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Figure 1: Network architecture used for the roughness aug-
mentation.
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1 ROUGHNESS AUGMENTATION
As noted in the main document, we enrich the distribution of rough-

ness maps by replacing the maps for a randomly selected subset of

20% of the 30,032 basis exemplars (i.e., ∼6,000 training exemplars)

based on the height map (normalized to [0..1]) and the (diffuse +

specular) albedo map. We concatenate these four channels (height

and RGB color) together with a Gaussian blurred (𝜎 = 3.0) Laplacian
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Figure 2: Network architecture used for the mixture augmen-
tation.

of the height map. These 5 channels are fed into a randomly initial-

ized dense neural network. This network consists of three dense

layers, with tanh activations, that reduce the input channels from 5

to 2 and then to 1 output channel. See Figure 1 for a summary of the

network architecture. As noted in the main document, we do not

optimize the dense network, and use it as a random nonlinear trans-

formation of height and albedo into roughness. Finally, we blend

the normalized output 𝑅 of the network and the material’s original

roughness map 𝑟 as:
√︁
𝑤𝑅2 + (1 −𝑤)𝑟2), with𝑤 = 0.3 + 0.6𝑅.

2 MIXTURE AUGMENTATION
Many real-world materials are a piece-wise constant mixture of

different materials. To further diversify the training set, we compute

mixtures of the INRIA SVBRDFs and our basis SVBRDFs. For 2/3 of
the cases we mix two materials, and for the remaining 1/3 we mix

three materials. Each SVBRDF in the INRIA training set and our

basis SVBRDFs is only used in a single mixture model. We leverage a

randomly initialized dense neural network to compute the mixture

weights (Figure 2 summarizes the architecture). This network takes

as input, the diffuse+specular albedo maps bilinearly upsampled

by a factor 2, concatenated with the corresponding height maps

computed from the normal maps using the fast Poisson FFT method

from Quéau et al. [2018]. We first apply an instance norm on the

input vector, followed by two dense layers that keep the number

of channels constant, each followed by another instance norm and

activation (i.e., tanh and one-hot activation respectively for the 1st
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and 2nd dense layer). Finally, we downsample the output by a factor

2 yielding the final mixture weight maps.

3 TEST SET
Figure 3 shows all 50 materials from our test set. 31 are from the

Deep Inverse Rendering [Gao et al. 2019] test set (marked green; this

test set also includes SVBRDFs from the original INRIA [Deschaintre

et al. 2018] test set), 6 are from Zhou and Kalantari’s look-ahead

method [Zhou and Kalantari 2022] (marked red), 11 from https:

//polyhaven.com (marked blue), and 2 from https://ambientcg.com

(marked purple).

4 ADDITIONAL COMPARISONS ON
“IN-THE-WILD” CAPTURED MATERIALS

Figure 4 and Figure 5 show additional qualitative comparisons of

colocated MatFusion and the adversarial network of Zhou and

Kalantari [2021] and the look-ahead method of Zhou and Kalan-

tari [2022] on captured photographs. These photographs do not

contain reference SVBRDF maps or reference images under differ-

ent lighting. Even for a human it is sometimes difficult to gauge

what the material would exactly look like. Hence, these results

are included to better understand how each method handles these

difficult materials. From these results, we can make the following

observations regarding the different recovered property maps:

Diffuse Albedo. A well-known problem with prior methods is

the “burn-in” of specular reflections visible in the input photograph

in the diffuse albedo (e.g., Figure 5, 1st, 2nd, and last example). In

contrast, by virtue of being a generative model, MatFusion tends to

produce much less “burn-in” and the resulting diffuse albedo maps

are more clean.

Specular Albedo. We observe that many specular albedo maps

produced by MatFusion are monochromatic (although not all). This

is to be expected as most exemplars are composed of dielectric

materials which produce white specular reflections. Exceptions are:

Figure 4, 1st example exhibits non-white reflection on the metal

part; the manual variant of the 1st example in Figure 5 exhibits a

slight pink tone; and the render error variant of the last example

in Figure 5 has a slight greenish tone. Furthermore, MatFusion tends

to produce clean specular albedo maps that exhibit less correlation

with the texture in the diffuse albedo maps. In contrast, the com-

peting methods often correlates the texture in both albedo maps

to correct errors in the normal maps (e.g., Figure 4, 2nd example,

and Figure 5, 4th example), or, as noted before, bakes in the specular

reflection in the diffuse albedo map.

Specular Roughness. Similar to specular albedo, prior methods

correlate roughness strongly with diffuse albedo as well as exhibit

”burn-in” (in fact, “burn-in” is more prevalent in the roughness maps

than in the specular albedo maps). The correlation of diffuse texture

and roughness is indicative that the networks are trying to correct

shortcomings in other maps (mostly incorrect normals). While not

free of correlation between the diffuse and roughness maps, the

correlations are greatly reduced in our MatFusion results. Figure 5,

1st example, is a strong example of the difference between prior

work and MatFusion on the “cleanliness” of the specular roughness

parameters.

Normals. MatFusion produces better defined normals with more

details (e.g., Figure 4, last example, and Figure 5, 1st, 3rd, and 4th

example). Prior work often tends to display a non-uniform distri-

bution of normal detail; more details in non-oversaturated specular

reflections, and less detail in the diffuse-only observations. Because

of the generative nature of MatFusion, a more homogeneously

detailed normal map is synthesized.
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Figure 3: Test set. The materials are selected from the test sets of: Deep Inverse Rendering [Gao et al. 2019] (green), Zhou and
Kalantari’s [2022] look-ahead method (red), Polyhaven (blue), and AmbientCG (purple).
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Input Fixed Seed Render Error Manual Zhou and Kalantari[2021] Zhou and Kalantari[2022]

Figure 4: Qualitative comparison of MatFusion conditioned on colocated lighting (fixed seed, render error, andmanual selection)
against the adversarial direct inference of Zhou and Kalantari [2021] and the meta-leanring look-ahead method of Zhou and
Kalantari [2022].
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Figure 5: More Qualitative comparisons of MatFusion conditioned on colocated lighting (fixed seed, render error, andmanual
selection) against the adversarial direct inference of Zhou and Kalantari [2021] and the meta-leanring look-ahead method of
Zhou and Kalantari [2022].


	1 Roughness Augmentation
	2 Mixture Augmentation
	3 Test Set
	4 Additional Comparisons on ``In-the-wild'' Captured Materials
	References

