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Abstract
In this paper we present an elegant pixel-based texture synthesis technique that is able to generate visually pleasing
results from source textures of both stochastic and structured nature. Inspired by the observation that the most
common artifacts that occur when synthesizing textures are high-frequency discontinuities, our technique tries to
avoid these artifacts by forcing at least one of the direct neighboring pixels in each causal neighborhood to match
within a predetermined threshold. This does not only avoid deterioration of the visual quality, but also results in
faster synthesis timings. We demonstrate our technique on a variety of stochastic and structured textures.

Keywords: texture synthesis, pixel-based techniques, Markov Random Field

ACM CCS: I.3.3 Computer Graphics: Picture/Image Generation I.3.7 Computer Graphics: Three-Dimensional
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1. Introduction

The goal of texture synthesis is to generate new textures

that look similar to a given sample texture. Texture synthe-

sis is used extensively in computer graphics and computer

vision applications, such as texture mapping [PFH00], im-

age completion and restoration [DCY03], motion synthesis

[WL00], film post-production and the compression of images

and video sequences.

Recently, a multitude of texture synthesis techniques

has been developed. However, each of these previous

techniques are geared towards a specific texture type. For

example, pixel-based texture synthesis techniques excel

in synthesizing textures of a stochastic nature, whereas

patch-based techniques are proficient in synthesizing from

near-regular sample textures.

The goal of this paper is to develop a fast texture synthesis

technique that is able to generate visually pleasing results

from a wide range of texture types. However, when blindly

applying any of the previously developed methods to different

texture types, the generated results can show high-frequency

discontinuities such as cuts and edges (Figure 1). The human

eye is particularly sensitive to these high-frequency errors and

therefore these kinds of errors should be avoided as much as

possible.

Figure 1: Left a texture synthesized with the presented
method without high-frequency discontinuities and a simi-
lar look as the source texture. Right: a synthesized texture
distorted by high-frequency discontinuities.

In this paper we present an elegant pixel-based texture syn-

thesis technique, which is able to generate visually pleasing

results from stochastic and near-regular structured sample

textures. Key to our method is the reduction of the search

space for each pixel such that high-frequency discontinu-

ities are avoided as much as possible. Additionally, since

the search space is reduced, a synthesis speed-up is attained.

This reduction is achieved by a priori restricting the search

space to contain only causal neighborhoods that minimize
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the probability of introducing high-frequency artifacts in the

synthesized results.

2. Previous Work

Texture synthesis has been an active research topic during re-

cent years. Published techniques can be roughly subdivided

in two main categories: procedural texture synthesis, and tex-

ture synthesis by example.

Procedural texture synthesis is basically a customized

program that transforms some predefined signal (e.g.

Perlin noise [Per85], Worley noise [Wor96], . . .) into a de-

sired texture. This produces a high-quality, continuous tex-

ture. However, a major limitation of procedural texture syn-

thesis approaches is that creating a new texture requires a

new program to be written, usually a trial and error process,

to achieve a texture that has the right ‘look’. For more infor-

mation, we refer the reader to [EMP*02].

Texture synthesis by example generates a novel texture

that is similar to a given sample texture. There are three

classes of algorithms: texture synthesis by analysis, pixel-

based texture synthesis and patch-based texture synthesis.

Texture synthesis by analysis usually characterizes a sam-

ple texture by a limited number of statistics. A new texture is

synthesized such that the statistics of the sample texture are

maintained. [HB95] proposed to analyse textures in terms of

histograms of filter responses at multiple scales and orien-

tations. [PS00] were able to substantially improve synthesis

results for structured textures at the cost of a more compli-

cated optimization procedure. [Deb97] scrambles the input

in a coarse-to-fine fashion, preserving the conditional dis-

tribution of filter outputs over multiple scales. [NMM*05]

separate regular features with the aid of a fractional Fourier

analysis on a near-regular texture, which are then tiled. Af-

terwards, irregular texture detail is added back in to the tiled

texture.

Pixel-based texture synthesis generates novel textures by

repeatedly selecting and copying a single pixel from the sam-

ple texture, based on already synthesized pixels in the novel

texture. These algorithms are generally based on the theory

of Markov Random Fields, a two-dimensional extension to

Markov Chains [PL98].

