameterizatiiscretized in a resolu-
tion of n x m. In this case the serialization operator can copy an interaiue with

a latitude-longitude coordinate 08, ) to a serialized vector positiomd + @. The
exact form of serialization is often not important. It isalehat the number of dis-
crete elements in the multi-dimensional incident illuntioa must be finite (either by
construction, otherwise by resampling). Note that thisrafme is reversible, i.e., the
vector of incident illuminatiorL can be expanded back into the original discretized
multi-dimensional incident light field. This implies thad imformation is lost during
serialization. The inverse operator is denotedpy".

Exitant illumination serialization operator Sc. Similar to the serialization of
the incidentillumination is the serialization operatottoé outgoing illumination. Due
to the assumption that the viewpoint is fixed, this operaordforms a R photograph
(from a fixed viewpoint) into a vector. The inverse seridiiza is denoted byc 1.

Incident illumination resampling operator ®, . The multi-dimensional inci-
dent light field is in most cases captured at a higher resoiuthan required for
serialization intoL, or is provided as a continuous function. Additionally, the-
rameterization of the incident light field often does notrespond to the (desired)
parameterization of the reflectance field. A resamplingatoetis necessary own-
sample, discretizeandreparameterize¢he incident light field to a suitable resolution
and form. Itis important to note that this is not a reversdgeration. An approximate

reconstruction operatey, ~* can be defined. However, this reconstruction operator is
not uniquely defined. The reverse operation must follows$aHewing rule:

L=x <9<L1 (L)> :
Because the resampling operaprremoves information from the incident light field

L, for example by downsampling, the inverse operatipn® has to fill-in this missing
information. Since this information is not known, some higtig is used (e.g., by
maintaining smoothness) to generate this information. eébdmg on this heuristic,
different inverse operators are obtained.
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Exitant illumination resampling operator Rc. In this work, no exitant illu-
mination resampling is used. The resolution of the acqaisitamera is used when
generating relitimages. A resample operator for the ekilamination can be useful
when acquiring a scene from a variable viewpoint. The irveesampling operator
would, in this case, basically be an image-based rendelgogitom.

Given a multi-dimensional incident light fieidx, w) defined over positiox and
direction w, the resulting acquired or relit imaggxp), over pixel positionsx, is
defined by:

c(xp) = s (Tt (RL(i(x,)))). 3.2)

The exitant illumination resampling operatgs(-) in equation (3.2) is omitted since
the assumption of a fixed viewpoint is made.

3.3.3 Properties

In this section the properties of equations (3.1) and (3@)déscussed in detail, fol-
lowed by a brief overview highlighting the advantages owésting notations. Finally,
the developed framework is applied to “Dual light transptarillustrate its flexibility.

As noted before, the vectdr has length. Given the fact that the serialization
operators, is a one-to-one mapping af; (i(x,w)) to L, this implies that the total
number of discrete elements in the incident illuminationalgl. For example, if the
incident light field is represented by &2nvironment map, then the width times the
height of the environment map equéls

The vectorC is a vector of lengtlk: so the number of pixels in the acquired pho-
tographs, and thus also in relit images, eqialBhe same holds fds.

Finally, the transport matriX is ak x | matrix. In other words, the height of
the transport matriX equals the number of pixels in the relit images. The widtf of
equals the number of samples acquired, i.e., the numbéuwfiiiation conditions ap-
plied to the scene during acquisition. The transport matris in fact the reflectance
field. The rowsT; of T = [T4;...; Ti] are the reflectance functions. Note, that there
are as many rows as there are pixel€inThe interpretation of the columris j of
T=[T.1]...|T.;] can be easily inferred from equation (3.1). Consider thiglgmt illu-
minationL; = [&; j}i. Filling this in equation (3.1) gives the following resulg exitant
illuminationC = TL; =T. ;. In other words, the columnB. ; of T are the serialized
recorded photographs of the scene illuminated by a singlte orresponding to the
j-th element in the incident illumination vectbr

The serialization operators, at first might seem to commithe mathematical
framework. However, the serialization operator is fullyeesible. An advantage is
that in many cases an equivalent reasoning can be appliedtate full-dimensional
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problem or the serialized notation. This makes it much easidevelop new relight-
ing and acquisition methods.

A popular way of looking at image-based relighting, is frdm perspective of a
reflectance function (as depicted in figure 2.15). To comfhéeelit pixel valuec; of
thei-th pixel in the camera imagg, all elements in the incident illuminatidnand
the pixel’s reflectance functiof; are multiplied and summed. Mathematically, this
boils down to a vector dot product:

¢G=T;-L. (3.3)

This notation is especially attractive when using the irdégotation of Masselus [56].

Comparison with existing frameworks. The introduced notation and frame-
work has a number of advantages. It makes a clear separataedn the approx-
imation of the 4 incident light field and the light transport. The approximatis
implicitly encoded in the resampling and serialization @pers on the incident illu-
mination,®; ands respectively, and can be specified to the constraints araré=sa
of a specific image-based relighting method, while the lidigat transport is invari-
ably encoded by equation (3.1). In the notation of [20], @kncoded in a single in-
tegral. Furthermore, the derivation of the presented freonle, follows directly from
the physical constraints, dominated by the linearity dfitizansport. The derivation
of the notation of [20] requires more effort and assumptioresrive at a similar inte-
gral equation. Finally, it should be stressed that bothtiwta basically are the same
in spirit, only the assumptions, derivation, and interatien differ.

Dual Light Transport. ~ To demonstrate the flexibility of our framework, we exam-
ine the case of dual light transport [35, 91]. Dual light spart is based on Helmholtz
reciprocity applied to an image-based setup. As in imagedtbeelighting, a series of
photographs of an object are recorded under different iiation conditions. These
illumination conditions are in fact a special case Bfigcident illumination. Each of
the lighting conditions consists of a directional light o} having a common point
of origin (i.e., apex in a cone of directions). The illumiizat conditions are chosen
such that an imaginary plane is “scanned” by the directitight sources. We will
call this imaginary plane, the projection plane. Such ilisation conditions can be
obtained by using a projector [91] or by using a laser setupaagalvanometer [35].
See figure 3.5 for an illustration of the setup. The main ideaat, since light trans-
port is reciprocal, the role of the camera and the light sesi@an be switched. In
other words, dual light transport enables to create an imégescene, seen from the
projector/laser’s apex point, and illuminated by “virtulidiht emitted from the cam-
era, and this without actually placing the camera at thegotoj/laser’s apex point.

To understand how this fits in the presented framework, foesitler what a sin-
gle element; j of T represents. This elemetyf; is the ratio of light emitted under



3.3. NOTATIONS AND OPERATORS 37

LightOSource Image Plane

Projection PI§§\\‘8’"/
AN

Figure 3.5: Dual Light Transport. A directional light source “scans” mjection plane. For
each location on the projection plane, a photograph is decbr Afterwards, the dual image
can be computed, viewed from the light source, and lit byuairtllumination coming from the
camera.
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the j-th illumination condition, and arriving at pixelof the camera image (exclud-
ing the self-emitted illumination by scene). Theh illumination condition is in this
case a beam of light going through theh position on the projection plane. Due to
Helmbholtz reciprocity, the direction of the light transpoan be reversed. Thusg;
also represents the ratio of light emitted through ittle camera pixel, and arriving
through thej-th point on the projection plane at the projector’s apextr&polating
this to all points on the projection plane gives that a mvof T equals the resulting
“image” at the projection plane, when emitting a beam oftliginough tha-th pixel
from the camera. As noted before, concatenating the reddnaeges”, serialized in
rows, in a matrix, results in the dual transport matrix, vilégjualst ' .

Denote the dual observed image (on the projection plan€y asd the dual illu-
mination condition (emitted from the camera)lds then the dual light transport can
be written as:

C/I — T T L/I .

Itisimportantto realize that the dual light transport ofitimg a recorded photograph,
obtained under any illumination conditiandoes not result back in a dual photograph
equal to the originally applied illumination conditidn

cC = TL,
L # T'C.

Physically this follows from the fact that absorption dgyilight transport, works in
both ways, and lost energy cannot be gained in either dinectlathematically this
can be understood from the fact tiat # T-1. Note that no self-emittance term
Sis included in the derivation above. In general, the duditligansport cannot be
computed in presence of self-emittance.
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3.4 Application to the Light Stage

In this section an application of the theoretical framewtrkhe intuitive relighting
algorithm introduced in the previous chapter (section &.®yesented. First the oper-
ators are specified (subsection 3.4.1), followed by a stdidlyeotransport matriX in
subsection 3.4.2.

3.4.1 Operators

By defining the different serialization and resampling @pers, the exact form of
is set. In the following chapter, we will see that the impddhe resampling operator
can be pretty significant for the compactness of the matrix

In the case of the Light Stage, the acquisition and relighprocess is already
fixed. In order to match the acquisition and relighting psscas closely as possible
to the developed framework, the serialization and resargpbperators need to be
designed with this goal in mind. As a guideline, we would likehave a one-to-one
correspondence between each elemehtamd a light source (position) on the Light
Stage device.

Serialization Operator s_ and sc. Both serialization operators are similar, and
transform a B discretized function into a vector. Any standard seridgimamethod
can be utilized, such as row-major and column-major segtbn.

Resampling Operator ®.. The resampling operator downsamples the environ-
ment map in latitude-longitude parameterization to the ganrg resolution of the
Light Stage. It also pre-multiplies the environment maphwte Jacobian to take
the solid angle of each pixel (i.e., light source area) irttwoaint.

3.4.2 Application

Acquisition.  The reflectance field of a scene is acquired by recording HD&R ph
tographs of the scene. For each photograph a differentdigintce is lit. As defined
before, each elemeft in the 2D incident light fieldL corresponds to the state of
a single light source at a specific locatit® ¢) defined on the bounding sphere by
5|_*1(Ii). As detailed in the previous subsection 3.3.3, this impled each column
in T corresponds to a recorded HDR photograph of the scene umdentident il-
lumination. From this it follows that creating the trandporatrix T is trivial once
all HDR photographs are recorded: each photog@ph= TL; with Li = [ j];) is
serialized usingc and copied to theth column ofT.

Relighting.  Again, relighting is trivial once the transport matiixis known. The
novel incident illuminationi(x,w) is transformed, first by the resampling operator
R, followed by a serialization operatgr. Next, the matrix-vector multiplication of
equation (3.1) is computed. Finally, the resulting ve€tis de-serialized usingc .
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3.5 Conclusion

In this chapter a theoretical framework for image-basejnéhg was introduced.
The supporting mathematical framework is a direct exposssi the physical con-
straints that come into play during image-based relightinghis work, there are four
major physical constraintdinearity of light transport time-invariance of the scene
idealized RGB color spacanda fixed viewpointThe mathematical framework con-
sists of two partsa linear matrix systenexpressing the light transport through the
scene, and a collection gkrialization and resamplingperators that transform the
input and output data into a convenient form.
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4

Sampling Reflectance
Functions

In this chapter the sampling and the reconstruction of reftere functions acquired
by means of a Light Stage [20] are discussed. The intuitigerihm discussed in
chapter 2, and formalized in chapter 3, can generate cangitmoking results. How-

ever, as will be shown in this chapter, a significant improgahof the quality of the

results can be obtained by reconstructing the reflectanogtibins. This allows to

compute relit images using high resolution incident ligbtds, yielding more accu-
rate relitimages. The ideas presented in this chapter hswdaen partially published
in [59] and [56].

4.1 Introduction

The Light Stage samples the reflectance field of a real objent & set of predeter-
mined fixed illumination directions. Due to the construntithis sampling is usually
uniform in a latitude-longitude parameterization. A ndéabxception is the Light
Stage v3 [21]. This Light Stage, however, is intended fot-ti@éa@e performance re-
lighting rather than acquiring reflectance fields.

Since the reflectance field is sampled, and thus also the tagflee functions,
it also shares the same problems as “traditional” mathealasampling methods.
The most fundamental mathematical sampling theorem isowitioubt theNyquist-
Shannon sampling theoremwhich basically states’A discrete sampling is a com-
plete representation of a continuous signal if and onlyéf tiighest frequency compo-
nentis less than half the sampling frequencyhis theorem was originally introduced
by H. Nyquist [71] in 1928, and formally proven by C.E. Shanii@3] in 1949.

The sampling frequency referred to in the Nyquist-Shanheoitem is called the
Nyquist frequencyand theNyquist rateis the sampling rate of this frequency (i.e.,
rate = 1 / frequency). The frequency components above theiistyffequency are
subject toaliasingwhen reconstructing the sampled signalb@nd-limited signals
a signal in which the components above a finite frequencgtiale have zero energy.
It goes without saying that a band-limited signal can be detefy sampled as long
as the sampling rate is at least two times this frequencygliold’s rate. An important
aspect in the sampling of signals is the reconstruction efscimpled signal to (an
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Original signal Sampled signal Reconstructed signal

Figure 4.1: An example of aliasing. A signal (red) is sampled at 5 digctetations. The

reconstruction, shown in green, is far from similar to thigioal signal. The deviation from

the original signal is caused by the fact that the samplitg lfes below the Nyquist rate, and
consequently the reconstructed signal suffers from aljasi

approximation of) the original signal. This reconstruntise achieved by some form
of interpolation.

Preferably, a band-limited signal is sampled at a samplatg greater than the
Nyquist rate. However, it is possible that there is a limittbe sampling rate due to
mechanical reasons, or that the signal is not band-limitesuch a case, aliasing can
occur. In figure 4.1 an example of aliasing is shown. Bagicalliasing or under-
sampling is caused by energy “leaking” from higher freqyezamponents into lower
frequency components. There are two solutions to avoidialiausing higher sam-
pling rates andpre-filtering a signal with a band-pass filterThe first solution is
evident, but not always feasible. The idea behind the sesoludion, is to smooth the
to-be-sampled function, such that the effect of the freque@mponents above the
Nyquist frequency is minimized. Note, however, that theorestructed signal is only
an approximation of the original signal, although it can lpegect reconstruction of
the filtered signal.

The adverse effect of aliasing greatly depends on the nafuhe sampled signal
and on the reconstruction method, i.e., interpolationgduseaeconstruct the original
signal. In this chapter the effect of sampling reflectandelieand thus reflectance
functions, is detailed. Furthermore, the impact of usirifgdént reconstruction meth-
ods is investigated.

This chapter is organized as follows. The sampling of redieoe functions with
a Light Stage is reviewed, and potential problems are dészlisn section 4.2. In
section 4.3, and, section 4.4 the bulk of this chapter isudised: the different recon-
struction methods. Finally, section 4.5 concludes thiptdra

4.2 Sampling Reflectance Functions

As mentioned before, the Light Stage is a physical devicedanpling the reflectance
field from a fixed set of sampling directions. More specificallysamples a col-
lection of reflectancéunctions simultaneously, i.e., for every camera pixel a single
reflectance function. This collection of reflectarfoactions together forms a re-



4.2. SAMPLING REFLECTANCE FUNCTIONS 43

flectancdield. In the remainder of this chapter, the focus will lie on theaping and
reconstruction of reflectandenctions.

Sources of Aliasing. A reflectance function, obtained by means of a Light Stage,
is a D function. If a reflectance function is band-limited, therstfunction can be
completely represented by a limited number of samples. Mewythis is not the case,
as is illustrated in figure 4.2. In this figure, two genericasaare shown. Both scenes
consist of a single surface. The reflectance function, fgexi§ic view direction is
closely related to the upper-hemisphere of the BRDF of thfase. In figure 4.2.a
the material of the surface is diffuse, and thus low frequierfigure 4.2.b the surface
is a perfect mirror, and thus the reflectance function is kegua single (delta) spike
aimed at the perfect reflected direction. In the first caseréiflectance function is
obviously low frequent, while in the second case it is veghhirequent. This simple
case illustrates the fact that reflectance functions aréaod-limited, and can, theo-
retically, span the complete frequency domain.

In general, to avoid aliasing problems, an additional ptglsionstraint is imposed
when acquiring reflectance fields with a Light Statiee scene/object cannot contain
specular, or, near-specular material§his also includes refractive materials such as
glass. But even if this constraint is met, the reflectancetfans are still not band-
limited. Another source of high-frequency discontinwstere occlusions (i.e., shad-
ows). This is illustrated in figure 4.3. Although a shadowuitssin an abrupt change
in the intensity values in a reflectance function, it doesallgunot result in spikes in
the reflectance functions. This implies, that although tteectlocation of the shadow
edge can be missed, the shadow effect itself is not missexbniinast, specular reflec-
tion yields spikes in the reflectance functions, which camissed completely during

|
Diffuse Reflectance Specular Reflectance
Function Function

o

M s

(@) (b)

Figure 4.2: Depending on the underlying material, a reflectance funatiay be band-limited
or not. For each example, the view direction is fixed (eye{l, e reflectance function is pa-
rameterized over incident illumination (red arrow). (axhse the underlying material exhibits
a diffuse reflection behavior, the resulting reflectancecfiom is low frequent as can be seen
in the top-right (in a latitude-longitude parameterizajio(b) A specular material, on the other
hand, yields a reflectance function with a single spike ledat the perfect reflected direction.
This reflection function is not band-limited.
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Figure 4.3: Shadows as a source of high frequency discontinuities iaatafihce functions.

sampling.

As a side note, related research has been done in the cohfercomputed radi-
ance transfer [44, 81, 95]. In this research, the light pantsof a synthetic scene is
pre-computed in order to visualize it at interactive ratsisg graphics hardware un-
der complex incident illumination (i.e., environment mppSeminal work has been
performed by Ramamoorthi et al. [81, 82]. In [81], a frequeanalysis of diffuse,
unoccluded light transport is done. An interesting conolugor image-based relight-
ing is that a diffuse BRDF can be represented by only the tinse spherical har-
monics bands, yielding an approximation error of less tHan This confirms that a
reflectance function of a diffuse reflection is low frequemigl thus band-limited. Fur-
ther research in this area shows that glossy and speculaFBRa@ntain much higher
frequency components [67]. Ramamoorthi et al. [82] alsestigated the frequency
response of cast shadows. The main conclusion of this papieat cast shadows can
be efficiently represented as a convolution of a Heavisidetfan and the unoccluded
BRDF. The frequency response of a Heaviside function is f@reven terms, and
decays with 1f for odd frequencies. From this follows that the aliasing awipof
cast shadows decreases significantly for each increasenplisg resolution.

Classic Solutions to Minimize Aliasing. As stated before, the classic solutions
to reduce or even avoid aliasing aiacreasing the sampling ratend,pre-filtering
the to-be-sampled function

Increasing the sampling rate implies, in the case of thetl$gage, that the num-
ber of light source positions needs to be increased. Althdbg seems a feasible
solution at first, there are some practical issues. Firstloaequisition duration will
increase considerably. Recording an HDR photograph etsilys a few seconds.
Even if a single HDR photograph would only take 1 second tomgahen only 3600
light source positions can be handled in an hour. Note th@03&mples is still a
rather low frequent sampling (i.e., similar to the level etall in a 60x 60 environ-
ment map). Moreover, there are practical limitations to la@eurately a light source
can be positioned on the bounding volume. Furthermore,@sgrshefore, reflectance
functions are not band-limited, and thus increasing thepdiag resolution will not
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Figure 4.4: Pre-filtering illustrated on the Lena image. A 51512 image is sampled with
respectively 3% 32, and, 64« 64 samples. The left column is sampled without pre-filtering
the image. The right column is pre-filtered before samplifige pre-filtered sampled images
exhibit less aliasing, particularly noticeable on the ffieatthan the non-filtered images.

eliminate aliasing problems completely.

A second solution is to pre-filter the to-be-sampled functidhe effect of pre-
filtering a function is illustrated in figure 4.4. In case oéthight Stage, this implies
that each reflectance function should be convoluted by a-pasd filter such as a
Gaussian filter. More formally:

T=T0G,

whereT represents the sampled reflectance fi€lca high(er) resolution, in the limit
continuous, version of the reflectance fiedl.is a matrix representing the band-pass
filter. This matrix is a banded matrix, in which the band-pidssr (i.e., Gaussian), is
repeated for each row centered along the diagonal (see fighye Inserting this in
equation (3.1) yields:

cC = TL
(T'G)L
= T/(GL). (4.1)

Careful examination of théGL) factor suggests that pre-filtering of a reflectance
field, can be done during acquisition. To understand thigsicler the case in which
L = [di]i, i.e., a single light source at positign The resulting incident light field
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Figure 4.5: An iconic illustration of band-pass filtering of a high restdn reflectance function
T’i by a linear band-pass filt&. A single vectofT’; is band-pass filtered, and simultaneously
downsampled td@;. Note that the (linear) band-pass filteris not normalized in this example.

in such a case equals a Gaussian fall-off, centered aroendtthposition. In other
words, if a light source can be constructed, such that itekdall-off is similar to
a Gaussian, then the desired effect is obtained. It is impbtb note, however, that
subsequent filtered light source footprints overlap in sha®ractically this means
that a Light Stage design in which a single light source ishmeaeally moved around
as in [20] can deliver the desired effect if the spatial dflof the light source resem-
bles the desired band-pass filter. Note that the fall-ofsdu® need to be a Gaussian
fall-off, any band-pass filter fall-off can be used, althbwgsual quality can degrade.
Adapting a Light Stage design as in [34, 59] is less triviabuviting a diffuser surface
at a small distance from the light sources generates a sigfflect. This is illustrated
in figure 4.6. Although theoretically possible, little covitover the shape of the filter
is possible, making this method less suitable in a pracsietlp.

Upsampling operator.  The classic solutions, all required changes to the Light
Stage setup. It is interesting to note that, even when a daptad setup is used,
significant better relighting results can be obtained bygisi suitable upsampling op-
erator on the sampled reflectance functions.

First consider the relation betweg&na low resolution incident light field, arid,
a higher resolution incident light field:

L = su(ger (s L)),
s = e (suTHLY)),
where®, /() is a resample operator which downsamples the high resolali®-

cretized incident light field to a lower resolution versioithis relation is not re-
versible, because:

1if the footprints do not overlap, then certain frequenciesrt filtered out, resulting in aliasing. Taking
a 'point’ sample can be seen as an extreme example of this.
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Filtered
Intensity Footprint

@ vg Diffuser
Figure 4.6: Pre-filtering the light sources in a Light Stage setup. Ligimitted from a light
source is filtered by the diffuser. Due to the angular sprdatenlight sources, the resulting

footprint can overlap other light sources’ footprints (kgstrated by the red and blue marked
light sources).

1

U s (e (e (s W) ) (4.2
- 5L,<5{:;/1(5|_1(L))). (4.3)

Note that the inverse operatgr - (yg_’,_/l (5[1(-)) ) upsamples an incident light

field vector of lengtH to a high resolution incident light field vector (i.&.)). We
denote this upsampling operator@a$-). The resampling operator, can in general not
be undone exactly, hence thein equation (4.2)).

Now, reconsider equation (3.3):

ci=T;-L.

The reflectance functiof; is also a vector of length Thus, theoretically, the upsam-
pling operator can also be applied to it. Plugging this inagigun (3.3):

ci=u(Ti)-u(L), (4.4)

Combining equations (4.3) and (4.4) results in:

ci~u(Ti)-L. (4.5)
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(a) (b) | )

Figure 4.7: A Formula One toy car. Also depicted are the reflectance fomstof four selected
pixels acquired by sampling the reflectance field from 1288tihg directions. Reflectance
function (&) represents a mainly diffuse material, reflecgéafunction (b) a fairly glossy mate-
rial, reflectance function (c) a specular material, and cedigce function (d) contains complex
occlusion features.

Examining equation (4.5) reveals some interesting thilk@st thing to notice is
the approximation signsf). It is important to realize that this is an approximation
to the undersampled original reflectance function, whidfiessi from aliasing, and
thus also contains artefacts caused by aliasing. The guestiw is, whether this
“approximation” also contains these artefacts. Secoredhith resolution incident il-
luminationL’ is not resampled. Resampling implies loss of informatibustequation
(4.5) can potentially generate more accurate relit imagegghe incident illumina-
tion contains more information.

Nyquist’s theorem cannot be circumvented; if the sampliatg ris below the
Nyquist rate, information is lost, and aliasing will happ&o matter how clever the
reconstruction operatat (-), lost information is never regained. However, additional
constraints can be placed on the reconstructed reflectancédns, that can ensure
visually more pleasing results. Examples of such additiooastraints are: smooth-
ness of the reconstructed signal, non-negativity of thensttucted signal, minimized
measurement noise, compact representation, ... In trenioldy section a number of
reconstruction/interpolation techniques for reflectafiucetions are studied, and their
results are thoroughly analyzed.
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4.3 Reconstruction

The upsampling operatar (-) is not uniquely defined. In this section a number of pos-
sible reconstruction operators are studied for reflectéumetions acquired by means
of a Light Stage device. A result of each of the reconstrumotiperators is illustrated
on the reflectance functions of four selected pixels of therfta One toy car ex-
ample used in chapter 2. In this chapter we will use the Nussebedding (i.e., an
orthogonal projection of a hemisphere to a circle) to illats the resulting upsampled
reflectance functions. This parameterization is only useddualize the results, not
to compute them.

In figure 4.7 the Formula One toy car is shown, together withfthur selected
pixels and their corresponding reflectance functions. Effleetance functions shown
in this figure are acquired by sampling 1280 illuminatioredtions. To better show
the effects of the reconstruction method, the upsampledatafice functions in the
following subsections will only usé of the samples (i.e., 320), regularly selected
from the 1280 samples.

