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Figure 1: An example of relit images of a scene generated from a re�ectance �eld captured using just 1000 non-adaptive illumination patterns (emitted from the right onto the
scene). The incident lighting resolution, and resolution of each re�ectance function, is 128� 128. Even though we only performed a small number of measurements, we are stillable
to capture and represent complex light transport paths.Left: the scene relit with a high frequency illumination condition (inset).Middle: the scene relit under a natural illumination
condition (inset).Right: a ground truth reference photograph of the scene.

Abstract

In this paper we propose a new framework for capturing light trans-
port data of a real scene, based on the recently developed theory
of compressive sensing. Compressive sensing offers a solid math-
ematical framework to infer a sparse signal from a limited number
of non-adaptive measurements. Besides introducing compressive
sensing for fast acquisition of light transport to computer graphics,
we develop several innovations that address speci�c challenges for
image-based relighting, and which may have broader implications.
We develop a novel hierarchical decoding algorithm that improves
reconstruction quality by exploiting inter-pixel coherency relations.
Additionally, we design new non-adaptive illumination patterns that
minimize measurement noise and further improve reconstruction
quality. We illustrate our framework by capturing detailed high-
resolution re�ectance �elds for image-based relighting.

1 Introduction

The complexity in the appearance of real world scenes remains a
principal challenge to simulate in computer graphics. Modeling and
rendering such scenes under novel lighting with traditional com-
puter graphics is an arduous task, which requires talent and experi-
ence. As a result, image-based representations have gained in pop-
ularity, wherein traditional modeling and rendering are replaced by
image-based acquisition and relighting. Unfortunately, acquiring

this image-based data is time and storage intensive. For instance,
acquiring high-resolution datasets for scenes such as the bowl of
peppers shown in Figure 1, can require tens of thousands of pho-
tographs and gigabytes of storage. In this paper we focus on ac-
quiring light transport for the purpose of generating relit images
of a scene using compressive sensing to greatly reduce acquisition
time and storage.

Due to the acquisition complexity and storage requirements for
such relightable datasets, many different methods have been de-
veloped to speed up the acquisition of light transport. Previous
image-based techniques rely on sampling methods [Debevec et al.
2000; Wenger et al. 2005], adaptive methods [Matusik et al. 2004;
Peers and Dutré 2003; Sen et al. 2005], or techniques using non-
trivial measurement patterns [Peers and Dutré 2005] or specialized
projector-camera setups [Garg et al. 2006].

A central concept in these image-based methods is a re�ectance
�eld, an 8D entity that abstracts the light transport through a scene
in terms of incident and outgoing illumination on a bounding vol-
ume surrounding the scene. Both the incident and outgoing light
�eld are 4D �elds: for each position on the bounding volume (2D),
all possible directions (2D) are considered. Capturing and handling
these 8D �elds is dif�cult. Therefore, most methods consider a re-
duced approximation. In this paper we will use the commonly used
approximation proposed by Debevecet al.[2000], where the outgo-
ing light �eld is reduced to a 2D �eld by �xing the viewpoint, and
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where the incident light �eld is also reduced to a 2D �eld by as-
suming that incident illumination only varies positionally over the
bounding volume.

The recently developed mathematical theory of compressive sens-
ing [Donoho 2006; Cand�es 2006] offers a new theoretical back-
ground to improve image-based acquisition of light transport, and
has potential for many other �elds in computer graphics. Compres-
sive sensing explores how to acquire a compressible signal from
only a fewnon-adaptivemeasurements. Key to compressive sens-
ing is the use of measurement patternsincoherentwith the signal to
be measured. In this paper, we investigate how compressive sensing
can be adapted to acquire detailed re�ectance �elds for image-based
relighting, reducing acquisition and storage costs by more than two
orders of magnitude.

Conventional compressive sensing algorithms typically deal with a
single function that needs to be measured and reconstructed. In
the case of image-based relighting, many (re�ectance) functions
are sampled in parallel (i.e., one for each camera pixel), and each
of these functions needs to be reconstructed individually using a
compressive sensing algorithm. However, this is computationally
expensive, and ignores spatial relationships between neighboring
pixels' re�ectance functions. Therefore, we have developed a novel
hierarchical reconstruction algorithm that is able to extract the com-
pressed signals using less computation, and with greater accuracy.

The “standard” measurement patterns used in compressive sens-
ing assume an almost perfect acquisition system, where the only
source of error is due to the observation of the measurements. In
reality, other sources of error exist. For instance, in image-based
relighting, measurements are performed byemittingmeasurement
patterns from a controllable lighting device. This device can also
introduce errors such as quantization. Although some research in
compressive sensing has focused on designing optimal illumina-
tion patterns [Elad 2007; Weiss et al. 2007], these approaches are
not suited for the scale required for our application. In this paper
we propose a more practical approach, and give guidelines for de-
signing illumination patterns that increase the signal to noise ratio
of the measurements.

In summary, our contributions include:

� The introduction of compressive sensing for the acquisition of
light transport, applied to image-based relighting.

� A novel hierarchical algorithm for decoding multiple com-
pressive measurements that exploits spatial coherency to im-
prove reconstruction quality and decrease computation costs.

� Practical guidelines for designing illumination patterns that
improve signal to noise ratios of the measurements.

Notation. Throughout this paper we will use the following no-
tational convention: a matrix is denoted by a bold capital, e.g.,M.
A vector is denoted by a bold lower-case character, e.g.,v, and a
scalar by a lower-case character, e.g.,s. The j-th column ofM is
denoted asm j , thei-th row bymi;�, and the element at thei-th row
and j-th column asmi; j . Thei-th element of a vectorv is denoted
by vi .

2 Related Work

In this section we will discuss related work, subdivided into two
categories: measurement of light transport (Subsection 2.1), and
compressive sensing (Subsection 2.2).

2.1 Measuring Light Transport

Measuring the light transport through a scene is a challenging prob-
lem, due to the dimensionality (8D) and the wide frequency behav-
ior of real materials. In this section we will brie�y discuss some of
the milestones in this �eld relevant to our contributions.

Sampling Light Transport. Debevecet al. [2000] reduce the full
8D re�ectance �eld to a 4D entity by �xing the viewpoint and as-
suming directional illumination only. The reduced re�ectance �eld
is then sampled using aLight Stage. A light source is moved to
a �nite number of positions (2D) around the subject, and a photo-
graph is captured. Each photograph represents a 2D slice of the 4D
re�ectance �eld. Relighting can then be easily achieved by linearly
recombining these images with appropriate weights. This method
has been further extended to near instant acquisitions [Wenger et al.
2005], or to capture 6D re�ectance �elds, allowing relighting with
more general 4D incident light �elds [Masselus et al. 2003]. In
general, the duration of the acquisition in these sampling based
methods is proportional to the size of theuncompressedre�ectance
functions. In our method, however, the duration of the acquisition
process is proportional to the size of thecompressedre�ectance
functions. Since re�ectance functions can be compressed very well
without losing much accuracy [Masselus et al. 2004], this yields a
signi�cant speed-up in the acquisition process.

Adaptive Acquisition Methods. Peers Dutŕe [2003] propose
to sample the re�ectance �eld directly in the wavelet domain. To
speed up the acquisition, an adaptive sampling scheme is used. A
measurement oracle decides, based on previous samples from re-
�ectance �eld, where to sample the wavelet domain next such that
the potential for error reduction on the approximation of the full
re�ectance �eld is maximized. This method, however, has dif�-
culty dealing with scenes containing many specular elements. Re-
cently, Fuchset al. [2007] presented an adaptive method to sam-
ple re�ectance �elds using point samples in the canonical domain.
Other interesting recent developments are dual photography [Sen
et al. 2005], and symmetric photography [Garg et al. 2006], where
physical properties, reciprocity and symmetry respectively, of the
transport matrix are exploited to speed up acquisition. Both use
an adaptive acquisition scheme, which places most of the complex-
ity on the acquisition system, as opposed to our method where the
acquisition is very straightforward and most of the complexity is
shifted towards post-processing where re�ectance data is inferred
from the observations after acquisition.

Beyond Conventional Sampling and Adaptive Methods.
Sampling-based methods have a number of disadvantages, such as
the practical limit on how many samples can be taken. Environ-
ment matting [Zongker et al. 1999; Chuang et al. 2000] proposes
an alternative paradigm, but is unable to represent all types of light
transport correctly. Matusiket al. [2004] and Peers Dutré [2005]
presented methods that capture high-quality re�ectance �elds from
a �xed set of non-adaptive illuminations patterns, natural illumi-
nation and wavelet noise respectively. Subsequently, an adaptive
greedy algorithm is used to infer the re�ectance functions. Both
methods are very similar to compressive sensing in the sense that
they use a �xed set of illumination conditions, and utilize an adap-
tive algorithm to decode the re�ectance functions after acquisi-
tion. Our work differs from the above methods in that we are not
restricted to a speci�c non-adaptive illumination pattern, but can
choose from a whole family of patterns. Additionally, with the ex-
ception of [Matusik et al. 2004] none of the above methods leverage
spatial coherence of the scenes' re�ectance.
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2.2 Compressive Sensing

In this subsection we give a brief introduction to compressive sens-
ing, important terms, and relevant properties. Although compres-
sive sensing [Donoho 2006; Cand�es 2006] is a relatively new re-
search area, a large body of literature already exists. In order to
keep this section concise, we will only discuss a select set of key
points relevant to this paper. An extensive list of compressive sens-
ing resources can be found at the compressive sensing resources
web site [CSR].