‘Non-parametric sampling’ [EL99] synthesizes a novel

texture by selecting pixels, with high conditional probability,

from a sample texture. The conditional probability between

a pixel in the sample texture and a to-be-synthesized pixel

is defined by a Gaussian weighted normalized sum of the

squared differences of the pixel values in a small neighbor-

hood around each pixel.

Wei and Levoy [WL00] use a fixed causal neighborhood

size and interpret all possible neighborhoods in the input tex-

ture as a set of vectors that span a high-dimensional search

space. Tree structured vector quantization (TSVQ) is used to

accelerate searching this space. Furthermore, the algorithm

is extended using a multi-resolution synthesis pyramid. Al-

though a number of newer pixel-based techniques have been

developed, this technique is still used extensively because of

its simplicity and robustness with respect to a wide range of

texture types.

Ashikhmin [Ash01] modified the algorithm of [WL00] to

encourage verbatim copying of parts of the input sample. Un-

like [WL00] where for each pixel all causal neighborhoods in

the sample are compared, only four neighborhoods per pixel

are checked. These four neighborhoods are defined by the

corresponding causal neighborhoods in the sample texture

of the already synthesized neighboring pixels of the to-be-

synthesized pixel. Ashikhmin [Ash01] noted that his algo-

rithm works best on natural textures, such as textures of flower

fields, pebbles, forest undergrowth, bushes and tree branches.

However it is not suited for textures containing structured

features.

Hertzmann et al. [HJO*01] introduced an algorithm that

handles both texture synthesis and texture transfer. The works

of [WL00] and [Ash01] are combined and extended to work

on corresponding pairs of images rather than on single tex-

tures.

Zelinka and Garland [ZG02] accelerate texture synthesis

by using a jump map. Each pixel in the jump map contains a

list of pre-calculated references and probabilities for match-

ing pixels. A texture is synthesized in real time by copying

a matching pixel, referred in the jump map, from the sample

texture.

Tong et al. [TZL*02], presented k-coherence, a method

for synthesizing bidirectional texture functions. K-coherence

can also be used for normal texture synthesis and is closely

related to [Ash01] and the technique presented in this pa-

per. K-coherence stores for each pixel a set of k nearest

causal matches. Similar to Ashikhmin [Ash01], the source

pixels in the causal neighborhood are used to define a can-

didate set from which the best matching pixel is copied. Un-

like Ashikhmin, who directly uses the causal neighborhoods

around the source pixels, k-coherence creates the candidate

list from the k pre-computed best-matching neighborhoods

for each source pixel.

Recently, Battiato et al. [BPR03] extended the texture syn-

thesis technique of [WL00] by using antipole clustering, in-

stead of TSVQ, to speed up texture synthesis, yielding im-

proved synthesis results.

Patch-based texture synthesis. Efros and Freeman [EF01]

point out that pixel-based texture synthesis algorithms like

those of Efros and Leung [EL99], Wei and Levoy [WL00]

and Ashikhmin [Ash01], all perform excess computations

when dealing with structured textures. They propose to syn-

thesize a novel texture by copying whole patches from the

sample texture, as opposed to copying a single pixel in the

pixel-based techniques. Other early work on patch-based
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texture synthesis was performed by [XGS00] (Chaos Mo-

saics), [PFH00] (Lapped Textures), [EF01] (Image Quilting)

and [LLX*01].

Cohen et al. [CSH*03] propose to use Wang tiles for patch-

based texture synthesis. Wang tiles can be used to gener-

ate non-repeating tilings of a limited number of tiles by as-

signing a color to each tile’s edge and matching only edges

with similar color. To extend Wang tiles for texture synthesis,

Cohen et al. assign a texture patch to each Wang tile, making

sure that tiles with common colors can be matched without

introducing artifacts in the synthesized texture. The major ad-

vantage of this approach is that the tiled texture is guaranteed

non-repeating.

