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Figure 1: Shape and spatially-varying surface reflectance recovered from a video of a rotating object under unknown illumination: (a) a
“Bronze Cup” exhibiting both sharp as well as rough specular reflectance, (b) “Ornamental Metal Cup” and (c) a “Carved Disc” with fine
geometrical details, (d) a “Cloisonné Bell” with rich texture detail and spatially-varying reflectance properties, and (e) a “Clay Teacup”
dominated by diffuse reflectance properties.

Abstract

We present a novel integrated approach for estimating both
spatially-varying surface reflectance and detailed geometry from a
video of a rotating object under unknown static illumination. Key to
our method is the decoupling of the recovery of normal and surface
reflectance from the estimation of surface geometry. We define an
apparent normal field with corresponding reflectance for each point
(including those not on the object’s surface) that best explain the ob-
servations. We observe that the object’s surface goes through points
where the apparent normal field and corresponding reflectance ex-
hibit a high degree of consistency with the observations. However,
estimating the apparent normal field requires knowledge of the un-
known incident lighting. We therefore formulate the recovery of
shape, surface reflectance, and incident lighting, as an iterative pro-
cess that alternates between estimating shape and lighting, and si-
multaneously recovers surface reflectance at each step. To recover
the shape, we first form an initial surface that passes through loca-
tions with consistent apparent temporal traces, followed by a refine-
ment that maximizes the consistency of the surface normals with the
underlying apparent normal field. To recover the lighting, we rely
on appearance-from-motion using the recovered geometry from the
previous step. We demonstrate our integrated framework on a va-
riety of synthetic and real test cases exhibiting a wide variety of
materials and shape.
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1 Introduction

Digitally reproducing the detailed and intricate appearance of
real-world objects has received considerable attention in the past
decades. To date, the most successful appearance modeling ap-
proaches are measurement-based methods that infer detailed de-
scriptions of the object’s surface reflectance from a set of pho-
tographs of the object. The majority of measurement-based appear-
ance modeling methods rely on active illumination, precluding ap-
pearance acquisition of objects under bright uncontrolled lighting
conditions.

Recently, Dong et al. [2014] proposed appearance-from-motion, a
framework for recovering the spatially-varying appearance from a
video of a rotating object under unknown and uncontrolled static
illumination. They formulate the recovery of the appearance and
lighting as an iterative process that alternates between estimating
each component while keeping the other fixed. A key observation
is that the effects of lighting discontinuities on the observed tempo-
ral changes in the appearance of a surface point are closely related
to the form of the point’s surface reflectance. However, tracking
the temporal changes of a moving surface point requires precisely
registered geometry with accurate surface normals. In-situ estima-
tion of shape a priori, without making assumptions on the surface
reflectance, is difficult due to the complex interplay of shape, re-
flectance, and lighting in the observations.

In this paper we propose a novel integrated framework for recov-
ering both the shape and spatially-varying isotropic surface re-
flectance from a video of a rotating object under unknown static
illumination. Inspired by Dong et al. [2014], we propose to estimate
both the surface normal and surface reflectance from the temporal
trace of a surface point’s appearance. However, the position of the
surface point is also unknown, without which we are unable to cor-
respond the observations over time, and thus we cannot recover the
temporal trace. Instead, we consider the apparent temporal trace for
each point in space whether or not it lies on the surface. A key ob-
servation is that surface reflectance, normal variation, and position
affect the relation between incident lighting and apparent temporal
trace differently: surface reflectance smooths incident lighting, nor-
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mal variation introduces an offset between the lighting and the ap-
parent temporal trace, and position introduces incoherent disconti-
nuities in the apparent temporal trace when not on the surface. This
allows us to construct an apparent normal field with corresponding
reflectance functions for each point in the bounding volume that
best explain the observed offsets for the temporal traces with re-
spect to the incident lighting. Ideally, the surface shape should go
through the points that minimize incoherent discontinuities in the
apparent temporal traces while maximizing coherence with the cor-
responding apparent normals. However, estimating the apparent
normal field requires knowledge of the incident lighting, which is
also unknown. To resolve this dilemma, we alternate between refin-
ing the shape guided by the apparent normal field and estimating the
incident lighting using appearance-from-motion [Dong et al. 2014].

The proposed integrated framework for shape and reflectance re-
covery provides a low-cost solution to measurement-based appear-
ance modeling, only requiring a video camera, without sacrificing
quality for a wide range of materials, as showcased by the examples
in Figure 1.

2 Related Work

Appearance and shape acquisition methods can roughly be catego-
rized based on whether or not incident illumination is controlled
during acquisition. Both classes of acquisition methods are com-
plementary, suited for different applications, and aimed at different
operating conditions. The proposed method falls in the category of
uncontrolled incident lighting. For sake of brevity, we focus our
discussion of prior work on methods that recover shape and/or re-
flectance under uncontrolled lighting – a comprehensive overview
of active illumination methods for geometry and appearance acqui-
sition can be found in [Weinmann and Klein 2015].