4.3.1 Zero-order Hold

Zero-order hold interpolation is the most commonly appirgdrpolation method, and
is basically a piece-wise constant reconstruction of actftece function. The Light
Stage samples light source positions on a sphere, and thusdabnstruction of the re-
flectance function occurs preferably on a sphere to avoidregpeterization artefacts.
Because the sampling of illumination positions is not alsvapiform on the sphere,
the area of influence of each sampled location is determimsidbfy constructing a
spherical Voronoi diagram. The angle between two pointdhersphere and the cen-
ter point, is a valid measure of distance on a sphere. Thiardie can be efficiently
computed by taking the dot product. Similar spherical Voialiagrams are also used
in the context of image-based relighting in Masselus et¥#l].[Once the area of in-
fluence of each sample is known, all points in this area of émte are assigned the
measured sample intensity. Note that because the angulandiadiagram only de-
pends on the sampled locations, and these locations arartieefer every reflectance
function, the Voronoi diagram needs to be computed only once

In figure 4.8 the reconstructed reflectance functions of tlie $elected pixels are
shown. Each reflectance function is interpolated from 320pes. The reconstruc-
tion error is visually observable: the reconstructed rédlece functions in figure 4.8
look less smooth than the reference reflectance functiofigure 4.7 which are cap-
tured with four times as many samples. Note, that in the c&dkeolLight Stage
setup, the light sources are positioned regularly in theudé-longitude domain. The
computation of the angular Voronoi diagram is in this cassatly simplified. Each
Voronoi cell is a square in the latitude-longitude paramiestion. The technique de-
scribed in Debevec at al. [20], basically employs a zerceohwld interpolation.
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Figure 4.8: The reflectance functions of four selected pixels, recangtd using the zero-order
hold reconstruction method. For each reflectance functiiy 220 acquired samples are used.

4.3.2 Linear Interpolation

The zero-order hold reconstruction technique does nod @elooth results. In order
to improve the smoothness of the reconstructions, lindarpolation can be used.
For any given point on the sphere, its linearly interpolataldie is determined by the
spherical barycentric weighting of the corner points ofgpierical triangle contain-
ing this point. To ensure a good interpolation, the boundipigerical triangle should
be as small as possible, and as regular in shape as posstbiengulation which sat-
isfies these constraints is a Delaunay triangulation. Incase, a spherical Delaunay
triangulation is required, which is the dual of the sphdriaonoi diagram. In Pang
et al. [55] an algorithm for constructing Delaunay diagrams sphere is detailed. As
with the zero-order hold Voronoi diagram, the Delaunayntgialation only depends
on the light source positions, and thus can be precomputed.

In figure 4.9 the linearly interpolated reflectance funcsionthe four selected pix-
els are shown. These reconstructed reflectance functiensgsarally much smoother
than the piece-wise constant reconstructions. Again, & @Light Stage setup is
used, the samples are regularly spaced in the latitudetlategdomain, and the com-
putation of the Delaunay triangulation becomes trivial.

4.3.3 Distance-weighted Interpolation

Linear interpolation based on Delaunay triangulationyardes 3 samples for the re-
construction of each point of the reflectance function. Gitree fact that reflectance

HLORN

Figure 4.9: The reflectance functions of four selected pixels, recangtd using linear inter-
polation on a sphere based on the Delaunay triangulatidmedfght source positions.
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Figure 4.10: The reflectance functions of four selected pixels, recanttd using inverse
distance-weighted interpolation on a sphere. Only the Zes samples are used to inter-
polate an intensity value.

functions are not band-limited, high frequency “noise” aistort one or more of
the three closest samples. In this regard it is sensibledode more than 3 sam-
ples. Inverse distance weighted interpolation, also dé8leeppard’s method, uses all
samples, but varies the weights of each sample accordirtetdistance to the re-
constructed point. The weightg of a pointx with respect to thé-th sample can be
defined by:

d (%)

T3]

whered;(x) is the distance function from a poirtto thei-th sample. This distance
function can be enhanced by selecting a maximum influendagadr by imposing
a maximum sample limit. The factordetermines the fall-off in function of the dis-
tance. In our implementation we get 2.

Wi (x)

In figure 4.10 the inverse distance-weighted interpolagéiéctance functions of
the four selected pixels are shown. These reconstructedtafice functions are com-
puted withr = 2 and the distance measure is limited to include only the 22a%
samples. In this case, the weighting only depends on thelsdrdjpections, and thus
can also be precomputed.

4.3.4 Spherical Harmonics Interpolation

The Nyquist-Shannon theorem [71, 93], relates the sampéitegto the highest fre-
quency of a signal that can be captured and reconstructedfr@tpuency response or
spectrum of a signal can be computed by decomposing thel sigimy the Fourier
transform (i.e., a decomposition into Fourier basis fuond). Spherical harmonics
are a natural extension of Fourier basis functions to a ggefomain (see page 675
in [32], volume 2 for a brief overview).

Interpolation can be achieved by fitting spherical harmstficough the sampled
data. In case only the hemisphere is captured (due to the Slye used in this
work), a complete sphere of samples is created by mirrotiegdiata to the other
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Figure 4.11: The reconstructed reflectance functions, interpolatathb, 225, and 625 spher-
ical harmonics respectively, of the four selected pixelse Teconstructed reflectance functions
exhibit a significant degree of aliasing artefacts.

625 Spherical Harmonics

hemisphere.

Wong et al. [114] applied this technique on sampled reflegdnnctions of syn-
thetic scenes and used 16, and, 25 spherical harmonicsobea$i. This corresponds
to four to five bands of the spherical harmonics basis funsti@spectively. In fig-
ure 4.11, first row, the sampled reflectance functions arensoucted using the 25
first spherical harmonic basis functions. The resultingotfince function reconstruc-
tions are very smooth, but much of the fine detail (high fremyecontent) has been
lost.

Infigure 4.11, the reflectance functions reconstructed 26225, and 625 spher-
ical harmonics basis functions are depicted. The recoctstiureflectance functions
are able to capture all features to some extent, but sufier fevere Gibbs ringing or
aliasing artefacts. Increasing the number of sphericahbaics bands does not make
much sense, since the sampling frequency is already reachieel case of the lower
row (625 spherical harmonics functions or 25 bands). Sphakhiarmonic interpola-
tion can result in negative values, which are clamped to izefigure 4.11.
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4.3.5 Wavelet Interpolation

One of the reasons spherical harmonic interpolation doesvark well, is that the
Light Stage samples in the spatial domain, as opposed toghedncy domain. There-
fore, interpolation is more successful in the spatial den{ae., zero-order hold,
linear interpolation, ...). However, spherical harmomiterpolation generates much
smoother results. The question arises if better interfpolatsults (i.e., smoother),
but without the aliasing artefacts of spherical harmonterpolation can be achieved
by using a higher order interpolation scheme. In this regadonsider wavelet in-
terpolation. Wavelets are a versatile mathematical tobicwvbrought a revolution in
many scientific domains, including computer graphics. ls thesis, wavelets will be
used on numerous occasions, and a brief introduction caourelfin appendix A.

A sampled signal can be reconstructed (i.e., upsampleay ugvelets, by repeat-
edly inserting additional samples halfway between two damppints. The magnitude
of each new sample point is characterized by the scale fimofithe wavelet. Basi-
cally, this comes down to using the scale function’s weiglstinterpolation weights.
Another way of looking at wavelet interpolation is to firstpegss the sampled signal
in the wavelet domain, and subsequently insert zero magdmktigh resolution wavelet
coefficients (high frequency features). By transformirgwavelet signal back to the
spatial domain, the final upsampled signal is obtained.

A logical choice would be to use spherical wavelets [89]. Ttghly irregularly
spaced samples in the spherical domain, however, are avdisage, and require
an extra resampling step. In our case, due to the construofithe Light Stage,
the recorded samples are regularly spaced in the latitigitlde parameterization.
Therefore, the (normal) wavelet transform is used in thiuld¢-longitude parame-
terization. An additional advantage is that common wavielgiementations can be
used without much trouble. A disadvantage is that the reperarization introduces
some additional artefacts. However, as will be shown inisect.4, the impact of
these artefacts is minimal.

In figure 4.12 wavelet interpolation of the four reflectangedtions is illustrated
using three different types of wavelets. The first waveletduis the popular Haar
wavelet. The second wavelet is thé3beGall, or Integer 33, which is the shortest
symmetrical biorthogonal wavelet with two vanishing monserits scaling function
is a linear B-Spline. The third wavelet is the well knowfi79Daubechies wavelet,
which is the shortest symmetrical biorthogonal waveletrofieo four, and is by con-
struction a cubic B-Spline. The latter two wavelets are phttie JPEG2000 standard,
and are therefore widely implemented. See [105] for a dedailverview on these two
wavelets. Normally, these wavelets are mirrored aroundermundaries. However,
in our implementation we opted for repeating the signal aticed boundaries, since
this fits better to the original spherical domain. We stilfror the wavelets on hori-
zontal boundaries.

Finally, we would like to point out the similarity of the waeginterpolation meth-
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Haar
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9/7 Daubechies

Figure 4.12: The reconstructed reflectance functions, interpolateapusie Haar, 33 LeGall,
and, 97 Daubechies wavelets respectively, of the four selecteslgi

ods and some of the previously discussed techniques in €aseegular sampling in
the latitude-longitude domain. The Haar wavelet interfiofais identical to the zero-
order hold reconstruction. Both methods create a piece-gosstant approximation
of the signal. The B3 LeGall wavelet interpolation, is similar to the linearerpola-
tion method. Both create a linear interpolation betweenptasn However, the linear
interpolation is computed in the spherical domain, and eanlt in a slightly different
interpolation results near the poles.

4.3.6 Multi-level B-Spline Interpolation

Bicubic B-Splines can be used to create a continuous fumctibhese functions
are a good trade-off between smoothness (theyCdreontinuous) and the ability
to represent the features in the captured data. B-Splires@treasily defined on
a sphere. Similar to wavelets, the sampled data is first aepeterized to a planar
domain. in this case the sampled data is represented in thbglaid map parame-
terization [38]. This representation offers a continuorgggrtion of a hemisphere, in
which the boundaries are identical as on a hemisphere, ambte is defined in a sin-
gle point. Furthermore, the solid angle to projected aréia i®close to constant. A
disadvantage is the irregular spread of the samples ovelotimain. However, unlike
wavelet interpolation this is not a major problem.
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Figure 4.13: Bicubic B-Spline interpolation is illustrated with diffemt resolutions of control
points. Each bicubic B-Spline is defined on a 4 sub-grid. The relative size of each sub-grid
is indicated in red.

A bicubic B-Spline can be fitted to the data by creating@4yrid of control points
on the projected data, as can be seen in the first column okfigdB. The interpo-
lated reflectance function is poorly reconstructed becausiagle bicubic B-Spline
is unable to represent all details. Similar to using a sifgggiadric polynomial, as
is done in Polynomial Texture Maps [54], the obtained intdapion is too smooth.
An obvious solution would be to reconstruct the reflectansetion using a set of
independent B-Splines, each defined on differend 4rids of control points, that are
defined over a lattice on the projected data. Figure 4.13 dstrates the influence
of the resolution of the lattice and the resulting refleceafumction. Using only a
few B-Splines results in a good global fit of the data, but veitimost no local detail
(figure 4.13, first three columns), while using more B-Sgipeoduces a reflectance
function with a good local fit but lacking global smoothnéfgu(e 4.13, last column).
A similar problem was also noted by Lee et al. [48].

Multilevel B-Splines, introduced by Lee et al. [48], allow fit a smooth approx-
imation through the projected samples without the probldessribed above. Multi-
level B-Spline interpolation is a hierarchical method thiat tries to fit a set of glob-
ally smooth B-Splines through the sampled data, each defineddistinct 4«4 grid
of control points with a large coverage. In each successe the number of con-
trol points in the grid of each B-Spline is doubled in eactediion and a new set of
B-Splines is created on the halved 4 grids of control points. The new B-Splines on
the smaller grids are fitted through the difference of the séithe already computed
B-Splines and the measured sample values. The methodswalled in figure 4.14.
The hierarchy of B-Spline sets can then be reduced to a sgajlef B-Splines de-
fined on the 4«4 grids of control points with the smallest coverage used, (highest
hierarchy level).
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Level 1

Diff. Samples an
Reconstructed R
flectance Functio

Previous Level

Reconstructed R
flectance Functio

DL

Nbof B-Splines| 4(2x2) | 16(4x4) | 64(8x8) |256 (16x 16)[1024 (32x 32)[4096 (64x 64)

Figure 4.14: An illustration of the different hierarchy levels of mulével B-Spline interpo-
lation. For each level, the reconstruction of the samplemmthe reconstructed results of the
previous levels are shown in the top row. In the lower rowdbmplete reconstruction is shown.

In figure 4.15 four reflectance functions, reconstructedgitie multi-level tech-
nique are shown. Starting from four B-Splines in the lowestl upto 64x 64 B-
Splines, in level 6, are used in the multi-level hierarchige humber of levels in the
hierarchy was empirically determined on the magnitude iédinces between the
measured values and the values of the sampled directiohe ialteady constructed
reflectance function. Using six levels allows to fit the dattues, while not fitting
noise on the data. This method results in a set of@®4 B-Splines.

4.4 Discussion

In this section, the different upsampling methods of theiores section are compared.
A thorough error analysis is detailed in subsection 4.4 Xkubsection 4.4.2 the simi-
larities and differences between upsampling the refleetdata versus downsampling
the incident illumination are discussed.

EUORN

Figure 4.15: Multi-level B-Spline interpolation illustrated on the splad data. These results
are obtained by using 6 levels. Level 1 contains 4 B-Spliassl{ustrated in figure 4.14), and
level 6 contains 64 64 B-Splines.
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4.4.1 Error Analysis

Numerical Error Analysis. In order to compare the upsample techniques of sec-
tion 4.2, the error of the reconstructed signal versus thkaentinuous signal needs
to be computed. However, the real continuous reflectancetibmis not known.
Therefore, we resort to computing an approximate error,ampding both the real
continuous and the reconstructed reflectance functionsaitling rate higher than
the original sampling rate, and compute an approximate errdhe sampled values.
In other words, the reflectance function is sampled at a 8pesampling rate (deter-
mined by the acquisition device). Next, a reflectance famcis reconstructed from a
subset of the recorded samples (e.g., 25% of the samples)iyi-the relative error is
computed between the full set of samples and the reconsttueflectance functions.
More formally:

[ (T = Thll2
Tl

whereT is a lower resolution reflectance field (a subset of the sashpédT’ is

a high resolution reference reflectance field. The divisipnhe total energy in the
reference reflectance functidn; ensures differences in albedo between different re-
flectance functions are eliminated, such that the erronsdifferent reflect reflectance
functions can be compared in a sensible way.

The quality of each of the reconstruction techniques isetesin the Formula
One toy car scene. Each pixel’s reflectance function is upkaihrfrom 320 samples
(32x 10), and compared to 1280 measured samples 8. However, the error on
a reflectance function will greatly vary depending not onfytloe upsampling method
used, but also on the underlying material properties. Mb#tereconstruction tech-
niques will perform well if a pixel represents a diffuse uolucled surface, thus a low
frequency function, and consequently result in a low etdawever, the error will be
significant for some reconstruction methods when the refiteet function features a
highlight, or complex self-shadowing.

Instead of comparing errors of individual reflectance fiorg, the average error
over a set of pixels with similar occlusion and material gnjes is computed. We
compare these errors for different reconstruction tealesqWe distinguish four sets
of pixels:

e a set of pixels representing the complete Formula One toyesaluding the
ground plate) (figure 4.16.a),

e pixels representing diffuse unoccluded surfaces (figut6.4),
e pixels representing diffuse surfaces with complex setfeldwing (figure 4.16.c),

e and, pixels located on glossy, and specular materials €igLir6.d).
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Figure 4.16: The average error of different reconstruction methods éwer selected sets
of pixels for the Formula One toy car. The four pixel sets espnt (from top to bottom):
the complete object excluding underground, the diffusecalunled underground, glossy and
specular materials, and the occluded diffuse underground.

The average relative errors of these four sets are plottéigure 4.16. The four
sets are visualized as false color images in which the retgigels are highlighted.

In general, the errors for unoccluded diffuse reflectancetions are low, while
reflectance functions featuring high frequency detailsilteis larger errors. Ra-
mamoorthi and Hanrahan [81] noted that diffuse unblockéidance functions can
be represented by the first three spherical harmonics bgigiiding an error of less
than 1%. From the graph in figure 4.16, a similar conclusiantiadrawn. Note that
the error on the spherical harmonic interpolation uses ®pdl harmonics bands,
but on noisy real data (including occlusion by the camera).

In terms of error, the linear interpolation schemes (initlgcb/3 LeGall wavelet
interpolation), and the multi-level B-Spline interpotatiproduced upsampled reflec-
tance functions most faithfully. F Daubechies interpolation also yields good results,
albeit with a slightly higher error. The standard deviat@nthe calculated errors is
small for pixels representing diffuse or occluded surfa&gsels representing a spec-
ular surface produced a large standard deviation which wasoted due to the high
frequency features in the reflectance functions.
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Visual Error Analysis. Although the above error comparisons give a good indi-
cation of the accuracy of the different reconstruction rod# it does not guarantee
good relitimages. In other words, it is the effect of inciti#nmination on the object
that is most important, not the error on the upsampled refiteet function itself. In
figure 4.17, the Formula One toy car is illuminated by a vattstiver of light. Using

a sliver of illumination results in images containing batvIfrequency illumination
features such as long soft shadows (along the directioredirta of illumination), and
high frequency illumination features such as very short sb&ddows and highlights
(orthogonal to the line). 1280 sampled directions are udeehwipsampling the re-
flectance functions to the resolution of the incident illnation.

Except for spherical harmonic interpolation, the still gea in figure 4.17 all look
very similar. However, when animating the incident illumtion (e.g., rotating the
line of light by shifting it along the longitudinal directi), significant differences can
be observed in the series of animated relit images. Figl&ilustrates the effect of
animated incident illumination by stacking a single veatgcanline of the relitimages
as columns, in a new image. Thus, the resulting image catiaia single horizontal
scanline, the evolution of a single pixel over time. The aatd incident illumination
in figure 4.18 is a sliver of light rotating over the hemisgheTfhe sliver of light is
oriented along the latitudinal direction.

Ll

Spherical Harmonic Interpolation Multi-level B-Splineténpolation

Figure 4.17: The Formula One toy car, upsampled using different recootm techniques,
and relit using incident illumination consisting of a siadlatitudinal) sliver of light.
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Incident lllumination
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Zero-order Hold Interpolation

Spherical Harmonic Interpolation (5 bands)

9/7 Daubechies Wavelet Interpolation

Figure 4.18: lllustrating the quality of the various reconstructionteiues under time-varying
incident illumination. A selected column from the FormulaeXoy car example, is relit with
time-varying incident illumination. The different colummare stacked into a single image, in
which each scanline represents a relit pixel value over.time
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Using a zero-order hold interpolation still results in agdimg image, however,
the shadows and highlights move in a jittered way when thenithation is changed,
visible as blocky features in figure 4.18. Spherical harmamierpolation does not
resultin a satisfying image either. The shadows, espgdhike to the object, are dis-
torted, and the highlights are completely lost. Howevas, ttiiethod requires very few
coefficients to represent the data which is of importancedaltime relighting. Lin-
ear interpolation, multi-level B-Spline interpolatiomdawavelet interpolation (53
LeGall and 97 Daubechies) techniques deliver good visual results. Tibdsns are
faithfully recreated, as are the highlights. Multilevel3pline interpolation, yields
slightly smoother relit animated images. However, thisepbation is highly subjec-
tive.

4.4.2 Upsampling versus Downsampling

When introducing the zero-order hold interpolation, thaikirity to downsampling
the environment maps as in [20] was noted, hinting at a bro@tigtionship between
upsampling reflectance functions and downsampling in¢idieimination. Further-
more, for a number of reconstruction techniques, the iolatipn structure could be
precomputed. This raises the question whether this pregtatipn can be applied to
other upsample methods.

First, write the upsampling operatar(-) as a matrix multiplication with an “up-
sample”-matrixJ:

u(T) = TU. (4.6)

The upsample-matrild, interpolates each row ii. In figure 4.19, zero-order hold
and linear interpolation are illustrated on a single vedtwt is upsampled to a vector
with double resolution. In fact, most of interpolation madis, introduced above, can
be represented as a matrix multiplication. In general, dimgar” upsample method

can be represented in this way. Interpolation methods witégend non-linearly on

the sampled values cannot be represented by a simple matttiplcation.

Applying equation (4.6) to image-based relighting (equaf3.1)), yields:

CI — T/LI
= (TU)
= T(UL)
TL, 4.7)

whereT’ is the upsampled version @fand the incident illuminatioh’ is a high reso-
lution version ofL = UL'. Of interest is the fact that bofi’L’) and(TL) yield exactly
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Ti u T Ti u T

Zero-order Hold Upsampling Linear Interpolation

Figure 4.19: An iconic illustration of two examples of a zero-order hofzsample-matrix, and
a linear interpolation upsample-matrix. Both matricesampgle a vector of length 3 to a vector
of length 6. Note that the linear interpolation is circulag,, wraps around the bottom and top
edges.

the same relit image. In other words, pre-multiplying whie ipsample-matrix is ac-
tually a downsampling operator, and can be included in teample operatag, (-).

Equation (4.7) dictates that, in case the upsample opetafmnds linearly on the
sample values (which is true in most cases), an equivalemisiampling operator can
be defined on the incident illumination resulting in exadly same relitimages. The
only difference between upsampling the reflectance funstand downsampling the
incident illumination, is the number of elements which ne&ete taken into account
when computing the resulting relit image. In this regardk ihore efficient to down-
sample the incident illumination once beforehand, and ttempute the relit image
directly from the sampled data. The interpolation errofysia of subsection 4.4.1 is
also relevant for downscaling. Taking the error analysiadoount, linear interpola-
tion (or equivalently 33 LeGall wavelet interpolation) seems to be the best catelida
because the downsampling operator can be computed efficikhiiti-level B-Spline
interpolation yielded perceptually smoother results urihee-varying incident illu-
mination, but computing the downsampling matrix is, in ttése, far from obvious.

Finally, equations (4.1) and (4.7) look similar, but thefeliétnce between both
equations lies in the size of the matric@andU respectively. The matri is higher
than it is wide, whereab is wider than it is high. The effect is th& reduces the
frequency components df, in other words, downsamples it, wherdasipsamples
T, and vice versa for the incident illumination. In effeG,removes high frequency
components from the light transport matfix whereadJ) removes these components
from the incident illuminatio.. Additionally, U also upsamples the reflectance func-
tions, for which a thorough error analysis can be done. Hewetis important to
realize that both methods are not mutually exclusive. Ihtirely possible, to capture
a band-limited reflectance field by pre-filtering the illumiion during acquisition,
and during relighting upsample the band-limited reflecsfiedd.
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45 Conclusion

In this chapter, the upsampling of reflectance functions diasussed in detail. A
careful error analysis pointed out that linear interpoliatb/3 LeGall wavelet interpo-
lation, and multi-level B-Spline interpolation performtte in terms of reconstruction
error, and visual smoothness. Additionally, it has beemwshtinat for most upsam-
pling operators an equivalent downsampling operator oimttident illumination can

be defined, which yields identical relit results.
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5

Compact Representation of
Reflectance Functions

In this chapter the representation of reflectance funciiodgferent bases, especially
a wavelet basis, is studied. It will be shown, that reprasgmeflectance functions in
a different basis can have significant advantages. In theamapter these properties
are exploited to develop two efficient acquisition algarith The ideas presented in
this chapter were originally presented in [59], with sonfenements in [74] and [75].

5.1 Introduction

Until now, the light transport matriX was constructed by copying the different ac-
quired HDR photographs, each corresponding to an illun@natondition, into dif-
ferent columnd . of the transport matriX. This implies that a reflectance function
is expressed in the same domain (in a mathematical senshg ascident illumi-
nation (i.e., the spatial domain). In section 4.1, we stiddie frequency response
of reflectance functions in order to determine if these rédleee functions are band-
limited. In fact, studying the frequency response of a fiomcis analogous to a change
of basis, more specifically to a Fourier basis.

In this chapter, the effect of expressing reflectance fonstin a different basis
is investigated (section 5.2). A change of basis, can helpetter understand the
properties of the reflectance field (e.g., frequency coteah yield a more compact
representation (section 5.3) or faster relighting comipana (section 5.4), and, can
eventually lead to a faster acquisition process (chapter 6)

The reader unfamiliar with basis functions, and in paraclylwavelet basis func-
tions, is referred to appendix A for a concise introductmbasis transformations and
wavelets.

5.2 Change of Basis

The general goal is to express each reflectance functionéwdasis. In other words,
to change the basis of each raw of the transport matrid. Given a set of basis
functionsB = [B. 1|...|B. ], a reflectance function *(T;) (thus not serialized) can be
expressed in this basis by:

65
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(s HTi)s = (s X(Ti)|B).

Serializing this transformed reflectance function, yields

(Te = s({s(T)|B))
= (Ti[[sB.o)]-|s(B.1)])-

It is important to note thajts(B.1)|...|s(B.)] is still a valid basis, even after seri-
alization. Spatially neighboring elements, however, may bre neighboring in the
serialized version anymore. But the general properties) spatial ones, of this basis
are still maintained. By denotifg(B.1)|...|s(B.)] by By, we can rewrite the change
of basis compactly as a matrix multiplication:

(Ti)s = (Ti|Bs)
= TiBs.