Kwatra et al. [KSE*03] copy irregularly shaped patches

from a sample image to generate a new texture. The pro-

cess of copying patches is performed in two stages. First,

the best candidate rectangular patch is selected by compar-

ing the pixels in a candidate patch with already synthesized

pixels. Second, an optimal portion of the rectangular patch,

determined using a graph cut algorithm, is copied to the syn-

thesized texture. The textures synthesized with this technique

are of a very good visual quality.

Nealen and Alexa [NA03], presented a hybrid patch-based

texture synthesis technique that tries to use as large as possible

patches by adaptively splitting them. To stitch the patches

of different sizes together, a pixel-based method is used. In

[NA04], this method is extended and speeded-up by replacing

the pixel-based synthesis technique by a k-coherence- based

technique [TZL*02].

Liu et al. [LLH04] treat a near-regular texture as a statis-

tical distortion of a regular tiling, possibly with individual

variations in tile shape, size, color and lighting. Textures are

synthesized by tiling the regularized texture, and applying

the statistical distortions afterwards to the synthesized tex-

ture. The results of this technique are very good compared to

other patch-based techniques.

3. Motivation

Although the observations made by Efros and Freeman

[EF01] are still valid, pixel-based texture synthesis tech-

niques are still widely used; for example for directly syn-

thesizing on a 3D surface [Tur01] and for image completion

[DCY03]. The main reason for this is the ease of use and ease

of implementation and its strengths in synthesizing stochastic

textures.

Our method is also a pixel-based texture synthesis tech-

nique, designed with the following goals in mind:

� Simplicity: Pixel-based methods are popular because

they are straightforward to implement and easy to use.
� Wide range of texture-types: A disadvantage of pixel-

based texture synthesis methods is that they are not really

Figure 2: An L-shaped causal neighborhood of size 7 (width)
around a pixel marked in red. The pixels marked in blue are
the four direct neighbors.

good in synthesizing textures from structured sample tex-

tures. Our method is able to handle these kinds of textures

better.
� Visually pleasing results: We are not interested in gener-

ating a texture with the lowest mathematical error, but in

synthesizing visually pleasing textures. We will therefore

relax some constraints in current pixel-based systems to

achieve better visual results.
� Fast: Pixel-based texture synthesis methods usually

trade-off speed to synthesis quality. Our technique is both

fast and able to generate high-quality results.

As in many pixel-based texture synthesis techniques, we

also assume a Markov random field model. A texture is mod-

eled as a local and stationary random process: each pixel is

classified by a vector representing a small set of neighbor-

ing pixels (local causality). This classification is similar for

all pixels (stationary). The local causality principle allows us

to construct a search space in which we would like to find

the best-matching vector representing a given pixel’s neigh-

borhood. The stationary principle indicates that the search

space is the same for all pixels. The dimensionality of the

search space equals the required number of pixels in a neigh-

borhood to make a faithful classification. Usually, a large

neighborhood is required, and thus resides the search space

in a high-dimensional space.

Assume we have a sequential (e.g. scanline order) synthe-

sis algorithm and assume that the already synthesized pixels

are chosen optimally and that we use an L-shaped causal

neighborhood to classify each pixel. When synthesizing a

new pixel, the only possibility to introduce a high-frequency

discontinuity is in the transition between a direct neighbor

and the to-be-synthesized pixel. In order to avoid these er-

rors completely, the direct neighbors in the causal neighbor-

hood in the sample texture should exactly match the cor-

responding pixel values of the direct neighbors around the

to-be-synthesized pixel. An example of a causal neighbor-

hood and its direct neighbors is depicted in Figure 2. The

probability of finding such a causal neighborhood in the

sample texture is very small. We relax this constraint by re-

quiring at least one (instead of all) of the direct neighbors

to match exactly. This ensures that for at least one direc-

tion no high-frequency discontinuities can occur. The causal
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neighborhoods in the sample texture, which have at least one

matching direct neighbor define a reduced search space. In

effect, we are reducing the search space by taking a slice

through the complete search space in which a single dimen-

sion is fixed. This reduced search space is completely defined

by the direct neighbors of the current to-be-synthesized pixel

and thus for each pixel a different reduced search space is

defined.