Shape Estimation under Uncontrolled Lighting A highly suc-
cessful and popular class of methods for 3D shape recovery under
uncontrolled and unknown lighting is multi-view stereo [Seitz et al.
2006]. These methods triangulate the 3D position of surface points
by finding corresponding projections in different views. Multi-view
stereo methods work best for diffuse-like richly textured objects.
Furthermore, while multi-view stereo methods can reconstruct sub-
millimeter accurate 3D shapes, the resulting surface normals can
still exhibit significant errors, which makes the resulting geometry
ill-suited for reflectance estimation.

In contrast to multi-view stereo, photometric stereo [Woodham
1980] directly estimates surface normals from measurements.
Lu et al. [2013] propose a photometric stereo variant for recover-
ing surface normals for unknown isotropic materials from a large
number of observations (≈ 150) under uncalibrated (but quasi-
uniformly distributed) directional light sources. Basri et al. [2007]
propose a photometric stereo solution, limited to Lambertian sur-
face reflectance, from multiple (4 or 9) observations under differ-
ent (but unknown) lighting conditions using a low-order spherical
harmonics representation. Both methods only estimate surface nor-
mals for a fixed view. In contrast, we recover the full 3D shape of
the subject as well as its spatially-varying surface reflectance.

Example-based photometric stereo [Hertzmann and Seitz 2003;
Treuille et al. 2004] reconstructs shape and reflectance of a ho-
mogeneous object from photographs of the object under unknown
lighting and a reference object with known shape and similar
material. Instead of using an explicit reference object, Acker-
mann et al. [2012] use the portion of the object that can be reli-
ably reconstructed using multi-view stereo as the reference object,
and recover the shape of the remainder of the object by integrating
the example-based photometric normals. These methods focus on

recovering surface normals, and they do not recover lighting and
surface reflectance separately.

Reflectance Recovery under Uncontrolled Lighting Both
Romeiro et al. [2010] and Lombardi et al. [2016] recover sur-
face reflectance under uncontrolled lighting for general surface re-
flectance. However, both methods are limited to homogeneous ma-
terials only. Palma et al. [2012] estimate lighting and clustered sur-
face reflectance from a video of an object with known geometry
recorded under unknown uncontrolled lighting. The specular com-
ponent of the reflectance is modeled by the Phong BRDF. Similarly,
Dong et al. [2014] also recover lighting and surface reflectance from
a video of a rotating object under unknown lighting, but use a more
flexible data-driven microfacet reflectance model and estimate the
reflectance parameters for each surface point separately.

Shape and Reflectance under Uncontrolled Lighting Oxholm
and Nishino [2012; 2014] recover both shape and surface re-
flectance using an expectation-maximization framework from a ho-
mogeneous object under known incident natural lighting. In con-
trast, the proposed method does not require prior knowledge of
the incident lighting, and it is not limited to homogeneous mate-
rial properties.

Barron and Malik [2015] estimate shape, reflectance and illumina-
tion from a single image of an object with piece-wise constant Lam-
bertian reflectance under unknown natural illumination. To find the
most likely solution, they make a number of prior assumptions on
lighting (i.e., log-likelihood), shape (i.e., smoothness, isotropic nor-
mal distribution, and silhouette constraints), and reflectance (i.e.,
piece-wise smooth consisting of a limited palette of natural colors).
Wu et al. [2011] use shape-from-shading to refine a coarse geome-
try obtained from multi-view stereo on a homogeneous Lambertian
object under unknown lighting. Wu et al. exploit the low frequency
nature of diffuse irradiance, and recover a spherical harmonics rep-
resentation from shading cues from the coarse multi-view stereo
solution. Xu et al. [2014] improve on [Wu et al. 2011] by including
visual hull constraints and by solving lighting and shape simulta-
neously. Valgaerts et al. [2012] extend the work of Wu et al. to
dynamic face capture and handle spatially-varying albedo via clus-
tering. All of these methods rely on diffuse cues to refine the shape,
and are unlikely to produce good results in the presence of strong
specular reflections. A notable exception is shape-from-specular
flow [Adato et al. 2010] which reconstructs the geometry of ho-
mogeneous specular objects under unknown natural lighting. How-
ever, shape-from-specular flow is limited to mirror-like materials
only. Our method is suited for objects that contain both diffuse as
well as (glossy) specular surface reflectance.

Chandraker [2014] presents a comprehensive theory on shape
and reflectance recovery from motion cues of a homogeneous
object under a single directional, but unknown, light source.
Wang et al. [2016] propose a related theory for recovering shape
and spatially-varying material properties using a light field camera
(i.e., translational motion) under a known single directional light
source. The proposed method also relies on motion cues to infer
shape and reflectance, but in contrast to Chandraker [2014] and
Wang et al. [2016], our method supports more general lighting
conditions.

Recently, Wu et al. [2016] recovered shape, normals, lighting, and
surface reflectance from RGB-D observations. Due to the reliance
of the depth camera on active lighting, their method is only suited
for indoor use or under overcast sky. In contrast, the proposed
method does not rely on active lighting, and exploits the sparsity
of natural lighting in the gradient domain to infer both shape and
reflectance.



