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Complex lllumination Relighting

Natural lllumination Relighting Reference Photograph
Figure 1: An example of relit images of a scene generated from a re ectance eld captured usin@@@snan-adaptive illumination patterns (emitted from the right onto the
scene). The incident lighting resolution, and resolution of each re ectance faniid28 128. Even though we only performed a small number of measurements, we ablstill
to capture and represent complex light transport pdteft: the scene relit with a high frequency illumination condition (insktiddle: the scene relit under a natural illumination
condition (inset)Right: a ground truth reference photograph of the scene.

Abstract this image-based data is time and storage intensive. For instance,
acquiring high-resolution datasets for scenes such as the bow! of
In this paper we propose a new framework for capturing light trans- Peppers shown in Figure 1, can require tens of thousands of pho-
port data of a real scene, based on the recently developed theoryfographs and gigabytes of storage. In this paper we focus on ac-
of compressive sensing. Compressive sensing offers a solid math-quiring light transport for the purpose of generating relit images
ematical framework to infer a sparse signal from a limited number Of @ scene using compressive sensing to greatly reduce acquisition
of non-adaptive measurements. Besides introducing compressivelime and storage.
sensing for fast acquisition of light transport to computer graphics, o ) )
we develop several innovations that address speci ¢ challenges forDue to the acquisition complexity and storage requirements for
image-based relighting, and which may have broader implications. such relightable datasets, many different methods have been de-
We develop a novel hierarchical decoding algorithm that improves Veloped to speed up the acquisition of light transport. Previous
reconstruction quality by exploiting inter-pixel coherency relations. image-based techniques rely on sampling methods [Debevec et al.
Additionally, we design new non-adaptive illumination patterns that 2000; Wenger et al. 2005], adaptive methods [Matusik et al. 2004;
minimize measurement noise and further improve reconstruction Peers and Duér 2003; Sen et al. 2005], or techniques using non-
quality. We illustrate our framework by capturing detailed high- trivial measurement patterns [Peers and B@005] or specialized
resolution re ectance elds for image-based relighting. projector-camera setups [Garg et al. 2006].

. A central concept in these image-based methods is a re ectance

1 Introduction eld, an 8D entity that abstracts the light transport through a scene
in terms of incident and outgoing illumination on a bounding vol-

The complexity in the appearance of real world scenes remains aume surrounding the scene. Both the incident and outgoing light
principal challenge to simulate in computer graphics. Modeling and eld are 4D elds: for each position on the bounding volume (2D),
rendering such scenes under novel lighting with traditional com- all possible directions (2D) are considered. Capturing and handling
puter graphics is an arduous task, which requires talent and experi-these 8D elds is dif cult. Therefore, most methods consider a re-
ence. As a result, image-based representations have gained in popduced approximation. In this paper we will use the commonly used
ularity, wherein traditional modeling and rendering are replaced by approximation proposed by Debewetal.[2000], where the outgo-
image-based acquisition and relighting. Unfortunately, acquiring ing light eld is reduced to a 2D eld by xing the viewpoint, and
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where the incident light eld is also reduced to a 2D eld by as-
suming that incident illumination only varies positionally over the
bounding volume.

2.1 Measuring Light Transport

Measuring the light transport through a scene is a challenging prob-

The recently developed mathematical theory of compressive sens-lem, due to the dimensionality (8D) and the wide frequency behav-

ing [Donoho 2006; Cares 2006] offers a new theoretical back-
ground to improve image-based acquisition of light transport, and
has potential for many other elds in computer graphics. Compres-
sive sensing explores how to acquire a compressible signal from
only a fewnon-adaptiveneasurements. Key to compressive sens-
ing is the use of measurement pattémherentwith the signal to

be measured. In this paper, we investigate how compressive sensin
can be adapted to acquire detailed re ectance elds forimage-based
relighting, reducing acquisition and storage costs by more than two
orders of magnitude.

Conventional compressive sensing algorithms typically deal with a

ior of real materials. In this section we will brie y discuss some of
the milestones in this eld relevant to our contributions.

Sampling Light Transport. Debevecet al.[2000] reduce the full

8D re ectance eld to a 4D entity by xing the viewpoint and as-
uming directional illumination only. The reduced re ectance eld

s then sampled using laight Stage A light source is moved to

a nite number of positions (2D) around the subject, and a photo-

graph is captured. Each photograph represents a 2D slice of the 4D

re ectance eld. Relighting can then be easily achieved by linearly

recombining these images with appropriate weights. This method

single function that needs to be measured and reconstructed. |nhas been further extended to near instant acquisitions [Wenger et al.

the case of image-based relighting, many (re ectance) functions

2005], or to capture 6D re ectance elds, allowing relighting with

are sampled in parallel (i.e., one for each camera pixel), and eachmore general 4D incident light elds [Masselus et al. 2003]. In

of these functions needs to be reconstructed individually using a
compressive sensing algorithm. However, this is computationally

expensive, and ignores spatial relationships between neighboring

pixels' re ectance functions. Therefore, we have developed alnove
hierarchical reconstruction algorithm that is able to extract the com-
pressed signals using less computation, and with greater accuracy.

general, the duration of the acquisition in these sampling based
methods is proportional to the size of tllecompressetk ectance
functions. In our method, however, the duration of the acquisition
process is proportional to the size of thempressede ectance
functions. Since re ectance functions can be compressed very well
without losing much accuracy [Masselus et al. 2004], this yields a
signi cant speed-up in the acquisition process.

The “standard” measurement patterns used in compressive sens-

ing assume an almost perfect acquisition system, where the OnlyAdaptive Acquisition Methods.

source of error is due to the observation of the measurements.
reality, other sources of error exist. For instance, in image-based
relighting, measurements are performedenyittingmeasurement
patterns from a controllable lighting device. This device can also
introduce errors such as quantization. Although some research in
compressive sensing has focused on designing optimal illumina-

Peers Dui [2003] propose

INto sample the re ectance eld directly in the wavelet domain. To

speed up the acquisition, an adaptive sampling scheme is used. A
measurement oracle decides, based on previous samples from re-
ectance eld, where to sample the wavelet domain next such that
the potential for error reduction on the approximation of the full

re ectance eld is maximized. This method, however, has dif -

tion patterns [Elad 2007; Weiss et al. 2007], these approaches arey iy dealing with scenes containing many specular elements. Re-

not suited for the scale required for our application. In this paper
we propose a more practical approach, and give guidelines for de-
signing illumination patterns that increase the signal to noise ratio
of the measurements.

In summary, our contributions include:

The introduction of compressive sensing for the acquisition of
light transport, applied to image-based relighting.

A novel hierarchical algorithm for decoding multiple com-
pressive measurements that exploits spatial coherency to im-
prove reconstruction quality and decrease computation costs.

Practical guidelines for designing illumination patterns that
improve signal to noise ratios of the measurements.

Notation.  Throughout this paper we will use the following no-
tational convention: a matrix is denoted by a bold capital, &g.,
A vector is denoted by a bold lower-case character, &,gand a
scalar by a lower-case character, esg.The j-th column ofM is
denoted asj, thei-th row bym;. , and the element at theth row
and j-th column asm;j. Thei-th element of a vectov is denoted
by v;.

2 Related Work

In this section we will discuss related work, subdivided into two
categories: measurement of light transport (Subsection 2.1), and
compressive sensing (Subsection 2.2).

cently, Fuchset al. [2007] presented an adaptive method to sam-
ple re ectance elds using point samples in the canonical domain.
Other interesting recent developments are dual photography [Sen
et al. 2005], and symmetric photography [Garg et al. 2006], where
physical properties, reciprocity and symmetry respectively, of the
transport matrix are exploited to speed up acquisition. Both use
an adaptive acquisition scheme, which places most of the complex-
ity on the acquisition system, as opposed to our method where the
acquisition is very straightforward and most of the complexity is
shifted towards post-processing where re ectance data is inferred
from the observations after acquisition.

Beyond Conventional Sampling and Adaptive Methods.
Sampling-based methods have a number of disadvantages, such as
the practical limit on how many samples can be taken. Environ-
ment matting [Zongker et al. 1999; Chuang et al. 2000] proposes
an alternative paradigm, but is unable to represent all types of light
transport correctly. Matusikt al. [2004] and Peers Du#r[2005]
presented methods that capture high-quality re ectance elds from
a xed set of non-adaptive illuminations patterns, natural illumi-
nation and wavelet noise respectively. Subsequently, an adaptive
greedy algorithm is used to infer the re ectance functions. Both
methods are very similar to compressive sensing in the sense that
they use a xed set of illumination conditions, and utilize an adap-
tive algorithm to decode the re ectance functions after acquisi-
tion. Our work differs from the above methods in that we are not
restricted to a speci ¢ non-adaptive illumination pattern, but can
choose from a whole family of patterns. Additionally, with the ex-
ception of [Matusik et al. 2004] none of the above methods leverage
spatial coherence of the scenes' re ectance.



ICT-TR-05-2008

2.2 Compressive Sensing

In this subsection we give a brief introduction to compressive sens-
ing, important terms, and relevant properties. Although compres-
sive sensing [Donoho 2006; Cagl2006] is a relatively new re-

search area, a large body of literature already exists. In order to
keep this section concise, we will only discuss a select set of key
points relevant to this paper. An extensive list of compressive sens-

ing resources can be found at the compressive sensing resource

web site [CSR].