From this follows that the transport matrix in a baBisan be expressed as:

Tg = TB;. (5.1)

Inserting equation (5.1) in the general image-based rétiglequation (3.1) yields:

C = TL+S
— T(BsBI)L+S
= Te(B,L)+S
= Telg+S (5.2)

whereB; is the dual basfsof B, andLg is the projection of the incident illumination
L onto the dual basiB;. In the case tha; is an orthonormal basi® = B;.

First of all, it is important to note that in equation (5.8),is expressed in the
default spatial basis, and thus the result of equation (§.2)normal relit image.
Similarly, Sis still expressed in the same spaceCa@.e., a photograph of the scene
without any external illumination applied).

Second, the interpretation g remains the same. Each rGw; corresponds to a
reflectance function, expressed in a b&sis Each columiTg. ; of the light transport
matrixTg is a photograph of the result of applying a single impulsaejith position

1A dual basisB of a basisB is defined such th@@B' — 1.
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-

Figure 5.1: An iconic illustration of emitting an illumination condén under a basis transfor-
mationB. The illumination condition applied in this situation is atident light field defined
by: Lg =1[0,0,1,0,...,0]. Physically, this corresponds, in a Light Stage configaoratto emit-
ting (in this case) the third basis function (i.e., thirdwaoh) of the basi8.

of the incident illumination vectokg. The j-th position in the incident illumination
vectorLg, however, does not correspond to thth light source position in a Light
Stage setup. The effect of the illumination condition cepanding to thg-th element
in Lg, thusLg = [3; ji, can be inferred as follows:

C = Talg+S
= Tgldij]j+S
= TBs[di]j+S
= T(Bs[&ijlj)+S
= TB, +S

In other words, applying a single impulse at th¢h position inLg equals to
emitting Bs. in a standard Light Stage configuration. This illuminati@ndition
corresponds to thigth basis functiorB. j. This is illustrated in figure 5.1. In fact, the
same conclusion holds for the Light Stage setup in normalatips (i.e., without a
basis transformation applied). The basis implicitly usethis case corresponds to:
B =1, or,bjj =& . In other words, turning on only theth light source corresponds
to the j-th basis function.

A similar interpretation ofl g, can be obtained from equation (3.3). In this equa-
tion, a single element; of the exitant illuminatiorC (i.e., a single pixel in a relit
image) is the result of the inner-product of the reflectancetionT;, and the inci-
dentilluminationL. In other words, it is the projection of the reflectance fiortbnto
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the incident illumination. By selecting the emitted inaiddlumination to be equal
to one of the basis vectoB the reflectance function is in effect projected onto
this basis, resulting in an observed coefficignt Repeating this for each basis vec-
tor, a vectott; j]j is obtained that describes the complete projection of thieatance
functionT; onto the basi8;. Formally:

Tei = [tijl}-

Thus,Tg is a set of reflectance functions of a scene, each expresselasisB. To
compute a valid relitimage, the incident illumination mhbstexpressed in such a way
that the result of the dot product equ@lsThis can be done by decomposing the orig-
inal incident illumination in the dual bass.

As mentioned before, both interpretations are similauitiviely, the second inter-
pretation follows a more natural derivationdg. The first interpretation, however, is
more convenient to understand how the incident illumimaisoinfluenced (i.e L g).

5.3 Non-linear Approximation

Expressing a reflectance function in a different basis opensmber of interesting
possible applications. One of these applications is thepemtrepresentation of re-
flectance functions. For example, suppose a scene, thatontgins diffuse unoc-
cluded surfaces, is captured, and is projected onto a Fdumis. The resulting re-
flectance functions will be very smooth, and will probablyyocontain low frequency
components. In other words, the coefficients corresponttinge high frequency
components will be very small, or even zero. It does not makelnsense to store
these zero coefficients, since they do not contribute sgifiinformation. This is ba-
sically the idea behind a number of lossy compression tectasi. Other compression
techniques, such as: run-length encoding, Lempel-Ziv @imgo[118] and variants
(e.g., LZW encoding [108]), entropy encoding (e.g., Huffntading [39], arithmetic
coding [112], ...) will not be discussed in this work. Theseious (lossless) compres-
sion techniques can be used in conjunction with the methisdssked in this section.

Let’s look at this basic idea in a more formal setting. Sujgp@s want to compress
a vectoV of lengthl. First, this vectoV is expressed in a badis

Vg =VTB.

Next, define the set by:

s=1{ilie{L..1}and(vs) #0}.

Using this set, a compressed vectWg can be defined frorag by:
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Figure 5.2: An illustration of compressing a vectdg expressed in a basB=1. The sets
contains the indices of the non-zero elementgpfThe original vectol can be reconstructed
from compressed vect®fs using the basis transfor®ys = Bs.

(VB)i = (VB)s]ij-

In other words, the vectdrg only contains the non-zero coefficients\Gf. The
lengthn of this vectorVg is less than (or equal to) than the lengtbf the original
vectorV. The vectorV can be reconstructegikactlyby defining a reconstruction

transformation matriB® = [B. 5(y||...|B. 5] with dimensions x I:

VARSSVIL) Tl (5.3)

The vectol§ can be seen as the veciy where the zero elements asmoved The
original vectolV can be obtained frovg by multiplying it with the dual basis matrix
B. In this case, the zero elements are multiplied with theesponding columns in
B. These columns do not contribute to the final reconstructiod thus byemoving
these fronB (i.e., Bs), an identical effect can be obtained by multiplyMgwith Bs.

This is illustrated in figure 5.2.

The probability that a coefficient is exactly zero, howeigevery small. Therefore,
this technique is mostly used after quantization of theioalgvectorV, increasing
the probability of having zero coefficients. Quantizatiboywever, can significantly
reduce the accuracy of the reconstruction globally. Anasbéution is to leave out all
unimportant components. This solution also introducessa io accuracy, but only
locally in the unimportant details. Important components i@presented with full
accuracy. Formally, this is achieved by defining asSet

s'={ilie{l,..,l}and(vg)i >1}.
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terms: 100% terms: 50% terms: 25% terms: 10%
error: 0% error: Q0% error: 01% error: Q9%

terms: 5% terms: 2% terms: 1% terms: 05%
error: 23% error: 44% error: 63% error: 83%

Figure 5.3: Non-linear Haar wavelet approximation illustrated on tiem& image. A512 512
image is compressed using a non-linear Haar wavelet appatixin. For each example the
relative number of terms and the relative error are shown.

As a result, equation (5.3), becomes an approximation:

TT—=T
Vi =V§ B .

Therefore, these kinds of compression techniques areddalésy approximations.
The error on this approximation can be computed by:

s_st T——T
e=|Ivg ) BE= |[|2.

Compression can be achieved if the storage requirementstiogb andvgT are
less than the storage requirement¥ofThis kind of approximation, is also called a
non-linear approximatior{see [24] for an in depth overview on non-linear approxi-
mation methods). The name 'non-linear approximation’ cefnem the fact that the
approximations come from a non-linear manifold (i.e., auarof partially overlapping
linear subspacés The effect of non-linear approximation is illustratedigure 5.3.

Although non-linear approximation is possible in any basis will limit ourself
to non-linear approximations using wavelet basis funatidn the next section, non-
linear approximation is applied to reflectance functions.ndted before, reflectance

2The union of partially overlapping linear subspaces is restessarily a linear space. For example,
consider a P space, and consider the two linear subspéged, and(0,y). Except for(0,0), any sum of
two elements of both subspaces is not contained in the uar@hthus this union is not linear.
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functions are not band-limited, and as a consequence,inearlapproximation will
not work well with bases that do not localize well in the sabdiomain (e.g., Fourier
basis functions), or in the frequency domain (i.e., defapltial basis), since these
bases yield a large number of coefficients when the functimmsains respectively
high frequency peaks (e.g., specular highlights), or ekhilow frequency behavior
(e.g., unoccluded diffuse reflections).

5.4 Compression of Reflectance Functions

An obvious application of non-linear approximation in thentext of image-based
relighting is the compact representation (i.e., compoggsdf individual reflectance
functions. An advantage of using a compression scheme loaskedsis projection, is
that a relitimage can be computed more quickly. Consideatgu (5.2), which states
that a relit pixel value can be computed in any basis (given tte incident illumi-
nation is expressed in the corresponding dual basis). Buelighting computations,
coefficients with a zero magnitude can be omitted, sincectlgs not contribute to
the final relit pixel value. Non-linear approximation effieely identifies these zero
magnitude coefficients, and omits them, and thus the cortipngd cost of relighting
is reduced.

In this dissertation, we will only consider the compressibimdividual reflectance
functions. However, the complete reflectance field, canlaésoompressed in a sim-
ilar manner using multi-dimensional (i.ex, 2D) basis functions. This will, without
doubt, result in superior compression ratios, but it wlcatomplicate the relighting
computations considerably.

Linear Spherical Harmonics Approximation. Before examining non-linear
wavelet approximation, we first look at the approximatiorreflectance functions
using spherical harmonics. Spherical harmonics are udedsxely in, a subdomain
related to image-based relightingrecomputed Radiance Transf@d, 81, 95]. The
goal of precomputed radiance transfer is to precomputeighé transport in a vir-
tual scene, and re-render it afterwards from any viewpoitten variable complex
illumination (i.e., environment maps). Spherical harnesrare used to represent re-
flectance functions compactly. The main idea is to use ordydtv frequency bands
to represent the data, leaving out high frequency “detalliis is motivated by:

e The fact that BRDFs with low frequency responses (e.g.usé@BRDFs) can
be represented accurately using only the 3 lowest frequiasacgs [81].

e When illuminating a scene with low frequency lighting (j.en environment
map that only contains low frequency components), only tnef frequency
components of a BRDF contribute to the rendered resultydéegss of the high
frequency content of these BRDFs.

Kautz et al. [44] use the first 15 bands to represent refleptioperties of synthetic
materials ignoring self-shadowing effects. Sloan et &] gtend this technique to in-
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Figure 5.4: Linear spherical harmonics approximation. Two high resofureflectance func-
tions are approximated by using the 5 and 15 lower frequenaogl® (25 and 225 coefficients
respectively).

clude self-shadowing by using two sets of spherical haromwine for the reflectance
properties, and one for the self-occlusion features. A kffgrénce in image-based
relighting is that the geometry of the scene is not known mosed to precomputed
radiance transfer where the geometry is known beforehand.

Reflectance functions for image-based relighting that aolytain low frequency
components can be compactly approximated using only theflequency spheri-
cal harmonics basis functions. Increasing the number ofiafiows to add more
detail in the approximated reflectance functions. In figude &vo high resolution re-
flectance functions are represented using 25 and 225 sphieaicnonics coefficients,
5 and 15 bands respectively. A significant drawback of sphEharmonics is Gibbs
ringing or aliasing which occurs around high frequencydead, such as highlights
and self-shadowing boundaries. The resulting reflectameetions are similar to the
reflectance functions reconstructed directly using sphthiarmonics (see chapter 4).

Non-linear Wavelet Approximation. Wavelets are well known for their use in
image compression, and have also been used for represamiihgompressing in-
cident illumination. Ng et al. [67] use a cube-parametdigzaand a non-linear
Haar wavelet approximation on the incident illuminatioramimage-based relighting
context. Using a non-linear approximation of the inciddlnimination significantly

speeds up the relighting computations. However, it doegethice the storage re-
quirements for the reflectance field. A more logical choiceldde to use non-linear
wavelet approximation on the reflectance functions thevaselreducing computa-
tional and storage requirements. In this thesis, we do niyt consider the Haar
wavelet, as is done in most of the computer graphics liteeatot also higher order
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Figure 5.5: Two selected reflectance functions, non-linearly appraxéd, keeping only.5%
(i.e., 256) of the total number of wavelet coefficients.

5/3 LeGall, and, $7 Daubechies biorthogonal wavelets. These wavelets hater be
properties with respect to image compression [105] thaiter wavelet.

We performed a non-linear wavelet approximation in theldg-longitude pa-
rameterization with a resolution of 25664 pixels. Again, the Formula One toy car
example is used. High resolution reflectance functions ateimed by taking 1280
samples, and using a multi-level B-Spline reconstructemmnique to interpolate to
the desired resolution. An increase in resolution will nikérathe compression ra-
tio much, since the increase in information is limited. Irufig 5.5 two selected re-
flectance functions from the Formula One toy car example apgcted, which are
non-linearly approximated using the Haaf33.eGall, and, 97 Daubechies wavelets
respectively, keeping only the 256 largest coefficients,(iL5% of the total number
of coefficients). Visually, all three wavelets perform wejiven the fact that the com-
pression ratio i561—4. However, the Haar wavelet results in a noticeably less $moo
approximation of the reflectance functions.

A more thorough error analysis was performed on all reflagdnnctions of the
Formula One toy car example. In figure 5.6 the relative Sabl&error is plotted
in function of the number of wavelet coefficients. The Sold#-norm takes not
only the length of the error vectors into account, but also fitst derivative. The
latter, ensures that differences in smoothness are alea tato account. The Sobolev
H1-norm of a vectoV is defined by:

IVI[Ea = VTV +(@V)T(OV),

where,[V, is a vector defined by:
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Figure 5.6: The SobolewH!-error versus the number of wavelet coefficients used in a non
linear wavelet approximation using three different watsléhe Haar wavelet, the/3 LeGall
wavelet, and the & Daubechies wavelet.

OV = [Vi — Vig1);-

The relativel.?-error resulted in a simular graph and is therefore omitiedjen-
eral, the Haar wavelet needs more coefficients to achievsaime relative error. For
example, 4096 Haar wavelet coefficients are needed f02% error, as opposed to
only 256 53 LeGall, or, 97 Daubechies wavelet coefficients. Th&rDaubechies
wavelet slightly outperforms the/3 LeGall wavelet in terms of error: for 256 coeffi-
cients the Haar wavelet results in #3% relative error, the 58 LeGall wavelet in a
2.12% relative error, and the/9 Daubechies wavelet in a88% relative error.

Using the same number of coefficients for each reflectancetibmin the re-
flectance field is not optimal. Some reflectance functionskEoompressed using
less coefficients while maintaining an acceptable errdo kairing relighting. A bet-
ter approach would be to include a sufficient number of cadefits until the error
on the approximation (relativie’-error between the uncompressed and compressed
reflectance function) falls below some error-thresholdisTR-error is sufficient for
determining the number of wavelet coefficients, althoughainly an indication of the
error during relighting, since relighting is the inner puatiof the reflectance function,
and, the (during compressioafknownincident illumination.

The SobolevH-error when a variable number of wavelet coefficients per re-
flectance function on the Formula One toy car example is shioviigure 5.7. The
errors are computed under time-varying illumination. Tingetvarying illumination
used, is the same as used before to create the images in fig8readsliver of light
rotating over the hemisphere. The left graph in figure 5.7%shthe error with re-
spect to the error-threshold. At the top of the graph, theagenumbers of wavelet
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Figure 5.7: Error analysis of non-linear wavelet approximation withaaiable number of co-
efficients per reflectance function. The left graph plots3beolevH1-error versus the error-
threshold. The right graph plots error versus the averagebeu of wavelet coefficients per
compressed reflectance function.

coefficients per reflectance function are shown. To betiestiate the difference in
average number of coefficients aHd-error, the right graph of figure 5.7 shows the
error for each type of wavelet with an equal number of averaggficients per re-
flectance function. In terms of error-threshold verbiiserror, both the 33 LeGall
and 97 Daubechies non-linear approximations out-perform rio@ar Haar wavelet
approximation. The 87 Daubechies wavelet out-performs thé39_eGall wavelet
when taking into account the average number (and thus totapoession ratio) of
wavelet coefficients per reflectance function.

It is important that the non-linear approximation, for batfiixed and a variable
number of coefficients, maintains as much as possible thetmess of the original
reflectance functions. Introducing additional disconities results in visually disturb-
ing artefacts when animating the incident illuminationisitan be seen in figure 5.8.
The sweeps are created by relighting reflectance functiomgressed using a vari-
able number of coefficients (0% error-threshold). It is clear from this figure that,
although the Haar wavelet achieves very good compressiims ré fails to maintain
smoothness. The reason is the low number of vanishing manretite Haar wavelet.
The 53 LeGall and 97 Daubechies wavelet perform much better, and still have ver
good compression ratios.

The correlation between the number of coefficients for aifipegavelet and the
error-threshold is difficult to predict. When using a vateabhumber of coefficients,
more wavelet coefficients are assigned to reflectance fumetontaining many de-
tails, whereas low-detail functions are compressed usisg Wwavelet coefficients.
These details contribute little to the error, hence the kdiffiérence in error between
compressing reflectance functions using a variable nunfhreaelet coefficients and
using a fixed number of wavelet coefficients.
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Figure 5.8: Visualizing the effect of time-varying incident illumiriah on non-linearly ap-
proximated reflectance functions. These figures are créatesimilar manner as figure 4.18 in
chapter 4. The reflectance functions used to create thagésrase non-linearly approximated
using a variable number of wavelet coefficients per reflesdnnction. An error-threshold of
0.1% is used to determine the number of coefficients per refieetbunction.
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In terms of error and smoothness, th& Daubechies wavelet is preferred (fol-
lowed by the 33 LeGall wavelet), achieving a compression ratio of 1 : 34a@2%
error-threshold, andld-error of less than 1% on 25664 reflectance functions of the
Formula One toy car example. Finally, note that the nonalitéaar wavelet will be
better suited to compress reflectance functions that aresmwoth (e.g., upsampled
using a zero-order hold interpolation technique).

5.5 Conclusion

In this chapter, the compression of reflectance functions discussed. It is shown
that non-linear wavelet approximation is an excellent footompressing reflectance
functions. Not only are the storage requirements reduagdlbo the relighting com-

putations are accelerated by a factor equal to the compressiio.
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6

Sampling of Wavelet
Represented Reflectance
Functions

In this chapter, two advanced reflectance field acquisiti@thods are discussed.
These two techniques exploit the properties of a non-lineaelet approximated rep-
resentation of reflectance functions, in order to achiestefaacquisition. The work
discussed in this chapter was first presented in [74] and [75]

6.1 Introduction

The efficiency of a non-linear wavelet approximation to reelthe storage require-
ments of a reflectance field is thoroughly discussed in theigue chapter (5). Al-
though the storage requirements are significantly reddlbedime required to acquire
a reflectance field remains the same. When acquiring the tagflee field of scenes
containing reflectance functions that are composed of omhflequency components,
the acquisition timings are still acceptable while maimitag a high level of accuracy.
If the reflectance functions contain high frequency compésiehowever, an imprac-
tically large number of samples needs to be captured to emsuaccurate reconstruc-
tion. Moreover, technical limitations make it nearly impiide to sufficiently sample
reflectance functions containing very high frequency congmds (chapter 4). These
high frequency reflectance functions arise in situationsn@la scene contains specu-
lar or transparent objects, such as mirrors, glasses, ...

Taking into account the fact that a non-linear wavelet apipnation of a re-
flectance function is very compact arises a very importaestjon: can this sparse-
ness be exploited during the acquisition process, suchotiigtthe significant parts
of a reflectance field are sampled. The main difficulty is hoseiect the best part to
sample of an unknown function. Non-linear wavelet appration requires a-priori
knowledge to create this order of importance. This a-pkodwledge is unavailable
when the whole reflectance function is unknown beforehard @uring acquisition).

Due to mechanical limitations a Light Stage apparatus willbe practical to cap-
ture very high frequency reflectance functions. Howeverdlexists a sub-domain in
computer graphics which can handle specular and trangpaggarials:environment

79
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matting[12, 119]. When image-based relighting and environmentingatvere intro-
duced, it was not quite clear that these two methods soliedifysthe same problem.
In [63, 73], environment matting was first considered in aagebased relighting
context. Although Debevec et al. [20] also considered caoinfgithe Light Stage and
environment matting, they still regarded it, however, aseermatting technique.
Because of its relevance, we will discuss environment mgtti greater detail in sec-
tion 6.2.

The remainder of this chapter is structured as follows. tEirgeneral overview
of matting and environment matting is given in section 6.8ef, the specific details
and calibration of a new setup for the acquisition of higlyérency reflectance fields
is discussed in section 6.3. Nextee approximations with waveleta hierarchical
variant of non-linear wavelet approximation is introdugsection 6.4). This hierar-
chical non-linear approximation forms the basis gfragressive tree approximation
algorithm (section 6.5), that is used to develop two noveuéition methods. The
first method explicitly samples the reflectance field selettiin the wavelet domain
(section 6.6). The second method uses an advanced impliojilsng method, which
works on individual reflectance functions (section 6.7)isT¢hapter concludes with
some final remarks in section 6.8.

6.2 Environment Matting

Environment matting is an extension of the conventionaltimgtprocess [79, 96].
Originally, environment matting was mainly intended to @ilenrefractive materials,
such as glass, in a convincing manner. However, in subségugintonment matting
techniques, the scope of the matting process was furthenéatl to include glossy
and diffuse reflections from the surrounding environmergfoBe discussing the dif-
ferent environment matting techniques in detail, we firgtlese some of the conven-
tional matting techniques briefly.

Conventional Matting. Conventional matting has been around for many years.
One of the first publications on this topic in computer graphs by Porter and Duff

in 1984 [79], in which they describe the need for alpha-mgtéind define basic oper-
ators needed to create a multitude of effects. An alphaentatlf is already an exten-
sion to regular matting: i.e., the separation of an imageiadround and background
elements. A problem with regular matting is that the bouieseaf a foreground ele-
ment are not necessary along the pixel boundaries and cardorple cover only half
of a pixel (see figure 6.1.a). When compositing such a foragdelement on a new
background, aliasing occurs, and the transition betwermgfound and the new back-
ground seems unnatural. Alpha-matting solves this problenonly by considering a
pixel to be exclusively background or foreground, but a \wéitg of foreground and
background. This weighting is numerically representedmw-aalue. For example,

a pixel which is half covered by a foreground element, anéliiyah background ele-
ment, will have ara-value of Q5 (see figure 6.1.b). Alpha-matting is governed by the
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(@ (b)

Figure 6.1: A conceptual illustration of an alpha matte. (a) A red focegrd element on an
8 x 8 pixel grid. Some pixels are only partially covered by theefound element. (b) The
corresponding alpha matte. Pixels partially covered havepacity value of less than 1. The
exact value of the opacity (alpha) value corresponds tortdwion of the pixel covered by the
foreground element.

following equation:

C=aF +(1-a)B, (6.1)

whereC is the resulting composited imade the foreground image, ariglthe back-
ground image. All three images have the same size. Notg,in this case a matrix
of a-values, one for each pixel @. Thea-value is sometimes calledpacity-value
since it indicates how transparent a foreground pixetiis=(1: the foreground pixel

is completely opaquea = 0: the foreground pixel is completely transparent). Both
compositing and extracting of an alpha-matte is governedduation (6.1). In the
case of compositing, both, B, anda are known. Computing this equation yields the
composited image. In the case of alpha-matfegxtractionC is known. Depending
on the matting technique used, some additional informatgardingF or B is also
known.

Although the matting equation (equation (6.1)) is rathesiightforward, the im-
plications and practical problems are, even today, sigmific In 1996, Smith and
Blinn [96], discuss the problems associated with the adiprisof alpha-mattes of
real objects against a single constant colored backgraumdilue-screen matting).
Surprisingly, the problem is deemed mathematically uredaly, which is particularly
surprising since blue-screen matting is in fact a commosegdumatting technique in
the film and video industry. However, Smith and Blinn showt #raexact solution is
possible when the scene is shot against two completelyreiffdackdrops, that differ
at each pointin color in the camera image.

In practice multiple backdrops are not always possible andraber of solutions
have been presented. One of the more interesting approschatiral image mat-
ting [11, 85, 100]. Natural image matting, starts from a Erghotograph of a scene
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Foregrund Alpha Matte Coposite

Trimap

Figure 6.2: Natural image matting applied on the Lena image. Given assecified trimap,
the foreground and alpha-matte is computed. The userfsgktiimap indicates which part
is definitely foreground (white), definitely backgroundgtk), or which has to be computed
(gray). Afterwards, the foreground can be composited usingation (6.1) on a novel back-
ground.

against a random background and a trimap. This trimap israspeeified map which
indicates which of the pixels in the photograph are defipiteteground, definitely
background, or a mix of both. Thee-value of this last category is inferred from the
properties of the foreground and background marked pikelgure 6.2 an example
of natural image matting is shown.

Other solutions to the matting problem use a more elabosdtgpssuch as an
additional infrared camera [106] or multiple cameras [@4flash and non-flash pho-
tograph pair [101], or polarized light and appropriate f8tgs].

Environment Matting. Conventional matting does not work well with transpar-
ent foreground objects. At first this might seem a bit stramsjgce an alpha-matte
encodes how transparent a pixel of the foreground is. Thigl@molies in the fact that
a transparent material refracts light, in effect deforntimgbackground image before
being transmitted (alpha-matted) through the foregrodechent. In other words, it
is not necessarily the background pixel directly behindftveground pixel that is
partially visible, but it can be any background pixel. Ttasliustrated in figure 6.3.

Environment matting and compositing, was first presenteddngker et al. [119]
and later extended by Chuang et al. [12]. Unlike conventiorating, an environment
matte does not only represent the opacity of a pixel, busit alcludes the reflection
and refraction effects of the backdrop through the scenecr&ate an environment
matte, a scene is photographed from a single vantage paiisi@ series of known
background patterns. Usually a CRT monitor, positionedrzkthe scene, is used to
emit these different backdrop patterns onto the scene gikminformation from the
recorded photographs, an approximation of the light trartsjpom the background
through the scene into the camera is computed for all capigeds. The main differ-
ence between different methods lies in which backgroungpet are used, and how
light transport is computed and represented.