The reduced search space might not contain the optimal

neighborhood vector in an L2 sense, but we will show that this

results mainly in low-frequency artifacts in the synthesized

textures. Since the human visual system is more sensitive to

high-frequency discontinuities than low-frequency artifacts,

this approach results in visual pleasing results.

In the remainder of this paper, we will discuss how such a

system can be efficiently implemented and a thorough anal-

ysis is conducted on the generated results.

4. Implementation

In the previous section we argued for reducing the search

space for each pixel depending on the pixel values in the di-

rect neighborhood. Instead of reducing the large stationary

search space for each pixel separately, we opt for construct-

ing the reduced search space on the fly. Each reduced search

space can be seen as the union of the search spaces associ-

ated with a single direct neighboring pixel value. The search

space associated with a single direct neighboring pixel are

the causal neighborhoods that have the same pixel value at an

identical position in the full search space. Thus if we know

which pixel positions in the sample texture have the same

color, then we also know the causal neighborhoods that share

this color at a specific position. This reduces the construction

of the search space to a simple search space look-up, in which

the pixel value of the direct neighbor is the look-up key. This

is illustrated in Figure 3.

We opt for using a kd-tree as a data structure to accelerate

this look-up. This kd-tree is a 3-dimensional tree, in which

each node corresponds to a unique color, represented by an

RGB triplet, in the sample texture. Thus, the 3 dimensions

of the kd-tree correspond to the red, green and blue channels

in the RGB color-space. Associated with each node is a list

of pixel positions in the sample texture containing this color.

Figure 4 shows a schematic overview of the kd-tree.

The presented texture synthesis method consists of three

steps: texture analysis (kd-tree construction), texture synthe-

sis and synthesis initialization.

4.1. Texture analysis

During the analysis step, a kd-tree is constructed. Each pixel

in the sample texture is added to the kd-tree. If the pixel value

(RGB) is already in the kd-tree, then the pixel’s location is

added to the associated list of pixel positions. If the kd-tree

Figure 3: The causal neighborhoods that need to be verified
are uniquely determined by the pixels in the source texture
that have the same color as the direct neighbors of the current
pixel.

Figure 4: A schematic depiction of the kd-tree used in our
method. Each node of the kd-tree represents a unique color in
the source texture. Associated with each node in the kd-tree
is a list of pixel positions in the source texture of occurrences
of the color of this node.
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does not contain the pixel value, then a new node is created

and a list of pixel positions is associated. This list is initial-

ized to contain only the current pixel position. Because pixels

on the edge of the sample texture have an incomplete causal

neighborhood, only the pixels which are above a predeter-

mined distance from the edge are considered for inclusion in

the kd-tree.

4.2. Texture synthesis

Texture synthesis is performed in scanline order. For each to-

be-synthesized pixel, a reduced search space is constructed

in the following manner: For each direct neighbor, a list of

sample texture pixel positions is retrieved from the kd-tree

using the direct neighbor’s pixel value. Each position in the

retrieved list is adjusted (depending on which direct neighbor

was used as key on the kd-tree query) such that the resulting

positions now represent the center positions of causal neigh-

borhoods in the sample texture. The union of the four lists is

a representation of the reduced search space. Next, for each

causal neighborhood in the search space, the L2-difference

is computed with the corresponding causal neighborhood

around the current to-be-synthesized pixel. The center pixel

of the best matching (smallest L2-error) causal neighborhood

is copied into the current to-be-synthesized pixel.

As in most previous pixel-based texture synthesis algo-

rithms, it is very important to select a ‘good’ causal neigh-

borhood size. There is a direct correlation between the feature

size in the sample texture and the minimum size of the causal

neighborhood. However, a too large causal neighborhood size

will result in excess computations and unnecessary prolonged

synthesis timings.

4.3. Synthesis initialization

The texture synthesis process relies on previously synthesized

pixels in order to select a good pixel value for the current

pixel. When starting to synthesize a texture, no previously

synthesized pixels are available. In order to bootstrap the

synthesis process an initialization is required.