Theoretical Background. Consider ak-sparse discrete sig-
nal x 2 R" that contains at most n non-zero elements (i.e.,
iiXijo k). Now de ne a measurement of this function by taking
the dot product of the signaland a measurement vectr2 R"™:

yj = ijx. We can writem multiple measurements conveniently as
a matrix-vector multiplication:

Tx:

y=f 1)

Them nmatrixf T is called aneasurement ensemiitethe con-

text of compressive sensing. Conventionally (e.g., brute-fonee sa
pling), when the measurement ensemble has a mattie signalx

can be faithfully reconstructed from the measurements, without any
a priori knowledge of the signal. This implies that the number of
measurementsr n. However, in compressive sensing theri-

ori knowledge that the signal kssparse is used to capture a signal
in just O(k) non-adaptivemeasurements [Donoho 2006; Casd
2006].

Reconstruction. Before discussing the exact nature of th€g#)
non-adaptive measurements, we need to consider the reconstructio
x of the original signak from the measurements This can be
achieved by solving the following minimization problem:

minjj Xjj1; subjecttoy= fTx:

@)

This minimization searches for the approximation that explains the

existing reconstruction method for single functions in order to de-
code multiple measurements. Although any reconstruction method
can be used, we opt for using ROMP.

A number of methods have considered using inter-measurement
coherency relations to improve reconstruction results. Trepp

al. [2006] extend OMP to handle multiple measurements. How-
ever, unlike our method, it assumes that all measured signals have
the same sparsity pro le, i.e., they have the same non-zero coef -
cients. Cotteet al. [2005] make similar assumptions when decod-
ing multiple observations. #t al. [2007a] extend their previous
Bayesian compressive sensing method [Ji et al. 2007b] to decode
measurements of multiple signals simultaneously, by using hierar-
chical Bayesian models. They show impressive improvements in
decoding quality, but note that their method is sensitive to shifts in
wavelet coef cients between different signals.

Relevant Properties. The above discussion assumed, unrealisti-
cally perhaps, that a signal is exackysparse (i.e., at least k
terms are exactly zero). Many signals, such as re ectance func-
tions, are nok-sparse but compressible [Liu et al. 2004; Masselus
et al. 2004]. Canels Tao [2006] have shown that the same frame-
work in compressive sensing also works very well for recovering
the besk-term approximation of compressible signals.

The accuracy of the reconstruction of both sparse and compressible
signals depends on two factors: measurement noise and approxi-
mation error. Canels [2006] showed that the error on the recovered
signal is of order:

O(eam) + O(&); )

X X2
thereem represents errors due to measurement noise,eqnsl
the approximation error due to compression. Note, that the rst
term is optimal, i.e., the error is proportional to measurement noise
and thusnot ampli ed by compressive sensing. Similarly, the ap-
proixmation error is also not ampli ed by the compressive mea-
surements. In other words, given some target approximation error,
compressive sensing is as good as the best adaptive methods, but
without the overhead of taking adaptive measurements.

observed measurements under a speci ¢ measurement ensembld;inally, the number of measurements required to successfully re-
and that is as sparse as possible. Sparseness is enforces by dPnstruct e-term approximations of a signal of lengtthas been

" 1-minimization, which is known to prefer sparse solutions, and
which can be solved fairly ef ciently using either the simplex algo-
rithm [Dantzig 1963] or interior point methods [Wright 1997]. The
optimization strategy that solves Equation (2) is also cdflasis
pursuit[Chen et al. 2001; Donoho 2006]. Although basis pursuit is
effective, the computational costs associated are still signi cant. As
aresult a number of alternative decoding strategies have been devel
oped that solve minimization problems that approximate Equation

@).

Orthogonal Matching Pursuit (OMP), one of the rst alternative de-

coding algorithms, and was studied by Tropp Gilbert [2005] in the
context of compressive sensing. Although its accuracy is slightly
below that of basis pursuit, it remains a very popular method due to

shown in the seminal work by Caes [Canés 2006] to bélog®n
measurements, with some constant dependent on the measure-
ment ensemble and reconstruction algorithm.

Measurement Ensemble. A remaining issue is what kind of mea-
surement ensembles can be used to decode any measured sparse
signal with a high probability of success. An important condition
that determines whether a measurement ensemble is suitable for
this goal, is theestricted isometry condition (RICThis condition,

with parametergk; €), is de ned as:

(1 &iiviiz i fTviiz (1+ e)jjviiz; (4)

its speed and ease of implementation. As opposed to basis pursuit,

OMP is a greedy algorithm: it adds a single coef cient per iteration.

for everyk-sparse vectov. This condition states that the eigenval-

Because coef cients are never removed, an erroneous addition of aues of any subset of at mdstrows of the ensemblé are at most

coef cient can degrade the quality of the solution signi cantly. Re-
cently, Needell Vershynin [2007b; 2007a] presented a promising
variant of OMP, called Regularized Orthogonal Matching Pursuit
(ROMP), that has better theoretical convergence properties, while
maintaining the ease of implementation and speed of OMP. The de-
coding algorithm developed in this paper relies on the use of an

eremoved from 1. This implies that any subset of at moiws
forms a basis for that particular subspace. This implies that an en-
semble that adheres to the RIC form a basis forkaagarse signal.
Thus, enough information is available to reconstruct the original
signal, on the condition that a suf cient number of measurements
are recorded.
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The concept of the RIC is straightforward, but it does not give a gen-
erative de nition of practical measurement ensembles that meet this
condition. It has been shown that assigning Gaussian or Bernoulli G: =t L (7)
random values to each element of the ensemibler randomly se-

lected Fourier basis functions (i.e., randomly selected frequencies)

ful lls these conditions [Baraniuk et al. 2008]. whereL ful lls the role of the measurement ensemifle and the

re ectance functiortj: corresponds to the discrete signaBefore
Randomly selected measurement ensembles have the advantageompressive sensing can be applied to each re ectance function,
that they are general and easy to generate. However, they are notve need to verify that these re ectance functions are either sparse
necessarily the most optimal for measuring any signal, nor are theseor compressible. Previous research [Liu et al. 2004; Masselus et al.
ensembles optimized to the limitations of real world acquisition de- 2004] has shown that certain types of re ectance functions are in-
vices. Elad [2007] showed how to optimize the measurement en- deed sparse or compressible in certain bases (e.g., spherical har-
semble, by minimizing mutual coherence between a dictionary of monics or wavelets). Suppose we have such a lisisid assume
bases and the measurement ensemble. Although it improves refor simplicity that this basis is orthogonal (i.8, 1 = BT), then:
construction quality, it does not solve any practical issues with real

measurement equipment. Wegssal. [2007] developed a method

called Uncorrelated Component AnalysisCA) that attempts to c = TL: @)
learn the optimal measurement ensemble from a training dataset by '

maximizing the distance between the measured signals. Although = T(BB')L; 9)
their method is quite intriguing, it is not suitable for our particular = TBTL: (10)

problem for two reasons: First, the training dataset needs to be rep-

resentative of the whole space of possible signals. Because we are ~

dealing with signals de ned on a large domain, a very large dataset WhereT = TB is the transport matrix expressed in the basiBy

is required, making the algorithm impractically slow. Second, UCA choice ofB we now know thal is compressible, and thus suited for

assumes that the signal is exactly sparse, and does not take into adheasurement by compressive sensing. Now de ne the illumination

count approximation errors due to lossy compression. patterns ag = Bf, wheref is one of the theoretical compressive
sensing ensembles. Combining this with Equation (10) yields:

3 Light Transport Sensing

In this section we explore how compressive sensing can be applied C = T(B'8f; (11)

to acquiring light transport data, in particular to image-based re- Tf: (12)

lighting. As noted in numerous previous works [Ng et al. 2003;

Peers and Duér2003], image-based relighting can be written com-

pactly in matrix notation as: We can now see that the observatidhdit by these illumination
conditions, directly map (after transposing both sides) to Equation
(1) for each rowt;. , and that it still ts in an image-based relighting
framework.

c=TI; (5)
To summarize, the illumination patterns are the measurement (row)
vectorsf j from the ensemble, projected onto the inverse basis
(note that the transpose is because of the pre-multiplication in the
de nition of L = Bf). To illustrate, suppose the measurement en-
semble consists of independently and identically-distributed Gaus-
sian random variables, and the basis is a Haar wavelet basis. By
applying aninverseHaar wavelet transform on the Gaussian noise
vectors, we obtain the illumination patterns. This effectively means
that we are choosing Haar wavelet coef cients in a Gaussian way.

g?aking photographs of the scene illuminated by these illumination

patterns yields the matrix of observatio@is Each row in this ma-

trix (i.e., the observed values for a speci c pixel location) yields a

vector of measurements that can be used to reconstruct the original

re ectance function for that pixel expressed in the b&ksis

where: T isap nmatrix that de nes the light transport between

n light sources ang camera pixelsg represents these pixels in
an observed camera image, stacked in a vector of lepgttrep-
resents the illumination conditions, stacked in a vector of length
Anillumination condition can consist of any combination of point,
directional, and area light sources. Each elemenhtindicates the
emitted radiance of the corresponding light source. The relighting
process consists of two stages: First there is the measurement sta
that has as its goal determining the transport matrilzy observing

the scene under a selectiomotifferent illumination conditions;,

j m; Second, there is the relighting stage, that has as its goal com-
puting newly relitvirtual observationgiven the measured transport
matrix from the rst stage, and a user-de ned lighting condition.
This second stage comes down to evaluating Equation (5) and isBrute-force Compressive Light Transport Sensing. From the
straightforward once the transport matrix is known. discussion above, we can now desigtorate-force compressive
light transport sensinglgorithm. During acquisition, the illumi-
nation patterns as de ned above, are emitted onto the scene, and
for each a HDR photograph of the scene is recorded. Next, a re-
ectance function is inferred for each pixel separately by applying a
compressive sensing decoding algorithm to the observation of only
that pixel. As noted before, we use ROMP [Needell and Vershynin
C=TL: (6) 2007b; Needell and Vershynin 2007a] in our implementation.