In the approach of Zongker et al. [119] horizontal and veitstripe patterns are
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Figure 6.3: The refraction problem. A transparency value per pixel issufficient to create
convincing composited images of objects containing réifigcmaterials, since the image of
the background can be deformed through the object. Thenedlllustrates the situation where
refraction is not taken into account (i.e., only a transpeyevalue). The green line represents
the real refracted path.
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emitted onto a scene. For each emitted pattern a photogfdpe scene is recorded
from a fixed viewpoint. The environment matte, which encothesreflection and
refraction properties of the scene, is represented for peeh by a single reflection
coefficient and a normalized box filter on a rectangular supgrea on the backdrop.
A least squares optimization procedure is used to extraciupport areas and reflec-
tion coefficients from the recorded photographs. Compasifi.e., applying a novel
backdrop) is performed by filtering, for each pixel, the ridvackground over the
support area and scaling the result by the reflection coefficiThe method itself is
elegant, and requires few photographs to be recorded.

This approach, however, has a few limitations, as pointétdypChuang et al. [12].
A single rectangular support area and a single reflectiofficeat per pixel are not
sufficient to capture the complex reflection and refractitfiects of dielectrics or
rough materials. In addition, the choice of a rectangulapsut area can cause ex-
cessive blurring in the final image. To address these prahl€@huang et al. sweep
different oriented Gaussian stripes across the backgrmucapture the environment
matte. This resembles the space-time analysis used in 3@ smanning [15, 43]. The
environment matte is approximated by a limited number afragd elliptical Gaussian
filters, each with a single reflection coefficient. Non-lineatimization is necessary
to compute the oriented elliptical Gaussian filters. Corntpagis performed simi-
larly to Zongker et al., except that contributions from rplé filters for a pixel on
the backdrop are added together. Chuang et al. [12] alsemtexs an environment
matting method for acquiring environment mattes in remletithat uses a single color
gradient as backdrop pattern. This method, however, igdinio perfect specular
materials that do not modulate the emitted color. In thigcHse environment matte
is reduced to warping the background image before compgsiti

The representational power of these filters is very limitat directly related to
the size of the filter footprint. Therefore accurate mattsanly be extracted by these
environment matting methods for objects containing sgacahd, in the case of the
first method of Chuang et al. [12], highly glossy materialpeuies.



84 CHAPTER 6. WAVELET SAMPLING

Wexler etal. [111] presented an environment matting exeerthat is able to work
without knowledge of the exact form of the backdrop imagesiu# relies on having
enough background samples, or sufficiently rich backdrogies (e.g., by moving a
backdrop image behind the scene), to successfully extnaataronment matte. Dur-
ing processing, a free-form filter, defined by different weggfor individual pixels on
the background, is computed. The number of required backgrsamples per pixel
(~ number of photographs that need to be recorded) is direailygrtional to the size
of the filter. This makes this method only suited for high fregcy reflections (i.e.,
small footprint filters). Therefore, Wexler et al. only demstrate their technique on
specular materials.

Zhu and Yang [117] model light transport using a similar esgntation as [111].
Time-varying cosine wave patterns, with a predeterminee tirequency per pixel,
are used as input. The main advantage of frequency basedinsais the robustness
with respect to measurement noise. Using a different frequper pixel would result
in a large number of required illumination patterns. Thereftwo series of patterns
are used, each with a constant frequency for each row or cohespectively. The
method is biased towards elliptical Gaussian responsestadine separation in hor-
izontal and vertical patterns, and is therefore only suitedcomputing reflectance
functions with a compact footprint, i.e., specular and gjaeflections.

Matusik et al. [61] use known natural illumination (i.e.,qtbgraphs) as input.
The reflectance function of each pixel is represented by arstion of weighted box
filters, which are inferred from the effect of the input illimation on the scene by a
progressive algorithm. This algorithm starts with a coagproximation of the re-
flectance function (i.e., few box filters), and subsequesylits one of the box filters
in two, such that the error is minimized. For this purposegach iteration of this
progressive algorithm, a constrained linear system isesblsing quadratic program-
ming. A spatial correction is used to further enhance theltgs The splitting of
filters, enables to obtain very complexly shaped, small angkl, reflectance function
approximations. Matusik et al. demonstrate their techmiogn a number of objects
containing specular, glossy, and diffuse surfaces. It isclear from [61] how many
input images are required, or what the constraints are omghe illumination.

Environment Matting versus Image-based Relighting. Although environ-
ment matting found its roots in a different graphics subdiomaessentially tries to
solve the same problem as image-based relighting: to mbdedffects of incident
illumination on the observed scene from a single viewpaigpically for most envi-
ronment matting methods is that they try to model light tpmsthrough the scene by
a set of simple filters. Using filters to represent light tggors bears some similarity
to BRDFs. However, the filters used are more general andneqoiinformation of
the underlying geometry, but they are still restricted bsirttimited representational
power.
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There are a number of problems with environment matting:

e The error of the environment matte approximation is unknown, as is the
error on the composited images. This error depends on tine greperties, the
filters used (e.g., a box filter versus an elliptical GausBigan), the illumination
patterns used during the recording process, and the bagkgrionage itself
used during compositing. All these parameters make it isipéesto predict (a
reasonable upper-bound on) the error exactly without eitely computing it
for each separate composited image.

¢ Diffuse surfaces are still problematic because an elliptical Gaussian and most
other filters are not sufficient to capture the effects ofudiéf reflections. A no-
table exception is Matusik et al. [61]. Diffuse materialsda large area of sup-
port which can be irregularly shaped because of occlusidrsali-shadowing.
These irregularly shaped support areas are difficult toapmrate accurately
with a limited number of elliptical Gaussian filters. A morengral model is
needed with a greater degree of flexibility.

e Most environment matting methods rely oon-linear optimization proce-
dures, that require a significant amount of post-processing ttmepmpute the
final environment matte approximation. Such methods ugdalbend in a non-
trivial manner on a number of parameters (e.g., error-tiolels) that greatly
affect the quality of acquired results. Non-linear optiatian procedures also
require a significant amount of processing time. Increaao@yracy by using
better filters or more approximation terms, would increassprocessing time
even more. Again, Matusik et al. [61] forms a notable exaepith this regard.

e Unclear relation between input stimuli and final optimized environment
matte. Without a clear relation, it is hard to predict what the emnd the ef-
fect is of recording more photographs (under differentilination conditions).
There is no guarantee that an increase in the number of latioin conditions
results in a more accurate environment matte.

Environment matting also raises some interesting questidgth respect to image-
based relighting:

e High frequency reflectance functions.Can we use similar techniques (as envi-
ronment matting) to handle high frequency reflectance fanst such as spec-
ular reflections and refractive materials?

e Decoupling incident illumination resolution and acquisiton time. In envi-
ronment matting, the number of illumination patterns, angstthe duration of
the acquisition process, is insignificant versus the reswiwf incident illumi-
nation. The number of illumination patterns in environmmatting techniques
varies from 1 to 2000. This low number of patterns is due tortbe-linear
dependency of the filter parameters on the information ghfren the illumi-
nation patterns. Can similar ratios be obtained in a lir@agie-based relighting
setting?
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The setup used in most environment matting papers (i.e.,Tariditor) as a spa-
tially controllable light source, is very interesting. Hever, due to the dense packing
of controllable illumination elements (i.e., pixels on theface of the screen), naively
applying a similar acquisition process as the Light Stagseults in some practical
problems. A typical CRT monitor has approximately a resohubf 1024x 1024 pix-
els. If a Light Stage acquisition approach would be taken,(for each light source,
record a high dynamic range photograph of the scene illutaéhiay this light source),
the same number of HDR photographs needs to be recordednigsthat each HDR
photograph takes 1 second to record, this would result ira}2 df continuous acqui-
sition. Not only the duration of the acquisition is probldimaalso the storage of all
recorded photographs. Assuming that each HDR photograpbe#osslessly com-
pressed to 50Kb, this would still result in a total storagguieement of 50Gb. This
also implies that the same amount of data needs to be pracestme a relit image
can be computed.

In this chapter, two new image-based relighting technicaresintroduced, that
were developed using the theoretical framework presentetiapter 3, and that use
a CRT monitor as source of incident illumination, but do naffex from the afore-
mentioned problems. A CRT monitor as controllable lightrseuypotentially enables
to capture high frequency reflectance functions accuraldlg goal is to develop ef-
ficient acquisition methods for capturing the light trang@acurately and efficiently
through a scene, without placing restrictions on the maltepresent in the scene.

6.3 Setup

We use a similar setup as in the environment matting teclesidiscussed in the pre-
vious section. An object is placed in front of an emitter tisatapable of displaying

structured patterns (e.g., a plasma screen, or a CRT mpnitoour setup we use a
CRT monitor (figure 6.4). A series of illumination pattersseimitted from the CRT

monitor. The resulting effect of each illumination pattéom the object) is captured
by means of a digital camera.

Using a CRT monitor as source of incident illumination hasuanber of advan-
tages:

e High frequency incident illumination. Due to the tight spacing of individ-
ual pixels on a CRT monitor, specular and glossy materiaisbesilluminated
without introducing visual aliasing.

e Complex illumination patterns. Each pixel can emit illumination indepen-
dently of other pixels. This allows to use complex illumioat patters (i.e.,
more than a single light source, and each with differentisitees or colors).

e Reference imagesBecause a CRT can emit complex illumination patterns, it
can also be used to create a reference image. In this cadacitient illumi-
nation used to create a relit image, can also be emitted betsdene from a
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Figure 6.4: The scene is highlighted in red, the camera in blue, and tligeznim green.

CRT monitor. In theory, the relitimage and reference imdgrud be indistin-
guishable. Except for the Light Stage v3 [21], this is notgilole to achieve (in
a single photograph) with a Light Stage design.

Calibration.  Both the CRT monitor and the camera need to be radiomeiricalt
ibrated such that both devices behave linearly in terms &rixand incident illu-
mination respectively. The camera response curve is datechusing the technique
of [22], and each recorded photograph is converted to a hyglamic range image
(see [83], chapter 4 for an in depth discussion on high dyoaarige photography).
A minimal shutter time of 1 second is used to avoid synchmation problems with
the refresh rate of the CRT monitor. The gamma curve of a CRAitmiois measured
by recording high dynamic range photographs of the CRT momihile emitting 256
different intensity images. To avoid additional errors, apged for not fitting an ana-
lytical gamma curve through the measured intensity valuetsise the discrete repre-
sentation (i.e., lookup table) directly. The discrete gaamurve is inversely applied
before emitting an illumination pattern from the CRT monjuch that the intensity
ratios between the pixels of the patterns and the emittechifiation are the same.

In chapter 3, the assumption was made that all computatioulsl ®e performed
directly in RGB space. This implies that all three color amels can be processed in
parallel. As a result, only monochromatic illuminationteans (i.e., grayscale) need
to be emitted from the CRT monitor. And thus, no color calilora, except white
balancing, is required.

Recording a reference image. When creating a reference image, care has to be
taken that the illumination used to create a relit image éssiéime as is used to create
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a reference image.

Using the gamma-curve, the non-linear mapping of integsitan be undone.
However, when using colored incident illumination, a catatibration is required.
Color calibrating a CRT monitor is a very difficult problenmee the color mixing is
not necessarily linear, nor does it corresponds with the R@8r space of the camera
(i.e., cross-talk). Since it usually concerns only a fewideat illumination patterns
(to create a reference image), a different approach carkba.tdaking an HDR pho-
tograph of the CRT monitor while emitting the referencerilination pattern, yields
the actual emitted illumination. Using this HDR photograas incident illumination
during relighting, would in theory result in an exact refitage.

There is, however, a slight practical problem with this agmh: the geometrical
distortions caused by the intrinsic and extrinsic camettnggs (i.e., lens distortion
and camera position) and the curvature of the CRT surfacefin@iothe correspon-
dence between CRT pixels and camera pixels, we turn to gtedttight techniques in
computer vision for inspiration. For an overview on struetllight methods we refer
the interested reader to [4, 7, 86]. To create a homogragineles the camera and the
CRT monitor, we emit horizontal and vertical stripe patssach containing approx-
imately 64 stripes, and record an HDR photograph for eaclttedpattern. Next, the
edges of the individual stripes are detected in the reguiBDR photographs. Since
the exact positions of the stripe edges are now known in b&h §reen space as in
camera space, a homography between both can be easilyoilateigh This homog-
raphy is accurate enough to undo the geometrical deformsatiothe recorded HDR
photographs of the incident illumination (emitted from ®BRT monitor), and thus
this photograph can subsequently be used to compute amelid.

6.4 Lossy Wavelet Approximations

As noted before, a brute force, Light Stage like, acquisificocess is impractical due
to the high number of illumination elements on a CRT monitdefore developing
the novel acquisition methods, using a CRT monitor as ad@pnslevice, a review of
lossy wavelet approximation is made (section 6.4). Thi®isedn order to evaluate if
these methods can be adapted to optimize the acquisiticegspi.e., evaluating their
usability to accelerate the acquisition of reflectance $i¢ig., online compression).

Linear Wavelet Approximation. Linear wavelet approximation compacts a func-
tion by keeping the firsh coefficients of function expressed in the wavelet domain.
This implies an a-priori ordering of the coefficients, andgibasis functions. For ex-
ample, in the case of linear wavelet approximation the Vathgy ordering of the (D)
basis functions can be used:

1. Low detail levels come before high detail levels (figure &).
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Figure 6.5: Linear order in a P wavelet domain. (a) Low detail levels come before high dietai
levels. (b) Within a level, a scanline ordering is used. (cjl&ing over directions. (d) The
complete ordering illustrated on a 3-level wavelet domam,(8x 8 coefficients).

2. Within a level, the scan order is along the x-coordinat,(the y-coordinate
is incremented when the x-coordinate reaches its maximune \eand is subse-
quently reset to zero) (figure 6.5.b).

3. For each coordinate (i.€x,y)-coordinate), the different directions are scanned
as:LH, HL, HH (whereL andH stand for the low- and high-pass filters over
eitherx ory direction) (figure 6.5.c).

Figure 6.5.d illustrates this linear order. An advantagénafar wavelet approx-
imations is that no additional information needs to be st@eng with the wavelet
coefficients to reconstruct the functions, since the “lmcétof the coefficient is im-
plicitly known, due to the ordering, in the wavelet domairfeTapproximation error,
however, greatly depends on the behavior of the functiohénardered wavelet do-
main. For example, the above ordering works well for smoaticfions (e.g., in a
Besov space) since the wavelet coefficients decay withasang level. Singularities,
on the other hand, will not compress well, since the wavelefftients are localized
in each wavelet level.
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Non-linear Wavelet Approximation. Non-linear wavelet approximation keeps
the n largest coefficients. This assumes an a-posteriori ordgfiith respect to
wavelet decomposition of the function) of the wavelet ceédfits. The approximation
error is guaranteed to be minimal for the number of waveleffients. A disadvan-
tage is that additional information, a coordinate denatite‘location” in the wavelet
domain, is required per wavelet coefficient to reconstiuetftinction.

Tree Approximation with Wavelets. A tree approximation [3, 13] afi wavelet
coefficients, is the set of coefficients for which the appneadion error is minimal, and
each ancestor of an included wavelet coefficient is alsaded in the approximation.
The notion of an ancestor of a wavelet comes naturally froenhtlerarchical nature
of the wavelet domain. An advantage of a tree approximatidhat less additional
information per coefficient is required to store and recatsta tree approximated
function than a non-linear approximation. For each coeffitia single bit per child
is needed to indicate if the tree approximation includeséahghildren. A non-linear
wavelet approximation on the other hand requires an indexally a coordinate, per
coefficient to successfully reconstruct the original fumt More information, how-
ever, is required than in a linear approximation. Surpglsinthe performance of a
tree approximation is close to that of a non-linear appraxion and superior to that
of a linear approximation for a large class of functions. Eeample, smooth func-
tions have wavelet coefficients that decay as the wavelet iegreases, and thus the
parents of included nodes have a larger coefficient and iefive also included. The
wavelet coefficient of a singularity have large wavelet ioefts organized along the
branches of a wavelet tree. Both these types of functiondearpresented by a tree
approximation without loss of efficiency compared to a nioedr wavelet approxi-
mation. To create an optimal tree approximation, the oalgimnction must be known
beforehand.

Comparison.  Linear and non-linear approximations are each others dfgsas
the following sense:

e Linear Approximation is sequential (i.e., linear) over a “spatial” ordering, but
random over a wavelet coefficient magnitude ordering.

e Non-linear Approximation is random (i.e., non-linear) over “spatial” ordering,
but sequential over wavelet coefficient magnitude ordering

Practically, this implies that linear approximation re®si no a-priori knowledge
of the function itself. An approximation is obtained by tagithe firstn coefficients,
regardless of their magnitude (i.e., importance). Noedimapproximation on the
other hand, requires full knowledge of the function itselin approximation is ob-
tained by sorting all coefficients from high to low importanand taking the first
coefficients (i.e.n most important ones) from this sorted list. A tree approxiora
has a strong correlation in both “spatial” and coefficiengmitude ordering. How-
ever, it still requires a-priori knowledge of the shape & fhinction to create an ap-
proximation.
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Usability.  During acquisition, the exact form of the reflectance fielty ¢hus in-
dividual reflectance functions, is not yet known. This ireplthat non-linear wavelet
approximation, and tree approximation, cannot be usediiecesacquisition duration.
Linear approximation, on the other hand can be used, bu¢ ikero guarantee that
a good approximation is obtained. Ideally, we would like tvé a spatial ordering
which is also linear in coefficient magnitude ordering. Home such an universal
ordering does not exist for general functions expressediavelet basis.

6.5 Progressive Tree Approximations

In this section a progressive tree approximation algorithpresented. This progres-
sive algorithm will form the basis of the two novel acquisitimethods introduced in
sections 6.6 and 6.7.

The lossy approximation techniques of the previous sedtierspecifically geared
towards data compression. In such a case, the function isrkbeforehand, and the
storage requirements are minimized as much as possiblgra2sive tree approx-
imation starts from a different situation, i.e., the fupatiis not completely known
beforehand, but individual coefficients can be queried atr&mown cost (and should
therefore be avoided as much as possible).

Two variants of progressive tree approximation are presenGreedy progres-
sive tree approximatiorries to encode all queried coefficients. It assumes that a
coefficient-query is a costly operation in comparison todbst for storageOptimal
progressive tree approximatidnies to minimize storage requirements, while mini-
mizing the number of coefficient-queries. It assumes thatctbst for a query and
storage are in balance. Both methods are based on tree apptimn, and have a
sub-linear compacting complexity in terms of the originaiétion size, and a linear
complexity in terms of stored coefficients.

A key assumption is that, if the magnitude of a wavelet coiefficis large, then
there is a large likelihood that its children’s coefficieate also large. We define
the children of a wavelet as all the wavelet functions of teethevel (more detail)
that have an overlap with the parent wavelet’s (spatialjdiont. It is obvious that
this key assumption is not always valid (for example: a figrcthat equals a single
(high level) wavelet function). However, in the cases ineththis is valid (or at least
almost valid) a progressive tree approximation algoritlamioce applied. This key idea
is supported by the observation that for a large class ottioing, a tree approximation
is quasi-optimal [3]. Further support is given by DeVorelef2b], who noted that for
natural images (i.e., photographs of real scenes) the efaweefficients decay, and
that the coefficients tend to cluster in a tree-like mannédris Tmplies that our key
idea would be valid for a large class of functions, includiragural images.
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Greedy Progressive Tree Approximation. A greedy progressive tree approx-
imation can be described as follows. The approximationitglized by the lowest
resolution wavelet coefficients. Next, the approximatepriogressively expanded by
adding the children of the largest coefficient in the curiggroximation for which
the children have not been added yet (i.e., the leaf noddwicurrent tree approx-
imation). This is repeated until the approximation corgamough elements or the
magnitude of the largest leaf node in the tree approximdéitsmbelow some thresh-
old.

Mathematically, greedy progressive tree approximatioa géctorV can be de-
scribed in a similar manner as non-linear wavelet approtigndy using a (progres-
sive) setss to define a wavelet basis transformatipg:

S1

{Index(¢)}
ss-1 U Child (arg max ||(v¢)i||2> , (6.2)

i€(ss_1—Parent(ss_1))

Ss

wherelndex(¢) is the index of the scale function in the wavelet basigisually the
first column),Parent(-) returns the indices of the ancestors, alild (-) the indeces
of the children. Note thatss 1 — Parent(ss_1)) is the set of leaf nodes iss_1 (i.e.,
all the nodes that don’t have child nodes). Furthermoree ttadt the definition ofs
is a recursive definition. Each additional elemensdrdepends on the— 1 previous
elements. Each queried coefficidrg); is included in the sets, and thus in the tree
approximation, hence the name “greedy”. This reflects tearaption that a query of
a coefficient is significantly more expensive than the costafage.

The order of processing of a greedy progressive tree appadian can be visual-
ized by considering the tree of wavelet coefficients thaheats a wavelet coefficient
with its direct ancestor’s coefficient. Greedy progressige approximation starts at
the root of this tree, and subsequently refines (i.e., coesptite children’s coeffi-
cients) of the leaf node with the largest magnitude. Notat for each refinement
step, multiple wavelet coefficients are computed. The nurobeomputed wavelet
coefficients at each step, depend on the dimensionalityeo$ignal and on the size
of the wavelet filter. For example, foDLfunctions and using a Haar wavelet basis,
each wavelet has 2 children, thus 2 wavelet coefficients teebd computed in each
refinement step. When using, for example, a Daubedbiew/avelet basis on all
signal, each wavelet has 4 children, and thus 4 coefficiezgs mo be computed (at
most). The order of processing in a greedy progressive ppoaimation using the
Haar wavelet is illustrated iconically in figure 6.6. In tlEgample, the approxima-
tion is initialized by including the root element/(#). Next, the largest leaf element
is searched for in the current approximation. Since onlyrtiw is present, this ele-
ment is further refined, and the elementd 2nd 32 are added to the approximation.
Again, the largest leaf node is searched for. In this caseighd/2, which is further
refined, and 33 and 1/6 are added. And so on...
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Initialization

4 (@

Figure 6.6: Order of processing in a greedy progressive tree approimaising the Haar
wavelet. Left: A complete wavelet-tree of B kignal, discretized in 16 elements is shown. The
wavelet coefficients are noted lrlue in each node. The order of refinement is denoteckth

At each refinement step, two new wavelet coefficients (thieliehi’s) are computed. Thgreen

set includes the wavelet coefficients computed after 3 nefame steps (i.e., 7 coefficients).
Note, that 2 elements are not yet refined (order-number 4 pafied 3 refinement steps. Right:
For the first 3 refinement steps, the tree approximations favars (without order number).
The red marked elements are the leaf nodes (of the tree apyatian) from which the largest
element is selected for refinement in each iteration step.

Figure 6.7 illustrates greedy progressive tree approxanatpplied to the Lena
image. At high bit rates greedy progressive tree approxanatoes not perform well
in comparison to non-linear wavelet approximation (figu® 5The main reason for
this is that non-zero coefficients outside a tree structtegamost) never included,
resulting in some lower bound on the approximation errorla@t bit rates (i.e., less
than 05%) the approximation is about 3% less efficient in terms mireztompared to
non-linear wavelet approximation.

Optimal Progressive Tree Approximation. An optimal progressive tree ap-
proximation is more selective as to which coefficients aealdo the approximation
than the greedy approach. The basic idea is to add the |layfyést leaf node’s chil-
dren. The greedy approximation addstichildren of the largest leaf node, whereas
the optimal approximation only addssangle coefficient that is the largest of all the
children of all the leaf nodes.

Mathematically, optimal progressive tree approximatiba @ectorV can be de-
scribed in a similar manner as greedy progressive tree ajppation by using a pro-
gressive sess to define a wavelet basis transformatipy:
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terms: 100% terms: 50% terms: 25% terms: 10%
error: 0% error: Q2% error: 07% error: 27%

terms: 5% terms: 2% terms: 1% terms: 05%
error: 51% error: 7.8% error: 99% error: 122%

Figure 6.7: Greedy progressive Haar wavelet tree approximation agppphi¢he Lena image. A
512x 512 image is compressed using a greedy progressive Haatelverg® approximation.
For each example the relative number of terms and the relatior are shown.

s1 = {Index(¢)}
= 1 U ar max Vy)ill2. 6.3

s = seivarg o omax ()il (6.3)
Note the different location of the operathild (-) compared to equation (6.2).
(Child (ss-1) — ss—1) is the set of all the children of all the leaf nodes. The order
of processing is illustrated in figure 6.8. In this examples tree approximation is
initialized by the root node AL. Next, the largest of all leaf nod¢2/5,3/2} of the
current approximation is added/3in this case. At this point, the list of candidate
leaf nodes containg:2/5,3/3,1/8}. From this set, the largest node (i.e/33is added
to the tree approximation. This is repeated until some stidg@rion is reached.