3 Assumptions

Our goal is to accurately recover the shape and spatially-varying
surface reflectance of an object under unknown (and uncontrolled)
incident lighting. We desire a solution that is easy to use and ap-
plicable in bright uncontrolled environments, precluding the use of
active illumination or specialized hardware. In order to keep recov-
ery practical and robust, we make a number of modest assumptions:

Input Data Similar as in [Dong et al. 2014] we take as input a
video sequence of an object rotating in front of a static camera. We
assume that the camera is calibrated both radiometrically and geo-
metrically. Furthermore, as in [Dong et al. 2014], we also assume
that the relative position and rotation of the object with respect to
the camera is known for each captured frame. However, unlike
Dong et al. we do not require any prior knowledge on the geometry.

Surface Reflectance We assume that the spatially-varying sur-
face reflectance is isotropic and that it can be accurately character-
ized by a microfacet Bidirectional Reflectance Distribution Func-
tion (BRDF) [Nicodemus et al. 1977]:

fr(ωi
′,ωo

′) =
ρd

π
+ρs

D(ωh
′)G(ωi

′,ωo
′)F(ωh

′)

4ωi′zωo′z
, (1)

for incident and outgoing directions ωi
′ and ωo

′ – the prime mark
indicates that the directions are with respect to the local coordinate
frame defined by the surface normal n. ρd and ρs are the diffuse
and specular albedo respectively, D is the microfacet normal dis-
tribution function (NDF), G is the shadowing and masking term,
and F is the Fresnel reflectance with a fixed index of refraction of
1.3. We follow [Dong et al. 2014] and store the NDF as a 1D tab-
ulated monotonically decreasing function and compute shadowing
and masking as in [Ashikhmin et al. 2000]. To model spatially-
varying reflectance, we assign separate parameters (n, ρd , ρs) and
an NDF to each surface point p.

Incident Lighting We assume that the incident lighting E(ωi) is
distant, temporally static, and color-neutral on average. Similar to
prior work, we ignore interreflections. Furthermore, we assume that
the lighting contains strong discontinuities/edges and that each sur-
face point is “scanned” a number of times from different directions
by one or more discontinuities.

Global Coordinate Frame We employ an object-relative global
coordinate frame, i.e., the position of the surface remains fixed
while the (relative) position and orientation of the camera and light-
ing varies over time t. For brevity, we also mix global and local
coordinate frames in expressions, and assume implicit conversion
by: ω ′ = Rn,t(ω), where Rn,t is the product of the transformation
Rn to the shading frame defined by the surface normal n, and the
transformation Rt due to relative object rotation.

4 Overview

Problem Statement Recovery of the position x, and normal di-
rection n, for each surface point p, and its appearance information
(including diffuse albedo ρd , specular albedo ρs and NDF D), under
the unknown natural lighting E(ωi) from a video sequence I(xp, t),
can be formulated as an inverse rendering problem:

argmin
{x,n;ρd ,ρs,D}p,E(ωi)

∑
p

∑
t
||I(xp, t)−L(p, t)||2, (2)
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Figure 2: Key Observations. With the correct normal, the discon-
tinuities in the observed temporal trace and incident lighting are
perfectly aligned. Changes in the surface normal direction shifts
the observed temporal trace and produces an offset. Inaccurate
surface position will produce misalignments which are sparse and
cannot be aligned with the lighting.

where I(xp, t) is the pixel value observed when back-projecting the
position xp of a point p toward the camera at time t. L(p, t) is the
predicted observed radiance at a point p and at time t:

L(p, t) =
∫

Ω

fr(ωi
′,ωo

′(xp, t);{ρd ,ρs,D}p)E(ωi)ωi
′
zdωi

′. (3)

The outgoing direction ωo
′(xp, t) is defined by the relative camera

position at time t and the point’s position xp.

Temporal Trace Directly solving Equation (2) is difficult due to
the intricate interplay between shape (x and n), surface reflectance
( fr) and incident lighting (E) in producing the observations I,
as well as several ambiguities between the different components.
Dong et al. [2014] rely on high frequency discontinuities in the in-
cident lighting to disambiguate lighting and surface reflectance, and
show that the temporal changes in the observations are closely re-
lated to the NDF:

∇tTxp(t)≈ ρs

∫
Ω

fs(ωi
′,ωo

′(p, t))ωi
′
z∇tE(ωi)dωi

′, (4)

where Txp(t) = I(xp, t) is the temporal trace of the point p over
time t, and fs(ωi

′,ωo
′) is the specular component of the surface re-

flectance (Equation (1)). Intuitively, the temporal trace is a record
of the appearance variations over time of a particular surface point.
Hence, given the lighting and geometry, the specular surface re-
flectance (determined by the NDF) can be computed from the tem-
poral trace. To obtain a robust estimate, Dong et al. employ a shock
filter to identify and focus computations on regions of strong gradi-
ent.

We also rely on the temporal trace, not only to estimate surface
reflectance and lighting, but also to recover shape and surface nor-
mals. Our key insight is that surface position and surface normal af-
fect the temporal trace differently (Figure 2). Changes in the surface
normal direction offsets the temporal trace with respect to the inci-
dent lighting, because the incident lighting E(ωi) in Equation (4)
is expressed in the global coordinate frame while the BRDF is ex-
pressed with respect to the local coordinate frame, which are related
by the transformation Rnp,t that depends on the surface normal and
the relative camera location at time t. The effects of surface normal
(offset) and surface reflectance (blurring) on the temporal trace are
essentially orthogonal effects that allow us to robustly estimate both
surface normal and surface reflectance from the observed temporal
trace of a surface point given the incident lighting.