For the acquisition stage, multiple illumination conditiohs=

can also be compactly denoted in matrix notation as:

This brute force algorithm has the advantage that it is straightfor-
Each rowt;: of the transport matriX represents the re ectance  ward to implement, and all theoretical properties of compressive
function of thei-th pixel in the camera image. The observations of sensing are still valid. However, because each pixel is processed
thei-th pixel are thus governed by an equation similar to Equation independently, there is no guarantee that spatial coherence is main-
(2): tained. To illustrate, Figure 2 shows a synthetic scene consisting of
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Brute Force ROMP Hierarchical Algorithm

To de ne these additional transformations, we note the similarity
with image compression, where inter-pixel relations are used to
minimize storage requirements. A common method to condense
information is to apply a suitable basis transformation, such as a
wavelet transform. After transforming the image, only the most
important coef cients (i.e., with largest magnitudes) are stored.
Again, this can be written compactly as a matrix multiplication
similar to Equation (10). For example, an observed imagan

be condensed into a few signi cant coef cients using a suitable ba-
sisP by the transformationP" c. Interestingly, when applying this

to Equation (10) we obtain the following equation:

P'C=(P'T)(BTL): (13)

Figure 2:Spatial coherencyof brute-force compressive light transport sensing (left) Observe thaPTT' = PTTB, consists otwo basis transformations

versus hierarchical compressive light transport sensing (right). The re ectance func- 5 the transport matriX. The right transformatio® operates on

tions (128 128) are in both cases reconstructed from 1000 measurements using 100”.le rows (i.e. re ectance functions) of the transport matrix. while

Haar wavelet coef cients. For each algorithm, a detail is shown to betterréitesthe ! L T !

differences in coherency. Additionally, a single re ectance function from this Idstai the l?ﬁ t.ranSformatIO'P operates on the columqs of the transport

shown on the bottom left of each example. matrix (i.e., photographs). In other words, the right transform ex-
ploits coherencies within the re ectance functions, while the left
transform condenses inter-pixel information. The resulting doubly
transformed transport matrix is even more sparse, and thus is po-

a diffuse ball. On the left a relighting is shown of the re ectance enig|ly inferable from fewer measurements at a higher accuracy.
eld computed using a brute-force approach, where each 1233

re ectance function is reconstructed from 1000 Gaussian measure- .

ments (without adding measurement noise) using 100 Haar wavelet4-2 ~ Algorithm

coef cients. While this shows that the brute-force approach is able

to generate good results, some artifacts can be seen (i.e., spikes)/Ve now develop our novel algorithm that exploits spatial relations.

On the right a relit result is shown of the same scene, reconstructedEquation (13) provides the necessary tool for utilizing inter-pixel

with the same number of coef cients per re ectance function, but relations during post-processing. In order to exploit inter-pixel re-

with the algorithm presented in the next section that takes into ac- lations at different scales, we employ a hierarchical basis to cre-

count spatial coherency. ate a multi-resolution approximation of the acquired photographs,
and to compute for each multi-resolution level, an approximation of

. . . . the re ectance functions using compressive sensing. At each level,

4 Hierarchical CompreSSNe Sensmg we initialize the compressive sensing reconstruction algorithm by
the solution obtained in the previous level. The key assumption is

In this section we introduce a novel hierarchical reconstruction that a coarse approximation at coarser levels, can be much more

algorithm that exploits spatial coherency to regularize the recon- accurately estimated. During the compressive sensing decoding,

structions from many simultaneously acquired compressive mea- coef cients are either updated, added or removed from this initial

surements. This is achieved by using a coarse-to- ne strategy solution.

to compute and re ne re ectance functions. First we will pro-

vide some necessary mathematical insight into how a coarse-to- ne Instead of developing a novel compressive sensing reconstruction

strategy can be used in the context of light transport sensing (Sub-algorithm, we will use an existing compressive sensing decoding

section 4.1). Next, we detail our algorithm in Subsection 4.2. We algorithm as a basis. To ensure maximum exibility, and to an-

conclude this section with a brief discussion (Subsection 4.3). ticipate future advances in the eld of compressive sensing, we

design our hierarchical algorithm such tlzaty compressive sens-

ing reconstruction algorithm can be used as a basis. As in sec-

tion 3, we opt for using the Regularized Orthogonal Matching Pur-

suit (ROMP) [Needell and Vershynin 2007b; Needell and Vershynin

Studying the transport matrik gives us additional insight into its  2007a] reconstruction algorithm in our implementation.
structure and how it can be used to develop a hierarchical algorithm.

A key observation is that the projected transport matrix TB is We will now discuss every step in detail of the presented hierarchi-
only sparse/compressible over its rows, because the basis transforncal algorithm for which the pseudo-code is shown in Figure 3.
B only operates on the rows. Any coherency over the columns, and

thus between different camera pixels, is not utilized. Multi-resolution initialization (Steps 1-2). Initialization of our
algorithm starts by transforming the observati@nssing a suitable

In order to take advantage of these coherencies, we need to extendnulti-resolution basi®. This basis should exploit the coherencies
either the basis transforf, or apply additional transformations  within each column in the transport matfixas much as possible.

to the transport matriX. Extending the compressive sensing al- This ensures that as much information as possible is condensed in
gorithm to exploit inter-pixel coherencies during acquisition is not coarser levels, and details are added in ner levels. A good choice
feasible, due to the natural parallelism of cameras (i.e., all pixels for such a basis are bases suited for image compression, since each
are captured at once), and thus the basis trans®roannot be column corresponds to a recorded image of the scene. Probably
adapted. However, we can still utilize inter-pixel relations during the best known class of hierarchical basis functions that excel for
post-processing (decoding) by applying additional transformations compressing images are wavelets. In our implementation we use
onT. the Haar wavelet basis fér.

4.1 Mathematical Basis
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Observation€ (p  mmatrix) of the scene lit by the measurement
ensembld (n  mmatrix). k is a user-speci ed target sparsity. The
Input:  wavelet transfornP™ = (O, P|)", whereP[ is the transform from
wavelet level tol 1,1 = 0 corresponds to the coarsest level, and
| = m to the nest level.
For each pixel locatiom, a setS of coef cient indices, and their
Output: corresponding magnitudés, with tf;’l 6 Oonlyifj2S.
Init: The initial setS 1 = 0, and initial coef cientsT 1= 0. The coarsest
level of the hierarchyC® = PTC.
(1) For every wavelet level:= 0! m:
2) For every index representing a scale coef cient @ :
?3) Copy initial the solution:
§= gf)a%en(l)
=t
i; parent(i);
) Difference:d” = ¢, . f
(5) CS decodefRr) = decodéd; f ;kq )
(6) Merge:
§ 9dLR
8j2R:fl, i+
7 Limitsize:§  indices ofk largest coef cients irt!,
(8) Prune8j2 § :if jfl;j< dthen:§ g |
9) Update(il. )T = argminjic. fTzj.s.t.z 6 0iff. j2 g
(o) c+t  pc!
ay s g andf; &

Figure 3:An overview of the hierarchical algorithm. At every level, and for every
pixel, a compressive approximation is computed from the difference of the prddict

by rewriting Equation (2) as:

TS
Fx (14)
t

minjjy; - subjectto & L G

whereXini; is the initial solution, andi is the compressive approxi-
mation of the difference between the initial solution and the signal
X. Becaus&inir remains constant during the minimization, we
can rewrite the minimization as:

argminijxjj1 = argminjdjjy: (15)
d d

Combining Equations (14) and (15), we obtain the following opti-
mization rule:

minjidjj;; subjectto y f'Xnx =f'd: (16)
d

Note that y f TXinit is a constant that can be precomputed be-
fore starting the minimization process. The minimization process
itself is identical to Equation (2) (only has been replaced by

measurement and the actual measurement. This predicted measurement is computedy  f ' Xinit , andx by d), and thus the same algorithm can be used

using the initial solution from the prior level.

Besides transforming the observations onto the wavelet Bathe
initial set of active coef cientsS Lis set to empty, and the transport
matrix T 1is set to zero. The set of active coef cients will contain
the indices (of the approximation) of the re ectance eld that are
not zero. Only their corresponding magnitudes will be stored in-
stead of the complete transport matrix to reduce storage costs.