Depending on the texture type, two different texture ini-

tialization techniques are utilized. In both cases, the upper

band of the texture is filled. The height of this band depends

on the height of the causal neighborhood. In case the sample

texture is stochastic in nature, the band is filled with ran-

domly selected pixel values from the sample texture. In case

the sample texture is near-regular, a structured upper band is

required. However, randomly copying pixel values destroys

the near-regular structure. Therefore, we synthesize the up-

per band in the following manner: We first rotate the upper

band and the sample texture. Next a random block is copied

from the rotated sample texture to cover the top of this rotated

band. Because the width of the rotated texture is limited and

smaller than the sample texture, a large enough block can be

Figure 5: When advancing to the next pixel, half of the as-
sociated lists of pixel positions can be reused. The lists as-
sociated with the blue marked pixels can be reused. The lists
associated with the red marked pixels are discarded, while
the green mark pixels have to be queried in the kd-tree.

copied to the top to ensure a completely filled ‘upper band’

in the rotated upper band. Finally the band is completed us-

ing the texture synthesis technique described in the previous

section. After synthesis, the band is rotated back and copied

into the target texture. By working in a rotated texture, we

ensure that as much as possible of the causal neighborhood

overlaps with already synthesized pixels.

4.4. Optimizations

A number of general optimizations are possible:

� Minimize kd-tree look-ups. Traversing the kd-tree can

be a costly operation, especially when the kd-tree is large,

and the associated lists of sample texture positions are

short. It is obvious that a number of the kd-tree look-ups

of previously synthesized pixels can be reused, reducing

the number of kd-tree queries by 50% (see Figure 5).
� Avoid checking causal neighborhoods twice. The in-

tersection of partial search spaces defined by the direct

neighboring pixels is not necessary empty. In order to

avoid checking causal neighborhoods multiple times for a

single pixel, already checked neighborhoods are marked,

and subsequently ignored for the remainder of the syn-

thesis of the current pixel.
� Minimize associated list lengths. For near-regular tex-

tures there is a large probability that multiple sample

texture positions define a similar causal neighborhood.

Since the causal neighborhoods associated to each sam-

ple pixel value are known on beforehand, it is very easy

and fast to group similar causal neighborhoods into a

single list-entry.

5. Results and Discussions

Figure 6 shows textures synthesized using our technique. The

generated results cover a wide range of texture types, ranging

from stochastic to near-regular textures. As illustrated, our
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Figure 6: Examples generated with our technique. The source texture is shown for each example in the top-left corner. Synthesis
statistics can be found in Table 1.

Table 1: Synthesis statistics for the textures in Figure 6. All texture are generated at a resolution of 400 × 400 and all timings are provided in
seconds. For each texture the source texture size, number of colors in the source sample and the causal neighborhood size used during synthesis
are provided. The timings are split into three parts: time required for constructing the kd-tree (Analysis Timings), time required to synthesize
the upper-band (Initialization Timings) and the time require to synthesize a 400 × 400 texture. The total time is also given. For comparison
we also provide the time required for synthesizing the same texture (identical resolution, source texture and causal neighborhood size) using a
brute force approach [WL00]. The ratio between the presented method and the brute force method are shown in the last column.

Texture Source Colors Causal Avg. tested Analysis Initialization Synthesis Total Brute force Speed-up

size in source neighb size neighb/pixel timings timings timings timings timings

a 192 × 192 12895 69 7.58 0.24 1.79 24.97 27.00 2754.00 102.00

b 199 × 199 11718 33 15.40 0.31 0.75 13.85 14.91 9360.00 627.77

c 150 × 150 17607 5 3.69 0.29 0.30 2.84 3.43 536.52 156.42

d 100 × 100 4201 7 17.10 0.07 0.10 2.88 3.05 351.18 115.14

e 100 × 100 6933 7 5.35 0.11 0.14 2.94 3.19 351.85 110.30

f 246 × 246 36772 19 5.40 0.94 1.01 4.85 6.80 7080.00 1041.18

g 192 × 192 28778 11 3.15 0.60 0.54 2.90 4.04 2125.72 526.11

h 100 × 100 234 33 188.63 0.01 3.30 121.94 125.25 1837.42 14.67

method is able to synthesize visually pleasing textures for

different kinds of texture types.