An important difference between equations (6.2) and (63hat, in the case
of the greedy approximation the maximum is computed ovefficamnt magnitudes
[|(vy)i||2 that are already in the tree approximation, while for theroat approxi-
mation they are not. The assumption was made that a querydoefficient(vy);
is a relatively expensive operation. Therefore, it is imi@ont to minimize the num-
ber of queries, and to cache queried coefficients as muchsasipm For the greedy
algorithm this implies that the maximum is computed on cogffits already in the
approximation, and a query is only performed when adding ctaldren coefficients
to the tree approximation. In case of the optimal progressie approximation, an
explicit cache needs to be maintained. This can be achigvedroducing a priority
queuep, and changing equation (6.3) as follows:
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Figure 6.8: Order of processing in an optimal progressive tree appration using the Haar
wavelet. Left: A complete wavelet-tree of B bignal, discretized in 16 elements is shown. The
wavelet coefficients are noted lrue in each node. The order of refinement is denotegtth

At each refinement step, a single new wavelet coefficientdeddThegreenset are the wavelet
coefficients computed after 7 refinement steps. The grees squal is size then the marked
set in figure 6.6. However, the approximation error is lesstim the greedy approach. Right:
For the first 3 refinement steps, the tree approximationsteyers For each approximation,
the list of candidates nodes, from which a coefficient is dddehe next refinement step, are
shown inred. These red candidate nodes ace part of the optimal tree approximation.

po = {Index(¢)}

sg = 0
b = b 1L Chid (arg max| (e ) ~ arg max| (il
1€ps-1 I€ps-1
ss = ss1 U arg max||(vy)ill2. (6.4)
1€ps—1

The priority queue contains all the children of the leaf rodighe tree approximation.
By only performing a query operation when adding childrethspriority queue, the
number of queries is minimized. To refine the set;, no new queries are made, but
the requested coefficient is retrieved directly from thegty queue. Figure 6.9 illus-
trates optimal progressive tree approximation appliedhéoltena image. In general,
the optimal progressive tree approximation performs bélien greedy progressive
tree approximation (figure 6.7). At high bit rates optimabgnessive tree approx-
imation does not perform well in comparison to non-lineavelat approximation
(figure 5.3). The main reason for this is that non-zero caefits with a zero parent
coefficient are (almost) never included, resulting in sooveel bound on the approxi-
mation error. At low bit rates (i.e., less tharb@) the approximation is about0.7%
less efficient in terms of error compared to a non-linear axpration. This proves
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terms: 100% terms: 50% terms: 25% terms: 10%
error: 0% error: Q2% error: 03% error: 15%

terms: 5% terms: 2% terms: 1% terms: 05%
error: 28% error: 51% error: 7.1% error: 91%

Figure 6.9: Optimal progressive Haar wavelet tree approximation &g the Lena image. A
512x 512 image is compressed using a optimal progressive Haaletdvee approximation.
For each example the relative number of terms and the relatior are shown.

empirically that the efficiency of the optimal progressirextapproximation is a close
match with that of a non-linear wavelet approximation faw loit rates.

Approximation Error In general the approximation quality of a progressive tree
approximation will be similar to a normal tree approximatiéurthermore, the qual-
ity of an optimal progressive tree approximation will betbethan that of a greedy
progressive tree approximation. The quality of the appration is superior to linear
approximation, and can for a large number of function clasggroach the quality
of a non-linear approximation. To obtain an equal qualitynaa non-linear wavelet
approximation (assuming an optimal progressive tree aqpiation), the input vector
must meet the following condition:

||(Vlll)i ll2 < ||(VllJ)Parent(i)||27

for anyi € ss. Or in words, the wavelet coefficients should be monotohjiccreas-
ing along the branches of the wavelet tree. Smooth funcfieuws, in a Besov space)
and natural images [25] meet this condition, and thus canppeoaimated without
loss of quality by an optimal progressive tree approxinmatio

A large class of functions satisfy to a related condition:

weightLevel(.)) - [|(vy)ill2 < weightLevel(W.;) — 1) - [|(Vy)parenti) |12, (6-5)
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whereweight(-) is a weighting function taking a wavelet level as parametarexam-
ple of a class of functions that follow this rule are non-tiating! amplitude limited
functions (i.e.,—c < maxf(x) < c). An efficient approximation, with respect to a
weightednorm, is possible in such a case using an optimal progressgepproxi-
mation. Note that general reflectance functions fall in taiter category because of
the law of energy conservation (i.e., a reflectance funatammot reflect more light
than it receives).

6.6 Explicit Sampling

In this section we introduce a novel method to acquire an@gmation of the re-
flectance field of a scene in a sub-linear complexity based greedy progressive
tree approximation. This method was first presented in [74is section is struc-
tured as follows: first the basic idea is detailed on a singflectance function (sub-
section 6.6.1). Next, this is expanded to include the adiprsof the complete re-
flectance field in subsection 6.6.2. The complete acquispimcess is finally pre-
sented in subsection 6.6.3. Some practical consideraticnsentioned in subsec-
tion 6.6.4. Finally, some results (subsection 6.6.5) aedtlethod itself are discussed
in subsection 6.6.6.

6.6.1 Basic ldea

Let’s for the moment consider only a single reflectance fionctand try to extend
the conclusions afterwards to a complete reflectance fieklinAhapter 5, given a
progressive tree approximation sgf the resulting basigs, can be used to compress
a reflectance functiom;:

T o~ (Tiges)Tss'.

In the case thag= | (the resolution of the incident light field) then the basis-
formationy, is equivalent tap, but in which the columns are permutated. However,
as mentioned before, if the size of the incident illuminatizecomes too large, cap-
turing the whole reflectance field becomes impractical. &foge, we prefer the size
of the final setsg to be significantly smaller than the size of the incidentilloation.
We will use a progressive tree approximation to achievegbal.

Due to the progressive nature of greedy progressive treezrippation, a basic
algorithm (see figure 6.10) can be formulated based on therblgcal set defined in
equation (6.2). This algorithm works as follows: First, theest resolution wavelet
basis function is emitted, from the CRT monitor, onto thenscend the pixel response
is observed (i.e., by taking an HDR photograph and isolatiegelevant pixel). This
observed wavelet coefficient is added to the current treecappation of the pixel's
reflectance function. Next, from the current approximatitie subsequent wavelet

1with non-oscillating functionsve refer to functions that do not contain isolated wavelet-$tructures.
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Init: s=1,ss={Index(¢)}, wavelet basig

while(s < maximum number of coefficiehts

{

Emit: the wavelet basis functiog. ;g
Observe: (¢'9); = Ti- Y. gq

(i.e., i-th pixel in an HDR photograph)
Compute: s, 1 based on{ (c)i, ..., (c9); }
S«—sS+1

}

Output: tree approximatior[(dl))i\...\(c@)i} of Tyes;

Figure 6.10: Greedy progressive tree approximation on a single refleetamctionT;.

basis functions to emit are determined. This is achievedéntifying the wavelet ba-
sis function that resulted in the largest observed wavelefficient magnitude among
all leaf nodes (i.e., non-refined wavelet basis functiomgié current tree approxima-
tion. Of this wavelet basis function, the children wavelasis functions are emitted,
and the observed coefficients are added to the current t@examation. This is re-
peated until some stop criterion is met.

This algorithm can be efficiently implemented by explicitignstructing a tree as
in figure 6.6, or by using a priority queue (i.e., the obsemwadelet coefficientsc()));
(under thej-th wavelet illumination condition) are placed on a priggueue. At each
iteration, the top of the priority queue is removed. Thedgih of this top-element
are the elements to query subsequently).

6.6.2 Extension to Reflectance Fields

There are two problems that need to be solved before theitllgogiven in the pre-
vious subsection can be practically used:

1. Areflectance function corresponds to a single camera. pixc@vever, a camera
records multiple pixels in parallel in a single photographd thus gains in-
formation from multiple reflectance functions at once. Hiiere, the question
arises: “how to extend this algorithm to capture the conepleflectance field,
and not only a single reflectance function”.

2. How to ensure that the greedy progressive tree approximist well-behaved
such that it converges to an as optimal as possible appraginta

Reflectance fields (1).  Reconsider the basis equation (3.0)=TL + S. This
equation describes what happens if some form of incidamnithation is applied to a
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scene. In the algorithm described above, different walslsis functions are emitted
onto the scene, and appropriate action is taken with respebe observed wavelet
coefficients. When capturing an HDR photograph of the sckumainated by a pro-
gressively selected wavelet basis function, not only theated coefficient of that par-
ticular reflectance function (on which the progressive oisleomputed) is observed,
but also the wavelet coefficients of all other reflectancefions with respect to the
emitted wavelet basis function.

It is important to realize, that the sef of the tree approximation is only optimal
for a single reflectance function, and not fdt reflectance functions. It is obvious
that creating the seg with respect to a single reflectance function, is not the Wagt
to create a progressive tree approximation for the wholeatfhce field. Instead it
would be better to base the choice of the subsequent emitieel&t basis function on
the previously observed wavelet coefficients of all refleceafunctions. The-norm
of the exitant illumination is a good candidate to base teisslon on. Thg-norm of
a vectorV is defined as:

1

Vllp = <i'Z|vi|p> g

A p-norm of the observed image can play a similar role as thehtafa sin-
gle coefficient magnitude in algorithm 6.10. A refined acijigis algorithm using
the p-norm is given in figure 6.11. This algorithm works in a similaanner as algo-
rithm 6.10, but instead of observing a single pixel’s coéfit, the wavelet coefficients
of all pixels are observed in parallel. The decision to whavelet basis functions to
emit next, is now based on thpeenorm of the observed images.

Conditions (2).  In section 6.5 the approximation errors for a progressie ap-
proximation are discussed. A critical condition for a wedlhaved progressive refine-
ment method is the decay of the wavelet coefficients alongréueches of the wavelet
tree. As the algorithm is currently formulated (figure 6,Xhgre is no guarantee that
this is the case. Given the fact that reflectance functioasaarplitude-limited, and
thus the condition in equation (6.5) holds, a suitable wigimust be defined. There
are two possible solutions to achieve this:

1. Weighting of the observed wavelet coefficient imagesThe wavelet coeffi-
cients (images) could be weighted, such that the weightegegcoefficients
decay with advancing wavelet level. However, the effecttmdomplete sys-
tem must be evaluated carefully. The obtained progresseeapproximation is
obviously not optimal anymore with respect to theerror, but to the weighted
norm.

2. Scaling of the wavelet basis functionsBy selecting a different normalization
on the wavelet basis functions a similar effect as above eaobbained. It is
important to realize, that this also implicitly results idi&erent error norm.
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Init: s=1,ss={Index(¢)}, wavelet basig

while(s < maximum number of coefficiehts

{ Emit: the wavelet basis functiof. ;g
Observe:C¥ =Ty, g
(i.e., recording an HDR photograph)
Compute: ss, 1 based on{ 1ICOlp, .., HC(S)Hp}
S«—s+1
}

Output: tree approximatior{C(D | ...|C<S)} of Ty

Figure 6.11: Greedy progressive tree approximation on the completectefiee field.

For this technique we will use the first method (weightinghaf bbserved wavelet
coefficientimages) to ensure a well-behaved progresseefpproximation. We show
that by restricting the properties of the incident illuntioa used afterwards for re-
lighting, a perfect progressive tree approximation witkpect to thd_»-error on the
relit results is obtained, regardless of the non-optimedreon the reflectance field
due to the weighting. Furthermore, we will show that bothrapphes, weighting and
scaling the basis functions, are identical.

As mentioned before, DeVore et al.[25] noted that for ndtimages (i.e., pho-
tographs of real scenes) wavelet coefficients decay, atdhisadecay is dependent
on the level or resolution of the wavelet, the local order of contindityf the image,
and the number of dual vanishing momérdof the wavelet:

decay~ 2~V maxtd),

Intuitively, this implies that the energy content decaysrodifferent wavelet levels,
and thus the importance of details in a natural image is tyrpooportional to the spa-
tial size of the detail. It is reasonable to assume that axidlumination also behaves
as a natural image. Dror et al. [28] investigated the stesistf real-world illumina-
tion, and conclude that the statistics are very similar & tf natural images, with
the exception of bright point light sources such as the sumis &assumption allows
us to define an upperbound for the wavelet coefficients of acigént illumination in
function of the wavelet leval:

weight(v) = ¢ 27V*%, (6.6)

the order of polynomials that can be approximated bydiha! scaling functions of the wavelet.
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wherecs is a constant¥ 1) indicating the general smoothness of the incident illu-
mination and of the specific wavelet basis usedis a constant 0) related to the
dynamic range of the considered incident illumination. His twork we setcs = 1,
however, if it is a-priori known that the incident illuminanh or the wavelet basis are
smooth, then a largex, could be used. Selecting a larger constrfavors wavelet
basis functions with low level (low frequency wavelet fuoats) over wavelet basis
functions with a high level (high frequency wavelet funcs).

Given a wavelet basig), a weighting vectoiV can be defined, in which each
element is determined by; = weight(Level(y.;)). Sincel is similar to a natural
image, equation (6.6) holds, and tws> |[G" L||. The upperbound on th@norm of
any exitantillumination (i.e., cameraimage) can be derfvem the general relighting
equation which relates any incident illuminatibto the observed exitant illumination
C:

IClly = ITL[p
= [ITY@'L)|p
< [Tew|p
< Y Iwi(Tw).llp
= lIwTw.illp
= S willTw.llp. (6.7)

In other words, thep-norm of any relit image is bounded by the sum of weighped
norms of the observed effects of emitting the wavelet basisors onto the scene.

As noted before, weighting thg-norms of the observed exitant illumination un-
der wavelet incident illumination instead of using thaorm directly yields a well-
behaved progressive tree approximation algorithm becaiusguation (6.5), and the
error on the reflectance field is optimized to the weighpedorm. However, from
equation (6.7) it follows that the error on the relit imagedar natural illumination)
is optimal under any-norm (including thd_,-norm), since this error is bounded by
the sum of weightegb-norms. The goal is to create relit images, therefore the firs
(i.e., error on the reflectance field) is of lesser conseqriéman the latter (i.e., error
on the relitimages).

Now consider the relation between weighting tii@orm and using a different
wavelet normalization. There are two kinds of common wavsdemalizations:

1. Constant energy.All wavelets have the same energy. (high-pass Nyquist gain
= /2, and low-pass DC gain 5/2). This normalization is required if an or-
thogonal wavelet basis is needed (assuming that the shalpe whvelet allows
this).
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Init: s=1,ss={Index(¢)}, wavelet basig

while(s < maximum number of coefficiehts

{

Emit: the wavelet basis functiof. ;g
Observe:C¥ =Ty, g

(i.e., recording an HDR photograph)
Compute: ss, 1 based on{ llc@w, .., HC(S)H‘{)"}
S«—s+1

}

Output: tree approximatior{C(D | ...|C<S)} of Ty

Figure 6.12: Explicit sampling of a wavelet reflectance field using a gyeprbgressive tree
approximation algorithm and a weight@ehorm.

2. Constant amplitude. All wavelets have approximately the same amplitude.
(high-pass Nyquist gain = 2, and low-pass DC gain = 1).

The observations of DeVore et al. [25] regarding the decap®fvavelet coeffi-
cients of natural images are made under a constant enengpafipation. The relation
between a constant energy and a constant amplitude noatiatizs identical to equa-
tion (6.6) in whichcs andc; are equal to 1. Note that = 1 is the worst case, artd is
a constant for all wavelet level and does not affect the andeaf the observed wavelet
coefficients omp-norms. This shows that using a constant amplitude norataiz is
equivalent (although a bit more restrictive) than using ahing function.

From theconstant amplitud@ormalization is it very easy to prove the decay of
the observed wavelet coefficients. First, consider the ttaat a single reflectance
function cannot reflect more light than it receives. Thisdak directly from the con-
servation of energy. This implies that the energy in a redlect function is bounded
in some interval. Furthermore, this implies that elements in the reflectdmcetions
are also bound, and thus consequently, given the fact that#lvelet basis functions
are normalized to a constant amplitude, the wavelet coefffisiare also bounded.

6.6.3 Feedback Loop

As mentioned before, we will use a weighting of the p-normghefobserved images
C. This is denoted byl|-||. The final algorithm can now be seen in figure 6.12. This
algorithm works as follows: First, low frequency wavelesisafunctions are emitted
(from a CRT monitor) onto the scene, and HDR photographss@ded. Depending

Sthe constant; of the weighting function (equation (6.6)) actually refkettis, and is the upperbound
on the energy content
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Figure 6.13: A flow-chart of the complete explicit sampling acquisitiomgess.

on the weighteg-norm of the observed images in the current tree approxangttine
subsequent wavelet basis functions to emit are determiit@d.decision is made by
selecting the children of the wavelet basis functions (ftbenleaf nodes of the current
tree approximation) that has the largest weighpedorm. This process is repeated
until some stop criterion is reached. Possible stop cait@re:

e Acquisition time limit. Each additional recorded HDR photograph requires
extra acquisition time. In some cases it might be advantagenset a time-
limit for the acquisition.

e Maximum number of wavelet coefficients Related to the previous, an upper
limit on the number of emitted wavelet illumination pattercan be set. This
also implies that, during relighting, the incident illuration is only approxi-
mated by the same set of wavelet basis functions.

e Weighted p-norm threshold. Instead of limiting the acquisition time or the
number of wavelet coefficients, the acquisition processhmistopped when
the weighted p-norm falls below some threshold. This wedig-norm is an
indication of the error on the approximation of the refleceafield.

In practice, the algorithm in figure 6.12 uses a feedback.|dbiteratively emits
a wavelet basis functio. ;), records an HDR photograi!, analyses this pho-
tograph, and decides what wavelet basis to emit subsegueRécording an HDR
photographCl) corresponds to a coefficient query operation in the proiyessee
approximation algorithm of section 6.5. This is a very exgies operation in com-
parison to storing an HDR photogragi), because an HDR photograph needs to
be recorded, which can take multiple seconds. Therefore@dgrprogressive tree
approximation algorithm is used as a basis for this algorithther than an optimal
progressive tree approximation algorithm. Figure 6.18&tHates the complete acqui-
sition process .



104 CHAPTER 6. WAVELET SAMPLING

6.6.4 Practical Considerations

There are some practical issues that need to be considei@e lee feedback loop
algorithm of the previous subsection can be implemented.

P-norm. Any value can be used in theory fprwhen computing thg-norm. In
our implementatiorp is set to 2. In other words, we use the squared niosmThe
Lo-norm weights low radiance values (which are more susdeptinoise) less. This
improves the stability of the feedback loop with respect Basurement noise.

2D wavelet basis functions. In the feedback loop2 wavelet patterns are emit-
ted. This creates some ambiguity in the definition of a pachiitl of a wavelet.
Previously, we defined the children of a wavelet as the waveliethe next level that
have a footprint that overlaps with the footprint of the pareavelet. D wavelet
basis functions also have an “orientation”, i.e., différéb scale, and, D wavelet
basis function combinations. There are 3 orientationscastsa with each wavelet
“location”. In our implementation, a weightgenorm is associated with a wavelet lo-
cation. For each location, the contributions (weighpeabrms) of the orientations are
summed. This means that at each feedback step, when themreffiof a wavelet lo-
cation are queried, all 3 orientations need to be emitted tlagir responses acquired.

Emitting Wavelet lllumination Patterns. The dynamic range of a wavelet illu-
mination pattern usually does not fit within the range of thatter, nor is the range

of the emitter linear in radiance space. Scaling the wayaterns (and doing the in-
verse scaling on the resulting observed photographs)sttedirst problem, whereas
calibrating the emitter solves the second.

Before emitting a pattern, the gamma curve of the emittedsi¢e be inversely
applied in order to transform the non-linear range of thettemto a linear range in
radiance space. This was already discussed in 6.3.

Also, wavelets have positive and negative values. Thezef@ need to map each
wavelet illumination pattern to a completely positive rapngince emitting negative
light is not possible. Let's assume that the scaled wawglehas a range df-1,+1]
and the range of the calibrated emitter is linear in radiapee€0, 1. Two mappings
are possible:

i+l

1. Translating the wavelet and scalingyt: ; = —5—,

2. Splitting it into two patterngp ; andyn, ; that contain respectively the positive
and negative part af. ;. '

The resulting photograp®y, ; when illuminating the scene by the wavelet illumi-
nation patternp.; can be reconstructed as follows:

1.Cy, = 2(:L|J,_‘i —Cq, whereC; is the observed result of illuminating the scene by
emitting a full white pattern from the CRT monitor.
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2. or, respectivelyCy ; = Cy,  — Cyp ;-

The latter approach, which we use, has some practical aatyesit First, exposing
a CRT monitor for a long period with the same color introdusigsificant extra noise
caused by the afterglow from these pixels. Second, the dignemge of an emitted
wavelet pattern is doubled at the cost of an extra HDR phafayr

Directly Visible Pixels. Directly visible backdrop pixels from the emitter should
not be included in the computation B€y ||}, because these pixels will behave as a
perfect specular material, and will influence the perforoganf the acquisition nega-
tively (see also subsection 6.6.6, discussion on the atigui®f specular materials).
An alpha-matte is computed in order to exclude these direitible elements. This
alpha-matte is constructed using the method proposed bgk#oret al. [119]. The
overhead of recording these extra photographs of progedgsiner stripe patterns is
minimal. Uncovered pixels in the matte are replaced in thal fimage by the cor-
responding incident illumination values, by using the espondence between CRT
pixels and camera pixel (see section 6.3).

Stop Criterion.  In our experiments, we use an acquisition time limit of 121sou
for each scene as the stop criterion in the feedback looptotakrecording time could

be improved by using a better synchronization between thitaticamera (Canon EOS
D30) and the feedback loop. The use of a digital video cameemaeduce the time to
capture a reflectance field even more.

6.6.5 Results

The result of the acquisition process is a set of recorded b&ograph<() =
Tyss ;, and a sets. A relit image can be easily computed by using equation (5.2)
combined with equation (5.3):

CZTmssLm—l—S

In other words: First, the novel incident illuminatibns decomposed into the wavelet
basisi. Next, the observed imag&$!) are weighted by theg[i]-th element of the
decomposed incident illuminatidry, and summed to form the relit ima@e This is
very similar to the relighting process used by Debevec €, described in sec-
tion 2.3.

In contrast to other environment matting methods, usingrélai setup, the pre-
sented method can handle diffuse surfaces. This can berségarie 6.14 where four
different colored cubes are placed on a diffuse surfacenithated by a low frequency
incident light field. Approximately 400 wavelet illuminati patterns are used to cap-
ture the reflectance field of the depicted scene. In figurg hgsame scene is shown,
illuminated from a small square located respectively lefjdle, and right behind the
cubes. As can be seen, the shadows are faithfully reprodsostkthing that would
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Reference Photograph Relit Result

Figure 6.14: A scene containing diffuse surfaces, acquired by emittimlg 400 Haar wavelet
illumination patterns. On the right, the scene is relit gsriow frequency incident illumination
field. On the left a reference photograph of the scene unéesame illumination emitted from
the CRT monitor.

have been impossible to achieve using simple filter funstemin other environment
matting methods.

In figures 6.16 and 6.17, a scene containing a glass candylgat With little
candy bears is depicted, relit by a photograph of a river asiieget as incident illu-
mination. The environment matte is captured using 2400 HB&qgraphs (or 1200
Haar wavelet illumination patterns split in a negative aondifive part). In both ex-
amples, a reference figure is shown on the left. The slightaish in colors between
the reference photograph and the relit result is caused lopaptimal color calibra-
tion of the CRT monitor. Figure 6.18 shows a small number cleobed responses of
the glass bear scene under wavelet illumination. Positaes are indicated in blue,
while negative values are marked in yellow. Figure 6.1%tHates the effect of cap-
turing the reflectance field with fewer terms (i.e., takingée photographs and thus
using fewer wavelet illumination patterns). The glass Ise@ne is captured using,
from left to right, 100, 300, 600, and, 900 wavelet illuminatpatterns respectively.
To give a better idea of the impact of using fewer terms, theady visible pixels are
not replaced by the correct pixels from the incident illuation nor is the ambient
illumination termSadded.

Figure 6.15: Relitimages illustrating faithful reproduction of shadoviThe incident illumina-
tion consists of a square light source positioned resplgtieft, middle, and right behind the
colored cubes.
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Figures 6.20 and 6.21 show the effect of using a differenteleivthan the Haar
wavelet. Using a higher order wavelet, e.g., th& ®aubechies wavelet, can result
in a smoother approximation. Using these smooth wavelets ynore pleasing re-
sults if the number of photographs is very limited with redpe the resolution of
the incident illumination, as opposed to the Haar wavelativiiields blocky results.
The advantages of these higher order wavelets become leisgsislvhen the number
of recorded wavelet illumination patterns increases. Hason is that these higher
order wavelets require more coefficients to represent higfiuency details, and thus
require to observe more high resolution wavelets to repiabese fine details. This
number of (high resolution) wavelet patterns quadruplek every increase in level.
Again, the slight mismatch in colors in these results betwibe reference photograph
and the relit results is caused by a non-optimal color cafibn of the CRT monitor.

The acquired examples require on average 2.5GB to stordalbpraphs (RLE
compressed). Using more advanced compression algoritiugs JPEG2000) could
further reduce the required storage.

6.6.6 Discussion

We conclude this section on explicit sampling of waveletespnted reflectance func-
tions with an analysis of the error bound on the relit imagex] a review of the
limitations of this method.

Error bound.  There exists an interesting relation between the p-nor@yqgfand
of Y.

[[Coyil[p < cllW.illp-

This means that thp-norm on an observed image afy scene under wavelet illumi-
nation, is bounded by the energy (according togh®rm) of the wavelet illumination
(times a constard). This is a direct result of the fact that a material cannfdéc¢ more
light than it receives (the constaméxpresses the relation between the amount of light
emitted and the magnitude of a single element in the incidght field vectorL).
Together with equation (6.7) this results in an importargesisation: the error on the
relit imageC is bounded by the error on the approximation of the incidduntina-
tion L. In other words, it is an upper-boundary for the erroGoand is, in general, an
overestimation of the real error. It also implies that iragiag the number of emitted
wavelet basis functions will have a positive effect on th@eof C, and in the limit
this error will vanish.