Our multi-resolution algorithm iterates over all the multi-resolution
levels (Step 1). For each level, an estimate for each re ectance
function (at this resolution) is computed (Step 2). Note that the
number of re ectance functions increases as the level increases. At
the lowest level, only a singlglobal averagere ectance function

is estimated. For each subsequent level, the number of estimated

functions quadruples.

Difference Estimation (Steps 3-5). These steps are the core of
our algorithm. At each multi-resolution level, an estimate for each
re ectance function is computed. As noted before, we would like to
initialize the compressive sensing decoding algorithm from the cor-
responding re ectance function of the prior level's approximation.
Unfortunately, many compressive sensing decoding algorithms do
not provide a mechanism to re ne an initial solution. Because we
would like our method to work with any compressive sensing de-
coding algorithm, we cannot rely on the decoding algorithm to pro-
vide this mechanism for initialization.

To provide a mechanism to enforce initialization, even when the
reconstruction algorithm does not support initialization, consider
the following. A reasonable assumption is that the provided initial-
ization is already a good match of the target re ectance function.
Since it is a good match, the difference of the re ectance function
and the initial approximation should be sparse, i.e., a few spikes
and many (near) zero coef cients. Therefore, the difference & als
a function suitable for compressive sensing. We can formalize this

to compute this.

The above discussion gives a mechanism to enforce an initial ap-
proximation to any compressive sensing decoding algorithm, and
covers steps (3) to (5) in the algorithm in Figure 3. First the so-
lution from the previous level ( 1) is copied into the set of non-
zero coef cient-indice:ﬂ, and into the corresponding magnitudes
f}; in step (3). Next, the difference vectdris constructed similar

to Equation (16), in step (4). Finally, in step (5) the minimization
problem is solved using a compressive sensing reconstruction algo-
rithm of choice. In our implementation we use ROMP as a decoding
algorithm. The input parameters of the decoding algorithm are:

The simulated measuremeitscomputed in step (4).

The measurement ensemibleAs in the brute-force case, this
ensemble de nes the illumination patterns hs: Bf .

The sparseness paramekgr of the difference function. We
setky to k 1+ 1, wherek; 1 is the maximum size of the
initial solution. Basing the sparseness on the maximum size
of the initial solution ensures that any incorrect coef cient in
this initialization can be corrected. An in depth discussion
regarding our choice of the sparseness and the implications of
this choice can be found in Subsection 4.3.

The output is given by a set of computed coef cient-indiéeand
corresponding magnitudes An overview of the hierarchical algo-
rithm including the difference estimation is illustrated in gure 4.

Merging and Pruning (Steps 6-8). Once an approximation for the
difference function is found, an approximation for the complete re-
ectance function can be computed. This process consists of three
steps: merging, size reduction, and pruning.

The rst step, merging is trivial. The set of active coef cienﬂsis
updated by taking the union with the computed active coef cients
R. The magnitudes of the active coef cient®R are summed to the
corresponding magnitudes af.
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Similar to Peers Du&[2005] a QR factorization can be main-
tained, and updated every step. This reduces the complexity
of the least squares computation signi cantly.

RN ——» Multi-resolution Level ——»

@Q’& . _#

In our implementation we opt for executing the update step fully at
every level for robustness.

Multi-resolution Loop (Step 10-11). As noted before, a wavelet
basis is used foP. The wavelet basis transform is often described
in terms of a cascading lter bank. The Iter bank transforms a
signal into two new signals: a high-pass Itered version, and a low-
pass lter version. The exact frequency responses of the high-pas
and low-pass Iter depend on the speci ¢ wavelet used. To avoid
duplication of information, both the high-pass and low-pass version
are subsampled with half the number of samples. The lter banks
are cascaded by repeatedly Itering the low-pass results. The cas-
cade stops when the last low-pass version consists of only a single
sample. Note, that thieth low-pass version of a signal, can be re-
constructed by adding ther 1-th high-pass and+ 1-th low-pass
version of the signal (both upsampled).

Compressive Sensing
Difference Approx

Merged
Re . Function

Figure 4: An overview of the hierarchical algorithm. For each multi-resolution
level, compressive sensing is used to approximate the difference betweenel® pi
re ectance function and the approximation from the prior level. Merging tHemdifice

approximation and the previous level's approximation yields the desireifn. . . .
PP P PP Y Now reconsider step (4). At this step we are actually computing

the difference between two low-pass ltered versions of the same
In addition, we need to ensure that the merged solution does notSIQW_le (attwo different .conseAcutlve Ievelsb;. represents the _more
become too large, because otherwise the update step (Step 9) wildetailed low-pass version, aiidf the coarser low-pass version. It
become under-constrained. This also ensures that the target-sparses tempting to equate this difference with the high-pass version of
nessk of the nal approximation of the re ectance eld is met.  the signal (at the ner level), while in reality it is only an approx-
Limiting the size of the approximation is obtained by keeping the imation, because the re ectance functidt*ils at levell are only
k largest coef cients in the approximation. Smaller coef cientsare  known approximately. It is for this reason that we explicitely com-

setto zero. In ourimplementation the sigés de nedas & ;+1 pute the difference in step (4), and the low-pass version at level
coef cients, and where the size of the nal solution (at leval) in step (10). This last step is in fact just the reconstruction of the
corresponds to the user-de ned sparsky; = k. In a normal situ- low-pass version at levél(i.e., to undo a single Iter bank step of

ation the size of the merged solution should not exdeebecause the wavelet transform).

k =k 1+ kg,. However, some compressive decoding algorithms,

such as ROMP, can return more coef cients than requested. In Sub-Finally, the approximation of the last iteration is copied into the
section 4.3, a detailed discussion is given on alternative functions nal solution (Step 11).

for k; andkg, .

A third step takes care of removing coef cients that are close to 4-3 Discussion and Results

zero. This can occur when the initial solution contains an erroneous

coef cient. This will show up in the difference function as a large Parameters. The hierarchical algorithm takes two user-de ned
spike. The estimated magnitude for this spike will be of similar size parameters as input, plus any additional parameters required by the
(but with opposite sign) as the erroneous coef cient's magnitude, basis decoding algorithm (Step 5): the threstwlased in the prun-

and thus cancel out by adding these magnitudes together. Howevering step (8), and the nal sparsendss

due to estimation errors these magnitudes will most likely not be . . .
exactly the same. Therefore, we remove any coef cient with a value 1he thresholdd serves two goals. Its main goal is to determine

below some threshold. This has the additional advantage that When an erroneous coef cient needs to be removed, i.e., how sim-
insigni cant coef cients (mostly noise) will also be removed. ilar the magnitudes need to be in the difference approximation
and the initial solution. Second, it regulates denoising. Coef -

Update (Step 9). Finally, we update the coef cient magnitudes. cients with a magnitude below this threshold are considered noise,
This is achieved by computing a linear least squares solution for the and should therefore be removed from the approximation. Conse-
non-zero coef cients such that the observations match the predic- quently, the value of this threshold should be set proportional to the
tion, given the approximation and the ensemble, as well as possible.magnitude of measurement noise. In the synthetic (noiseless) ex-

. ) amples below, we set this parameter to some low value (e.g8) 10
In general, we found this step to be unnecessary, since the coef -

cient magnitudes obtained from the previous step are already veryChoosing a speci ¢ sparsendssgepends on a number of factors:
good. However, when many coef cient have been removed in the

pruning step, some residual energy is unaccounted for. This unac- The number of acquired (or planned) photographs is instru-
counted energy can potentially degrade the quality of the approx- mental in setting an upper limit for the sparsenkesa lower
imation, which can affect subsequent multi-resolution iterations. bound on the number of measurements is giverklmg®n
Some possible ways of minimizing the computational cost of this (Subsection 2.2), whereis theuncompressesize of the sig-
update step are: nal. In many cases, the budget for taking measurements is
xed beforehand, and thus the sparseness has to be chosen
Only update when the total energy of the removed coef cients with respect to this budget.
exceeds some pre-de ned threshold. The dif culty in this case
is setting the threshold. If it is too low, then too many updates From the above it also follows that the resolution of the in-
are performed. If it is too high, potential errors can remain in cident light eld, and thus of the re ectance functions, plays
the reconstruction. a role in setting the sparseness. Note that it only depends on
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Reference  Hierarchical Brute-forc

Hierarchical Algorithm Brute-force ROMP B
i Reference (5o Coefcients) Algorithm ~ ROMP

Reference Relit Image (50 Coef cients) (50 Coef cients)

. B R

Figure 5:Qualitative comparison. Left: A relitimage computed from a reference synthetic re ectance afiddle: A relitimage from a re ectance eld (128 128 lighting
resolution) inferred using the presented hierarchical algorithm from 512 (noiseleaspyrements under a Gaussian ensemble. Each re ectance function is reconstructed using 50
Haar wavelet functionsRight: A relit image from a re ectance eld computed using brute-force ROMP (512 Gaussian measgeB0 coef cients per re ectance function). At

the bottom of each of the relit images, two details are giv@m.right: a comparison of ve selected re ectance functions.

the logarithm of the resolution. This implies that compres- 0.104.