Table 1 summarizes the computational costs for generating

the results shown in Figure 6, together with various statistics

such as sample texture size, number of distinct colors in the

sample texture, the size of the causal neighborhood and the

average number of tested causal neighborhoods per pixel. The

timings are further split up in the time required for construct-

ing the kd-tree, time required for the actual synthesis and the

speed-up with respect to a brute force synthesis technique

[WL00]. All examples were computed on an AMD64 4000+
processor (2400 Mhz). From this table we can conclude the

following: the speed-up achieved compared to a brute force

synthesis technique is on average 2 orders of magnitude, es-

pecially when using source textures with a large number of

colors. The speed-up is less pronounced when using textures

with very few different colors (e.g. example Figure 6 (h)).

This is caused by the fact that there are more pixels in the

source texture than colors, and thus a single color occurs
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Figure 7: Matching the direct neighbors exactly does not
always result in a search space rich enough to ensure satis-
fying synthesized textures. By allowing a small error toler-
ance when matching direct neighbors, better results can be
achieved.

multiple times at different positions. This results in a large

numberof causal neighbors that need to be verified each time

a new pixel is synthesized.

In Figure 7 some less successful results are shown. The

reduced search space is sometimes not diverse enough to en-

sure good synthesized results. In order to expand the search

space for these cases, we extend our algorithm. Until now

we constructed the search space by taking the union of the

search spaces defined by the direct neighboring pixels. This

implies that at least one of the direct neighbor’s pixel values

is exactly matched in each vector of the constructed search

space. It is possible to relax this constraint of having at least

one exact match by considering all partial search spaces for

which the key (color) lies within some predetermined range

or alternatively the n nearest colors to the exact key value.

The rational is that as long as the pixel values are perceptu-

ally close in appearance, high-frequency discontinuities are

avoided. A disadvantage is that the search space increases in

size, and thus requires more time to be searched, resulting in

a slower synthesis (see Figure 8). This extension can be easily

incorporated in the original algorithm since we already used

a kd-tree, which is a suitable data structure for doing range

queries on.

To show the effect of using a reduced search space, we

synthesized a texture with different error tolerances on the key

Figure 8: Increasing the error tolerance when matching the
direct neighbors, results in a richer search space. However,
this search space is much larger, and thus results in slower
synthesis timings. In this graph we plotted the increase in
time versus the error tolerance for the source texture shown
in the left-top when synthesizing a 400 × 400 texture.

value ranging from 0% (exact match) upto 100% (exhaustive

search). A selection of the generated textures can be seen

in Figure 9. For this particular example it is clear that the

reduced search space (0% range) performs at least as good as

an exhaustive search. This shows that although the diversity

of the search space has been reduced, the results still look

visually pleasing.

Finally, we investigated the effect of using a reduced search

space on the ‘randomness’ of the generated textures by cre-

ating false color images that encode where each pixel in

the generated texture originates from in the sample texture

(Figure 10). Examples 10(a) and 10(b) were generated from

a stochastic sample texture. The false color images clearly

show that the generated textures consist of random irregu-

larly shaped blocks from the sample texture. Examples 10(c)

and 10(d) are generated from near-regular sample textures.

As expected, the false color images show a regular pattern.

Note that in Figure 10(c) the same tile is repeated in the syn-

thesized texture. This is caused by the fact that the sample

texture is an exact tiling of patterns. Since our method is de-

terministic, it will always copy the same pixel when multiple

sample pixels have the same error. In Figure 10(d) another

regular structured texture is shown, but not an exact tiling,

resulting in some randomness in the color coding.

Some additional results can be found at the end of this

paper. All of the results in this figure have been created by

matching at least one of the direct neighbors directly. As

discussed before, this can still lead to some discontinuities in

the synthesized texture (e.g. bolt image and window image

in Figure 13). Using a range search would solve this problem

at the cost of prolonged synthesis timings.
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Figure 9: A comparison of the synthesized results’ visual quality with respect to an increase in error tolerance on matching the
direct neighbors.