Accurate knowledge of the surface position is required to assemble
the temporal trace of a surface point; discrepancies in the surface
position affect the projection onto the observed images, and hence
the temporal trace. We define the apparent temporal trace Tx(t) of



a 3D point (denoted as x to differentiate from a surface point xp)
as the projection of the 3D point transformed by the relative camera
transformation at time t to the corresponding recorded image frame.
Clearly, when the point with coordinate x falls on the surface, then
the apparent temporal trace is equal to the temporal trace of the
corresponding surface point. We observe that the apparent tempo-
ral trace for off-surface points exhibits additional discontinuities in-
coherent with the incident lighting due misaligned projections that
cross material boundaries (Figure 2, right). These discontinuities
can typically not be explained via a combination of normal offsets
and surface reflectance functions. The residual error induced by
these unexplained discontinuities with respect to incident lighting,
can thus serve as an indicator whether a point lies on the surface.

Algorithm Overview The above observations suggest that we can
estimate an apparent normal and apparent surface reflectance for
each point in space, and use the residual error as a guide to find the
object’s surface. However, this requires knowledge of the incident
lighting. Appearance-from-motion [Dong et al. 2014] has shown
that, given known geometry, we can estimate the incident lighting
and surface reflectance from the temporal traces. Since the recov-
ery of shape and lighting depend on the other, we formulate the
recovery as an iterative process, that alternates between both:

1. Finding the most likely temporal traces (and thus geometry
and normals), given the estimated lighting, from all possible
apparent temporal traces (Section 5):

argmin
{x,n}p

∑
p

∑
t
||Txp(t)−L(p, t)||2, (5)

with known incident lighting E(ωi); and,
2. Determining the most likely incident lighting and surface re-

flectance, given the object’s geometry and temporal traces
(Section 6):

argmin
{ρd ,ρs,D}p,E

∑
p

∑
t
||I(xp, t)−L(p, t)||2, (6)

with known geometry: {x,n}p.

Initialization To bootstrap the alternating optimization process,
we provide initial estimates of both geometry and lighting. We ini-
tialize the geometry with the visual hull computed from silhouettes
obtained by background subtraction. We initialize the lighting us-
ing a single iteration of the bootstrapping process from [Dong et al.
2014] using the initial visual hull geometry to establish the tempo-
ral traces. We briefly summarize the steps below, and refer to [Dong
et al. 2014] for a more detailed description:

1. A per surface point local incident lighting estimate is estab-
lished by first projecting the temporal trace to the sphere of
directions (based on relative camera orientation), then widen-
ing the trace by copying the nearest value from the projection,
and finally, shock filtering the expanded projection to enhance
discontinuities.

2. Each local lighting estimate is scaled by an unknown and po-
tentially different albedo. We remove this effect (up to an
unknown scale factor), by performing a global optimization
to scale each local incident lighting estimate such that differ-
ences on overlapping sections are minimized.

3. Next, we search for the unnormalized NDF D̄ that best ex-
plains the observations, given the local incident lighting esti-
mate (Equation (4)).

4. Given the unnormalized NDFs, we then recover the
(global) incident lighting E(ωi) using a multi-resolution

deconvolution-based minimization:

argmin
E(ωi)

∑
t

∑
x

w(xp)||I(xp, t)−Ls(p, t)||2 +λ ||∇ω E(ωi)||0.8,

(7)
where Ls(p, t) is the outgoing radiance from the specular com-
ponent of the BRDF determined by the unnormalized NDF D̄.
We consider points which exhibit a sharp specular BRDF and
which are “scanned” by strong edges in the lighting to be more
reliable: w(xp) =

1
σ ∑t ∇tTxp(t), with σ the variance of the

NDF. As in Dong et al., the number of multi-resolution scales
(and thus resolution of the recovered lighting) is determined
by the bandwidth of the estimated NDFs to avoid overfitting.

5. Finally, we subtract the maximal diffuse lighting to compen-
sate for the baked-in diffuse reflectance in the local incident
lighting estimates.

5 Shape and Normal Reconstruction

As observed in Section 4, shape and reflectance influence the ap-
parent temporal trace differently. A key observation is that error on
the position of a surface point introduce discontinuities inconsistent
with the incident lighting – changes in surface normal or appear-
ance parameters are unlikely to characterize these discontinuities.
This suggest that we can formulate the recovery of shape and sur-
face normals as a two-step process. In the first step we compute
the apparent normal field as well as their corresponding apparent
reflectance parameters for every point in the bounding volume. In
the next step, we find the closed surface through the apparent nor-
mal field for which the temporal traces are most consistent with the
incident lighting.

5.1 Apparent Normal and Reflectance Field

To compute the apparent normal and reflectance field, we first dis-
cretize the maximal bounding volume in a voxel grid. We use the
bounding volume of the initial geometry, increased by 10%, as the
maximal bounding volume, and discretize it in a 1283 voxel grid.
For each voxel center, we then compute the apparent NDF, albedo,
and surface normal.