sive sensing enables greater ef ciency when measuring high 0.004 |
resolution re ectance functions. 1

0.08 :
The desired accuracy of the approximation also plays an im- 0071
portant role. A higher sparseness value implies that the ap- 5 |
proximation is coarser than when a low sparseness is used. 5 0.06: : :
Fo.rtunately, re ectance functlons can be. well apprquated © 00s]  Brute-force
using very sparse non-linear approximations. This is dueto @ : ﬁ_gont I*r1n |
imi i .0 14 erarchica
the limited number of high frequency features, such as spec z %04 /A'gonrt%m
ular peaks and shadowing, in these functions. Furthermore, 0.03d Reference Non+
i i i . Rk / linear Approx.
higher resolution re ectance functions usually compress bet : inear Approx

ter than low resolution re ectance functions, augmenting the 0.02
effectiveness of compressive sensing for measuring high res-

. . 0.014
olution re ectance functions. 3

25 E';O 7;5 160 1:25 150 f75 260

Qualitative Validation. To validate the quality of our method we Number of Coef cients

hﬁ‘ve genetrated a fl’i“ re eCtadn?e tﬁld |9tf .a Symhetlcdscene' This Figure 6: Relative Error vs. Number of Coef cients. The error in function of
allows us 1o g,enera e.groun ruth refit images, an compare '~ the number of coef cients for a xed number of measurements (512 Gaussian mea-
ectance funCtlon_S' Figure 5 ShOWS. such a S_Cene containing the surements). In blue the error on a baseline non-linear Haar wavelet approxinsation i
Buddha mOd.el with a glossy material on a diffuse Undergrounq- shown. In red the error on brute-force ROMP is plotted. Green shows the error of the
The leftmost image shows a reference relit image, and two details presented hierarchical algorithm.
at the bottom. The middle image shows a relitimage of are ectance
eld (128 128 lighting resolution) inferred using our hierarchical
algorithm from 512 (noiseless) measurements with a Gaussian en-gp, the right of Figure 5, ve selected re ectance functions from
semblé The sparsenedswas set to 50. The inset shows the color- e Byddha scene are compared. The rst column are the refer-
coded relative error image with the reference relitimage. The right gce re ectance functions. The second column shows non-linear
image shows a relitimage of a re ectance eld computed from the approximations using 50 Haar wavelet coef cients of the refer-
same measurements using a brute-force compressive light iransporgnce re ectance functions. These are the best possible approxima-
sensing algorithm (i.e., applying ROMP for every pixel indepen- ions possible using 50 coef cients, and thus represent a baseline
dently). As can be seen, all three images are very similar. However, o, comparison. The third and fourth columns are the computed
some differences can be seen in the detail images on the bottom o mpressive sensing approximations from the presented algorithm
This is further corroborated by the difference images. Furthermore, 4 the brute-force algorithm respectively. As can be seen, the re-
the differences are more pronounced in the brute-force results. ectance functions computed using the hierarchical algorithm con-
tain more details than the functions inferred using the brute-force
1Adding measurement noise can mask the approximation errors rgade b technique. Both contain less detail than the baseline.
the decoding algorithms. However, the conclusions of thiisl@aon would
stay the same. Quantitative Validation. The qualitative comparison above
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Brute-force ROMP
(50 Coef cients)

Reference Non-linear
Approximation (50 Coef cients)

Average Error: 0.08

Average Error: 0.17

Hierarchical Algorithmk; as in
Eqg. (18) (50 Coef cients)

Average Error: 0.12

Hierarchical Algorithmk as in
Eq. (19) (50 Coef cients)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Average Error: 0.12

Figure 7' Error Comparison. False color images of the relative error with respect to a reference re ectance eld. From tihtoan error image showing a baseline 50
coef cient non-linear Haar wavelet approximation, the error on brute-force ROMRrtheon the presented hierarchical algorithm, and the error on the hierarchical algoritigm us

the alternative formulas (19) for the per-level sparseness and difference sparseness.

shows that the presented algorithm has the potential of generatingsuggests that over-estimating the optimal number of coef cients is

better results. However, this qualitative comparison does not pro-
vide information on what the optimal number of coef cients are,
or how much better the hierarchical algorithm is. A quantitative
analysis can give an answer to these questions.

Figure 6 plots the error on the computed re ectance eld (from 512
measurements) of a representative 322 pixel area of the scene
shown in Figure 5 with respect to the reference re ectance eld.
The error is computed as:

ti;j2.
P&ijti;j2

_ Ailti;

17)

wherep is the number of re ectance functiorts, thei-th reference

re ectance function, and. the corresponding computed approxi-
mation. The blue graph in Figure 6 represents the baseline error.
This error is obtained by computing a non-linear Haar wavelet ap-
proximation of the reference re ectance eld. The number of co-
ef cients in this non-linear approximation is variable (horizontal

axis). The green and red graph depicts the error on the solution ob-

tained using the presented hierarchical algorithm, and the solution
obtained from using brute-force ROMP respectively. In both cases

we notice a decrease of error, reaching a minimum at about 50 coef-

cients2, followed by a steady increase. The initial decrease can be
explained by the fact that adding additional coef cients increases
the representational power of the approximation. However, at a
certain point, the number of measurements is no longer suf cient to
uniquely select and compute coef cients. At this point, many pos-
sible optimalapproximations exist that minimize the error between
the real and simulated measurements. As a resalgeis intro-
duced into the solution, and the approximation begins to deviate
from the real solution. From this graph we can see that the pre-
sented hierarchical algorithm delivers a better approximation with
a signi cantly lower error than the brute-force approach. Addition-
ally, due to the spatial regularization, the error increases less rapidly
after reaching the optimal number of coef cients (i.e., 50). This

2Increasing or decreasing the number of measurements, wouldjmi
change the optimal number of measurements.

less harmful to the reconstruction quality of our algorithm than for
the brute-force approach.

Alternative Sparseness Settings.Two important variables in the
presented hierarchical algorithm are the total sparseness per level
ki, and the sparseness of the differekge Previously we have set
these variables to:

k 1+ 1, and
Ko1Ky

K
K

(18)

Setting these variables to these formulas results in a doubling of the
size of the re ectance functions with every consecutive level. Fur-
thermore, it also means that at every level, two times the number
of variables are added compared to the previous level. Each extra
variable, requires additional computation time. Thus, more time is
spent at the ner levels than at the coarser levels. This effect is fur-
ther ampli ed by the fact that the number of re ectance functions
also quadruples per level. Although, computation time is slightly
below that of the brute-force approach, this still raises the question
if other formulas folk; andky.| can be found, that limit the number

of coef cients that need to be computed at ner levels. One such
alternative is:

and

k
kd| ﬁy
| K

)

19)

wherem is the total number of levels. In this case, the number of
coef cients computed at each level stays constant, and thus yields
a more ef cient (in terms of computation time) algorithm.

Figure 7 shows a color coded error image comparing both varia-
tions, and the brute-force algorithm to a reference re ectance eld.
For each image the error is computed using Equation (17), and
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Hierarchical Algorithmk; as in
Eq. (18) (100 Coef cients)

Hierarchical Algorithmk; as in
Eq. (19) (100 Coef cients)

5.1 Practical Issues

A straightforward application of compressive sensing could be the
following: First, the emitter and the camera are radiometrically cali-
brated (e.qg., inverting the gamma curve of the CRT), such that linear
radiance values are measured or emitted. Next, each measurement
vectorf ; from a measurement ensemble (for instance Gaussian ran-
dom Haar wavelet coef cients) is de-linearized into an illumination
pattern (D image), and emitted from the CRT monitor. A high dy-
namic range photograph of the scene under this illumination condi-
tion is recorded. This recorded image is linearized and stored in a
column of the observation matrig. This is repeated for all mea-
surement vectors. Afterwards a decoding algorithm operates on the
acquired data.

Unfortunately, this straightforward approach does not work well.
The main reason for this is the interplay between measurement
noise, quantization errors at the emitter and the normalization of

Average Error: 0.13

Average Error: 0.13

Figure 8: Error Comparison on Non-optimal Sparseness SelectionsThe hier-
archical algorithm is used to compute a 100 term approximation from 512 Gaussian
measurements. The left image uses the original per-level and difference sparseness
formula (18). The right image uses formula (19) that reduces the computatian cost
but at the cost of quality. The same false color scale as in Figure 7 is usedtfo
images.

plotted per re ectance function. In all cases the re ectance func-
tions were reconstructed using 50 coef cients computed from 512
Gaussian measurements. A baseline error image of a non-linear
approximation using 50 Haar wavelet coef cients is also provided
for reference. These error images con rm the conclusion from the
guantitative analysis of before, and show that the hierarchical algo-
rithm signi cantly outperforms the brute-force algorithm in qual-
ity. Both variations at the hierarchical algorithm yield a similar
error. However, the alternative sparseness shows a bit more struc-
ture in the error image, as can for example be seen on the diffuse
underground. This effect is further ampli ed when selecting a non-
optimal sparseneds as illustrated in Figure 8, where 100 coef -
cient approximations of both variations are compared. From this we
can conclude that, although the originally proposed formula for the
per-level sparseness and difference sparseness yield a lessligptima
performing algorithm, the quality gain (in spatial coherency) and
robustness to non-optimal sparseness selection is better. Depend-
ing on the preferences of the user, either formula can be selected.
In this paper we will use the improved quality variant, Equation 18).