Figure 10: Some synthesized textures together with false color images that indicate from where each pixel in the synthesized
texture originates from in the source texture. The black region in each false color image indicates the part which was handled
by the initialization process (section 4.3).

6. Comparison

The presented technique shares some resemblance to

[WL00], [Ash01], [ZG02] and [TZL*02]. As in the TSVQ

technique of Wei and Levoy [WL00], our method reduces

the search space in order to speed-up the synthesis process.

However, with TSVQ a low-dimensional approximation of

the complete search space is constructed, whereas our method

uses highly detailed slices of the full search space. This im-

plies that the diversity of our search space is less than the

TSVQ search space, but has more detail. This surplus in de-

tail allows smoother transitions in the search space from one

point to another, resulting in more detailed and visually pleas-

ing results. Ashikhmin [Ash01] also uses a reduced search

space defined by the direct neighboring pixels. However, the

search space used by Ashikhmin is much smaller (maximum

4 vectors), and is only able to generate good results for natural

textures. Our method considers a larger search space and is

able to handle a wider range of texture types. The method of

Ashikhmin [Ash01] is further generalized in [TZL*02]. In-

stead of using the search space defined directly by the direct

neighbors, an extra level of indirection is added; the k most re-

sembling neighborhoods to the ‘forward shifted’ direct neigh-

bor’s causal neighborhoods are used. K-coherence reduces

the search space to similar size as the presented method, but

due to the extra indirection, can introduce high-frequency dis-

continuities (i.e. there is no guarantee that the k best matches

of a forward shifted direct neighbor have a low error on
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direct neighbors). Finally, our methods bares resemblance

to the jump map technique of Zelinka and Garland [ZG02].

Both methods reduce the run-time cost by precomputing a

(partial) search space. However, the jump map works with

precomputed probabilities and does not take in account the

current state of the synthesized texture, whereas our method

does.

A visual comparison between the reported results of

[WL00] and [Ash01] are shown in Figure 11. Our method

clearly preserves the overall structure of the sample textures

better and outperforms either in terms of synthesis speed and

visual quality. In Figure 12 we compared our pixel-based tex-

ture synthesis technique to the reported results of [LLX*01],

[KSE*03] and [LLH04], which are all patch-based texture

synthesis techniques. As can be seen, our method performs

at least as good as the patch-based techniques on structured

textures. Note, that our technique can also handle textures of

a stochastic nature, whereas patch-based techniques usually

cannot.

7. Conclusion and Future Work

We presented a pixel-based texture synthesis algorithm that

is able to create high-quality textures very fast. The key to our

method is that at least one of the direct neighboring pixels is

forced to match within a controlled error tolerance. By forcing

such a match a large number of undesirable matches (i.e.

neighborhoods with a low L2-error contribution on distant

pixels and a high L2-error contribution on nearby pixels) are

removed from the search space, avoiding undesirable matches

that can lead to cuts and discontinuities in the synthesized

texture.

Since a large number of causal neighborhoods are a priori

ignored, a synthesis speed-up is achieved. If we have N pixels

and C different colors in the sample texture, then the reduced

search space size is on average 4N/C large. Thus, if C is large,

then the average size of the reduced search space is small and

thus very few causal neighborhoods need to be compared.

As a result, a good matching neighborhood is found almost

immediately. Even if the number of different colors is low

(e.g. 100) then our method is still significantly faster than an

exhaustive search.

For future work we would like to further improve the result

and synthesis speed by exploiting the fact that large irregular

blocks are copied. Unlike patch-based techniques, we would

like to impose no restrictions on the shape of these blocks.

Currently, our system requires two user-determined param-

eters: the causal neighborhood size and the maximum error

range tolerated when doing a nearest neighbor query in the

kd-tree. Ideally, we would like the system to propose a ‘good’

initial guess, which the user can refine if desired. Finally, we

would like to incorporate multiresolution synthesis. Initial

experiments yield encouraging results (Figure 13).
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Figure 11: A comparison between the reported results of [WL00] and [Ash01] and the presented technique.

Figure 12: A comparison of our pixel-based technique with the reported results of some patch-based techniques.
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Figure 13: Some more results generated with the presented method.
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