Theoretical Background. Consider ak-sparse discrete sig-
nal x 2 Rn that contains at mostk � n non-zero elements (i.e.,
jj xjj0 � k). Now de�ne a measurement of this function by taking
the dot product of the signalx and a measurement vectorf j 2 Rn:
y j = f T

j x. We can writem multiple measurements conveniently as
a matrix-vector multiplication:

y = f Tx: (1)

Them� n matrix f T is called ameasurement ensemblein the con-
text of compressive sensing. Conventionally (e.g., brute-force sam-
pling), when the measurement ensemble has a rankn, the signalx
can be faithfully reconstructed from the measurements, without any
a priori knowledge of the signal. This implies that the number of
measurementsm � n. However, in compressive sensing thea pri-
ori knowledge that the signal isk-sparse is used to capture a signal
in just O(k) non-adaptivemeasurements [Donoho 2006; Cand�es
2006].

Reconstruction. Before discussing the exact nature of theseO(k)
non-adaptive measurements, we need to consider the reconstruction
x̄ of the original signalx from the measurementsy. This can be
achieved by solving the following minimization problem:

min
x̄

jj x̄jj1; sub ject toy = f T x̄: (2)

This minimization searches for the approximation that explains the
observed measurements under a speci�c measurement ensemble,
and that is as sparse as possible. Sparseness is enforces by an
`1-minimization, which is known to prefer sparse solutions, and
which can be solved fairly ef�ciently using either the simplex algo-
rithm [Dantzig 1963] or interior point methods [Wright 1997]. The
optimization strategy that solves Equation (2) is also calledbasis
pursuit[Chen et al. 2001; Donoho 2006]. Although basis pursuit is
effective, the computational costs associated are still signi�cant. As
a result a number of alternative decoding strategies have been devel-
oped that solve minimization problems that approximate Equation
(2).

Orthogonal Matching Pursuit (OMP), one of the �rst alternative de-
coding algorithms, and was studied by Tropp Gilbert [2005] in the
context of compressive sensing. Although its accuracy is slightly
below that of basis pursuit, it remains a very popular method due to
its speed and ease of implementation. As opposed to basis pursuit,
OMP is a greedy algorithm: it adds a single coef�cient per iteration.
Because coef�cients are never removed, an erroneous addition of a
coef�cient can degrade the quality of the solution signi�cantly. Re-
cently, Needell Vershynin [2007b; 2007a] presented a promising
variant of OMP, called Regularized Orthogonal Matching Pursuit
(ROMP), that has better theoretical convergence properties, while
maintaining the ease of implementation and speed of OMP. The de-
coding algorithm developed in this paper relies on the use of an

existing reconstruction method for single functions in order to de-
code multiple measurements. Although any reconstruction method
can be used, we opt for using ROMP.

A number of methods have considered using inter-measurement
coherency relations to improve reconstruction results. Troppet
al. [2006] extend OMP to handle multiple measurements. How-
ever, unlike our method, it assumes that all measured signals have
the same sparsity pro�le, i.e., they have the same non-zero coef�-
cients. Cotteret al. [2005] make similar assumptions when decod-
ing multiple observations. Jiet al. [2007a] extend their previous
Bayesian compressive sensing method [Ji et al. 2007b] to decode
measurements of multiple signals simultaneously, by using hierar-
chical Bayesian models. They show impressive improvements in
decoding quality, but note that their method is sensitive to shifts in
wavelet coef�cients between different signals.

Relevant Properties. The above discussion assumed, unrealisti-
cally perhaps, that a signal is exactlyk-sparse (i.e., at leastn � k
terms are exactly zero). Many signals, such as re�ectance func-
tions, are notk-sparse but compressible [Liu et al. 2004; Masselus
et al. 2004]. Cand�es Tao [2006] have shown that the same frame-
work in compressive sensing also works very well for recovering
the bestk-term approximation of compressible signals.

The accuracy of the reconstruction of both sparse and compressible
signals depends on two factors: measurement noise and approxi-
mation error. Cand�es [2006] showed that the error on the recovered
signal is of order:

jj x̄ � xjj2 � O(em) + O(ea); (3)

whereem represents errors due to measurement noise, andea is
the approximation error due to compression. Note, that the �rst
term is optimal, i.e., the error is proportional to measurement noise
and thusnot ampli�ed by compressive sensing. Similarly, the ap-
proixmation error is also not ampli�ed by the compressive mea-
surements. In other words, given some target approximation error,
compressive sensing is as good as the best adaptive methods, but
without the overhead of taking adaptive measurements.

Finally, the number of measurements required to successfully re-
construct ak-term approximations of a signal of lengthn has been
shown in the seminal work by Cand�es [Cand�es 2006] to beklogcn
measurements, withc some constant dependent on the measure-
ment ensemble and reconstruction algorithm.

Measurement Ensemble.A remaining issue is what kind of mea-
surement ensembles can be used to decode any measured sparse
signal with a high probability of success. An important condition
that determines whether a measurement ensemble is suitable for
this goal, is therestricted isometry condition (RIC). This condition,
with parameters(k;e), is de�ned as:

(1� e)jjvjj2 � jj f Tvjj2 � (1+ e)jjvjj2; (4)

for everyk-sparse vectorv. This condition states that the eigenval-
ues of any subset of at mostk rows of the ensemblef are at most
e removed from 1. This implies that any subset of at mostk rows
forms a basis for that particular subspace. This implies that an en-
semble that adheres to the RIC form a basis for anyk-sparse signal.
Thus, enough information is available to reconstruct the original
signal, on the condition that a suf�cient number of measurements
are recorded.
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The concept of the RIC is straightforward, but it does not give a gen-
erative de�nition of practical measurement ensembles that meet this
condition. It has been shown that assigning Gaussian or Bernoulli
random values to each element of the ensemblef , or randomly se-
lected Fourier basis functions (i.e., randomly selected frequencies)
ful�lls these conditions [Baraniuk et al. 2008].

Randomly selected measurement ensembles have the advantage
that they are general and easy to generate. However, they are not
necessarily the most optimal for measuring any signal, nor are these
ensembles optimized to the limitations of real world acquisition de-
vices. Elad [2007] showed how to optimize the measurement en-
semble, by minimizing mutual coherence between a dictionary of
bases and the measurement ensemble. Although it improves re-
construction quality, it does not solve any practical issues with real
measurement equipment. Weisset al. [2007] developed a method
called Uncorrelated Component Analysis(UCA) that attempts to
learn the optimal measurement ensemble from a training dataset by
maximizing the distance between the measured signals. Although
their method is quite intriguing, it is not suitable for our particular
problem for two reasons: First, the training dataset needs to be rep-
resentative of the whole space of possible signals. Because we are
dealing with signals de�ned on a large domain, a very large dataset
is required, making the algorithm impractically slow. Second, UCA
assumes that the signal is exactly sparse, and does not take into ac-
count approximation errors due to lossy compression.

3 Light Transport Sensing

In this section we explore how compressive sensing can be applied
to acquiring light transport data, in particular to image-based re-
lighting. As noted in numerous previous works [Ng et al. 2003;
Peers and Dutré 2003], image-based relighting can be written com-
pactly in matrix notation as:

c = Tl ; (5)

where:T is a p� n matrix that de�nes the light transport between
n light sources andp camera pixels;c represents these pixels in
an observed camera image, stacked in a vector of lengthp; l rep-
resents the illumination conditions, stacked in a vector of lengthn.
An illumination conditionl can consist of any combination of point,
directional, and area light sources. Each element inl indicates the
emitted radiance of the corresponding light source. The relighting
process consists of two stages: First there is the measurement stage
that has as its goal determining the transport matrixT, by observing
the scene under a selection ofmdifferent illumination conditionsl j ,
j � m; Second, there is the relighting stage, that has as its goal com-
puting newly relitvirtual observationsgiven the measured transport
matrix from the �rst stage, and a user-de�ned lighting condition.
This second stage comes down to evaluating Equation (5) and is
straightforward once the transport matrix is known.

For the acquisition stage, multiple illumination conditionsL =
[l0; :::; lm], and their corresponding observationsC = [ c0; :::;cm],
can also be compactly denoted in matrix notation as:

C = TL : (6)

Each rowt i;� of the transport matrixT represents the re�ectance
function of thei-th pixel in the camera image. The observations of
the i-th pixel are thus governed by an equation similar to Equation
(1):

ci;� = t i;� L; (7)

whereL ful�lls the role of the measurement ensemblef , and the
re�ectance functiont i;� corresponds to the discrete signalx. Before
compressive sensing can be applied to each re�ectance function,
we need to verify that these re�ectance functions are either sparse
or compressible. Previous research [Liu et al. 2004; Masselus et al.
2004] has shown that certain types of re�ectance functions are in-
deed sparse or compressible in certain bases (e.g., spherical har-
monics or wavelets). Suppose we have such a basisB, and assume
for simplicity that this basis is orthogonal (i.e.,B� 1 = BT ), then:

C = TL ; (8)

= T (BBT ) L ; (9)

= T̂BT L; (10)

whereT̂ = TB is the transport matrix expressed in the basisB. By
choice ofB we now know that̂T is compressible, and thus suited for
measurement by compressive sensing. Now de�ne the illumination
patterns asL = B f , wheref is one of the theoretical compressive
sensing ensembles. Combining this with Equation (10) yields:

C = T̂ (BTB) f ; (11)

= T̂ f : (12)

We can now see that the observationsC lit by these illumination
conditions, directly map (after transposing both sides) to Equation
(1) for each roŵt i;�, and that it still �ts in an image-based relighting
framework.