5 Capturing High-resolution Re ectance
Fields

In this section we discuss how to apply compressive sensing, and
in particular our hierarchical algorithm, to the acquisition of real
light transport data. In particular, we will focus on capturing high
resolution re ectance elds for image-based relighting.

Although applicable to other kinds of acquisition setups, our
discussion focuses on a setup, similar to that used in previous
work [Zongker et al. 1999; Matusik et al. 2004; Peers and ®utr
2005], consisting of a single video camera and a CRT monitor as a
controllable high resolution light eld emitter. The CRT monitor is
placed either to the side or behind the scene which is imaged from
a xed camera position. Additionally, in order to cover a larger

wavelet bases.

Measurement noiseoccurs for every measurement at each
pixel on the camera sensor. Its magnitude is independent of
the measurement pattern, or of the re ectance eld. There-
fore, its relative impact is more severe when a re ectance
functions re ects little light towards the camera (i.dark re-
ectance functions)

Quantization errors occur at the camera and at the emit-
ter. Quantization errors at the camera are usually modeled as
part of measurement noise. Quantization errors at the emitter,
however, are not. This error depends not only on the measure-
ment patterns, but also on the re ectance functions, because
every illumination element has a different quantization error.
Given the vector of quantization erragg(i.e., the difference
between each element in the theoretical measurement vector
and the actually emitted measurement vector), the quantiza-
tion error equant ON the measurement of a signatan be ex-
pressed by:

Euant = q'x: (20)

Note, that bothx andq are expressed in the canonical domain,
and not in the wavelet domain. If the measurement vector
is random enough, then the elementgjiare randomly dis-
tributed. In such a caseyuant can be seen as a weighted sum,
where the signat acts as a weighting vector, of random vari-
ables. If we assume thattontainsk non-zero elements of ap-
proximately the same magnitude, then is the quantization er-
ror equant Normally distributed with a standard deviation pro-

portional top% according to the central limit theorem. From

this it follows that measurements of re ectance functions with
a large support (e.g., diffuse re ectance functions) suffer less
from quantizations errors, while measurement of re ectance
functions with a compact support (e.g., specular re ectance
functions) suffer more from quantization errors.

Wavelet normalization ensures that the energy content of

wavelets at different scales are the same. This implies that
wavelets with a large spatial support (i.e., coarse wavelets)
will be scaled more than wavelets with a small spatial support

portion of the sphere of incident lighting directions, we have also

SReal camera systems are also in uenced by shotnoise in addiio

experimented by replacing the CRT by a hemispherical controllable additive noise. However, in this analysis we will omit shdseo Future
light source [Peers et al. 2007]. Except for the coverage, this setupresearch is necessary to investigate the exact effectdsfattor on the

is identical to a CRT from a practical point of view.

10

design guidelines presented in this section.
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(i.e., ne wavelets). For 2D wavelet bases, this scaling is pro- In order words, increasing dynamic range for the measurement of
portional to the wavelet levél In the speci c case of assign-  a coef cient is more effective than increasing the number of mea-
ing randomly distributed values to Haar wavelet coef cients, surements for that coef cient.

ingi (m 1) .
the scale of each wavelet levels accordingz 2 ) Segregated Ensemblesin order to design new measurement pat-

The factor‘—l1 ensures that any generated pattern tsin[hel] terns, we start from segregated measurement ensembles, ardl exten
range. them using the design guidelines above.

The interplay of these three factors causes problems when estimatin [Donoho and Tsaig 2006; Donoho 2006] segregated measure-
ing the coef cients of coarse wavelets. These coef cients are the ment ensembles are considered. In the context of a measurement
response of the re ectance function with the randomly weighted ensemble de ned on the wavelet domain, a segregated ensemble
coarse wavelet functions. However, due to the normalization, the corresponds to the subdivision of the domain in disjunct partitions,
amplitude of these coarse wavelet functions is very small. When and where each partition only covers wavelet coef cients from a
the support of the re ectance function falls below some threshold, speci c wavelet level (or a subset of levels). A single measurement
the response of these coarse wavelets can fall below the quantizavector has random distributed values assigned only to a single par-
tion error, and thus many measurement need to be performed totition. All coef cients in the other partitions are set to zero.

reliably infer these coef cients. This effect is is further ampli ed ) . L
by measurement noise. Now, consider the Haar wavelet basis, and a subdivision ipar-

titions B;i 2 [0;::;;m 1] (i.e., each partition only contains a sin-
A potential solution would be to remove the quantization error from gle wavelet level). Because a measurement vector only contains
the system, by using measurement ensembles in which the effects ofvavelet coef cients from a single wavelet level, the number of over-
quantization are included. Unfortunately, the coef cients of coarse lapping (in terms of spatial support) wavelet basis functions is lim-
wavelet coef cients will be mapped in a large number of cases to ited, unlike thestandardmeasurement ensembles, were the overlap
zero or near-zero values, and thus no information about these co-iS maximal. For example, for the Haar wavelet, only three Haar
ef cients is measured. Furthermore, the random distribution of the functions can overlap (i.e., the three wavelet orientations for the
coef cients is signi cantly altered, and the RIC is potentially bro- Same wavelet position), while in the standard case this overlap is
ken. 3m functions. Consequently, the dynamic range can be increased

by a factor #M 1) for the measurement vectors corresponding to
Peers Dute [2005] circumvented the above problems by using a each partition? compared to thestandardmeasurement ensem-
different normalization of the Haar wavelet basis. Instead of nor- ples. However, segregation also comes at a cost. Each coef cient,
malizing according to energy content, they use an alternate normal-will only occur as many times as there are measurement vectors as-
ization such that all wavelet basis functions have a similar ampli- sociated with the coef cient's corresponding partition. In order to
tude. The effect is that each WaV9|(19t level takes an equal portion maintain SNR, the number of measurement vectors associated with
qf the emltFers_ dynamic range ("eﬁ)' Although thls alterna- _each partition should be at least - X~ . If we assign the min-
tive normalization would also work to some degree in compressive . 2m 0 .
light transport sensing, it still suffers from some issues. First, this IMUM number of measurement vectors to each partition, than we

solution does not scale well with respect to sample resolution. For Oy need (in the limit)3 measurements. In other words, only one
example, a 128 128 sampling results in only 5 intensity values Fhlrd of the measurement budget has been used. This |mpI|e's_ that
per wavelet level (assuming 140 linear and regularly spaced inten- If we take trlple_ the number of measurement vectors per partition,
sities). Second, by using an alternative normalization of the wavelet that the SNR triples.

basis, the non-linear approximation of the re ectance functions is
also altered, and thus the obtained approximations are not optimal
in anL, sense.

A different perspective on segregated measurement ensembles is
that a signal is split up into many unrelated sub-signals. Each of
these sub-signals is sparse, and can be inferred independently from
the other sub-signals. The measurement ensemble for inferring
5.2 lllumination Ensemble Design each sub-signal can thus be optimized to stretch the limitation of
the measurement devices maximally. In the proposed segregation,
that does not suffer from the issues described above. First, generath® dynamic range during measurement. This different perspective
design guidelines are presented that improve the signal to noise ra-2!SC reveals an important point omitted in the above discussion. As
tio (SNR) of the ensemble. Next, we introduce a binary measure- hoted before in Subsection 2.2, the number of compressive mea-

ment ensemble that does not suffer from the issues cftdredard ~ Surements required to inferkasparse signal iklog®n. Thus, this
compressive sensing ensembles and ensures good signal to noisdéPends on the number of measurements, and the size of the signal
ratios. n. This rule also holds for the segregated sub-signals. The opti-

mal partitions size, that maintains the SNR, might not be realis-
Design Guidelines. In order to design measurement patterns that tic when taking this into account, especially for the coarse wavelet
are suited for compressive light transport sensing we de ne the fol- levels. In general, the sparsity of the sub-signals increases as the
lowing guidelines. First, to ensure that the measurement patternswavelet level increases. Therefore, more measurements thdn prev
fall within the theory of compressive sensing, we strictly adhere to ously suggested (to maintain the SNR) are focused on the coarser
the restricted isometry condition (RIC) de ned in Subsection 2.2. partitions. The net effect is that the SNR increases more on the
Second, in order to optimize the signal to noise ratio of the mea- coarser wavelet coef cients, and less on the ner wavelet coef -
surement patterns we keep in mind the following: cients.

Increasing the dynamic range of the measurement of a coef - Binary Segregated Ensemble. From the previous discussion, it
cient by a factoc, increases SNR by a factof. can be seen that an increase in SNR is attained by reducing the
overlap of wavelet basis functions for each spatial location. At this
Increasing the number of measurements of a coef cient by a point, there is still an overlap of three basis functions per spatial lo-
factorc, increases SNR by a factor cation. This raises the question whether this can be further reduced.