Limitations.  The number of wavelet illumination patterns required tcagban ac-
ceptable approximation of the reflectance field of a scene general limited (e.g.,
400). However, the number of required wavelet illuminatiatterns, and thus HDR
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Reference Photograph Relit Result

Figure 6.16: A glass candy jar filled with candy bears. Left: Referencetpgiaph. Right:
Relit result of the scene captured with 1200 Haar waveletiihation patterns.

Reference Photograph Relit Result

Figure 6.17: Identical to figure 6.16, but relit with a different inciddight field.
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Observed Image

Wavelet Basis Function

Figure 6.18: An small subset of observed responses under wavelet ilatioimpatterns. Pos-
itive values are given in blue, while yellow indicates a rtagavalue. For each example, the
emitted wavelet basis function is shown below each of themesl responses.

photographs which need to be recorded, does not scale wefl We scene contains
specular objects. A small footprint wavelet illuminatioatigrn contributes signifi-
cantly to only a few (specular) pixels in the recorded phodpy, and thus yields a
limited gain in information for the reflectance field appnmeition. This is visible

in figure 6.18, where fewer pixels are lit in the image illuatied by high frequency
wavelet basis functions. Furthermore, the amount of ligfiected from the object
into the camera is closely related to the footprint size efwavelet basis function,

100 Haar Coefficients 300 Haar Coefficients 600 Haar Coefficients 900 Haar Coefficients

Figure 6.19: The effect of increasing the number of wavelet coefficieltse scene is captured
using, from left to right, 100, 300, 600, and, 900 Haar wavidlemination patterns. During
relighting, directly visible pixels on the CRT monitor aretmeplaced, nor is the self-emittance
termSadded.
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o - |
Reference Photograph Relit Result Relit Result
(Haar Wavelet) (9/7 Daubechies Wavelet)

Figure 6.20: The effect of using different wavelet types during acqiositof a dinner scene.
Left: reference photograph. Middle: Haar wavelet. Right7 ®aubechies wavelet.

Reference Photograph Relit Result Relit Result
(Haar Wavelet) (97 Daubechies Wavelet)

Figure 6.21: Identical to figure 6.20, but relit with different incideiuimination.
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requiring a large dynamic range to accurately capture botilsand large footprint
wavelet patterns.

6.7 Implicit Sampling

In this section, an implicit wavelet sampling algorithm floe acquisition of reflectance
fields is introduced. This algorithm avoids the disadvaesagf the explicit wavelet

sampling algorithm of the previous section. Furthermaréas a constant acquisi-
tion complexity, and a linear (in terms of desired humbereofris) post-processing
complexity. This method was first introduced in [75]. Thistsen is structured as

follows. First the basic idea is outlined in subsection B.MNext, we detail the idea
of wavelet noise, and explain how it can be used in an imageébeelighting con-

text (subsection 6.7.2). In subsection 6.7.3, we show hoapdimal progressive tree
approximation can be inferred from the responses of theesueder wavelet noise
illumination. Practical considerations are detailed ibsaction 6.7.4. Finally, the
results are discussed in subsection 6.7.5.

6.7.1 Basic ldea

From the previous section (6.6), it is clear that, althouglasi-optimal sampling for
a single reflectance function can be defined, it is very uhlikeat this sampling is
optimal for all reflectance functions in a reflectance fieldisTimplies, that an on-
line sampling algorithm (i.e., using a feedback loop), wiglver achieve an optimal
sampling for the complete reflectance field, since the agprigprocess is inherently
parallel with respect to all reflectance functions. Themef@ different strategy is
devised in this section. Instead of selectively samplirgy riéflectance field during
acquisition, it would be better to capture as much infororais possible from the
reflectance field beforehand and afterwards reconstruceftextance field from this
data.

Key to our technique is the use of wavelet noise illuminatiatterns. For each
emitted wavelet noise pattern a high dynamic range phopbgséthe scene is recorded.
Next, an optimal progressive tree approximation is inféiwtline from the recorded
data. By decoupling the sampling procedure from the adiprisiapproximations for
each pixel's reflectance function can be computed sepgrael more accurately.

A wavelet noise pattern is defined as the sum of weighted walekis functions,
and these weights are distributed according to a normaifaisibn. An example of
wavelet noise is shown in figure 6.22. Using wavelet noisdlasination patterns
has a number of advantages:

e Itis possible to generate any number of unique wavelet ruasterns. Together
with a progressive computation of the reflectance functitms enables to trade
off between the number of illumination patterns and the ipalf the final
approximation.
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Figure 6.22: An example of Haar wavelet noise.

e Because the wavelet noise patterns are densely definedhirspate and fre-
quency, each observed pixel gives a response, indepenadéitie underlying
reflectance function, when illuminated by a wavelet noisiepa. Thus, each
additional photograph contributes new information to tbeputation of a re-
flectance function for every pixel.

e It is possible to fix the average of each wavelet noise pattamimizing the
dynamic range that needs to be captured.

A progressive algorithm is used to infer the reflectance tioncfor each pixel
separately from the responses of the wavelet noise patt&éhesnumber of wavelet
coefficients in the final approximation can be either usdindd or dynamically de-
termined depending on the number of input illumination gas. In order to pro-
gressively refine the approximation of the reflectance fonst a refinement oracle
based on optimal progressive tree approximation with vedseb used. A similar
problem is addressed in the previous section (6.6), and itusitaet al. [61]. Both
use a progressive algorithm:

e Inthe previous section a feedback loop is used to deternmlirgsowvhich subse-
quent wavelet illumination patterns are important for tppraximation of the
wavelet represented reflectance field. The selection oéthglssequent illumi-
nation patterns is based on information from already aeguihotographs. The
children of the wavelet, that resulted in the largest contion to the reflectance
field (i.e., photograph with the largest weightiegtnorm), are selected to be
processed in the subsequent iteration. Note, that thetmelexf the wavelet il-
lumination patterns is based on information gathered frbmixels in parallel,
which can result in a non-optimal choice for individual gisxeFurthermore, it
is possible that a child of another (less) important wavislehore significant
than the proposed wavelet illumination patterns.

e Matusik et al. [61] use a method in which reflectance functiare approxi-
mated by a collection of non-overlapping box filters, that split progressively



6.7. IMPLICIT SAMPLING 113

(a) Coarse approximation. (b) Split according to energy. (c) Split according
to entropy.

Figure 6.23: (a) An approximation (red) of allreflectance function (green). (b) Refinement
according to energy content. A better refinement critenoteims of error, would be according
to entropy (c).

based on the current approximation for each pixel separakak splitting cri-
terion, however, is not optimal as demonstrated in figur8.6S21b-figure 6.23.a
shows an approximation (red) of @1representation of a reflectance func-
tion (green). In sub-figure 6.23.b the approximation is efiby splitting the
box filter with highest energy content (as is done in [61]).wdwer, in sub-
figure 6.23.c a more optimal refinement, according to entrigmhown.

For this method we will use a different refinement oracle dase optimal pro-
gressive tree approximation that avoids the disadvant@igesth methods.

6.7.2 Wavelet Noise
An important tool in this novel acquisition technique is what noise. We define a
wavelet noise pattefd . ; as the sum of normal distributed randomly weighted wavelet
basis functions:
M.i=ypW.j,
whereW.  is a vector of normal distributed weights.
The observed exitant illumination under incident illurtioa M . is (using equa-

tion (3.1)):

C = TM,;
= TyU' M,

= TP yW,
= TyW,,

and thus the observed resporg®f a single pixelp is:

cp =Ty, W.i.
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DenoteW = [W. 1|...|W. 5], where eacW . is a column inW (a set of wavelet noise
patterns’ weights). We would like to minimize the number efuired illumination
patterns, and thus the number of photographs that need tagtered, such that the
reflectance functiofiy, , can still be accurately determined.

Since the reflectance functiony,, containsl elements, a brute force approach
would require at leadtwavelet noise pattern&'. j, and requires a linear system to be
solved (for the reflectance functidny p) for each pixelp:

P=Ty,W, (6.8)

whereP is a vector containing the observed (known) pixel valm@sfor each emitted
wavelet noise patteriv.j. However, in chapter 5 we noted that each reflectance
function Ty, can be compactly represented by a non-linear wavelet appadion.
Now suppose that eachy , can be sufficiently approximated by at mest<< |
coefficients. If we know whicim coefficients are significant, then an accurate estimate
of the magnitude of these coefficients is possible from émgitat leastm wavelet
noise patterrfsM ;. Denote the set of thesa wavelet coefficients asy, yielding

a approximative wavelet basig™, and a reflectance function approximatibgm o
Thus:

P& Tyem , WO, (6.9)

whereWsm is a matrix that contains the random wavelet coefficientsasponding to
the wavelet coefficients ifiysm ,.

If Wsm, P, and the set afn significant coefficients are known, then the reflectance
functionTysm , can be efficiently computed using a linear least squaresmation.
BothW andP are known by either construction or acquisition. Howewés,unknown
which m coefficients are significant for a pixgl Furthermore, each pixgl has a
different set ofm significant coefficients.

6.7.3 Progressive Refinement

To compute whicimcoefficients are significant for an approximation of the flace
function, a progressive algorithm is used. This algoritisnibéased on optimal pro-
gressive tree approximation (section 6.5). However, leeflatailing the progressive
algorithm we first show that it is possible to use a progresalgorithm to infer the
reflectance functions. Next, a refinement criterion for pesgively computing a re-
flectance function is derived.

4Generally, it is better to use more thamwavelet noise patterns, since it is possible tharthmatterns
are not linearly independent for the subspace spanned by tfom-zero wavelet coefficients.
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Validity of a Progressive Algorithm. A progressive algorithm is only possi-
ble if a reliable estimate can be made of the magnitude of aedudf the significant
wavelet coefficients. In other words, we need to ensure tieatdast squares error
when estimating a subset (containing less timaiand less thah) of the wavelet co-
efficients is well behaved. Therefore, reconsider equd8®), and extend it with an

error termES):

P=Tysi ) W +Ep,
where 1< i <m, andsj = {sm[1],...,sm[i]}. Combining with equation (6.8) we can

write ES) as:

D = (Twpw) — (Twsipwsi)
Ry W

3

WhereR(pi) is the residue, containing the wavelet coefficients zerahdT  , to ob-

tainTysi . Note thal RY 2 decreases asncreases. Furthermo (m) 2~ 0.
Wi p p p

An important observation is that the magnitudes of the efemm EEP are dis-
tributed according to a normal distribution, sindéfollows a normal distribution by
construction, and a weighted sum of normal distributions rormal distribution it-

self. The mean of all elements E18> is zero. The variance is determined by the
magnitude of the elements in the resid?%.

Consequently, the wavelet coefficients oT s p can be estimated from the ob-
served pixel responsdsusing a linear least squares minimization (equation (6.9))
The error on the estimates decreases if the remaining ngpsifisant wavelet co-
efficients are added with increasing Therefore, the reflection function’s wavelet
approximatior ys; 0 should contain thelargest coefficients, in order to minimize the
error on the estimates.

This proves the validity of a progressive algorithm, beeaitienables to make a
reliable estimate of the wavelet coefficients of a subsehgfsize (less tham). Fur-
thermore, this implies, that, by carefully extending thesseintermediate decisions
can be made based on the current estimates of the wavel&teogfT =i . Finally,
with each additional increase of the sgtthe quality of the estimates increases.

Progressive Refinement.  The previous argument shows that it is indeed possi-
ble to use a progressive algorithm to extract an approxenati a reflectance function
from the observed pixel values under wavelet noise illutiima The estimates of the
i largest wavelet coefficients, can in turn be used to driveptiogressive algorithm,
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Data: priorityQueueprocessOrder
list treeApproximation

Init: add the scale function farocessOrder
treeApproximations empty

while(maximum number of coefficients not reaclaed
processOrder is not empand
processOrder.top- threshold
{
newWavelet processOrder.top
addnewWaveleto treeApproximation
estimate the energy in each of ttheect children which
overlap the footprint ohewWavelefLeast Square$
insert children iprocessOrder
}
Re-estimate all selected wavelet coefficiehisgst Squared
in treeApproximatiorio arrive at the final solution.

Figure 6.24: A high level description of the algorithm used to computeféeotance function
approximation for each pixel.

based on an optimal progressive tree approximation.

An algorithm based on optimal progressive tree approxionatian be used for
each reflectance function separately as follows: Thesisetith i = 1, of important
coefficients is initialized to the root of the wavelet treéeTcorresponding wavelet co-
efficients of the reflectance functidnys; p can be estimated by a linear least squares
optimization on equation (6.9). Using these estimatessé#ig; is expanded using
the progressive refinement rule of equation (6.3), and thegss is repeated until a
sufficient accurate approximation of the reflectance fuomcis obtained. This algo-
rithm is similar to the one presented in the previous se¢Bo), except that the HDR
photographs are recorded beforehand, thus the cost of g gperation is much less
expensive (i.e., only a linear least squares system nedus $olved, which can be
computed relatively fast).

A problem with this approach is that each time thesses extended, all wavelet
coefficients in the current approximation and all theirdteh’s coefficients need to be
re-estimated. Re-estimating all wavelet coefficients elhé@ration requires a signifi-
cant overhead, not only in terms of computation, but alsetims of required number
of illumination patterns, since the number of children gsdimearly with the length
of the current approximation. A solution to this dilemmadsonly estimate the chil-
dren of the wavelet that has been added most recently, aminketine estimates of
the children of previously added wavelets without re-emihg them. The rationale is
that the relative error on large estimates is small, andttiiestimate will not change
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Initialize approx.
(empty), and select new Add to tree
priority queuep wavelet (top ofp) approximation.
‘with scale functiory.
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queuep. ses (Least Squares)

Post-process (repeated for each pixel)
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noise illuminatio
and record HDR
photograph.

Acquisition Step

Figure 6.25: A flow-chart of the implicit sampling algorithm (see also figi6.24)

much in magnitude. The relative error on small estimatewielver, can be large, but
this is not really a problem since we are mainly interestedrige coefficients. Once
the final sek, is found, all coefficients are re-estimated to maximize eacyl

This can be efficiently implemented using a priority queumilar to equation
(6.4)), that contains the estimated children’s waveleff@ments from which a sin-
gle coefficient is selected in each iteration step. The tieguhlgorithm is shown
in figure 6.24. There are three wavelet orientations asttiaith each location in
space. We store the total magnitude of all three waveletsasgte entry in the prior-
ity queue. When a specific wavelet location is retrieved ftbenqueue, we estimate
the direct children in the footprint of all three wavelet&(j 12 children for the Haar
wavelet). Therefore, the priority queue is sorted accaydinintensity, and all three
color channels are processed in parallel. The thresholttimlgorithm in figure 6.24
ensures that we are not modeling camera noise. A flow-ch#rioélgorithm is given
is figure 6.25.

6.7.4 Practical Considerations

The algorithm in figure 6.24 requires a least squares mimitiua for each iteration
during the computation of a reflectance function. A leastasgs minimization re-
quiresO(mPe) operations, wherm s the number of coefficients to be computed, and
eis the number of emitted wavelet noise patterns, (e.g.guliR factorization), this

is repeatedn times. Thus the total operation count for the computatioa single
reflectance function i©(me). This computation has to be repeated for each pixel's
reflectance function (i.e., typically 100601000 times). However, this approach is
not optimal, since a large number of operations is repeatblden consecutive least
squares minimizations. In figure 6.26 a sequential variarthe QR factorization al-
gorithm is given for computing the reflectance functiorQmm?e) time-complexity,
instead ofO(m’e). The algorithm is based on [16] (also in [97], p339), whe@R
factorization is updated for the case a column is added totiiginal matrix. In our
algorithm this corresponds to adding the wavelet noiseficiaits associated with a
specific wavelet “location” (i.e W*i is extended in equation (6.9)). The most expen-
sive step in the algorithm i$), the back-substitution. To minimize the computational
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Input: Q=) R?_Eijflv B(U-Y, andA
with QU =1 R.<A,01):o — empty, andB(® = B
(Q<I71>R(|]?i17)1 _ Aylii—l)

]

Output: The solution té\. 1; X =B

(1) v=Qi- DA, |

(2) compute the Householder reflectigff) usingV
3) QW =Ql-HHD

@ RY =[RYY IHOV]

(5) B =HOBI-Y

(6) back-substitut®"), X = B for X

Figure 6.26: A sequential QR factorization algorithm for computing astesquares solution of
A. 1 X = Bfor each iteration of the algorithm in figure 6.24.

cost, the back-substitution should be postponed as longssilje, i.e., only back-
substitute the elements that need to be estimated in thertuteration. Alternatively,
incremental singular value decomposition [10] can be ussigad of a sequential QR
factorization.

This all fits in the progressive algorithm 6.24 as follows: &dhadding a new
wavelet coefficient (from the priority queue) to the appmation, the corresponding
vector of wavelet noise coefficientis added (this corresigdoA. ; in algorithm 6.24),
and theQ andR factors are updated using the algorithm 6.26 (excludingotiek-
substitution stef6)). Next the wavelet children of this wavelet are determirsad]
added to the priority queue, Again, the corresponding veaftevavelet noise coef-
ficients are (temporarily) added, a@landR are (temporarily) updated according
to algorithm 6.26. However, instead of computing the congpleack-substitution
(step(6)), we only compute a partial back-substitution for the caefits of the child
wavelets. Next, these coefficients are added to the prigtigue, and), R, and,A
are restored to their original state, and the whole processpieated. Once the com-
plete approximation is found, a complete back-substitufgtep(6)) is computed to
maximize accuracy.

6.7.5 Results and Discussion

p » expressed

The result of the acquisition process is a set of reﬂectamnretibnsTLIJ (
Sm
in a wavelet basig), and non-linearly compressed using aé&. Note that this set
sr@ is different for each pixep, and thus for each reflectance function. A relitimage
is created as follows: First, the novel incident illumiloatL is expressed in the dual

wavelet basigp. Then, a relit pixel valuep, is computed for every pixeb by taking
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Reference Photograph Relit Result

Figure 6.27: A hard disk illuminated from the right side by a photograpradéndscape. The
scene contains specular (disk), glossy (cover), and diffusderground) materials. A reference
photograph is shown on the left, and a computed relit imagigemnight. The reflectance field
is computed from 256 wavelet noise patterns and each refleefanction is approximated by
64 Haar wavelet coefficients.

Reference Photograph Relit Result

Figure 6.28: Identical to figure 6.27, but a photograph of an old stonegarid used as incident
illumination. A detail of the specular reflection showing tinderside of the bridge is shown to
illustrate the presence of stochastic noise on relit result
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Figure 6.29: A photograph of a hard disk (left) under wavelet noise illnation (right).

the dot-product of the non-linearly approximated reﬂeceaj‘lunctionTqJ w andthe
Sm
p
incident illuminationLg.

In figures 6.27, 6.28, 6.31, 6.32, and 6.33 some results ®félchnique are given.
A reference photograph is shown, for each pair, on the Iditlenthe computed relit
image is depicted on the right. The reflectance functionalf@xamples, except those
in figure 6.33, are approximated by 64 coefficients computech 256 photographs.
The reflectance functions in figure 6.33, are approximatedyus?8 coefficients com-
puted from 512 photographs. The resolution of the incid&mhination is 512x 512.
We would like to stress at this point, that each reflectannetfan uses a different set
of 64 (or 128) Haar wavelet basis functions, as opposed ttetimique of section 6.6
where all reflectance functions used the same set of wavedét functions.

In figure 6.27 and figure 6.28, a hard disk is shown, illumiddtem the right
side by two different photographs. The scene contains $pe(@isk), glossy (cover),
and diffuse (underground) material properties. The finatjgoted reflectance field is
68MB LZW compressed (158MB uncompressed). An example gfsbéne under a
wavelet noise illumination pattern is shown in figure 6.29.

A detail of this scene, containing a balanced selection féér@int material prop-
erties, is used to test the influence of the number of coefisieersus the number of
photographs. The results are depicted in figure 6.30. Thgnauh shows the error
with respect to the reference image as a function the nunfloeredficients computed
using 256 illumination patterns. A minimum is reached ford®fficients. Adding
additional wavelet coefficients allows to approximate taBectance function more
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Figure 6.30: The error on the approximation and a reference photogratghrims of the number
of coefficients and the number of photographs. The errorispeded on a detail of the scene
from figure 6.27, and contains a balanced selection of diffgbossy, and specular material
properties. The red graph shows the error with respect touh#er of coefficients when using
256 illumination patterns. The green and the black graptvstibe error on respectively 64 and
128 coefficients for a variable number of illumination patte

accurately (e.g., from 32 to 64 coefficients), however, anlymited amount of in-
formation is available to estimate the coefficients, andtiith each increase in the
number of coefficients, the accuracy of the estimates deesedt a certain point, the
error on the estimates outweighs the addition in wavelefficaants (e.g., from 64 to
96 coefficients). The green and black graphs show the erraefpectively 64 and
128 coefficients as a function of the number of illuminatiatterns. As expected the
error decreases with each additional illumination pattern

The processing time required depends on the number of deetfic the number
of photographs, the underlying material properties, apditise threshold. We tested
a number of settings on the detail shown in figure 6.30. Thangmfor each setting
ranged from 0.005 to 0.075 seconds per pixel on average, @Ha Pentium 4 with
1GB of memory.

In figure 6.31 and figure 6.32 a scene is shown, similar to figu2® and fig-
ure 6.21. Unlike the previous method (section 6.6), we atsoputed the reflectance
functions of directly visible pixels on the CRT monitor. Tiireal computed reflectance
field is 139MB LZW compressed (329MB uncompressed).

To compare the quality of the obtained results of this teghaiversus the tech-
nique of the previous section consider figure 6.33. Thisscentains the glass candy
bear jar which is also used in figures 6.16 and 6.17. The rafieetfunctions of this
scene are approximated using 128 Haar wavelet coefficigrgsare inferred from
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Reference Photograph Relit Result

Figure 6.31: A dinner scene, similar to figures 6.20 and 6.21, capturedgugb6 wavelet
noise patterns. Each reflectance function is approximasedy64 Haar wavelet coefficients.
A photograph of a small church is used as incident illumorati

Reference Photograph Relit Result

Figure 6.32: Identical to figure 6.31, but relit using a photograph of alsiskand as incident
illumination.
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Reference Photograph Relit Result

Figure 6.33: The glass candy bear scene, which also featured in figurés6d. 6.17, captured
using 512 wavelet noise patterns. Each reflectance funidiapproximated using 128 Haar
wavelet coefficients.

the effects on the scene of 512 wavelet noise patterns. Ratalthough the number
of recorded HDR photographs is only 25% of the number useth®result in fig-
ures 6.16 and 6.17, the results are visually more pleasing.

All three results show some noise in dark areas. There arsdwces of noise.
First, there is measurement noise, noticeable in regiotislaiv reflectance. Second,
there is some stochastic noise, due to the stochastic rettive illumination patterns
and estimation process (e.g., visible in the detail of figh&8, under the arch of the
bridge). This stochastic noise shows some structure telatine (Haar) wavelet used.
The amount of noise should decrease if the number of phqtbgriacreases.

The methods of section 6.6 (also in Peers and Dutré [74])\atdisik et al. [61]
are closest related to the presented method. What followssisort comparison of
the presented methods and [61]. Both [61] and this method hastraightforward
data acquisition process, which is complicated in [74] by thedback loop. The
number of distinct wavelets in the computed reflectancetfans is approximately
262000, which is almost equal to the total number of possil@eelets (given the
resolution of the incident illumination). This gives an&en how many wavelets have
to be emitted to achieve similar results with the technigi@4]. Matusik et al. [61]
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solve a constrained linear least squares problem, whicloie momplex than solving
an unconstrained linear least squares problem. Furthernwifurther enhance the
results [61] requires a spatial correction, which can faihe scene contains many
high frequency features. The presented method perfornerivgien compared to the
results of [61] without spatial correction. We use a morérogal refinement criterion
compared to both previous methods. Furthermore, it is ancldat the constraints
are on the natural illumination used in [61], whereas theelgtvnoise patterns are
well defined. A key difference is that the wavelet noise pat@re dense in space and
frequency, whereas this is not guaranteed for natural ismiage

6.8 Conclusion

In this chapter, two progressive tree approximation athors with wavelets have
been detailed. These two algorithm form the basis for two affigient acquisition
methods for reflectance fields. Both methods use a CRT madwitemit structured
illumination upon the scene, and both use a progressiveitigoto approximate the
reflectance field. The first method, based on greedy progeesie approximation,
uses a feedback loop and selects, during acquisition, whételet basis functions
to use. The second algorithm, based on optimal progressigeapproximation, uses
a fixed set of wavelet noise patterns. From the scene’s resgorthe wavelet noise
illumination, each reflectance function is progressivafgired.



7

Sampling 4D Reflectance
Functions

This chapter discusses the acquisition Dfréflectance functions. A novel acquisition
device based on the Light Stage is presented. It is shownlhiewlt fits in the frame-
work developed in chapter 3. Finally, an acquisition aaegien method is detailed
that reduces the acquisition complexity franin*) to o (n®). The work presented in
this chapter was first published in [58].