To summarize, the illumination patterns are the measurement (row)
vectorsf j from the ensemble, projected onto the inverse basisBT

(note that the transpose is because of the pre-multiplication in the
de�nition of L = Bf ). To illustrate, suppose the measurement en-
semble consists of independently and identically-distributed Gaus-
sian random variables, and the basis is a Haar wavelet basis. By
applying aninverseHaar wavelet transform on the Gaussian noise
vectors, we obtain the illumination patterns. This effectively means
that we are choosing Haar wavelet coef�cients in a Gaussian way.
Taking photographs of the scene illuminated by these illumination
patterns yields the matrix of observationsC. Each row in this ma-
trix (i.e., the observed values for a speci�c pixel location) yields a
vector of measurements that can be used to reconstruct the original
re�ectance function for that pixel expressed in the basisB.

Brute-force Compressive Light Transport Sensing. From the
discussion above, we can now design abrute-force compressive
light transport sensingalgorithm. During acquisition, the illumi-
nation patterns as de�ned above, are emitted onto the scene, and
for each a HDR photograph of the scene is recorded. Next, a re-
�ectance function is inferred for each pixel separately by applying a
compressive sensing decoding algorithm to the observation of only
that pixel. As noted before, we use ROMP [Needell and Vershynin
2007b; Needell and Vershynin 2007a] in our implementation.

This brute force algorithm has the advantage that it is straightfor-
ward to implement, and all theoretical properties of compressive
sensing are still valid. However, because each pixel is processed
independently, there is no guarantee that spatial coherence is main-
tained. To illustrate, Figure 2 shows a synthetic scene consisting of
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Brute Force ROMP Hierarchical Algorithm

Figure 2:Spatial coherencyof brute-force compressive light transport sensing (left)
versus hierarchical compressive light transport sensing (right). The re�ectance func-
tions (128� 128) are in both cases reconstructed from 1000 measurements using 100
Haar wavelet coef�cients. For each algorithm, a detail is shown to better illustrate the
differences in coherency. Additionally, a single re�ectance function from this detail is
shown on the bottom left of each example.

a diffuse ball. On the left a relighting is shown of the re�ectance
�eld computed using a brute-force approach, where each 128� 128
re�ectance function is reconstructed from 1000 Gaussian measure-
ments (without adding measurement noise) using 100 Haar wavelet
coef�cients. While this shows that the brute-force approach is able
to generate good results, some artifacts can be seen (i.e., spikes).
On the right a relit result is shown of the same scene, reconstructed
with the same number of coef�cients per re�ectance function, but
with the algorithm presented in the next section that takes into ac-
count spatial coherency.

4 Hierarchical Compressive Sensing

In this section we introduce a novel hierarchical reconstruction
algorithm that exploits spatial coherency to regularize the recon-
structions from many simultaneously acquired compressive mea-
surements. This is achieved by using a coarse-to-�ne strategy
to compute and re�ne re�ectance functions. First we will pro-
vide some necessary mathematical insight into how a coarse-to-�ne
strategy can be used in the context of light transport sensing (Sub-
section 4.1). Next, we detail our algorithm in Subsection 4.2. We
conclude this section with a brief discussion (Subsection 4.3).

4.1 Mathematical Basis

Studying the transport matrix̂T gives us additional insight into its
structure and how it can be used to develop a hierarchical algorithm.
A key observation is that the projected transport matrixT̂ = TB is
only sparse/compressible over its rows, because the basis transform
B only operates on the rows. Any coherency over the columns, and
thus between different camera pixels, is not utilized.

In order to take advantage of these coherencies, we need to extend
either the basis transformB, or apply additional transformations
to the transport matrixT. Extending the compressive sensing al-
gorithm to exploit inter-pixel coherencies during acquisition is not
feasible, due to the natural parallelism of cameras (i.e., all pixels
are captured at once), and thus the basis transformB cannot be
adapted. However, we can still utilize inter-pixel relations during
post-processing (decoding) by applying additional transformations
on T̂.

To de�ne these additional transformations, we note the similarity
with image compression, where inter-pixel relations are used to
minimize storage requirements. A common method to condense
information is to apply a suitable basis transformation, such as a
wavelet transform. After transforming the image, only the most
important coef�cients (i.e., with largest magnitudes) are stored.
Again, this can be written compactly as a matrix multiplication
similar to Equation (10). For example, an observed imagec can
be condensed into a few signi�cant coef�cients using a suitable ba-
sisP by the transformation:PTc. Interestingly, when applying this
to Equation (10) we obtain the following equation:

PTC = ( PT T̂) (BTL): (13)

Observe thatPT T̂ = PTTB, consists oftwo basis transformations
on the transport matrixT. The right transformationB operates on
the rows (i.e., re�ectance functions) of the transport matrix, while
the left transformationPT operates on the columns of the transport
matrix (i.e., photographs). In other words, the right transform ex-
ploits coherencies within the re�ectance functions, while the left
transform condenses inter-pixel information. The resulting doubly
transformed transport matrix is even more sparse, and thus is po-
tentially inferable from fewer measurements at a higher accuracy.

4.2 Algorithm

We now develop our novel algorithm that exploits spatial relations.
Equation (13) provides the necessary tool for utilizing inter-pixel
relations during post-processing. In order to exploit inter-pixel re-
lations at different scales, we employ a hierarchical basis to cre-
ate a multi-resolution approximation of the acquired photographs,
and to compute for each multi-resolution level, an approximation of
the re�ectance functions using compressive sensing. At each level,
we initialize the compressive sensing reconstruction algorithm by
the solution obtained in the previous level. The key assumption is
that a coarse approximation at coarser levels, can be much more
accurately estimated. During the compressive sensing decoding,
coef�cients are either updated, added or removed from this initial
solution.

Instead of developing a novel compressive sensing reconstruction
algorithm, we will use an existing compressive sensing decoding
algorithm as a basis. To ensure maximum �exibility, and to an-
ticipate future advances in the �eld of compressive sensing, we
design our hierarchical algorithm such thatanycompressive sens-
ing reconstruction algorithm can be used as a basis. As in sec-
tion 3, we opt for using the Regularized Orthogonal Matching Pur-
suit (ROMP) [Needell and Vershynin 2007b; Needell and Vershynin
2007a] reconstruction algorithm in our implementation.

We will now discuss every step in detail of the presented hierarchi-
cal algorithm for which the pseudo-code is shown in Figure 3.

Multi-resolution initialization (Steps 1-2). Initialization of our
algorithm starts by transforming the observationsC using a suitable
multi-resolution basisP. This basis should exploit the coherencies
within each column in the transport matrixT̂ as much as possible.
This ensures that as much information as possible is condensed in
coarser levels, and details are added in �ner levels. A good choice
for such a basis are bases suited for image compression, since each
column corresponds to a recorded image of the scene. Probably
the best known class of hierarchical basis functions that excel for
compressing images are wavelets. In our implementation we use
the Haar wavelet basis forP.
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Input:

ObservationsC (p� m matrix) of the scene lit by the measurement
ensemblef (n� mmatrix). k is a user-speci�ed target sparsity. The
wavelet transformPT = ( Õl Pl )T , wherePT

l is the transform from
wavelet levell to l � 1, l = 0 corresponds to the coarsest level, and
l = ml to the �nest level.

Output:
For each pixel locationi, a setSi of coef�cient indices, and their
corresponding magnitudest̂ i;� , with t0

i; j 6= 0 only if j 2 Si .

Init: The initial setS� 1 = /0, and initial coef�cientsT̂ � 1 = 0. The coarsest
level of the hierarchy:C0 = PT C.

(1) For every wavelet level:l = 0 ! ml :
(2) For every indexi representing a scale coef�cient inCl :
(3) Copy initial the solution:
� � � Sl

i = Sl � 1
parent(i)

� � � t̂ l
i;� = t̂ l � 1

parent(i);�

(4) Difference:dT = cl
i;� � t̂ l

i;� f
(5) CS decode:(R;r ) = decode(d; f ;kdl )
(6) Merge:
� � � Sl

i  Sl
i [ R

� � � 8 j 2 R: t̂ l
i; j  t̂ l

i; j + r j

(7) Limit size: Sl
i  indices ofkl largest coef�cients in̂t l

i;�

(8) Prune:8 j 2 Sl
i : if jt̂ l

i; j j < d then:Sl
i  Sl

i � j
(9) Update:(t̂ l

i;�)
T = argminz jj cl

i;� � f T zjj2 s.t. zj 6= 0 i.f.f. j 2 Sl
i

(10) Cl+ 1  Pl Cl

(11) Si  S
ml
i , and,t̂ i;�  t̂

ml
i;�

Figure 3:An overview of the hierarchical algorithm. At every level, and for every
pixel, a compressive approximation is computed from the difference of the predicted
measurement and the actual measurement. This predicted measurement is computed
using the initial solution from the prior level.

Besides transforming the observations onto the wavelet basisP, the
initial set of active coef�cientsS� 1 is set to empty, and the transport
matrix T̂� 1 is set to zero. The set of active coef�cients will contain
the indices (of the approximation) of the re�ectance �eld that are
not zero. Only their corresponding magnitudes will be stored in-
stead of the complete transport matrix to reduce storage costs.