11
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of ¥ measurements. Segregating the ensemble into disjoint parti-
tions R, effectively subdivides the signal irPdndependent parts.
As aresult, each partition has its own sparkiy and thus an over-

head of%, wheremg corresponds to the number of measurement

vectors a'ssigned to the segregatedsefor the ne detail wavelet

coef cients, this ratio is still acceptable because the probability of

a coef cient being important is very small. For the coarse wavelet
levels, however, this ratio can actually be larger than the probabil-
ity that a coef cient is among th& most important ones. It would

be suboptimal to use compressive sensing in such a case. In gen-
eral, if the probability of a coef cient being amongst théargest

coef cients is less tharﬁ then a compressive sensing approach is
optimal. If, however, the probability is larger than this ratio then a
direct measurement of the coef cients is better suited.

~—— 9197 19]aNBM, —

The binary patterns proposed in Subsection 5.2 easily allow split-
ting the measurement ensemble into direct and compressive sens-
ing measurements. To maintain a good signal to noise ratio, we opt
for using Hadamard patterns to perform the direct measurements.
Practically, we found that the rst three wavelet levels are more
ef ciently captured using direct measurements.

~=— Wavelet Orientationr—

Figure 9: Measurement Patterns. Examples of binary segregated measurement 6 ReSU|tS

patterns. Three different wavelet levels are shown, and for each level, the three differen

wavelet orientations are shown. All the results in this section have a lighting resolution of 1288,
and are captured using 991 patterns:

Consider the subdivision of each partitiéhinto three new par- 64 direct measurements, i.e., the 3 coarsest wavelet levels.
titions PiJ;j 2 f 0;1;2g, where each new partition only contains a 153 compressive measurements for the 4-th level, i.e., 51

single wavelet level as well as wavelet orientafiofhis ensures compressive measurements per orientation for this level.
that no overlap exists when using the Haar wavelet. Dynamic range
increases by a factor 4, while the number of measurements per co-
ef cient decreases by a factor of 3. The total gain in SNR from this

segregation is thusg.

258 compressive measurements for each of the remaining
three levels, i.e., 86 measurements per orientation for these
levels.

o . ) ) As noted before, we use Hadamard patterns for the direct measure-
In order to further maximize SNR, we will assign Bernoulli ran-  ments, and the binary segregated patterns developed in Section 5 for
dom variablesR( 1) = 0:5 andP(+ 1) = 0:5) to the coefcients  the compressive measurements. Each re ectance function is recon-
in each partition. The resulting measurement vectors will consist of gty cted using 128 wavelet coef cients in total (of which 64 form
only two intensity values. These binary patterns have the advantageihe direct measurements), and the resolution of the incident light

that no quantization errors are made when emitting these pattemns, e|q js 128 128. This yields two orders of magnitude acquisition
and that no radiometric calibration of the emitter (i.e., gamma cor- gpeed-up and data reduction.

rection) is necessary. This further reduces the possibility for cal-
ibration and measurement errors. A selected set of nine randomFigure 10 shows a glass sh scene captured using the hemispherical
measurement patterns are depicted in Figure 9. emitter of Peergt al. [2007]. On the left, a relit image of the glass
object is shown under a complex illumination condition (shown in
As demonstrated, the binary segregated patterns yield a better SNRhe inset). In the middle a reference image is shown. This reference
than many of the standard measurement ensembles. Furthermorqmage is generated by recording a photograph of the scene while
they also ful Il the restricted isometry condition (Equation (4)), and  emitting the complex illumination condition. The color responses
thus are suited for compressive measurements. A disadvantage isind gamma curves of the emitter were carefully measured to ensure
that the size of the partitions needs to be selected before acquisitionthat both scenes are compared under exactly the same illumination
The optimal size is related to the distribution of the coef cients in  conditions. On the right, a false color image of the relative error
the to-be-measured functions, which is unknown. However, in most petween the relit and reference image is shown. As can be seen,

cases general properties are known, and a well educated choice ohoth the relit and reference photograph are very similar, especially

the partition size can be made. the re ected high frequency patterns are well preserved (e.g., on
the dorsal n). There are some differences due to the non-linear ap-
5.3 Direct Measurement proximation of the re ectance functions, and measurement noise.

For example, a faint blue caustic can be observed on the red back-

As discussed in Subsection 2.2, at laast klog®n measurements ~ ground in the reference image. This caustic is less visible in the
are required to ensure a successful decoding Iogaarse SignaL relit Image. HOWEVEI’, as can be seen in the false color error plot,

From this it follows that compressive sensing has a small overheadthe error on these caustics falls well below the average error. The
error is biggest on areas with low albedo, and little incident illu-

4A 2D wavelet basis is the result of the outer product of 1D eseald mination, in the reference photograph, and is dominated by mea-
wavelet basis functions for the horizontal and verticalsaxén the non- surement noise. Because this image represents a relative error plot,
standard wavelet basis, each spatial location has threstations for each measurement noise (an absolute effect) is ampli ed as the pixel's
wavelet level: horizontal scale vertical wavelet, horizontal wavelet albedo decreases. The total average relative error for this scene un
vertical scale, and horizontal waveletvertical wavelet. der this particular illumination condition is3%.
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Figure 10:Quantitative Comparison of an Acquired Re ectance Field. Left: a relitimage of a re ectance eld (128 128 lighting resolution) inferred from 991 measurements
(64 direct, and 927 compressive), relit using the complex illumination sliothe insetMiddle: a reference photograph of the scene lit by the same complex illuminatiorticmsdi
Right: a false color relative error plot of the relit and reference image.

Figures 1 and 11 show three additional scenes acquired using theFigure 13 shows an interesting experiment. The re ectance eld of
presented method and illumination patterns. The illumination pat- the toy motorbike is captured using 927 compressive and 64 direct
terns were emitted from a CRT monitor positioned to the right of measurements using the hemispherical emitter. Next, a relitimage
the scene. is created by illuminating it by a single illumination element (out of
128 128). To better illustrate the effect, the image has been bright-
Figure 1 shows a glass container lled with Habanero peppers. The ened 4069 times (left), and 16 times (right). As expected, especially
left subimage shows a relitimage under complex illumination con-  after brightening the image 4096 times, some measurement noise is
ditions (shown in the inset). As can be seen, the specular re ections visible in the relitimages. Unless a very long exposure photograph
(primary and secondary) are nicely reproduced. The right sub g- were taken, recording a reference photograph under similar light-
ure shows a comparison of a relitimage and a reference photograpting conditions would likely exhibit similar or worse measurement
under a natural illumination condition, i.e., a photograph (shown in noise.
the inset). Both images are very similar.

The left column of Figure 11 shows a model motorbike containing / ~ DISCUSSION

specular (exhaust pipe), glossy (body of the bike), and diffuse-mate ) o )

rials (ground plate and backdrop). Figure 11.a shows the motorbike We have shown that compressive sensing is a valid method to cap-
relit using the directly measured components only. The incident ture light transport in a scene. Compared to adaptive methods the
light eld is shown in the inset on the bottom right of the photo- ~acquisition setup is less complex, and thus more robust. However,
graph. Note that most glossy and specular re ections are missing. the post-processing phase is computationally more expensive. In
In Figure 11.b the same illumination is applied, but now with the €ffect, the complexity of the acquisition phase has been shifted to
compressive sensing coef cients included. As can be seen, the di-the post-processing phase. This shift can be justi ed by observ-
rect measurements encode most of the diffuse re ection effeats, an ing that progress in computational power is much faster, than the
a sampling resolution of 8 8 for a single side of the hemicube suf-  rate of improvement in sensor sensitivity. Adaptive methods on the
ces. Note, that due to measurement noise, it is dif cult to obtain Other hand have the advantage that they can adapt to the nature of
high resolution re ectance elds using only direct measurements the scene and avoid potential problem areas (e.g., oversaturation,
(with the same exposure times). Figure 11.c shows the motorbike il- €xternal light contamination), and can even recapture parts of the
luminated by a more challenging illumination condition: three col- Scene if necessary. Compressive sensing, however, doesweot ha
ored light sources. Some noise can be observed on the exhaust pipdhat luxury, and contaminations of the measured data can affect the

As noted in Subsection 2.2 measurement noise is not ampli ed due quality of a captured dataset adversely. In controlled acquisition
to the RIC. environments, the need for such robustness is of lesser concern.