Apparent NDF We estimate the apparent NDF similarly as in the
initialization of the lighting. We construct a local incident light-
ing approximation directly from the apparent temporal trace: (1)
project the apparent trace on the sphere of directions, (2) expand
the projection perpendicular to the trace direction, and (3) apply a
shock filter to localize discontinuities. We then find the apparent
NDF that best explains the observations using Equation (4). How-
ever, Equation (4) requires knowledge of the surface normal which
is unknown. Fortunately, for the purpose of recovering the apparent
surface normal, the exact shape of the NDF is not required as long
as the angular extend of the BRDF matches well. By approximating
the unnormalized apparent NDF as: D̄(ωh

′)≈ fs(ωi
′,ωo

′)ωi
′
z (i.e.,

the NDF under normal incidence), it follows that an approximative
NDF can be found by normalizing the zero-mean kernel that best
relates the derivative of local incident lighting to the derivative of
the temporal trace.

Apparent Normal and Albedo Estimation Given the estimated
apparent NDF, we then find the optimal apparent diffuse albedo
ρd and specular albedo ρs and the apparent normal direction nx.
However, the effect of the surface normal on the outgoing radiance
is highly non-linear. We therefore brute-force search, from a dis-
crete set of candidate normals N uniformly distributed over the
full sphere of directions, for the apparent normal nx that minimizes



the error ε2
nx

when estimating the albedo:

ε
2
nx
= argmin

nx∈N

(
argmin

ρd ,ρs
∑
t

1
N
||Tx(t)−ρdLd(x, t)−ρsLs(x, t)||2

)
,

(8)
where Ld and Ls are the predicted diffuse and specular outgoing
radiance at x toward the camera at time t given the NDF. The nor-
malization factor N = ∑t Tx(t) ensures that ε2

nx
at different points x

are comparable (Section 5.2).

Visibility During optimization we only include frames in the ap-
parent temporal trace for which (ωo(x, t) ·nx)≥ 0 to avoid including
reflectance from back-facing surfaces. However, there still exists an
ambiguity in the sign of the normal at each surface point; generally
we can find two opposite facing normals with corresponding sur-
face reflectances that match the observations well. We resolve this
ambiguity guided by the visibility of the closest projection of the
voxel, along the view vector, to the geometry from the previous it-
eration; we include the frame in the apparent temporal trace if the
closest projection is visible from the respective camera.

5.2 Geometry Reconstruction

To reconstruct the geometry, we search for the closed surface based
on the the apparent normal field and corresponding error ε2

nx
. Fig-

ure 3 shows a 2D slice from three different apparent normal fields
and the corresponding errors, as well as the ground truth surfaces
with the Wallpaper SVBRDF [Dong et al. 2010]. As expected, the
ground truth surface passes through regions of low error ε2

nx
. How-

ever, the error field can also vary rapidly with position as it is the
integration of the (high frequency) discontinuities caused by mis-
alignment. Consequently, the error field is sensitive to measure-
ment noise and the exact location (i.e, voxel center) at which it is
computed. Furthermore, by itself the error field is not sufficient to
disambiguate the exact location of the surface in regions of little
appearance variation or in regions with large errors due to occlu-
sions. Hence, we cannot solely rely on the error field to recover
the surface. Whereas the error field is dominated by the influence
of sparse high frequency discontinuities, the normal field in con-
trast, is mainly influenced by difference in offset over the (whole
extent of the) apparent temporal trace and the BRDF filtered in-
cident lighting. Consequently, the apparent normal field is more
robust to noise and misalignments and varies more smoothly than
the error field. We take both the error field and the apparent normal
field in account, by formulating the recovery of the geometry as an
iterative process where a rough initial shape is constructed based
on the error field, and subsequently refined guided by the smooth
apparent normal field.

Robust Shape Initialization We construct a coarse initial shape
using Poisson surface reconstruction [Kazhdan and Hoppe 2013]
on the voxel center positions x with corresponding normal nx which
have an error ε2

nx
less than a user-specified threshold. We found that

a threshold of 2.5×10−4 works well in practice. The magnitude of
the threshold determines the “width” of the cloud of voxels around
the ground truth surface. A too small threshold can result in holes
that the Poisson reconstruction needs to fill in, while a too large
threshold results in a wider cloud, and thus gives more freedom
to the Poisson reconstruction to place the surface away from the
ground truth surface.

Initializing the shape reconstruction from a “fresh” geometry in-
stead of reusing the geometry from the previous iteration serves
two goals. First, it ensures that we start from a geometry that lies
in a region with low error ε2

nx
no matter the quality of the outcome

of the previous iteration, or the quality of the initial geometry (i.e.,

Figure 3: Apparent Normal Field and Corresponding Error A
slice through the 3D apparent normal field (top), and their corre-
sponding ε2

nx
(bottom) for three different synthetic objects with the

“Wallpaper” SVBRDF.

a visual hull in our case). Second, it assures that the vertices are
uniformly distributed on the initial mesh, and it avoids clustering of
vertices due to repeated refinement.