Our multi-resolution algorithm iterates over all the multi-resolution
levels (Step 1). For each level, an estimate for each re�ectance
function (at this resolution) is computed (Step 2). Note that the
number of re�ectance functions increases as the level increases. At
the lowest level, only a singleglobal averagere�ectance function
is estimated. For each subsequent level, the number of estimated
functions quadruples.

Difference Estimation (Steps 3-5). These steps are the core of
our algorithm. At each multi-resolution level, an estimate for each
re�ectance function is computed. As noted before, we would like to
initialize the compressive sensing decoding algorithm from the cor-
responding re�ectance function of the prior level's approximation.
Unfortunately, many compressive sensing decoding algorithms do
not provide a mechanism to re�ne an initial solution. Because we
would like our method to work with any compressive sensing de-
coding algorithm, we cannot rely on the decoding algorithm to pro-
vide this mechanism for initialization.

To provide a mechanism to enforce initialization, even when the
reconstruction algorithm does not support initialization, consider
the following. A reasonable assumption is that the provided initial-
ization is already a good match of the target re�ectance function.
Since it is a good match, the difference of the re�ectance function
and the initial approximation should be sparse, i.e., a few spikes
and many (near) zero coef�cients. Therefore, the difference is also
a function suitable for compressive sensing. We can formalize this

by rewriting Equation (2) as:

min
d̄

jj x̄jj1; sub ject to
�

y = f T x̄;
x̄ = x̄init + d̄;

(14)

wherex̄init is the initial solution, and̄d is the compressive approxi-
mation of the difference between the initial solution and the signal
x. Becausēxinit remains constant during the`1 minimization, we
can rewrite the minimization as:

argmin
d̄

jj x̄jj1 = argmin
d̄

jj d̄jj1: (15)

Combining Equations (14) and (15), we obtain the following opti-
mization rule:

min
d̄

jj d̄jj1; sub ject to
�

y � f T x̄init

�
= f T d̄: (16)

Note that
�
y � f T x̄init

�
is a constant that can be precomputed be-

fore starting the minimization process. The minimization process
itself is identical to Equation (2) (onlyy has been replaced by�
y � f T x̄init

�
, andx̄ by d̄), and thus the same algorithm can be used

to compute this.

The above discussion gives a mechanism to enforce an initial ap-
proximation to any compressive sensing decoding algorithm, and
covers steps (3) to (5) in the algorithm in Figure 3. First the so-
lution from the previous level (l � 1) is copied into the set of non-
zero coef�cient-indicesSl

i , and into the corresponding magnitudes
t̂ li;� in step (3). Next, the difference vectord is constructed similar
to Equation (16), in step (4). Finally, in step (5) the minimization
problem is solved using a compressive sensing reconstruction algo-
rithm of choice. In our implementation we use ROMP as a decoding
algorithm. The input parameters of the decoding algorithm are:

� The simulated measurementsd, computed in step (4).

� The measurement ensemblef . As in the brute-force case, this
ensemble de�nes the illumination patterns as:L = B f .

� The sparseness parameterkdl of the difference function. We
set kdl to kl � 1 + 1, wherekl � 1 is the maximum size of the
initial solution. Basing the sparseness on the maximum size
of the initial solution ensures that any incorrect coef�cient in
this initialization can be corrected. An in depth discussion
regarding our choice of the sparseness and the implications of
this choice can be found in Subsection 4.3.

The output is given by a set of computed coef�cient-indicesR and
corresponding magnitudesr . An overview of the hierarchical algo-
rithm including the difference estimation is illustrated in �gure 4.

Merging and Pruning (Steps 6-8). Once an approximation for the
difference function is found, an approximation for the complete re-
�ectance function can be computed. This process consists of three
steps: merging, size reduction, and pruning.

The �rst step, merging is trivial. The set of active coef�cientsSl
i is

updated by taking the union with the computed active coef�cients
R. The magnitudesr of the active coef�cientsR are summed to the
corresponding magnitudes ofSl

i .
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Figure 4: An overview of the hierarchical algorithm. For each multi-resolution
level, compressive sensing is used to approximate the difference between the pixel's
re�ectance function and the approximation from the prior level. Merging the difference
approximation and the previous level's approximation yields the desired function.

In addition, we need to ensure that the merged solution does not
become too large, because otherwise the update step (Step 9) will
become under-constrained. This also ensures that the target sparse-
nessk of the �nal approximation of the re�ectance �eld is met.
Limiting the size of the approximation is obtained by keeping the
kl largest coef�cients in the approximation. Smaller coef�cients are
set to zero. In our implementation the sizekl is de�ned as 2kl � 1 + 1
coef�cients, and where the size of the �nal solution (at levelml )
corresponds to the user-de�ned sparsity:kml = k. In a normal situ-
ation the size of the merged solution should not exceedkl , because
kl = kl � 1 + kdl . However, some compressive decoding algorithms,
such as ROMP, can return more coef�cients than requested. In Sub-
section 4.3, a detailed discussion is given on alternative functions
for kl andkdl .

A third step takes care of removing coef�cients that are close to
zero. This can occur when the initial solution contains an erroneous
coef�cient. This will show up in the difference function as a large
spike. The estimated magnitude for this spike will be of similar size
(but with opposite sign) as the erroneous coef�cient's magnitude,
and thus cancel out by adding these magnitudes together. However,
due to estimation errors these magnitudes will most likely not be
exactly the same. Therefore, we remove any coef�cient with a value
below some thresholdd. This has the additional advantage that
insigni�cant coef�cients (mostly noise) will also be removed.

Update (Step 9). Finally, we update the coef�cient magnitudes.
This is achieved by computing a linear least squares solution for the
non-zero coef�cients such that the observations match the predic-
tion, given the approximation and the ensemble, as well as possible.

In general, we found this step to be unnecessary, since the coef�-
cient magnitudes obtained from the previous step are already very
good. However, when many coef�cient have been removed in the
pruning step, some residual energy is unaccounted for. This unac-
counted energy can potentially degrade the quality of the approx-
imation, which can affect subsequent multi-resolution iterations.
Some possible ways of minimizing the computational cost of this
update step are:

� Only update when the total energy of the removed coef�cients
exceeds some pre-de�ned threshold. The dif�culty in this case
is setting the threshold. If it is too low, then too many updates
are performed. If it is too high, potential errors can remain in
the reconstruction.

� Similar to Peers Dutŕe [2005] a QR factorization can be main-
tained, and updated every step. This reduces the complexity
of the least squares computation signi�cantly.

In our implementation we opt for executing the update step fully at
every level for robustness.

Multi-resolution Loop (Step 10-11). As noted before, a wavelet
basis is used forP. The wavelet basis transform is often described
in terms of a cascading �lter bank. The �lter bank transforms a
signal into two new signals: a high-pass �ltered version, and a low-
pass �lter version. The exact frequency responses of the high-pass
and low-pass �lter depend on the speci�c wavelet used. To avoid
duplication of information, both the high-pass and low-pass version
are subsampled with half the number of samples. The �lter banks
are cascaded by repeatedly �ltering the low-pass results. The cas-
cade stops when the last low-pass version consists of only a single
sample. Note, that thei-th low-pass version of a signal, can be re-
constructed by adding thei + 1-th high-pass andi + 1-th low-pass
version of the signal (both upsampled).

Now reconsider step (4). At this step we are actually computing
the difference between two low-pass �ltered versions of the same
signal (at two different consecutive levels).cl

i;� represents the more

detailed low-pass version, andt̂ li;�f the coarser low-pass version. It
is tempting to equate this difference with the high-pass version of
the signal (at the �ner level), while in reality it is only an approx-
imation, because the re�ectance functionst̂ li;� at level l are only
known approximately. It is for this reason that we explicitely com-
pute the difference in step (4), and the low-pass version at levell
in step (10). This last step is in fact just the reconstruction of the
low-pass version at levell (i.e., to undo a single �lter bank step of
the wavelet transform).

Finally, the approximation of the last iteration is copied into the
�nal solution (Step 11).

4.3 Discussion and Results

Parameters. The hierarchical algorithm takes two user-de�ned
parameters as input, plus any additional parameters required by the
basis decoding algorithm (Step 5): the thresholdd used in the prun-
ing step (8), and the �nal sparsenessk.

The thresholdd serves two goals. Its main goal is to determine
when an erroneous coef�cient needs to be removed, i.e., how sim-
ilar the magnitudes need to be in the difference approximation
and the initial solution. Second, it regulates denoising. Coef�-
cients with a magnitude below this threshold are considered noise,
and should therefore be removed from the approximation. Conse-
quently, the value of this threshold should be set proportional to the
magnitude of measurement noise. In the synthetic (noiseless) ex-
amples below, we set this parameter to some low value (e.g., 10� 8).

Choosing a speci�c sparsenessk depends on a number of factors:

� The number of acquired (or planned) photographs is instru-
mental in setting an upper limit for the sparsenessk. A lower
bound on the number of measurements is given byklogcn
(Subsection 2.2), wheren is theuncompressedsize of the sig-
nal. In many cases, the budget for taking measurements is
�xed beforehand, and thus the sparseness has to be chosen
with respect to this budget.