. . - In the remainder of this section we will discuss the differences be-
The right column of Figure 11 shows a scene containing a textured
g 9 9 tween the presented method and two of the most closely related

ceramic object and an apple. The ceramic object contains a strong . . .
specular component on top of a textured diffuse layer. The apple SB%VS'?US works, i.e., [Matusik et al. 2004], and [Peers and ®utr

also has a rich texture, and consists of a glossy re ective layer on
top of a scattering medium. A comparison between a ground truth .
photograph (Figure 11.d) and a relit image (Figure 11.e) under a 7-1 Comparison to Related Methods
natural illumination condition (shown in the inset) shows that the
presented method is capable of capturing scenes with visual accuMatusik et al. [2004] infers re ectance elds from natural illumi-
racy. Figure 11.f shows the scene under three colored light sourceshation, i.e., photographs of natural scenes. Each re ectance func
with different intensities. Again, this shows that our method can tion is represented by a sum of non-overlapping kernels, i.e., box
deal with more extreme lighting conditions. functions. Each re ectance function is inferred using a greedy al-
gorithm, where at each step a kernel is split horizontally or verti-
Figure 12 shows six selected re ectance functions from the scenescally. The splitting direction, and kernel to split are selected such
in Figure 11. For each re ectance function, two different exposures that the error decreases maximally. A quadratic programming ap-
(not necessarily the same for each function) are shown to betterproach is used to update the magnitudes of each kernel function
show the full extent of the reconstructed functions. Note that our after splitting such that non-negativity of the re ectance function
method is capable of capturing sharp specular peaks, glossy peaksis maintained and error is minimized. Because the complexity of
and diffuse lobes. this algorithm increases quadratically with the number of box func-
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Figure 11:Acquired Re ectance Fields. Left column, a relit toy motorbike is showi) and (b) are lit by the illumination condition shown in the inset. Sub gured¢a)y shows
the effect of directly measured coef cients, while (b) also includes the coef cietigined by compressive sensir{g) shows the motorbike relit by three colored light sources. The
right column shows a ceramic object and an apple. A reference photograph of théddérey the illumination condition (shown in the inset) is compared woanputed result
(e). (f) shows the scene under three small colored light sources. Re ectance functibessof marked pixels are shown in Figure 12.
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Figure 12: Re ectance Function Approximations. Six selected re ectance functions from the scenes in Figure 11. Two different expasigash re ectance function are
shown to better illustrate the different details at different scales.

Brightess 4096 Brightess 16

Figure 13:Extreme Illumination Condition. A scene containing a motor bike illuminated by a single illuminaporel (out of 128 128). The left image has been brightened
4096 times, and the right 16 times.

tions, an energy-based heuristic is used to preselect the kernel to7.2 Comparison

be split. Finally, to ensure spatial coherency, the kernel con gura-

tion of neighboring pixels' re ectance functions are also veried as  \we will break the comparison into four focus points: the illumi-

a potential kernel subdivision. If the quadratic programming solu- nation patterns, the representation and reconstruction of re ectance

tion is less optimal, then the neighbor's kernel con guration is used functions, spatial coherency, and exibility of the method.

instead. Additionally, the kernel con guration is shifted around to

check whether this gives a more optimal con guration. This spatial Illumination Patterns.  One of the strengths, and at the same

regularization is only performed at the end of the algorithm. time weaknesses, of [Matusik et al. 2004] is the ability to infer re-
ectance elds from natural illumination. By not imposing hard
constraints on the measurement ensemble, it is possible to com-
pute re ectance elds for large outside scenes such as whole cities.

, . . . However, it is also a weakness in the sense that it is unclear what
Peers Dute [2005] also infer re ectance functions in a greedy fash- a0 i yence of the measurement ensemble is on the reconstruction,

ion. Their input consists of wavelet noise patterns: normal dis- g4 hat the limits of the system are. This makes it very hard to
tributed random Haar wavelet coef cients. The Haar wavelet basis compare this method since no optimal illumination is known.

used is non-standardly normalized, i.e., equal amplitude instead of

the standard equal energy normalization. The reconstruction algo-The method of Peers D&f2005], takes an opposite approach, and
rithm reconstructs a non-linear Haar (also non-standardly normal- imposes strict rules on the generation of the wavelet noise patterns.
ized) wavelet approximation of each re ectance function indepen- This has the advantage that strict bounds are imposed on the per-
dently in a greedy fashion based on the heuristic that only coef- formance of the algorithm, but at the cost of exibility in selecting
cients need to be considered for which their parent is already in- patterns that are optimized to the characteristics of the acquisition
cluded in the approximation. Of all potential candidate coef cients, setup.

the one that reduces the error most is included. This corresponds to

the candidate wavelet coef cient with the largest estimated coef- The presented method also puts strict conditions on which kind of
cient. illumination patterns can be used to ensure optimal inference of

15



ICT-TR-05-2008

re ectance elds. However, these restrictions are much less strict of a well-de ned and exible theoretical framework. We believe
than those of [Peers and Dat005], allowing one to optimize the  that it is this exibility that is the most important advantage over
patterns for the limitations of the acquisition setup. Neither of the previous methods.

previous methods addresses the design of illumination patterns.

Re ectance Function Representation and Reconstruction.Ma- 7.3 Limitations

tusik et al. [2004] presented two methods for inferring the re- c f ive light t ¢ N tv limited b
ectance functions. However, both methods suffer from some urréntly compressive fignt transport sensing 1S mostly limited by

shortcomings. First, it has been previously shown in [Peers and :Eetquallty otLthde measurem?nlts. Syntr:etlct e);]amplehs Zavet?hom(/jn
Dutré 2005] that the maximum energy subdivision heuristic is sub- ©1at OUr method can accuratély reconstruct snarp snadow bound-

optimal. Splitting the kernel with the highest energy does not nec- aries, and S”?OO”‘ re ectance fynctlons. The “m'ted SNR of the ac-
essary yield the best error reduction. Second, without the splitting quisition devices, how_ever, I_|m|ts the_ accuracy in real scenes. Small
heuristic all possible subdivisions need to be tested. However, in coef cients are especially dif cult to infer accurately. Fortunately,

such a case the method is only practical for 25 to 30 subdivisions, "eS€ small coef cients are the least important in a non-linear ap-
after that the method becomes computationally too expensive. Thegmlmf‘;ﬁ?{oﬁoﬁﬁé ?\Oersblg?Igp%ﬁga?grggﬁ{gentzﬁgq db?ae
presented method, on the other hand, scales much better with re-SOMPY a limi u neasu . u
spect to the desired approximation quality. noted that even in a brute-force acquisition (e.g., using Hadamard

measurement patterns), or using current adaptive methods, these

The method of Peers D&f2005] computes a non-linear wavelet ~ Will encounter the same problems when using similar measurement
approximation of each re ectance function that minimizes lthe devices.

(r?;;cl)irzl;:ti?r? %ﬁge(;%teiom?gbgggivﬁé’ t%u:ntoothﬁﬁﬂgg{%ﬁ%‘iﬁ;‘denOr' An advantage of compressive light transport sensing is that it trades
error in thé canonical domain iF()e with respgct to a reference re- acquisition complle)l(llty against post-processing computation time.
e T e instead' t6 éweightéd norm. where the As a result, acquisition is straightforward. A disadvantage is that
weighting places more importance on low frequenq’/ wavelets. Fur- the required computation time can be quite signi cant. Our unopti-

- . : mized code requires approximately 15 hours for the synthetic scene
thermore, only wavelet basis functions can be used to represent the‘(512 512 resolution) shown in Figure 5. We anticipate that opti-

;gcat\?g%eeégggg?n?ér%(c))trrr]e?:;ee;(ner::irt?c?; t%tl:]rer':lgtrhe;;jyo??ﬁgtgmermized code could reduce this signi cantly. Furthermore, the hierar-
. ary o - chical algorithm can be easily parallelized to exploit the capabilities
hand, is able to infer re ectance functions for any basis, regardless

I of new multi-core processors.
of normalization.

Another key difference is that both previous methods only add ker- 8 Conclusion and Future Work
nels or basis functions, and are thus unable to undo previous sub-

optimal decisions. The presented method has the ability to removewe have presented a novel framework for capturing light transport
coef cients at every level of the hierarchical algorithm, even if the pased on the theory of compressive sensing which captures the light
basis compressive sensing reconstruction method does not suppoffransport data of a real scene using a small set of non-adaptive illu-
removal of coef cients. mination patterns. A new hierarchical algorithm was developed that
exploits spatial coherencies to improve reconstruction quality. Ad-
ditionally, practical guidelines to design illumination patterns were
presented to ensure a good signal to noise ratio during acquisition of
real scenes. We have applied the presented framework to an image-
based relighting setup, and showed that we were able to achieve
high quality acquisitions, with detailed re ectance functions, and
relit results indistinguishable from reference photographs. Addi-
tionally, these results are obtained using less than two orders of
magnitude of measurements compared to a brute force acquisition.

Spatial Coherency.  The spatial correction method of [Ma-
tusik et al. 2004] warrants further discussion since our method
also utilizes spatial information. A key difference is that Ma-
tusik et al. [2004]'s method copies complete con gurations, while
our method is able to partially copy con gurations, and build upon
these. Because they copy con gurations, no increase in informa-
tion is attained, nor is bad information removed. Additionally, our
method not only uses neighborhood information from direct neigh-
bors, but considers multiple neighborhoods of different sizes by
using a multi-resolution approach. This multi-resolution approach For future work, we would like to apply this framework to other
regularizes the system at multiple scales, yielding substantially bet- applications in computer graphics. Additionally, we would also
ter results. As noted in [Matusik et al. 2004], their spatial correction like to extend the presented technique to different setups for captur-
improves the quality when the number of photographs is small, thus ing light transport data, such as BRDFs, BTFs, and 8D re ectance
when their system is ill-conditioned. In a well-conditioned case, elds. Further research into improving the signal to noise ratio for
little improvement is noted. In our system, we note improvements |ight transport acquisition is necessary. Additionally, we would like
irrespective of the conditioning. to re ne the ensemble design guidelines to minimize the impact of

- o . . . camera shotnoise.
Flexibility. While it is obvious from the above discussion that the

presented method will yield better reconstructions, it is not the only Acknowledgments.  We would like to thank the anonymous
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