Surface Optimization Inspired by [Nehab et al. 2005], we iter-
atively refine the geometry by updating the vertex positions while
minimizing the deviation between the surface normal and the un-
derlying apparent normal. Because the apparent normal field varies
with position, we also limit vertex-displacement per iteration (ef-
fectively linearizing the normal field). We further regularize the
optimization by penalizing changes in topology. Formally, for a
vertex p, we find the position xp that minimizes the weighted sum
of three constraints:

argmin
xp

λN ÊN +λPÊP +λLÊL, (9)

where λN , λP, and λL are weights to balance the three constraints
– in our implementation we set λN = 0.9, λP = 0.1, and λL = 0.2.
We compute the new vertex position using a linear least squares
minimization, and formulate the three constraint appropriately:

Normal Constraint ÊN : penalizes deviations from the apparent sur-
face normal. To fit this inherently non-linear constraint in a linear
least squares form, we employ the linearized surface normal ap-
proximation from [Nehab et al. 2005]:

ÊN = ∑
p

∑
q,r∈N(p)

||nprev
p · (xq− xr)||2, (10)

where N(p) is the one-ring neighborhood of vertices around p. We
only compute this constraint for vertices that reside in the set of
voxels that are used for constructing the initial shape; we consider
voxels outside this selection to have unreliable apparent surface nor-
mal estimates. Note that we express this constraint in terms of the
apparent normal of the original vertex position (at the beginning of
the iteration). Otherwise, the apparent normal would depend on the
optimized position xp, and Equation (10) would be non-linear – this
is a reasonable assumption for small changes in vertex position and
the overall smooth behavior of the apparent normal field.

Position Constraint ÊP serves to (1) limit the magnitude in changes
to the vertex position such that the apparent normal remains ap-
proximately constant (see above), and (2) maintain the overall size
of the object – the linearized approximation of the surface normals
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Figure 4: Algorithm Overview After initializing the shape (visual hull) and incident lighting, our method iterates between optimizing shape
and lighting. Initially, we recover shape using a discrete voxel-based approach. However, once no further improvements can be attained, we
switch to a continuous shape refinement. Finally, after the shape has converged, we iteratively refine the incident lighting and appearance
until convergence.

tends to shrink the geometry. The position constraint is defined as
the distance between the position of the vertex and its original po-
sition:

ÊP = ∑
p
||xp− xprev

p ||2. (11)

Laplacian Constraint ÊL retains the topology of the geometry and
avoids flipped or degraded triangles:

ÊL = ∑
p
||L (xprev

p )−L (xp)||2, (12)

where L (·) is the Laplacian of the vertex p.

We track convergence by comparing the average distance between
the original and updated vertices. To negate the effects of vertices
sliding over the surface, we compute the distance along the normal
direction: D(xprev

p ,xp) = ||(xp− xprev
p ) · np||2. In our implementa-

tion we stop refinement when the average distance is less than 10−4

times the object size.

Invalid Normal Exclusion The above algorithm relies on the ob-
servation that an offset in the discontinuities between the apparent
traces and the incident lighting can be explained by normal varia-
tions, and conversely, incoherent discontinuities are related to mis-
matches in the position. However, this observation is only strictly
valid for unimodal surface reflectance, while in practice we employ
a dichromatic model (i.e., with a diffuse and specular component).
In the case where the specular component is weak compared to the
diffuse component, it is possible that an incoherent discontinuity
results in a larger error than the coherent discontinuities, and thus
a relatively smaller overall error can be obtained by incorrectly fit-
ting a stronger “ghost” specular BRDF (with incorrect normal) to
the incoherent discontinuity. Such a situation can occur at the inter-
face between diffuse materials with vastly different albedos – any
error on the position can result in an apparent trace that crosses the
material boundary (i.e., incoherent discontinuity). We therefore ex-
clude any such potentially invalid normal in the above surface opti-
mization. Practically, if the standard deviation in a region around a
surface point over the diffuse albedo is above 0.01, we then ignore
the normal in the optimization of the corresponding point p by set-
ting the normal weight λN to 0, and instead constrain (smooth) the
surface locally by increasing the Laplacian weight λL to 10. The re-
gion size should be set equal or larger than expected surface error –

a larger region results in some loss of detail. In our implementation
we err on the side of caution and use a fixed conservative region
with a radius of 3% of the object size.

6 Appearance and Lighting Estimation

Given the geometry, and thus temporal traces, we refine
the estimated lighting and appearance using appearance-from-
motion [Dong et al. 2014]. Note that in this step we also re-estimate
the appearance for the surface points which do not necessarily lie at
the voxel centers (and thus we cannot reuse the estimated apparent
reflectance from Section 5.1):

1. Given the current estimate of the (shock filtered) lighting and
current set of temporal traces, we compute the unnormalized
NDF using Equation (4).

2. Next, we compute the diffuse and specular albedo using Equa-
tion (8) using the surface normal from the estimated geometry.

3. Finally, we obtain a new estimate of the lighting by minimiz-
ing Equation (7).

Unlike Dong et al. [2014], we only run a single iteration of the
above procedure, because the geometry is only an estimate and
likely inaccurate, especially for early iterations.