� From the above it also follows that the resolution of the in-
cident light �eld, and thus of the re�ectance functions, plays
a role in setting the sparseness. Note that it only depends on
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(50 Coef�cients)
Hierarchical AlgorithmReference Relit Image Brute-force ROMP

(50 Coef�cients) Reference Reference Hierarchical Brute-force
Algorithm ROMP(50 Coef�cients)

Figure 5:Qualitative comparison. Left: A relit image computed from a reference synthetic re�ectance �eld.Middle: A relit image from a re�ectance �eld (128� 128 lighting
resolution) inferred using the presented hierarchical algorithm from 512 (noiseless) measurements under a Gaussian ensemble. Each re�ectance function is reconstructed using 50
Haar wavelet functions.Right: A relit image from a re�ectance �eld computed using brute-force ROMP (512 Gaussian measurements, 50 coef�cients per re�ectance function). At
the bottom of each of the relit images, two details are given.Far right: a comparison of �ve selected re�ectance functions.

the logarithm of the resolution. This implies that compres-
sive sensing enables greater ef�ciency when measuring high
resolution re�ectance functions.

� The desired accuracy of the approximation also plays an im-
portant role. A higher sparseness value implies that the ap-
proximation is coarser than when a low sparseness is used.
Fortunately, re�ectance functions can be well approximated
using very sparse non-linear approximations. This is due to
the limited number of high frequency features, such as spec-
ular peaks and shadowing, in these functions. Furthermore,
higher resolution re�ectance functions usually compress bet-
ter than low resolution re�ectance functions, augmenting the
effectiveness of compressive sensing for measuring high res-
olution re�ectance functions.

Qualitative Validation. To validate the quality of our method we
have generated a full re�ectance �eld of a synthetic scene. This
allows us to generate ground truth relit images, and compare re-
�ectance functions. Figure 5 shows such a scene containing the
Buddha model with a glossy material on a diffuse underground.
The leftmost image shows a reference relit image, and two details
at the bottom. The middle image shows a relit image of a re�ectance
�eld (128 � 128 lighting resolution) inferred using our hierarchical
algorithm from 512 (noiseless) measurements with a Gaussian en-
semble1 The sparsenessk was set to 50. The inset shows the color-
coded relative error image with the reference relit image. The right
image shows a relit image of a re�ectance �eld computed from the
same measurements using a brute-force compressive light transport
sensing algorithm (i.e., applying ROMP for every pixel indepen-
dently). As can be seen, all three images are very similar. However,
some differences can be seen in the detail images on the bottom.
This is further corroborated by the difference images. Furthermore,
the differences are more pronounced in the brute-force results.

1Adding measurement noise can mask the approximation errors made by
the decoding algorithms. However, the conclusions of this validation would
stay the same.
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Figure 6: Relative Error vs. Number of Coef�cients. The error in function of
the number of coef�cients for a �xed number of measurements (512 Gaussian mea-
surements). In blue the error on a baseline non-linear Haar wavelet approximation is
shown. In red the error on brute-force ROMP is plotted. Green shows the error of the
presented hierarchical algorithm.

On the right of Figure 5, �ve selected re�ectance functions from
the Buddha scene are compared. The �rst column are the refer-
ence re�ectance functions. The second column shows non-linear
approximations using 50 Haar wavelet coef�cients of the refer-
ence re�ectance functions. These are the best possible approxima-
tions possible using 50 coef�cients, and thus represent a baseline
for comparison. The third and fourth columns are the computed
compressive sensing approximations from the presented algorithm
and the brute-force algorithm respectively. As can be seen, the re-
�ectance functions computed using the hierarchical algorithm con-
tain more details than the functions inferred using the brute-force
technique. Both contain less detail than the baseline.

Quantitative Validation. The qualitative comparison above
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Figure 7: Error Comparison. False color images of the relative error with respect to a reference re�ectance �eld. From left toright: an error image showing a baseline 50
coef�cient non-linear Haar wavelet approximation, the error on brute-force ROMP, theerror on the presented hierarchical algorithm, and the error on the hierarchical algorithm using
the alternative formulas (19) for the per-level sparseness and difference sparseness.

shows that the presented algorithm has the potential of generating
better results. However, this qualitative comparison does not pro-
vide information on what the optimal number of coef�cients are,
or how much better the hierarchical algorithm is. A quantitative
analysis can give an answer to these questions.

Figure 6 plots the error on the computed re�ectance �eld (from 512
measurements) of a representative 32� 32 pixel area of the scene
shown in Figure 5 with respect to the reference re�ectance �eld.
The error is computed as:

e =
å i jt i;� � t̄ i;� j2

på i jt i;� j2
; (17)

wherep is the number of re�ectance functions,t i;� thei-th reference
re�ectance function, and̄t i;� the corresponding computed approxi-
mation. The blue graph in Figure 6 represents the baseline error.
This error is obtained by computing a non-linear Haar wavelet ap-
proximation of the reference re�ectance �eld. The number of co-
ef�cients in this non-linear approximation is variable (horizontal
axis). The green and red graph depicts the error on the solution ob-
tained using the presented hierarchical algorithm, and the solution
obtained from using brute-force ROMP respectively. In both cases
we notice a decrease of error, reaching a minimum at about 50 coef-
�cients2, followed by a steady increase. The initial decrease can be
explained by the fact that adding additional coef�cients increases
the representational power of the approximation. However, at a
certain point, the number of measurements is no longer suf�cient to
uniquely select and compute coef�cients. At this point, many pos-
sibleoptimalapproximations exist that minimize the error between
the real and simulated measurements. As a result,noiseis intro-
duced into the solution, and the approximation begins to deviate
from the real solution. From this graph we can see that the pre-
sented hierarchical algorithm delivers a better approximation with
a signi�cantly lower error than the brute-force approach. Addition-
ally, due to the spatial regularization, the error increases less rapidly
after reaching the optimal number of coef�cients (i.e., 50). This

2Increasing or decreasing the number of measurements, would similarly
change the optimal number of measurements.

suggests that over-estimating the optimal number of coef�cients is
less harmful to the reconstruction quality of our algorithm than for
the brute-force approach.

Alternative Sparseness Settings.Two important variables in the
presented hierarchical algorithm are the total sparseness per level
kl , and the sparseness of the differencekdl . Previously we have set
these variables to:

kdl = kl � 1 + 1; and
kl = kl � 1 + kdl : (18)

Setting these variables to these formulas results in a doubling of the
size of the re�ectance functions with every consecutive level. Fur-
thermore, it also means that at every level, two times the number
of variables are added compared to the previous level. Each extra
variable, requires additional computation time. Thus, more time is
spent at the �ner levels than at the coarser levels. This effect is fur-
ther ampli�ed by the fact that the number of re�ectance functions
also quadruples per level. Although, computation time is slightly
below that of the brute-force approach, this still raises the question
if other formulas forkl andkd+ l can be found, that limit the number
of coef�cients that need to be computed at �ner levels. One such
alternative is:

kdl =
k

ml
; and

kl = l
k

ml
; (19)

whereml is the total number of levels. In this case, the number of
coef�cients computed at each level stays constant, and thus yields
a more ef�cient (in terms of computation time) algorithm.

Figure 7 shows a color coded error image comparing both varia-
tions, and the brute-force algorithm to a reference re�ectance �eld.
For each image the error is computed using Equation (17), and
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Eq. (18) (100 Coef�cients)

Hierarchical Algorithm,kl as in
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Figure 8: Error Comparison on Non-optimal Sparseness Selections.The hier-
archical algorithm is used to compute a 100 term approximation from 512 Gaussian
measurements. The left image uses the original per-level and difference sparseness
formula (18). The right image uses formula (19) that reduces the computation costs,
but at the cost of quality. The same false color scale as in Figure 7 is used for both
images.

plotted per re�ectance function. In all cases the re�ectance func-
tions were reconstructed using 50 coef�cients computed from 512
Gaussian measurements. A baseline error image of a non-linear
approximation using 50 Haar wavelet coef�cients is also provided
for reference. These error images con�rm the conclusion from the
quantitative analysis of before, and show that the hierarchical algo-
rithm signi�cantly outperforms the brute-force algorithm in qual-
ity. Both variations at the hierarchical algorithm yield a similar
error. However, the alternative sparseness shows a bit more struc-
ture in the error image, as can for example be seen on the diffuse
underground. This effect is further ampli�ed when selecting a non-
optimal sparsenessk, as illustrated in Figure 8, where 100 coef�-
cient approximations of both variations are compared. From this we
can conclude that, although the originally proposed formula for the
per-level sparseness and difference sparseness yield a less optimally
performing algorithm, the quality gain (in spatial coherency) and
robustness to non-optimal sparseness selection is better. Depend-
ing on the preferences of the user, either formula can be selected.
In this paper we will use the improved quality variant, Equation 18).

5 Capturing High-resolution Reectance
Fields

In this section we discuss how to apply compressive sensing, and
in particular our hierarchical algorithm, to the acquisition of real
light transport data. In particular, we will focus on capturing high
resolution re�ectance �elds for image-based relighting.

Although applicable to other kinds of acquisition setups, our
discussion focuses on a setup, similar to that used in previous
work [Zongker et al. 1999; Matusik et al. 2004; Peers and Dutré
2005], consisting of a single video camera and a CRT monitor as a
controllable high resolution light �eld emitter. The CRT monitor is
placed either to the side or behind the scene which is imaged from
a �xed camera position. Additionally, in order to cover a larger
portion of the sphere of incident lighting directions, we have also
experimented by replacing the CRT by a hemispherical controllable
light source [Peers et al. 2007]. Except for the coverage, this setup
is identical to a CRT from a practical point of view.