7.1 Introduction

In chapter 2, B approximations of B incident illumination were discussed. The
motivation behind approximating the incident illuminatiby a lower dimensional
representation is that due to the direct relation betweeifmensionality of incident
illumination and that of the reflectance functions, it isf&iént to capture a lower
dimensional approximation of each reflectance functionpt@ing 2D reflectance
functions, and thus altreflectance field, is less complex than acquiring the fDil 6
reflectance field.

The relit results under 2 incident illumination look realistic and convincing.
However, there are situation in whiclbZncident illumination does not suffice. An
illustration of such a situation is shown in figure 7.1. Irsttkample a paper and a toy
soccer ball are shown, illuminated by the sun shining thhosmme Venetian blinds.
The light coming from the sun is highly directional, whileetienetian blinds cast a
spatially varying illumination pattern on the scene. Whaptaring an environment
map (D incident illumination) of this scene will yield a differenésult depending
on the location of the light probe, e.g., the blue and red eddpots in figure 7.1.
For the blue marked spot, the sun will be visible in the envinent map. For the red
marked spot, this will not be the case.

It is obvious that certain illumination conditions requdie incident illumination.
However, it is not clear if this also implies the need f@ #eflectance functions. A
common misconception is that if the geometry of an objechi@in, and for each sur-
face point a D reflectance function is also known, then the effectsfrdflectance
functions can be exactly simulated. The idea is that at eadhce point, a P slice
of the D incident light field is extracted, and used in B 2elighting computation.

125
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Figure 7.1: A photograph illustrating the importance dd4ncident illumination. A paper and
a toy soccer ball lit by the sun shining through some Vendilands. The Venetian blinds cast
spatially varying illumination onto the scene.

In figure 7.2, a situation is shown where this will fail. Indghiigure, an object is
illuminated by parallel beams of light. A point (a), not ithinated by a beam, still re-
ceives indirect illumination from a point (b) (that is illumated by a beam). In global
illumination [29], such indirect illumination is computdyy performing a full light
transport simulation through the scene. The relighting matations in image-based
relighting are similar to the direct illumination computats in global illumination,
and hence, indirect illumination from other surface poistsot included in such a
case. A notable exception occurs when at each surface gwerigcident D slices of
the D incident light field are identical. This situation corresgs to relighting with

9
R
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Figure 7.2: An illustration of the effects of B incident illumination. The B incident illu-
mination consists of beams of light. Point (a) lies outsideeam, while point (b) is directly
illuminated by a beam. The indirect illumination from po{b) to point (a) can only be accu-
rately computed, when using botb4ncident illumination and B reflectance functions.
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2D incident light fields, as discussed in the previous chapters

To relight with 4D incident light fields, we need to capture B 6eflectance field.
Similar to capturing ® incident reflectance fields, this implies that we need to know
how these reflectance fields react to incident illuminatéin jn this case. Although
this might seem trivial, a number of practical problems nieelde solved. First, how
do we sample this@ space of incident illumination? Second,@ dpace also implies
an o(n*) acquisition complexity. How can we reduce this complexiigrs that the
duration of the acquisition becomes more practical. Thé djugstion is answered
in section 7.3. In section 7.5 an acquisition accelerati@thwod is introduced. In
section 7.2 the implications on our theoretical framewdnksing 4D incident illumi-
nation is investigated.

7.2 Relighting with 4D Incident Light Fields

In this section, we first study how relighting wittd4incident light fields can be ex-
pressed in terms of the framework developed in chapter 3.t,Nlke& angular and
spatial components oftincident light fields is introduced. Finally, an informaéfr
quency analysis of the effects on the reflectance field of thethangular and spatial
component of B incident illumination is made.

Framework. The framework presented in chapter 3 is flexible enough t@atip
relighting with 4D incident light fields. The light transport is still a linegperation,

even with 4 incident illumination. As a result the basis relighting atjan (3.1) is

still applicable:

C=TL+S

however,L now is a serialized version of thédincident illumination. This implies
that a different serialization operatgr has to be defined. As in th&Zase, a straight-
forward serialization of a(x,y, z,w) coordinate in a B space, discretized at a resolu-
tion of n x mx | x k, can be serialized dgl (mx+Y) + z) +w.

As before, each reflectance functidn,is a 4D function serialized identically as
the incident illumination. Each elemeiny in this reflectance function is the response
of thei-th pixel under incident illuminationl) = [&j]x. In other words, by setting
one of the elements of the incident illumination to one, the@sponding response of
the reflectance functions can be observed.

Angular and spatial component. To gain further insight in the nature oD4
reflectance fields, consider the illustration & #cident illumination in figure 7.3.
Intuitively, 4D incident light fields consist of two components: angular compo-
nent, and sspatial component. Note that the two proposdd @pproximations in
section 2.2, omit one of these components. Furthermore, thet an environment
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Figure 7.3: An illustration of the angular and spatial component Bfidcident light fields.

map is equivalent to the angular component for a specificagatordinate.

The Light Stage samples ®@4eflectance field (i.e, a collection ob2reflectance
functions), by emitting illumination from a point on a bound sphere. This corre-
sponds to sampling over the spatial component, and emittimgination over the
full angular range at each point. A CRT monitor, used in ceaft samples allre-
flectance field densely in a similar manner. Moving from oneptio another implies
a change in spatial coordinate. Each pixel emits light dify, and thus over the full
angular range.

Frequency analysis.  To design an efficient acquisition apparatus for reflec-
tance fields, an intuitive frequency analysis of theBerdflectance functions is pre-
sented.

The frequency response of spatially sampl&dréflectance functions, is similar
to the frequency response ob2eflectance functions. As discussed in chapter 4,
these are not band-limited. Furthermore, this componergrig closely related to the
BRDFs of the underlying materials.

To better understand the frequency response of angulariplsa D reflectance
functions, consider the situation in figure 7.4. In this figuan object is shown, illu-
minated angularly from a point on the bounding volume. Frbis fllustration, it is

Figure 7.4: An illustration of the effect of angularly emitted incidéhtimination. Each angu-
larly emitted ray (from a single point on the bounding volgrhits a different surface point on
the object.
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clear that the different angularly emitted rays hit the obg different surface points.
Ignoring subsurface scattering and indirect illuminatidis implies that each surface
point is at most influenced from a single direction. And thhs,reflectance function
is very high frequent. Subsurface scattering will in mostssayield a local response,
and thus still result in a fairly high frequency responsdidect illumination, is the
only source of low frequency components.

7.3 Acquisition

As noted in the previous section (7.2), the frequency respoithe reflectance func-
tions under the spatial component @ 4hcident illumination will be very similar to
the frequency response obZeflectance function captured by a Light Stage. In this
section, a novel acquisition device is presented that estarfnormal” Light Stage in
order to acquire b reflectance fields.

Extending a Light Stage to captur®4eflectance functions, requires to add the
ability to emit illumination angularly at each Light Stagght source position. One
could envision a similar sampling strategy (as with the Ed@omponent) to achieve
this goal, for example by aiming a light source at differeinéctions. However, pre-
viously we noted that the corresponding responses of arlg@mitted light have a
high frequency behavior. Undersampling this componerityigld visually disturb-
ing relit images. In chapter 4 a number of strategies to canfiese aliasing effects
are discussed. The solutions includédgher sampling rategre-filtering of the sig-
nal, and additionally for image-based relighting applicasigure-filtering the incident
illumination.

Setup description.  Although preferred, using a higher sampling rate is not al-
ways possible due to mechanical limitations. Obviouslg;filtering the signal is not
possible. That leaves pre-filtering the incident illumioatas only alternative. By
replacing the light sources by an LCD or DLP projector, ttda be easily achieved.
A projector allows to emit angularly structured patternghotograph of a prototype
setup can be seen in figure 7.5. This is a similar Light Stagéguration as the de-
vice presented in section 2.3, except that a single lightcgois moved by a gantry,
instead of switching on and off different light sources. Eimg pre-filtered angular
incident illumination is straightforward. A large selextiof filters are available to
pre-filter the incident illumination. In our implementatiove use a box filter with a
width equal to the sampling frequency. In other words, ttegqation plane is subdi-
vided inn x n squares, and each square corresponds to a box-filteredesaEguth
square is lit sequentially, and an HDR photograph is reabr@her, more complex
filters can also be used (e.g., Gaussian filters). We refdantbeested reader to [56],
chapter 6 for an in depth study of different filters to capiibereflectance functions.
Note that only angular filtering is possible using this setup

Such an HDR photograph corresponds tolastice of the ® reflectance field,
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Figure 7.5: A photograph of a prototype acquisition device to captibedflectance functions
of an object. The object (marked in red) is mounted on a tbtataA camera (marked in blue) is
also located on this turntable. A projector (marked in gfeeaunted on an arm can be moved
along the latitudinal direction. Rotating the turntablalizes a (relative) longitudinal rotation
of the projector with respect to the scene (and camera).

(" Fixed projector position, angular sampling.

Object

1y

Changing projector positions.

Figure 7.6: An illustration of the data acquisition process. For eadjgutor position §lue),
the angular component is sampled using the projeciaef).
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and thus a columili. ; of the transport matriX. By illuminating each square for each
projector position, and recording an HDR photograph fohaiemination condition,
the matrixT can be completely constructed. The acquisition processoisidally
illustrated in figure 7.6.

Practical considerations. Before capturing reflectance fields using this setup, a
few calibrations are required:

e White balancing. White balancing is performed by relating the white emitted
from the projector to the observed white by the camera. Sinisenot possi-
ble to directly observe the emitted white from the projectoGretagMcBeth
ColorChecker DC is used. The central patch in this color k&e@n figure 3.2
such a color checker chart is shown) is diffuse white, andilshdan theory, not
alter the color of the reflected light. By aiming the projectehile emitting a
solid white pattern, on this white patch, an indirect oba#gon of the projector
white is made.

e Radiometric calibration of the projector. In case complex, non-binary, fil-
ters are used to pre-filter the incident illumination, a oadétric calibration of
the projector is required. This is similar to compensatimged CRT monitor's
gamma curve (section 6.3), except that, as with white balgn@an indirect
observation is made of the emitted illumination.

e Projector black-level. A typical LCD projector has a 1 : 300 contrast ratio, and
a DLP projectora 1: 2000 contrast ratio. This contrast ligtthe ratio between
the darkest and brightest intensity. This also implies thatdarkest intensity
(i.e., emitting a completely black pattern) still resultsan observed intensity.
This has to be corrected in the recorded images. Thereforevery projec-
tor position, an additional photograph is recorded whiletéamg a completely
black pattern. This image is subtracted from each recortetbgraph during
acquisition.

7.4 Results and Discussion

To illustrate the effect of relighting with @ incident light fields, a scene contain-
ing two toy monkeys is used (figure 7.7). This scene is cagttrmm 224 projector
positions, 32< 7 regularly spaced locations on a hemisphere surroundagdéne.
For each projector position, a 2616 angular sampling is used. This yields a total
of 57344 HDR photographs that need to be recorded. In figutetfree different
situations are simulated with respect to two light sourcke:monkeys are centered
between both lights, the monkeys are located before thésligind, the monkeys are
moved closer to the left light source. As can be seen, thetafie the relit scene is
significant.

To further illustrate the effect of[@ incident illumination, comparisons withC®
incident illumination (i.e., environment maps) are madégares 7.8 and 7.9. Again,
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Figure 7.7: An illustration of 4 illumination effects on a scene containing two toy monkeys.
Top: the monkeys are placed centrally between two lightcemir Middle: the monkeys are
moved forward with respect to the light sources. Bottom:rttuakeys are shifted towards the
left light source.

Figure 7.8: A comparison between relighting wittb2environment maps andXincident light
fields. The toy monkey scene is illuminated by three coloreahis of light aimed at the center
of the scene. Left: relit result usind2environment maps. Right: relit result using #cident
light fields.
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the scene containing two toy monkeys is used. In figure 7r8gtholored beams of
light are aimed at the center of the scene from differenttlona. The width of these
beams is smaller than the size of the scene. An environmeniswanstructed at the
center of the scene. The left relit image in figure 7.8 is compusing this B inci-
dentillumination. The right relit image is computed usirig ihcident illumination.

Unger et al. [104] presented two devices to captubeidcident light fields. In
figure 7.9 such an acquired4incident light field (courtesy of Unger et al. [104])
is used to relight the toy monkey scene. For comparison,iimeige of the same
scene is computed undeb2ncident illumination. This B incident illumination is
a selected environment map from th data set. The results in figure 7.9 illustrate
that the acquired reflectance fields are usable when usifvgvogll 4D incident light
fields.

In figure 7.10 another scene is relit usin® 4hcident light fields. This scene
contains an arrangement of different chess pieces, angbisrea using 56 projector
locations spread over a quarter of the hemisphexef8ubdivision). For each projec-
tor location, a 3% 32 angular sampling is made. The total number of recorded HDR
photographs for this scene equals 57344.

Using pre-filtered incident illumination during acquisiti eliminates aliasing ef-
fects in the angularly sampled componentbBfidcident illumination. However, since
this response is high frequent, the used filter will be vesiblthe relit results, as can
be seen in figure 7.11. In this figure, two details of selecredsare shown. The
box filter used during acquisition is particularly visiblelsing smoother filters will
yield less visible discontinuities. Another, preferredusion is to sample this angu-
lar component at a higher resolution. However, this alsoeases duration of the
acquisition.

7.5 Acquisition Speed-up

Capturing the B reflectance field of a scene or object is an enormous task. gk lar
amount of HDR photographs have to be recorded. If we assuptienistically) that a
single HDR photograph takes 1 second, then for the scenks prévious section, 16
hours of uninterrupted recording is required. Increasimgudar incident resolution,
worsens this situation even more. In this section, we pregopractical method to
reduce the number of required HDR photographs. For sintyplisie assume that each
dimension is discretized in sample locations. The acquisition method described in
section 7.3 has an acquisition complexitya@fn®). The presented method is able to
reduce this to an acquisition complexity@fn?) without significant loss of accuracy.

Recall the observation that sampling the angular compooteinicident illumi-
nation, yields reflectance functions dominated by highdety components. Fur-
thermore, the footprint of this response is compact (i.¢ocalized influence). This
potentially allows to emit more than one stimulus simultamsdy. The response of
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Figure 7.9: A comparison of relighting with 2 environment maps andincident light fields.
In this case, real-world acquired illumination is used. #Bencident light field is captured and
provided by Unger et al. [104]. Left: result of relightingtivia 2D environment map. Right:
result of relighting with a B incident light field. The corresponding incident illumiiat is
shown below each relit result.

Figure 7.10: Various results of relighting a scene witb4ncident illumination containing an
arrangement of chess pieces.
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Figure 7.11: lllustrating the effect of using a low angular incident itiination discretization.

each individual stimulus can be reconstructed afterwards.

For this purpose, we create a horizontal set of patteras shown on the left of
figure 7.12. Eacli is constructed in such a way that each individual filterea shis
does not influence another filtered stimulus in the same bwotét patternrH, once
projected. A similar set, the vertical set of pattevhss created as well, as depicted
on the right of figure 7.12. The response of the original (sinfiitered stimulug.*Y)
occurs twice: once in a horizontal 96t*%) and once in a vertical s&%). Each
patternH *%) can be written as the sum of individual stimufi-}):
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Figure 7.12: On the left, the set of horizontal patterns is shown, on thletrithe set of vertical
patterns. Each set of patterns is split up into 3 sets, in aughy that the patterns are spaced
out evenly (horizontally and vertically respectively).

H (%,0x) — z I_(X<i><d+0>()7

whered is called thenfluenceparameter and determines what the distance between
individual stimuli in the pattern is, anol < d. A similar definition exists fol/ %),
By construction we know that:

min<H<X’°X>-,V(V’°V)> = LW,

The question arises under what conditions/assumptiongeaxtend this rule to
the observed responses of each of the patterns:

min(TH<X=°X).,TV(y"°V)> ~ TLOW), (7.1)

If the following conditions hold, then equation (7.1) is eka

min(TL<X=i>.,TL<i«V>) = TL®Y if (i =y)and(j = x),
0 otherwise (7.2)

where:

ie{0xd+ox1xd+0y,2xd+0y,...},
je{0xd+oy,1xd+o0y,2xd+o0y,...}.
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4 )

- J

Figure 7.13: An illustration of extracting a single stimulus from the pesse of a horizontal
and vertical pattern. By taking a pixel-wise minimum of tksponses of the horizontal pattern
and the vertical pattern, a good approximation of a singfests is obtained.

Informally: the responses of the other stimuli in each ramtal and vertical pattern
do not influence each other, except for the target stimulus.

Thus, the image of projecting an individual squaréY) can be reconstructed
by taking for each pixel the minimum of the correspondingepimalues in the im-
ages resulting from projectinid %) andVv %), whereox = (y modd) andoy = (x
modd). This reconstructed image is an approximation of the phajay resulting
from emittingL*Y). In figure 7.13, an illustration of this is given.

If the conditions (7.2) are not met, this acceleration téghe will fail. For ex-
ample, if the scene contains a diffuse concave bowl poimedrds the camera, there
will be a lot of inter-reflections in the bowl. Using the minim on pixel values will
in this case not result in a correct approximation of a sisgjlaulus due to this indi-
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rect light. In such a case, the acquisition can only be dor@bjgcting each stimulus
LY) independently. By fine-tuning the influence parametehe amount of allowed
inter-reflection can be selected. This acceleration metlasdalso used to capture the
reflectance fields of the results shown in the previous secflte patterns for each
row or column were split into 3 separate sets (ide= 3). This reduced the number
of required photographs from 616 to(2 x 3) x 16 for the toy monkey example and
from 32x 32 to (2 x 3) x 32 for the chess pieces. The efficiency of the acceleration
method improves with increasing resolution. In general arereduce the complexity

of our data acquisition frone (n*) to 0 (n®), with n the discretization in each dimen-
sion.

7.6 Conclusion

In this chapter an apparatus for the acquisitionDfréflectance fields of real objects,
i.e., from a fixed vantage point has been presented. Morgawercceleration method
has been presented to reduce the acquisition complexitydrm*) to o (n®) without
significant loss of accuracy.
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Conclusion

In this final chapter, a summary of this dissertation, andottiginal contributions of
this work are given. Finally, some directions for futuregash are detailed.

8.1 Summary

This dissertation contributes to the sub-domainmége-based relightingn com-
puter graphics. The general goal of image-based relighsirtg visualize a scene
or an object under novel illumination. The complexity of themination can range
from a single light source to the observed illumination atal+world location. More
specifically, emphasis is placed on the sampling (acqaoigitf reflectance fields, and
reflectance functions of objects.

In the first part of this thesis, we explored the principled aonstraints of image-
based relighting in order to derive a solid mathematicamfaiation. The driving
principles and constraints are: linearity of light trangpeestriction to an idealized
RGB color space, time invariance of the scene/object, astriction to a single van-
tage point. It turns out that, given these constraints, erdaased relighting can be
formulated as a linear system of equations, where eachigigeitermined by the dot
product of its reflectance function and the illumination.

Probably the best known method for acquiring reflectancetfans is by using
a Light Stage. A Light Stage enables fast and easy acquidityosampling the re-
flectance functions from a large set of directions, omitpegitional dependence. In
order to use the sampled reflectance functions, a recotistiuoust be performed.
In this work several reconstruction methods are discussdccampared. Due to the
properties of the linear system, we show that an appropdimtensampling of the in-
cident illumination has a similar effect as reconstructimgupsampling) the sampled
reflectance functions.

Since image-based relighting is a linear system, any liogaration preserves
the integrity of this system. A particularly interestingdiar operation is changing
the (mathematical) bases, i.e., expressing the incidantiihation and the reflectance
functions in a different domain (e.qg., the frequency donmithe wavelet domain).
A change of basis allows to express the reflectance functioasdifferent domain
that has some desired property. In this work we consider theelgt and frequency
domain in order to compactly store the reflectance functémmsspeed-up the compu-
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tations of a relit image using linear and non-linear apprations.

A special extension to non-linear wavelet approximatiorsi@e approximations.
In this work, we presented a progressive extension to trpeapnations that allowed
us to develop two new acquisition methods which use a CRT toioems acquisition de-
vice instead of a Light Stage. The advantage of these newstign methods is that
they are able to sample reflectance fields directly in a diffebasis. The first method,
samples the wavelet represented reflectance field explaitd selectively during ac-
quisition. The approximation of the reflectance field is refimiuring acquisition, by
selectively sampling parts of the wavelet domain that arssictered important for the
reconstruction of the reflectance field. The second apprhattrer improves on this
idea, by implicitly sampling the wavelet domain during aisition. Acquisition con-
sists of taking a fixed number of random slices through theslevdomain. Such a
random slice is called wavelet noise. Afterwards, duringtgarocessing, a similar
progressive sampling is done to reconstruct a reflectanaifun per pixel. The dif-
ference is that the response of a single wavelet sampleasisecicted from the data
obtained from the acquired responses under wavelet noise.

All the methods discussed above are limited to capturin® agproximation of
the reflectance field. In the final chapter of this work, an agips, based on the Light
Stage, is presented for the acquisition bf &flectance fields. A brute force acquisi-
tion of such a ® reflectance field, however, is cumbersome due to the huger@mou
of data which needs to be gathered. Therefore, an additemtplisition speed-up
technique is presented.

8.2 Original Contributions

In this section we review the original contributions of thisrk organized per chapter.

Chapter 3. In this chapter, a concise notation based on matrices aedrlsystems
isintroduced. Serialization and resampling operatorns imghiding the dimensionality
of the problem and enable a unified theory for relighting viih and 4 incident
illumination.

Chapter 4. This chapter explored signal processing techniques toduegpthe ac-
curacy of the relighting computations.

o Different reconstruction techniques are investigated t&dhniques were qual-
itatively and quantitatively compared. Linear interp@atand multi-level B-
Splines interpolation performed best in terms of relatirere The latter recon-
struction technique yielded a perceptually slightly betesult in the case of
animated incident illumination. This work has been donedlaboration with
Vincent Masselus.
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e We show that for a large class of reconstruction methods @ipsampling meth-
ods), an equivalent downsampling method on the incidamhithation can be
defined resulting in identical relit results. Downsampl{ttge incident illumi-
nation) has the advantage over upsampling (the reflectamotidns) that this
operation has to be performed only once, and that indivicklalpixel compu-
tations require less processing time.

Chapter 5. In this chapter a special case of lossy compression methredaaes-
tigated. These lossy compression techniques are baseds@npajections, a linear
operation. Non-linear wavelet approximation proved to bgy\effective in reducing
the storage requirements and relighting computations.

Chapter 6. The previous chapter showed that representing reflectamotidns in
the wavelet domain yields a sparse representation. Thisapass was subsequently
exploited to achieve compression. In this chapter we furgieloit this property to
develop faster, sub-linear, acquisition methods.

e Two progressive variants of tree approximation with waisebre developed.
Both methods, greedy progressive tree approximation, aptiimal progres-
sive tree approximation, can yield a very compact represiemnt of a function,
without knowing the complete shape beforehand.

e An explicit sampling technique is developed that samplesréfilectance field
selectively and directly in the wavelet domain. This metidased on greedy
progressive tree approximation. A feedback loop is usedetid@ what part
of the wavelet domain is important to sample next in orderaeehan accurate
approximation of the whole reflectance field.

e Animplicit sampling technique is introduced that uses adimember of wavelet
noise illumination patterns. During post-processing,@raximation of the re-
flectance function for each pixel is computed separatelis dligorithm is based
on optimal progressive tree approximation and is able téesehhigh quality
approximations using only a moderate number of illuminatonditions.

Chapter 7. In this final chapter, a novel acquisition device, based anltight
Stage, is developed to capture and relight real-world abjeith 4D incident illumi-
nation fields. Additionally, an acquisition speed-up tdghe is discussed that signif-
icantly reduces the acquisition complexity. This work hasibdone in collaboration
with Vincent Masselus.

8.3 Directions for Future Research

Anyone who is looking for new directions for future reseairtimage-based relight-
ing should not despair after reading this dissertation. rhetassure you, there are
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still a lot of challenges ahead, albeit a bit less than a fearyy@ago (see also chap-
ters 2 to 7). The grand goal, the complete digitalizationeafl+world objects, is still
far away. It is unlikely that this ultimate goal will be reazhin the near future. A
number of intermediate challenges still lie ahead:

4D incident illumination. In chapter 7 a method for relighting witiDincident
light fields is presented. This technique suffers from a nemnd problems. First of
all, since it is based on the Light Stage, it also inheritpitsblems: limited sampling
resolution, point samples, ... Second, because the apparsés a projector, a bulky
construction is required, greatly taxing the design of &/falitomated construction.
Third. the resolution of the projected patterns is very t@dj resulting in obvious
aliasing artefacts.

A promising avenue for future research would be to improvenuihe acquisition
device presented in this dissertation, or even design a ledeiypnew one. The focus
of this design can include the capture of performances grigbquisition resolutions,
and, lowering the number of required photographs (i.e y&ittpn speed-up).

4D exitant illumination. In this work a scene is captured from only a single van-
tage point (subsection 3.2.4). The main motivation behimgl testriction is that the
dimensionality of the problem is reduced by two (i.e., & r@flectance field is re-
duced to a B field). This facilitates acquisition and data processing.

A few researchers have investigated image-based relgktith variable view-
points [45, 62, 63], or with a restricted degree of freedorodmera movement [36].
None of these methods, however, are able to relight witingident light fields. Fur-
thermore, all of these methods use a brute force approachptore the reflectance
field and rely heavily on some form of geometrical proxy.

A true image-based approach, for shape as well as appeahascyet to be pre-
sented. The advantages of image-based methods, outweighisdvantages with
respect to geometry-based methods. Probably the mosednlisadvantage is the
enormous amount of data required to accurately represese tieflectance fields.