7 Continuous Surface Refinement

We alternate between estimating shape/normals and light-
ing/appearance until the recovered geometry converges. However,
the accuracy of the converged geometry is limited by the voxel grid
resolution. In theory we can gradually increase the grid resolu-
tion, however, in practice memory and computation requirements
become prohibitive for very dense voxel grids. Instead, of gradu-
ally increasing the grid resolution, we switch to a continuous geom-
etry estimation after no further improvements can be obtained with
the fixed resolution voxel-based geometry estimation (typically in
a small number of iterations), and continue to alternate between es-
timating the shape and lighting/appearance.

We assume that the converged voxel-geometry is close to the
ground truth, and therefore directly refine the current geometry in-
stead of generating a new initial shape every iteration. The continu-
ous refinement is identical to the voxel-based refinement algorithm
(Section 5.2), except that nprev

p (Equation (10)) is now evaluated on
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Figure 5: Shape and Reflectance Evolution. Image sequence of intermediate recovered shapes (top) and surface reflectances (bottom)
for each iteration starting from the initial visual hull, followed by the voxel-based refinement results, and subsequently, the results from
continuous refinement.

the fly (using the same process as in Section 5.1) instead of being
precomputed on grid locations. We store the intermediate spatially-
varying surface reflectance estimates in a 256×256 texture.

Finally, once the final geometry has converged (i.e., the average dis-
tance is less than 10−5), we rerun the lighting and appearance es-
timation at quadruple resolution (i.e., in a 1024×1024 appearance
texture), without further refining the geometry, until convergence.
Figure 4 summarizes our integrated shape and appearance pipeline.
Figure 5 shows the evolution of the shape and reflectance recovery
over several iterations, until convergence. Notice how large scale
features are quickly resolved in just a few iterations, while fine-
scale details (e.g., the decorative banding at the top) requires more
iterations. In general, the voxel-based refinement quickly converges
to a coarse-scale accurate geometry, while the continuous refine-
ment adds the fine-scale details.

8 Implementation Details

By far the computationally most expensive step in our integrated
shape and appearance recovery algorithm is the computation of the
apparent normals (Section 5.1). We accelerate this computation in
two ways: reducing the number of voxels for which we compute
the apparent normal field, and by precomputing the convolution of
the BRDF with the lighting.

Voxel Reduction With exception of the first iteration, we expect
that the robust shape initialization in Section 5.1 will produce a
mesh close to the geometry of the previous iteration. We therefore
only consider the voxels within 10 units from the previous itera-
tion’s geometry for the shape initialization and refinement. Because
we do not have an accuracy-guarantee for the initial mesh, we still
consider all voxels in the maximal bounding volume for the first
iteration.

Precomputation We exploit that the incident lighting is distant,
and thus the same in the computation of each apparent normal. Fur-
thermore, we observe that the exact shape of the apparent NDF is
less important for the estimation of the apparent normal field. These
two observations enable us to significantly speed-up the apparent
normal estimation by precomputing the convolution of the incident
lighting with a set of basis BRDFs, and express the outgoing ra-
diance due to the apparent BRDF as a linear combination of the
precomputed convolutions:

L(n) = ρdLd(n)+ρs ∑
i

wiLi(n), (13)

where Li is the outgoing radiance for the i-th basis BRDF with sur-
face normal n, and where the outgoing direction aligns with the
optical axis ω̄o of the camera:

Li(n) =
∫

Ω

fri(Rn(ωi),Rn(ω̄o))E(ωi)(ωi ·n)dωi, (14)

where Rn is the transformation into the local frame around n, and
where the basis BRDFs are defined by a Beckmann NDF [Cook
and Torrance 1982] with a 15 different roughness values distributed
logarithmically in the range [0.01,0.2].

For each point’s estimated apparent NDF Dx, we compute the op-
timal weights wi, and approximate the outgoing radiance for a
posited apparent normal n using the precomputed radiance (Equa-
tion (13)), taking in account the relative object rotation at time t. In
addition, we correct for differences in the specular reflectance when
the outgoing direction ωo does not align with the precomputed
outgoing direction ω̄o by using a transformed normal n̂(ωo,n) =
n− 1

2 (ω̄o−ωo) when looking up the precomputed outgoing specu-
lar reflectance.

Luminance We further speed up the computation of appearance
by exploiting the fact that the reflectances of the different color
channels are highly correlated. We therefore, first recover shape
and monochrome reflectance from the luminance of the observa-
tions. Finally, we perform a single full 3 color channel continuous
geometry and reflectance optimization step.

9 Results

Experimental Setup Our method takes as input a video of a
rotating object, and the relative pose of the object for each cap-
tured frame. We record the video sequence with a Canon EOS 5D
Mark II equipped with an EF-100 F2.8 lens, and record single-
exposure radiometrically linear RAW images – we manually set
the exposure to ensure no pixels are oversaturated during capture.
The intrinsic camera parameters are calibrated with the method of
Zhang et al. [2000].

To avoid bias in our results due to inaccurate pose calibration, we
control the rotation with a Direction Perception Pan-Tilt Unit-D46,
and track the relative rotation and position using a hexagonal cal-
ibration target. Please refer to the supplementary material for an
example of an input video sequence. Each side of the calibration
target is printed with a 7×7 grid of rings and a unique ARTag [Fi-
ala 2005]. We use the ARTag to identify which side is visible, and
the use the detected ring centers to estimate the relative camera pose
using a variant of bundle adjustment [Triggs et al. 1999] – the 3D



location of the ring centers are known, and kept fixed during adjust-
ment. The resulting average calibration error is less than 0.3 pix-
els, and the maximum error is less than 1 pixel. Note however, that
while we employ a controlled-motion setup and a calibration target,
our method is independent of the employed pose calibration tech-
nique and any sufficiently accurate pose estimation method can be
used instead; joint estimation of pose and appearance/shape would
be an interesting avenue for future work.