5.1 Practical Issues

A straightforward application of compressive sensing could be the
following: First, the emitter and the camera are radiometrically cali-
brated (e.g., inverting the gamma curve of the CRT), such that linear
radiance values are measured or emitted. Next, each measurement
vectorf j from a measurement ensemble (for instance Gaussian ran-
dom Haar wavelet coef�cients) is de-linearized into an illumination
pattern (2D image), and emitted from the CRT monitor. A high dy-
namic range photograph of the scene under this illumination condi-
tion is recorded. This recorded image is linearized and stored in a
column of the observation matrixc j . This is repeated for all mea-
surement vectors. Afterwards a decoding algorithm operates on the
acquired data.

Unfortunately, this straightforward approach does not work well.
The main reason for this is the interplay between measurement
noise, quantization errors at the emitter and the normalization of
wavelet bases.

� Measurement noiseoccurs for every measurement at each
pixel on the camera sensor. Its magnitude is independent of
the measurement pattern, or of the re�ectance �eld. There-
fore, its relative impact is more severe when a re�ectance
functions re�ects little light towards the camera (i.e.,dark re-
�ectance functions)3

� Quantization errors occur at the camera and at the emit-
ter. Quantization errors at the camera are usually modeled as
part of measurement noise. Quantization errors at the emitter,
however, are not. This error depends not only on the measure-
ment patterns, but also on the re�ectance functions, because
every illumination element has a different quantization error.
Given the vector of quantization errorsq (i.e., the difference
between each element in the theoretical measurement vector
and the actually emitted measurement vector), the quantiza-
tion errorequant on the measurement of a signalx can be ex-
pressed by:

equant = qTx: (20)

Note, that bothx andq are expressed in the canonical domain,
and not in the wavelet domain. If the measurement vector
is random enough, then the elements inq are randomly dis-
tributed. In such a case,equant can be seen as a weighted sum,
where the signalx acts as a weighting vector, of random vari-
ables. If we assume thatx containsk non-zero elements of ap-
proximately the same magnitude, then is the quantization er-
ror equant normally distributed with a standard deviation pro-
portional to 1p

k
according to the central limit theorem. From

this it follows that measurements of re�ectance functions with
a large support (e.g., diffuse re�ectance functions) suffer less
from quantizations errors, while measurement of re�ectance
functions with a compact support (e.g., specular re�ectance
functions) suffer more from quantization errors.

� Wavelet normalization ensures that the energy content of
wavelets at different scales are the same. This implies that
wavelets with a large spatial support (i.e., coarse wavelets)
will be scaled more than wavelets with a small spatial support

3Real camera systems are also in�uenced by shotnoise in addition to
additive noise. However, in this analysis we will omit shotnoise. Future
research is necessary to investigate the exact effects of this factor on the
design guidelines presented in this section.
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(i.e., �ne wavelets). For 2D wavelet bases, this scaling is pro-
portional to the wavelet levell . In the speci�c case of assign-
ing randomly distributed values to Haar wavelet coef�cients,

the scale of each wavelet levell is according1
4

�
2� (ml � l )

�
.

The factor14 ensures that any generated pattern �ts in the[0::1]
range.

The interplay of these three factors causes problems when estimat-
ing the coef�cients of coarse wavelets. These coef�cients are the
response of the re�ectance function with the randomly weighted
coarse wavelet functions. However, due to the normalization, the
amplitude of these coarse wavelet functions is very small. When
the support of the re�ectance function falls below some threshold,
the response of these coarse wavelets can fall below the quantiza-
tion error, and thus many measurement need to be performed to
reliably infer these coef�cients. This effect is is further ampli�ed
by measurement noise.

A potential solution would be to remove the quantization error from
the system, by using measurement ensembles in which the effects of
quantization are included. Unfortunately, the coef�cients of coarse
wavelet coef�cients will be mapped in a large number of cases to
zero or near-zero values, and thus no information about these co-
ef�cients is measured. Furthermore, the random distribution of the
coef�cients is signi�cantly altered, and the RIC is potentially bro-
ken.

Peers Dutŕe [2005] circumvented the above problems by using a
different normalization of the Haar wavelet basis. Instead of nor-
malizing according to energy content, they use an alternate normal-
ization such that all wavelet basis functions have a similar ampli-
tude. The effect is that each wavelet level takes an equal portion
of the emitter's dynamic range (i.e.,14ml

). Although this alterna-
tive normalization would also work to some degree in compressive
light transport sensing, it still suffers from some issues. First, this
solution does not scale well with respect to sample resolution. For
example, a 128� 128 sampling results in only 5 intensity values
per wavelet level (assuming 140 linear and regularly spaced inten-
sities). Second, by using an alternative normalization of the wavelet
basis, the non-linear approximation of the re�ectance functions is
also altered, and thus the obtained approximations are not optimal
in anL2 sense.

5.2 Illumination Ensemble Design

In this subsection we will design a novel measurement ensemble
that does not suffer from the issues described above. First, general
design guidelines are presented that improve the signal to noise ra-
tio (SNR) of the ensemble. Next, we introduce a binary measure-
ment ensemble that does not suffer from the issues of thestandard
compressive sensing ensembles and ensures good signal to noise
ratios.

Design Guidelines. In order to design measurement patterns that
are suited for compressive light transport sensing we de�ne the fol-
lowing guidelines. First, to ensure that the measurement patterns
fall within the theory of compressive sensing, we strictly adhere to
the restricted isometry condition (RIC) de�ned in Subsection 2.2.
Second, in order to optimize the signal to noise ratio of the mea-
surement patterns we keep in mind the following:

� Increasing the dynamic range of the measurement of a coef�-
cient by a factorc, increases SNR by a factorc2.

� Increasing the number of measurements of a coef�cient by a
factorc, increases SNR by a factorc.

In order words, increasing dynamic range for the measurement of
a coef�cient is more effective than increasing the number of mea-
surements for that coef�cient.

Segregated Ensembles.In order to design new measurement pat-
terns, we start from segregated measurement ensembles, and extend
them using the design guidelines above.

In [Donoho and Tsaig 2006; Donoho 2006] segregated measure-
ment ensembles are considered. In the context of a measurement
ensemble de�ned on the wavelet domain, a segregated ensemble
corresponds to the subdivision of the domain in disjunct partitions,
and where each partition only covers wavelet coef�cients from a
speci�c wavelet level (or a subset of levels). A single measurement
vector has random distributed values assigned only to a single par-
tition. All coef�cients in the other partitions are set to zero.

Now, consider the Haar wavelet basis, and a subdivision inml par-
titions Pi ; i 2 [0; ::;ml � 1] (i.e., each partition only contains a sin-
gle wavelet level). Because a measurement vector only contains
wavelet coef�cients from a single wavelet level, the number of over-
lapping (in terms of spatial support) wavelet basis functions is lim-
ited, unlike thestandardmeasurement ensembles, were the overlap
is maximal. For example, for the Haar wavelet, only three Haar
functions can overlap (i.e., the three wavelet orientations for the
same wavelet position), while in the standard case this overlap is
3ml functions. Consequently, the dynamic range can be increased
by a factor 2(ml � i) for the measurement vectors corresponding to
each partitionPi compared to thestandardmeasurement ensem-
bles. However, segregation also comes at a cost. Each coef�cient,
will only occur as many times as there are measurement vectors as-
sociated with the coef�cient's corresponding partition. In order to
maintain SNR, the number of measurement vectors associated with

each partition should be at leastm
�

1
2(ml � i)

� 2
. If we assign the min-

imum number of measurement vectors to each partition, than we
only need (in the limit)m3 measurements. In other words, only one
third of the measurement budget has been used. This implies that
if we take triple the number of measurement vectors per partition,
that the SNR triples.

A different perspective on segregated measurement ensembles is
that a signal is split up into many unrelated sub-signals. Each of
these sub-signals is sparse, and can be inferred independently from
the other sub-signals. The measurement ensemble for inferring
each sub-signal can thus be optimized to stretch the limitation of
the measurement devices maximally. In the proposed segregation,
the normalization of wavelet basis functions is exploited to increase
the dynamic range during measurement. This different perspective
also reveals an important point omitted in the above discussion. As
noted before in Subsection 2.2, the number of compressive mea-
surements required to infer ak-sparse signal isklogc n. Thus, this
depends on the number of measurements, and the size of the signal
n. This rule also holds for the segregated sub-signals. The opti-
mal partitions size, that maintains the SNR, might not be realis-
tic when taking this into account, especially for the coarse wavelet
levels. In general, the sparsity of the sub-signals increases as the
wavelet level increases. Therefore, more measurements than previ-
ously suggested (to maintain the SNR) are focused on the coarser
partitions. The net effect is that the SNR increases more on the
coarser wavelet coef�cients, and less on the �ner wavelet coef�-
cients.

Binary Segregated Ensemble. From the previous discussion, it
can be seen that an increase in SNR is attained by reducing the
overlap of wavelet basis functions for each spatial location. At this
point, there is still an overlap of three basis functions per spatial lo-
cation. This raises the question whether this can be further reduced.
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Figure 9: Measurement Patterns. Examples of binary segregated measurement
patterns. Three different wavelet levels are shown, and for each level, the three different
wavelet orientations are shown.

Consider the subdivision of each partitionPi into three new par-
titions P j

i ; j 2 f 0;1;2g, where each new partition only contains a
single wavelet level as well as wavelet orientation4. This ensures
that no overlap exists when using the Haar wavelet. Dynamic range
increases by a factor 4, while the number of measurements per co-
ef�cient decreases by a factor of 3. The total gain in SNR from this
segregation is thus16

3 .