Dynamic scenes.  Recently some research has focused on the acquisition of dy-
namic scenes [36, 66, 109]. Jones et al. [40] have experadeatextend the system

of Wenger et al. [109] to relight performances with écident illumination. Of all
these methods, the system of Wenger et al. is probably thesuosessful, but it re-
quires an expensive high-speed camera.

Future work in this direction would include the acquisiteomd synthesis of several
atomic performances, resulting invatual actor. It is not clear howatomicperfor-
mances can be combined to achieve complex performancestidlmdaintain a cor-
rect appearance under varying illumination. Another aeefion research in this area
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would be to find a sub-linear acquisition method capable pfurang and relighting a
dynamic scene, and this without the use of specialized hamelw

Editing reflectance fields. Probably one of the major disadvantages of image-
based techniques, that has received little attention nowy, is the editing of acquired
models. An image-based model is an exact (or at least a gqgodxdmation) model

of a real-world object or scene. It is not clear how to “impebsuch a model by, for
example, changing the reflection properties of a specificgiahe model.

Inimage-based rendering Wood et al. [115] deformed exiiginitfields. Lawrence
et al. [47] have made some initial steps in this directiod presented a system for
acquiring and editing non-parametric material repres@ms for spatially varying
BRDFs. In image-based relighting Wenger et al. [109] chdripe reflectance prop-
erties of captured human faces. With the exception of Laege al., none of these
papers are specifically geared towards providing a completiem for editing.

Digitalization... = The complete digitalization of real-world objects is tharmu goal
and | long for the day that a “digitalization” device is as aaonly present in every
household as a printer or a scanner is today. | hope thagbésarch brings this dream
a bit closer to reality.
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Wavelets

In this appendix a concise overview of wavelets, and relewsathematics is pre-
sented. It is not the intention to give a “practical guidetbinvavelets, nor is it the

intention to give an in depth “formal mathematical” ovewieThis appendix aims

at a level of practicality and mathematical detail, such thaupports this disserta-
tion. For a thorough and formal mathematical survey on vedgekee the excellent
book by Mallat [53], and Daubechies’ ten lectures on wagdtB8]. A more practical,

computer graphics oriented, introduction into wavelets loa found in the book by
Stollnitz et al. [98], and in the original SIGGRAPH 96 coarsn which this book is

based [90].

First, some important concepts and definitions from lindgelara, such as inner-
products, linear bases, and dual bases, are reviewedofsektl). Next, wavelets
are intuitively introduced through thidaar wavelet (section A.2). In section A.3,
a fast algorithm is discussed to perform a wavelet transfofimis is subsequently
generalized for arbitrary wavelets in section A.4. Next,digcuss how to generate
and use two-dimensional wavelets (section A.5). Finallyns practical issues are
detailed in section A.6.

A.1 Concepts and Definitions

An important concept in this dissertation is the notion afa-product, or inner-
product. Given two vectory andW of equal sizd, the dot-product is defined by:

V- -W= illeiWi.

This can also be denoted Ky |W) or by VTW. There are many interpretations
possible of such an inner-product. In case both vectors ammalized, the dot-
product equals the cosine of the angle between both vedimisther view on inner-
products is that theprojecta vector orthogonally onto another vector. Two vectors
are considered to be linearly independent, or orthogoredoh other, if:

V- -W=0.
1A vector is normalized if it has a unity length. Any vectdrcan be normalized by dividing it by its
length: .
VT2
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If each vector has sizk then at most normalized vectorsB.; can be defined
that are linearly independent with respect to each otherstBgking these vectors in
a matrixB = [B. 1|...|B., ], this orthonormality constraint can be denoted compactly
as:

BBT =1. (A1)

Such a set of vectors is called arthonormal basis of the-dimensional vector
space, and completely defines thidimensional space. In other words, any vestor
can be completely expressed in this bdsi®y projecting this vector onto each basis
vectorB.:

Ve' =VTB, (A.2)

or each element df is determined by(vg); =V - B.;j. This is also called thee-
compositiorof a vectorV into a basiB. Furthermore, the basis vectds; are also
called basis functions. Given the decomposed vediothe original vectoV can be
composed again by using equation (A.1):

vl = vT(BB')
= (v'B)B'
= 'B".
In other words, by doing an inverse transformation (nd@el = BT), the original
vector is reconstructed. The orthonormality condition qtigion (A.1) is a very
restrictive condition. A x | matrix B defines a general (non-orthonormal) basis of

anl-dimensional vector space, if and only if there existd arl matrix B, for which
the following condition holds:

BB = BB =1.
In such a caseB is called theprimal basis, and the dual basis. Again, a vector
can be decomposed in the primal basts! =V TB. Following a similar reasoning as
before, the composition is defined by:
VARSVA-18

Similarly, a vectolV can also be decomposed in the dual bags:The composi-
tion can be done by T =Vg'BT.

Finally, anorthogonal basis is a basis for which:
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Bi-Bj = [Bjlf if (i=}))
= 0, otherwise

foreachi, j € {1,...,1}, and,||B.;||2 # 0. In other words, the basis vectds are not
normalized. The dual basis is defined by:

B,= (A.3)

A.2 Haar Wavelet

In this section, we will first intuitively introduce the Haaavelet. The Haar wavelet is
the simplest of all wavelets, and particularly suited fas ffurpose. Next, the concepts
introduced in the previous section, are used to present a foamal framework for
wavelets.

lllustrative example.  Consider the vector:

V=[8;2;1;5.

We will use this vector to illustrate the basis principlestioé Haar wavelet. Now,
compute the averages of each couple of coefficients (iefirgt and the second, and,
the third and the forth):

Vavg = [5; 3]1
or
Voi + Vi
(Vavg)i = %

By averaging, some detail of the original veciothas been lost. When recon-
structing the original vectdv, this detail needs to be reintroduced. For example, for
the first two coefficients (8 and 2) a detail coefficient of 3eiguired in order to restore
the original values from the average 5, since 5= 8, and 5- 3= 2. The complete
detail vector is:

Vdetail = [3; —2],

or
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(Vdetail)i = V2i — (Vavg)i-

We can repeat this procedure on the obtained avek4ggyielding a new average
Vavg and detaiVyetair -

],
Vietait = [1]-

Van == [4

Define the vectoVy by stackingVayy, Vyetair» @Nd,Vgetail in a single vector:

Ww=1[4;1,;3,-2.

Note, that this can be done, for any vector that has a ldntjtt is a power of 2. The
number of times the average and detail are computed (nunilyecarsion levels),
equals the logarithm (with base 2) of the vector length;log

Haar wavelet basis transformation. The original vecto¥ can be reconstructed
fromVy, by recursively reconstructing the averages. This ralsesgjtiestion, if non-
recursive transformation, and, can be found such that:

V! vy,
vl — VwTwT_

Indeed, such a basis transformatipiin this case a 4« 4 matrix) exists:

+7 47 +3 O
TG S
Lol S
i 1 i
tz2 —3 0 -3

This is an orthogonal matrix, and thus the dual transforomatian be easily formed
using equation (A.3). For the Haar wavelet this transfoiomatan be easily gener-
alized for arbitrary sized (square) transformations byodticingscaleandwavelet
functions, (- andy(® respectively:

@M, = c(v)d(Shift(v,0,i)),
(M) = c(v)w(Shift(v,o,i)), (A.4)
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where Shift(v,0,i) = (2‘”*,—l —0) ensures that the correct values are used given a
wavelet levely, and offse® o from the continuous mother scale and mother wavelet
functions,(x) andy(x):

d(x) = +1 for0<x<1,
=0 otherwise
and,
1
Yx) = +1 for0§x<§,

= -1 for%§x<1,

=0 otherwise

and wherec(v) is a weighting function, which in this case ig(v) = 2|—V Finally, the
offseto must be in the intervdD, 2" — 1]. The 4x 4 matrixy is now defined by:

W= (600400 |20 |y

To obtain an orthonormal Haar wavelet basis, the weightingtionc(v) is set to@.
Also note thafVavg| Verai] =V | $0 |93 | 10|31 .

A.3 Fast Wavelet Transform

Computing a wavelet transform by blindly applying equat{éi?) requires, in case
of a vector of length, | inner-product computations. Each inner-product requares
operational count 0b (). Thus, the total time complexity of a basis transformation
is 0(1). For a number of basis functions the complete transformatém be done in
less time. For example, the fast Fourier transform can foamsa vector with a length

a power of 2, ino (llog,(l)) operations.

Cascading filter banks. In this section, we will show that there exists a fast
wavelet transform algorithm, that works with any waveletd dnas a time complex-
ity of o(l). Consider again the illustrative example of section A.2e Haar wavelet
transform was first computed by using a recursive algorithat,computes in each re-
cursion step the average per coefficient couple of the pus\awerages, and the detail

?Note that this formula is different than the ones found irsemg literature. However, this formula is in
essence identical, with the difference that we defined theslsts not on the unit intervd0, 1], but directly
on a vector of lengtth.
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Figure A.1: A cascading filter bank. A signal is filtered by a low-pass ffile and a high-pass
filter G. For both filtered signals, half of the coefficients are thmawt. The filtering is repeated
on the low-pass filtered result.

coefficients. At each step in this recursive algorithm, therages and the correspond-
ing details of half the coefficients are computed. This ieegpd log(l) times. Thus
the total complexity is:

logy(1)—1 |

2 7
log,(1)—1 5(log,(1)~1-i))
2(log()-1) 7

complexity

=
logy(1)—1
2i

)

i=
= 2-1
or in other wordso (l).
This recursive algorithm is also called thetterflyalgorithm, and can be generally

described by a set of cascading filter banks. For this purpesealefine a high-pass
filter G, and a low-pass filte. For the Haar wavelet, these are:

hoa = on |:+%;+%:| :
Jo:1 = Cg [4‘%; —%} .

The normalization constantg;, andcg have a similar role as the weighting function
c(v) in the previous section.

The working of the cascading filter bank is illustrated in fegé.1. At each cas-
cade, the signal is filter by the low-pass, and high-passdilteor both filtered signals,
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Analysis / Decomposition  Synthesis / Composition

Figure A.2: The analysis filter bank, versus the synthesis filter banle aralysis filter bank
first filters the signal with a high-pass filt& and low-pass filteH, and then drops half of the
signal. A synthesis filter bank, first inserts zero coeffitsen double the size of the signal, and
then performs a low-pass filterird/ and a high-pass filterinG’.

only half of the coefficients are kept. Next, the process jeated on the low-pass
filtered signal. This cascade continues until the lengtheftb-be-filtered signal is
a single element. Such a cascading filter bank is also catiemhalysisfilter bank.
At thei-th cascading step, a vector analogous to the followingsfoamation is com-
puted:

v [¢(|092(|)—i) ... p10%2()=1.2-1) | ylogz(1)-i.0) | | w(|092(|)—1,'2—1} _

The inverse operation, th&ynthesisfilter bank, is illustrated in figure A.2. A
synthesis filter bank, works in a similar manner as the amafjiger bank. First,
zero-coefficients are inserted in the signal. Next, thedigminterpolated by using
low-pass, and high-pass synthesis filtdfsandG’ respectively. The synthesis filters
for the Haar wavelet are defined as follows (note that thecexlin these filters go
from —1 to 0):

Example: analysis.  We illustrate this filtering on the example of the previous
section: a vecto¥ = [8; 2; 1; 5. The normalization constants are settp= cg =
L. orH = [+1;+1], andG = [+}; —1]. Then:

V2!
3 13
2.3. 22
2’ '2}’
1 -3
51_2!_}'

ViH = [5;

VG = [3;
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Note, that we assume that the signal repeats itself at thedawies in order to compute
the last element. Dropping all odd elements yields:

V«H)| = [5;3,
VG| = [3;-2

Note that:

[(VLP) |5 (V+G) |] =V [$20 o@D |20 | @]

Now, the filtering can be repeated Ovi«H) |:

(VxH) [xH = [4;4],
(V#H) [ «G = [1;-1].

Dropping the odd elements, yields the transformed veggor

Example: synthesis.  The composition of the transformed sigivgl to the origi-
nal signaV, can be done is a similar manner by using the synthesis filters

(thlelT)*H/ = [4;4]7
(Vg 1)*G = [1;-1],
summing yields:
Vsum - [5,3]

Note that this is equal t&/sym= V[¢p1? | $1V]. Upsampling the subsequent level:

(VsumT)*H/ [5;5;3;3a
(Vpg, 1)*G = [3;-8;-2;72.

Adding results in the original vectsf = [8; 2; 1; 5.

A.4 General Wavelets

In this section, other wavelets than the Haar wavelet aredoced. In many cases, the
mother scalg(x) and mother wavelep(x) cannot be described by a simple analytical
formula as with the Haar wavelet. In the previous sectioméwer, we demonstrated
that a wavelet transform is completely defined by its anajysnd synthesis filters.
Most wavelets are specified, and even designed, by theirdiefficients.
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Definitions.  Before introducing other wavelets, a few characteristicaavelets
are defined.

Low-pass DC gain DCy = | 3 hi|,
High-pass DC gain DCg = | 3 gi |,
Low-pass Nyquist gain NQy = | 3 (—1)'hi |,

High-pass Nyquist gain NQs = | 5i(—1)'gi |,

For any wavelet the high-pass DC gditg, and the low-pass Nyquist gaiNQy,
should be equal to zero.

A wavelet is characterized by the following properties:

The support or footprint of a wavelet, is directly related to the filtentghs.
The Haar wavelet is the shortest wavelet possible. Notelledength of each
filter can be any number greater or equal to two. Furtherntbee)ow-pass
filter length, and the high-pass filter length do not need tedpeal. Infinite
filter lengths are possible (although impractical). In gahe compact support
is preferred to maximize locality in the spatial domain.

The number offanishing moments also called the polynomial approximation
order, is the lowest order of polynomial that cannot be regméed completely
by the scaling functions. All polynomials with an order l¢kan the number
of vanishing moments can be completely represented. Fongeathe scale
function of the Haar wavelet can only completely repres@tgrwise constant
functions. These have a polynomial order of 0, thus the nurabeanishing
moments of the Haar wavelet equals 1.

The smoothnesof a wavelet is important, because it ensures an as smooth as
possible approximation of the original signal.

Symmetric wavelets are preferred above non-symmetric waveletspisedaey
have more signal extension possibilities. In section Aiffieient strategies are
discussed for signal extension at boundaries.

Finally, orthogonality is a desired property.

Orthogonal Wavelets.  Given a low-pass filteH of lengthn, a possible orthogo-
nal high-pass filter can be computed by:

g = (—1)i Pni.

The synthesis filtersl’, andG' can be computed from the analysis filter by:
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Figure A.3: lllustrations of two selected Daubechies orthogonal weteelThe plotted wavelets
are theD4, andD8 wavelet.

hi = ahj,
gy = oagi,
where:
L2
[HI2

If the analysis filter is defined on the interv@ln], then the synthesis filter is defined
on the interva[—n,0].

An orthogonal wavelet is orthonormal if and onlyDfCH = v/2, andNQg = v/2.
Thus, by introducing normalization parametefsandcg, any orthogonal wavelet can
be normalized.

A well-known example of a family of orthonormal wavelets isbaubechies [17]
(also in [18]). All filters have an even length, and are desiyto have a max-
imum number of vanishing moments given their length (lengt@ x #vanishing
moments). Furthermore, these wavelets are in gemetaimooth, nor symmetrical.
These wavelets are denoted by their length: e.g., Dautedhiap wavelet, obD4,
has a wavelet filter size of 4 coefficients. The Haar wavelatss contained in this
family (i.e.,D2). In figure A.3 two examples, Daubechies tap 4 and Daubsc¢hje
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8 wavelets, are shown. For each wavelet, the scale and wéwefions are shown.
The low-pass synthesis filters (rounded to 5 significantslidor these examples are:

Hpa [0.48296; 083652; 022414 ;—0.12941,
Hps = [0.23038;071485;063088;—0.02798;
—0.18703; 003084 ; 003288;—0.0106Q.

For a derivation we refer the reader to [18], chapter 6. Alsthat work, an extended
list of filter coefficients can be found in table 6.1, p 195.

Bi-orthogonal Wavelets. The orthonormal wavelets discussed above, have a num-
ber of excellent properties, such as a compact supportsénsitnumber of vanishing
moments, and orthogonality. However, these wavelets aremooth, nor symmet-

ric. When designing a wavelet, additional properties caa bt important for specific
goals. In order to have more flexibility, the orthogonalignstraint is relaxed to a
bi-orthogonality constraint.

A wavelet is bi-orthogonal if the following conditions arestn

¢(\/,i).¢‘(\/-,1) = 3,

P gl = 8udi
qJ(v,i) ,qg(v.,J) = 0,
¢(v,i) .qj(VJ) = 0.

Or in terms of filter coefficientsH is orthogonal tdG', andH’ is orthogonal tdG.

In this thesis we consider only two bi-orthogonal wavel#is:5/3 LeGall wavelet,
and the 97 Daubechies wavelet. Both are part of a larger family of itii@gonal
wavelets that adheres to the following rules:

e These wavelets are symmetrical.

e Unlike their orthogonal counterparts, the analysis fileeflicients start with a
negative index—“%l, wheren is the length of the filter.

e Given the low-pass synthesis, and analysis filter, the pigs filters are related
through the “aliasing cancellation” conditions:

gi = a(_l)ihlfia
g =a(-1)'h,

wherea is a normalization constant given by:
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Figure A.4: A plot of the scale and wavelet functions for thé35LeGall wavelet (synthesis
and analysis).
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2
(i hi) (i (=)™ + (i i) (S (=1)'hi)”
e Both (high-pass and low-pass) filters have either an eveanadd length. In

case of the two discussed wavelets, these are odd in lengtthefmore, both
filters do not have an equal length.

a=

In figure A.4, the 33 LeGall wavelet (also called Integey'3, or bi-orthogonal
5/3 Daubechies) is shown. This wavelet has two vanishing mésnand its (anal-
ysis) scaling function is a linear B-Spline. This wavelete&pecially designed for
compression purposes. To ensure a smooth decompressal] signanalysis filters
are designed such that they are smooth, while maintainingsasmall as possible
footprint. The synthesis filters, however, are not smootte filter coefficients are:

Hsz = [—}:2;9;2;—}}
8'8'8'8" 8]’
1
2

Gs3

In figure A.5, the 97 Daubechies wavelet is shown. This wavelet has four van-
ishing moments, and its (analysis) scaling function is aic®sSpline. Again, the
analysis filters are designed to be as smooth as possiblethieeumber of vanishing
moments, and have a minimal support size. The filter coeffisiare:

Ho7 = [0.02675;—0.01686;—0.07822;026686; 060295;
0.26686;—0.07822;—0.01686; 0026715,

[0.09127;-0.05754;-0.59127; 111509;
—0.59127;—-0.05754; 009127.

Go7

For a detailed comparison regarding both these waveletstefes the reader
to [105]. For a more detailed mathematical background, 58 ¢hapter 8.

A.5 Two-dimensional Wavelets

Two-, and, multiple-dimensional wavelet basis functions defined by combining
multiple 1D wavelet basis functions. In this section we specificallg¢aD wavelet
basis functions, and discuss two construction methods.

Standard construction. The standard construction ob2vavelet basis functions
consists of all possible tensor products of one-dimensibasis functions. This is
illustrated for the Haar wavelet in figure A.6. It is importda note that, a standard
construction of orthonormal wavelets, yields[a @rthonormal wavelet basis.
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Figure A.6: A standard construction of2Haar wavelet basis functions {44 resolution).

Non-standard construction. The non-standard construction is probably the most
commonly used R wavelet basis function construction method. This consisac
method starts by defining two-dimensional wavelet and dcaletions:

o (x,y) by,
dw(x,y) = d(x)W(y),
Wo(x,y) = Wx)d(y),
WP(x,y) = Pxw(y).

(GM) 1 = c(v)dd(Shift(v,0x,i), Shift(v,0y, ])),
(M), = c(v)pw(Shift(v,05i), Shiftv,oy, j)),
(oM ¥)), o = c(v)wh(Shift(v,o5i), Shiftv,oy, j)),
(Wl o = c(v) P(Shift(v,oxi), Shiftv, oy, )
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Figure A.7: A non-standard construction ob2Haar wavelet basis functions ¥4 resolution).

whereShift(-,-,-) is defined similarly as before. The non-standard constnds
illustrated in figure A.7 for the Haar wavelet. The non-stmdconstruction can be
seen as a single wavelet that is scaled and shifted depemdihg level and inter-level
location. Additionally, for each wavelet different “orietions”, or “directions” exist
(i.e., 3 directionsdy, Y, and,py). In this thesis, the non-standard construction is
used for D wavelet basis functions.

A.6 Practical Issues
In this final section, a number of important practical issaesdiscussed. Until now,

we assumed a cyclic signal, but more advanced edge handlthgigues exist. Fi-
nally, an alternative to the butterfly algorithm is brieflgclissed.

Edge extension.  Except for the Haar wavelet, all other wavelets have a suppor
size larger than two, and thus appropriate action has tokes t handle filtering at
the edges of the signal. The general solution iefmeatthe signal:

Vi+1 = V(i mod I)+1-
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Repeating the signal can introduce high frequency disoaitiés in an otherwise
smooth signal. For example, suppose the vetas defined by:V = [{5]i. At any

point the difference between subsequent elemer}f@. isHowever, at the (repeating)
edge this will bel'—o, and depending oh this can be significant.

In case the low-pass, and high-pass filterssgrametricabnother edge extension
method can be usedhirroring the signal. Depending on the filter length beewgn
or odd a different mirroring scheme is used.

If both filters are odd, then the signal is extended to a cyitjoal of length 2— 2:

Vitl = Viimod (2-2))+1 if (imod (2l —2))+1<I,
= V—(imod(2-2)+1 Otherwise

orin other words, the edge elements are mirrored on theesedwnd thus not repeated.
For example, a signal; 2;3;4 is mirrored to[1; 2; 3;4; 3; 2, and then repeated.

If both filters are even, then the signal is extended to a cwitjnal of length B

Viqr = V(imod2l)+1 |f(|m0d2l)+1§|,

= Va-(imod2)+1 Otherwise

or in other words, the whole signal is mirrored, and thus tthgeeelements are re-
peated. For instance, a sigrjal2;3;4 is mirrored to[1;2;3;4;4;3;2;], and then
repeated.

Both these approaches will not introduce additional higdtifiency discontinuities
at the mirrored, or repeated edges, and thus yield a spaasetettransformed signal.

Lifting.  Lifting is an alternative algorithm to decompose and congpmsignal into

a wavelet basis. The lifting scheme was introduced by SweslfiE02], and is a fairly
recent advancement in wavelets. In general, lifting is meas$ier to implement, and
works two times as fast as the butterfly algorithm. A disadivge of lifting is that

a set oflifting coefficientsare needed. The derivation of the lifting coefficients from
filter coefficients is not trivial.

Figure A.8 illustrates the lifting scheme. The lifting saebegins by splitting the
signal in odd, and even coefficients. The next step is caflepredict stepwhich tries
to predict the odd values using the even values. The eveewalte left unchanged,
while the odd elements are changed by the predicted valuest, the odd elements
are used taipdatethe even elements. The even elements are the resultingdew/-p
filtered, and downsampled signal, while the odd elementsherdigh-pass filtered,
and downsampled signal.
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Figure A.8: The lifting scheme: forward wavelet transform.

The predict and update step are also described by one or etsrefoefficients.
For the Haar wavelet these are:

P = [1],
1
= [E]'
To illustrate the lifting scheme, we use the example usekigeppendix: a vector
V =[8; 2; 1; 5. First, the signal is split in odd and even coefficients:
Voad = [8;1],
Veven = [2; 5]-

Next the odd elements are updated by the prediction coefticie

Vodd = Vodd— P*Veven

or in the case of the Haar wavelet:

/
odd — Vodd — Veven

Thus:
Voaa = [6;-4].
The update step, updates the even elements:

Velven = Veven‘|' U x* VOdd7
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or specifically for the Haar wavelet:

Vodd

Veven = Vevent >

This yields:

Véven = [5;3]-

At this point, any normalization can be applied to the odd eweh signal. In our
case We USECeven= 1, andcogq = %:

odd = [3:—2],
Véven = [5;3]~

Next this process is repeated on the obtained low-pass ditgj@al (i.e.,V,en,
yielding:

cll/dd = [1]7
Vé(/en: [4]

This results in the final transformed signs; = [3; 1;—2; 4]. Note, that this is in a
different order, which can be changed by a simple permutatidghe same order as in
section A.2. Synthesis is achieved by running the procealboge in a reverse order.

An interesting aspect of the lifting scheme is that evengldan be done in place,
whereas with filtering the signal needs to be copied to ersaa@rect filtering. The
reason why lifting can be done in place is because a new vallyadepends on sub-
sequent values that are not yet changed during the curezatian.

The lifting coefficients for the B3 LeGall wavelet are:

11
= [é’é}’

o - [+

The lifting coefficients for the 87 Daubechies wavelet are:

P = [1.58613;158613,
P! = [-0.88291;-0.88291,
U® = [-0.05298;-0.05298,
ut [0.44351; 044351.
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Note, that this wavelet has two sets of update and prediéficieats. A single lifting
step, first uses the prediction coefficie®§ and update coefficients®. Next, the
same procedure is repeated on the obtaotitlandevensignals, but with the predic-
tion coefficientsP?, and update coefficients!. Then, any normalization can be done,
before going to the next lifting iteration step.
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