In order to further maximize SNR, we will assign Bernoulli ran-
dom variables (P(� 1) = 0:5 andP(+ 1) = 0:5) to the coef�cients
in each partition. The resulting measurement vectors will consist of
only two intensity values. These binary patterns have the advantage
that no quantization errors are made when emitting these patterns,
and that no radiometric calibration of the emitter (i.e., gamma cor-
rection) is necessary. This further reduces the possibility for cal-
ibration and measurement errors. A selected set of nine random
measurement patterns are depicted in Figure 9.

As demonstrated, the binary segregated patterns yield a better SNR
than many of the standard measurement ensembles. Furthermore,
they also ful�ll the restricted isometry condition (Equation (4)), and
thus are suited for compressive measurements. A disadvantage is
that the size of the partitions needs to be selected before acquisition.
The optimal size is related to the distribution of the coef�cients in
the to-be-measured functions, which is unknown. However, in most
cases general properties are known, and a well educated choice of
the partition size can be made.

5.3 Direct Measurement

As discussed in Subsection 2.2, at leastm= klogcn measurements
are required to ensure a successful decoding of ak-sparse signal.
From this it follows that compressive sensing has a small overhead

4A 2D wavelet basis is the result of the outer product of 1D scale and
wavelet basis functions for the horizontal and vertical axes. In the non-
standard wavelet basis, each spatial location has three orientations for each
wavelet level: horizontal scale� vertical wavelet, horizontal wavelet�
vertical scale, and horizontal wavelet� vertical wavelet.

of m
k measurements. Segregating the ensemble into disjoint parti-

tions Pi , effectively subdivides the signal in #P independent parts.
As a result, each partition has its own sparsitykPi , and thus an over-
head of

mPi
kPi

, wheremPi corresponds to the number of measurement
vectors assigned to the segregated setPi . For the �ne detail wavelet
coef�cients, this ratio is still acceptable because the probability of
a coef�cient being important is very small. For the coarse wavelet
levels, however, this ratio can actually be larger than the probabil-
ity that a coef�cient is among thek most important ones. It would
be suboptimal to use compressive sensing in such a case. In gen-
eral, if the probability of a coef�cient being amongst thek largest
coef�cients is less thank

m then a compressive sensing approach is
optimal. If, however, the probability is larger than this ratio then a
direct measurement of the coef�cients is better suited.

The binary patterns proposed in Subsection 5.2 easily allow split-
ting the measurement ensemble into direct and compressive sens-
ing measurements. To maintain a good signal to noise ratio, we opt
for using Hadamard patterns to perform the direct measurements.
Practically, we found that the �rst three wavelet levels are more
ef�ciently captured using direct measurements.

6 Results

All the results in this section have a lighting resolution of 128� 128,
and are captured using 991 patterns:

� 64 direct measurements, i.e., the 3 coarsest wavelet levels.

� 153 compressive measurements for the 4-th level, i.e., 51
compressive measurements per orientation for this level.

� 258 compressive measurements for each of the remaining
three levels, i.e., 86 measurements per orientation for these
levels.

As noted before, we use Hadamard patterns for the direct measure-
ments, and the binary segregated patterns developed in Section 5 for
the compressive measurements. Each re�ectance function is recon-
structed using 128 wavelet coef�cients in total (of which 64 form
the direct measurements), and the resolution of the incident light
�eld is 128� 128. This yields two orders of magnitude acquisition
speed-up and data reduction.

Figure 10 shows a glass �sh scene captured using the hemispherical
emitter of Peerset al. [2007]. On the left, a relit image of the glass
object is shown under a complex illumination condition (shown in
the inset). In the middle a reference image is shown. This reference
image is generated by recording a photograph of the scene while
emitting the complex illumination condition. The color responses
and gamma curves of the emitter were carefully measured to ensure
that both scenes are compared under exactly the same illumination
conditions. On the right, a false color image of the relative error
between the relit and reference image is shown. As can be seen,
both the relit and reference photograph are very similar, especially
the re�ected high frequency patterns are well preserved (e.g., on
the dorsal �n). There are some differences due to the non-linear ap-
proximation of the re�ectance functions, and measurement noise.
For example, a faint blue caustic can be observed on the red back-
ground in the reference image. This caustic is less visible in the
relit image. However, as can be seen in the false color error plot,
the error on these caustics falls well below the average error. The
error is biggest on areas with low albedo, and little incident illu-
mination, in the reference photograph, and is dominated by mea-
surement noise. Because this image represents a relative error plot,
measurement noise (an absolute effect) is ampli�ed as the pixel's
albedo decreases. The total average relative error for this scene un-
der this particular illumination condition is 7:3%.
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Figure 10:Quantitative Comparison of an Acquired Re�ectance Field. Left: a relit image of a re�ectance �eld (128� 128 lighting resolution) inferred from 991 measurements
(64 direct, and 927 compressive), relit using the complex illumination shown in the inset.Middle: a reference photograph of the scene lit by the same complex illumination conditions.
Right: a false color relative error plot of the relit and reference image.

Figures 1 and 11 show three additional scenes acquired using the
presented method and illumination patterns. The illumination pat-
terns were emitted from a CRT monitor positioned to the right of
the scene.

Figure 1 shows a glass container �lled with Habanero peppers. The
left subimage shows a relit image under complex illumination con-
ditions (shown in the inset). As can be seen, the specular re�ections
(primary and secondary) are nicely reproduced. The right sub�g-
ure shows a comparison of a relit image and a reference photograph
under a natural illumination condition, i.e., a photograph (shown in
the inset). Both images are very similar.

The left column of Figure 11 shows a model motorbike containing
specular (exhaust pipe), glossy (body of the bike), and diffuse mate-
rials (ground plate and backdrop). Figure 11.a shows the motorbike
relit using the directly measured components only. The incident
light �eld is shown in the inset on the bottom right of the photo-
graph. Note that most glossy and specular re�ections are missing.
In Figure 11.b the same illumination is applied, but now with the
compressive sensing coef�cients included. As can be seen, the di-
rect measurements encode most of the diffuse re�ection effects, and
a sampling resolution of 8� 8 for a single side of the hemicube suf-
�ces. Note, that due to measurement noise, it is dif�cult to obtain
high resolution re�ectance �elds using only direct measurements
(with the same exposure times). Figure 11.c shows the motorbike il-
luminated by a more challenging illumination condition: three col-
ored light sources. Some noise can be observed on the exhaust pipe.
As noted in Subsection 2.2 measurement noise is not ampli�ed due
to the RIC.

The right column of Figure 11 shows a scene containing a textured
ceramic object and an apple. The ceramic object contains a strong
specular component on top of a textured diffuse layer. The apple
also has a rich texture, and consists of a glossy re�ective layer on
top of a scattering medium. A comparison between a ground truth
photograph (Figure 11.d) and a relit image (Figure 11.e) under a
natural illumination condition (shown in the inset) shows that the
presented method is capable of capturing scenes with visual accu-
racy. Figure 11.f shows the scene under three colored light sources
with different intensities. Again, this shows that our method can
deal with more extreme lighting conditions.

Figure 12 shows six selected re�ectance functions from the scenes
in Figure 11. For each re�ectance function, two different exposures
(not necessarily the same for each function) are shown to better
show the full extent of the reconstructed functions. Note that our
method is capable of capturing sharp specular peaks, glossy peaks,
and diffuse lobes.

Figure 13 shows an interesting experiment. The re�ectance �eld of
the toy motorbike is captured using 927 compressive and 64 direct
measurements using the hemispherical emitter. Next, a relit image
is created by illuminating it by a single illumination element (out of
128� 128). To better illustrate the effect, the image has been bright-
ened 4069 times (left), and 16 times (right). As expected, especially
after brightening the image 4096 times, some measurement noise is
visible in the relit images. Unless a very long exposure photograph
were taken, recording a reference photograph under similar light-
ing conditions would likely exhibit similar or worse measurement
noise.

7 Discussion

We have shown that compressive sensing is a valid method to cap-
ture light transport in a scene. Compared to adaptive methods the
acquisition setup is less complex, and thus more robust. However,
the post-processing phase is computationally more expensive. In
effect, the complexity of the acquisition phase has been shifted to
the post-processing phase. This shift can be justi�ed by observ-
ing that progress in computational power is much faster, than the
rate of improvement in sensor sensitivity. Adaptive methods on the
other hand have the advantage that they can adapt to the nature of
the scene and avoid potential problem areas (e.g., oversaturation,
external light contamination), and can even recapture parts of the
scene if necessary. Compressive sensing, however, does not have
that luxury, and contaminations of the measured data can affect the
quality of a captured dataset adversely. In controlled acquisition
environments, the need for such robustness is of lesser concern.

In the remainder of this section we will discuss the differences be-
tween the presented method and two of the most closely related
previous works, i.e., [Matusik et al. 2004], and [Peers and Dutré
2005].

7.1 Comparison to Related Methods

Matusik et al. [2004] infers re�ectance �elds from natural illumi-
nation, i.e., photographs of natural scenes. Each re�ectance func-
tion is represented by a sum of non-overlapping kernels, i.e., box
functions. Each re�ectance function is inferred using a greedy al-
gorithm, where at each step a kernel is split horizontally or verti-
cally. The splitting direction, and kernel to split are selected such
that the error decreases maximally. A quadratic programming ap-
proach is used to update the magnitudes of each kernel function
after splitting such that non-negativity of the re�ectance function
is maintained and error is minimized. Because the complexity of
this algorithm increases quadratically with the number of box func-

13



ICT-TR-05-2008

R
el

it
C

om
pr

es
si

ve
A

pp
ro

xi
m

at
io

n R
elitC

om
pressive

A
pproxim

ation
R

elitC
om

pressive
A

pproxim
ation

D
ire

ct
an

d
C

om
pr

es
si

ve
to

ge
th

er
D

ire
ct

M
ea

su
re

m
en

ts
O

nl
y

R
eference

P
hotograph

(c)

(b) (e)

(f)

(a) (d)

1 3 4

652

Figure 11:Acquired Re�ectance Fields.Left column, a relit toy motorbike is shown.(a) and (b)are lit by the illumination condition shown in the inset. Sub�gure (a)only shows
the effect of directly measured coef�cients, while (b) also includes the coef�cients obtained by compressive sensing.(c) shows the motorbike relit by three colored light sources. The
right column shows a ceramic object and an apple. A reference photograph of the scene(d) lit by the illumination condition (shown in the inset) is compared to acomputed result
(e). (f) shows the scene under three small colored light sources. Re�ectance functions of the six marked pixels are shown in Figure 12.
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Figure 12:Re�ectance Function Approximations. Six selected re�ectance functions from the scenes in Figure 11. Two different exposuresof each re�ectance function are
shown to better illustrate the different details at different scales.

Brightess� 4096 Brightess� 16

Figure 13:Extreme Illumination Condition. A scene containing a motor bike illuminated by a single illuminationpixel (out of 128� 128). The left image has been brightened
4096 times, and the right 16 times.

tions, an energy-based heuristic is used to preselect the kernel to
be split. Finally, to ensure spatial coherency, the kernel con�gura-
tion of neighboring pixels' re�ectance functions are also veri�ed as
a potential kernel subdivision. If the quadratic programming solu-
tion is less optimal, then the neighbor's kernel con�guration is used
instead. Additionally, the kernel con�guration is shifted around to
check whether this gives a more optimal con�guration. This spatial
regularization is only performed at the end of the algorithm.

Peers Dutŕe [2005] also infer re�ectance functions in a greedy fash-
ion. Their input consists of wavelet noise patterns: normal dis-
tributed random Haar wavelet coef�cients. The Haar wavelet basis
used is non-standardly normalized, i.e., equal amplitude instead of
the standard equal energy normalization. The reconstruction algo-
rithm reconstructs a non-linear Haar (also non-standardly normal-
ized) wavelet approximation of each re�ectance function indepen-
dently in a greedy fashion based on the heuristic that only coef-
�cients need to be considered for which their parent is already in-
cluded in the approximation. Of all potential candidate coef�cients,
the one that reduces the error most is included. This corresponds to
the candidate wavelet coef�cient with the largest estimated coef�-
cient.

7.2 Comparison

We will break the comparison into four focus points: the illumi-
nation patterns, the representation and reconstruction of re�ectance
functions, spatial coherency, and �exibility of the method.

Illumination Patterns. One of the strengths, and at the same
time weaknesses, of [Matusik et al. 2004] is the ability to infer re-
�ectance �elds from natural illumination. By not imposing hard
constraints on the measurement ensemble, it is possible to com-
pute re�ectance �elds for large outside scenes such as whole cities.
However, it is also a weakness in the sense that it is unclear what
the in�uence of the measurement ensemble is on the reconstruction,
and what the limits of the system are. This makes it very hard to
compare this method since no optimal illumination is known.

The method of Peers Dutré [2005], takes an opposite approach, and
imposes strict rules on the generation of the wavelet noise patterns.
This has the advantage that strict bounds are imposed on the per-
formance of the algorithm, but at the cost of �exibility in selecting
patterns that are optimized to the characteristics of the acquisition
setup.

The presented method also puts strict conditions on which kind of
illumination patterns can be used to ensure optimal inference of
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re�ectance �elds. However, these restrictions are much less strict
than those of [Peers and Dutré 2005], allowing one to optimize the
patterns for the limitations of the acquisition setup. Neither of the
previous methods addresses the design of illumination patterns.

Re�ectance Function Representation and Reconstruction.Ma-
tusik et al. [2004] presented two methods for inferring the re-
�ectance functions. However, both methods suffer from some
shortcomings. First, it has been previously shown in [Peers and
Dutré 2005] that the maximum energy subdivision heuristic is sub-
optimal. Splitting the kernel with the highest energy does not nec-
essary yield the best error reduction. Second, without the splitting
heuristic all possible subdivisions need to be tested. However, in
such a case the method is only practical for 25 to 30 subdivisions,
after that the method becomes computationally too expensive. The
presented method, on the other hand, scales much better with re-
spect to the desired approximation quality.

The method of Peers Dutré [2005] computes a non-linear wavelet
approximation of each re�ectance function that minimizes theL2
error in the wavelet domain. However, due to the non-standard nor-
malization, this does not correspond to an optimization of theL2
error in the canonical domain, i.e., with respect to a reference re-
�ectance function, but instead to a weightedL2 norm, where the
weighting places more importance on low frequency wavelets. Fur-
thermore, only wavelet basis functions can be used to represent the
re�ectance functions. Both are inherent to their greedy algorithm
and are necessary for correct execution. Our method, on the other
hand, is able to infer re�ectance functions for any basis, regardless
of normalization.

Another key difference is that both previous methods only add ker-
nels or basis functions, and are thus unable to undo previous sub-
optimal decisions. The presented method has the ability to remove
coef�cients at every level of the hierarchical algorithm, even if the
basis compressive sensing reconstruction method does not support
removal of coef�cients.

Spatial Coherency. The spatial correction method of [Ma-
tusik et al. 2004] warrants further discussion since our method
also utilizes spatial information. A key difference is that Ma-
tusik et al. [2004]'s method copies complete con�gurations, while
our method is able to partially copy con�gurations, and build upon
these. Because they copy con�gurations, no increase in informa-
tion is attained, nor is bad information removed. Additionally, our
method not only uses neighborhood information from direct neigh-
bors, but considers multiple neighborhoods of different sizes by
using a multi-resolution approach. This multi-resolution approach
regularizes the system at multiple scales, yielding substantially bet-
ter results. As noted in [Matusik et al. 2004], their spatial correction
improves the quality when the number of photographs is small, thus
when their system is ill-conditioned. In a well-conditioned case,
little improvement is noted. In our system, we note improvements
irrespective of the conditioning.

Flexibility. While it is obvious from the above discussion that the
presented method will yield better reconstructions, it is not the only
strength of the presented technique. An important advantage of our
method is its �exibility. First, there is the �exibility in designing
illumination patterns (as shown in Section 5). Previous methods do
not offer any �exibility at all [Peers and Dutré 2005], or offer too
much unconstrained �exibility [Matusik et al. 2004] such that it is
hard to design optimal patterns. Second, the presented method has
the �exibility of choosing any existing compressive sensing recon-
struction algorithm as a basis. This allows to trade off speed versus
accuracy, and allows for using future advanced reconstruction al-
gorithms in the �eld of compressive sensing. Finally, due to its
foundation in compressive sensing, our method has the advantage

of a well-de�ned and �exible theoretical framework. We believe
that it is this �exibility that is the most important advantage over
previous methods.

7.3 Limitations

Currently compressive light transport sensing is mostly limited by
the quality of the measurements. Synthetic examples have shown
that our method can accurately reconstruct sharp shadow bound-
aries, and smooth re�ectance functions. The limited SNR of the ac-
quisition devices, however, limits the accuracy in real scenes. Small
coef�cients are especially dif�cult to infer accurately. Fortunately,
these small coef�cients are the least important in a non-linear ap-
proximation. However, it does limit how many coef�cients can be
computed from a limited number of measurements. It should be
noted that even in a brute-force acquisition (e.g., using Hadamard
measurement patterns), or using current adaptive methods, these
will encounter the same problems when using similar measurement
devices.

An advantage of compressive light transport sensing is that it trades
acquisition complexity against post-processing computation time.
As a result, acquisition is straightforward. A disadvantage is that
the required computation time can be quite signi�cant. Our unopti-
mized code requires approximately 15 hours for the synthetic scene
(512� 512 resolution) shown in Figure 5. We anticipate that opti-
mized code could reduce this signi�cantly. Furthermore, the hierar-
chical algorithm can be easily parallelized to exploit the capabilities
of new multi-core processors.

8 Conclusion and Future Work

We have presented a novel framework for capturing light transport
based on the theory of compressive sensing which captures the light
transport data of a real scene using a small set of non-adaptive illu-
mination patterns. A new hierarchical algorithm was developed that
exploits spatial coherencies to improve reconstruction quality. Ad-
ditionally, practical guidelines to design illumination patterns were
presented to ensure a good signal to noise ratio during acquisition of
real scenes. We have applied the presented framework to an image-
based relighting setup, and showed that we were able to achieve
high quality acquisitions, with detailed re�ectance functions, and
relit results indistinguishable from reference photographs. Addi-
tionally, these results are obtained using less than two orders of
magnitude of measurements compared to a brute force acquisition.

For future work, we would like to apply this framework to other
applications in computer graphics. Additionally, we would also
like to extend the presented technique to different setups for captur-
ing light transport data, such as BRDFs, BTFs, and 8D re�ectance
�elds. Further research into improving the signal to noise ratio for
light transport acquisition is necessary. Additionally, we would like
to re�ne the ensemble design guidelines to minimize the impact of
camera shotnoise.
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