We capture a video sequence of 1243 frames, and ensure that each
surface point is “scanned” in at least two directions by edges in
the lighting. Processing took approximately 10 hours per dataset
on a 20 node PC cluster of dual Xeon E2630 CPUs with 64GB of
memory: 2 hours where spend on data preprocessing, 30 minutes
on initialization, 3 hours on shape and normal reconstruction, and 4
hours on the continuous surface refinement. We perform, on aver-
age, 2 iterations over the voxel grid (Section 5), 6 iterations for the
continuous refinement (Section 7), followed by an additional sin-
gle continuous refinement on all three color channels. The iterative
geometry refinement guided by the apparent normal field (for both
voxel and continuous) is run for 10 iterations.

Experimental Results We demonstrate our technique on the fol-
lowing objects:

• Bronze Cup: exhibiting rich BRDF variations, changing
gradually from sharp specular at the top to rough specular
at the bottom. Both regions contain other detailed spatially-
varying reflectance properties: the sharp specular region con-
tains some less reflective oxidation spots, whereas the rough
specular regions are marked by a horizontal stripe pattern.

• Ornamental Metal Cup: with fine geometrical details and
rough specular surface reflectance.

• Carved Disc: exhibiting rich geometrical details that are diffi-
cult to recover with silhouette-based or correspondence-based
methods.

• Cloisonné Bell: with rich texture details and spatially-varying
surface reflectance.

• Clay Teacup: dominated by diffuse surface reflectance and a
weak rough specular component.

The shape and appearance of the Bronze Cup, Ornamental Metal
Cup, Carved Disc, and the Cloisonné Bell are estimated from a
video sequence captured in a windowless hallway illuminated by a
long tube light overhead and a small wall light. The video sequence
for the Clay Teacup was captured in a typical office environment
dominated by a large window.

Figure 1 show-cases the recovered geometry and appearance ren-
dered for each of the acquired objects under the St. Peter’s Basil-
ica light probe. Please refer to the supplemental video for visu-
alizations with dynamic viewpoint and lighting conditions. Fig-
ure 6 shows visualizations of each of the components separately
(i.e., ground truth and recovered incident lighting, normal map, dif-
fuse and specular albedo, and specular roughness (computed as the
standard deviation of the recovered NDF). Note that the recovered
normal map includes fine-scale geometrical details, and that the ap-
pearance properties vary smoothly, demonstrating the robustness of
our method. While the accuracy of the recovered lighting is in-
herently limited by the bandpass behavior of the BRDFs, the re-
covered incident lighting for each example shows that the overall
placement and size of the recovered lighting features are correctly
estimated. Note that for the Carved Disc example, the majority of
the observed reflections originate from a small cone of lighting di-
rections, and thus the recovered lighting is most accurate for this
region, and larger reconstruction error can be observed outside this
region. We qualitatively evaluate the recovered shape and surface

Figure 6: Recovered Lighting, Surface Normals, and Reflectance
Properties. Incident lighting, surface normals, and reflectance
properties (diffuse and specular albedo, and specular roughness
(computed as the standard deviation of the NDF)) visualized for
each of the acquired objects.

Figure 7: Qualitative Validation. Side-by-side comparisons of ref-
erence photographs and recovered shape and surface reflectance
visualized under a novel lighting conditions different from the ac-
quisition environment.

reflectance by comparing a reference photograph and a rendering
under a novel lighting environment (Figure 7).



Table 1: Quantitative Error Summary: Shape accuracy is com-
puted as the relative Hausdorff distance (normalized by the length
of the largest bounding box axis) for the mean, maximum, and RMS
error on the vertex positions. Similarly, surface normal accuracy
is computed by the Hausdorff distance on the median normal dif-
ference in degrees. Finally, the accuracy of the appearance is ex-
pressed as the RMS error on the renderings shown in the respective
figures.

Position Normal Appearance
Result Mean Maximum RMSE Median RMSE
Figure 8.a 0.000601 0.005167 0.001043 0.245493 0.0616
Figure 8.b 0.001052 0.005644 0.001322 0.257171 0.0801
Figure 8.c 0.000975 0.007566 0.001145 0.37115 0.0920
Figure 10.a 0.001122 0.006458 0.001526 0.720365 0.0554
Figure 10.b 0.000788 0.005716 0.001366 0.247082 0.0923
Figure 10.c 0.000568 0.004855 0.001004 0.245493 0.0336
Figure 10.d 0.002454 0.006298 0.002924 0.736482 0.0250
Figure 9.b 0.001492 0.007194 0.001858 0.298051 0.1191
Figure 9.d 0.000870 0.005241 0.001216 0.396636 0.1375
Figure 9.e 0.001364 0.005138 0.001668 0.294751 0.1221
Figure 12.a 0.004249 0.014307 0.005013 0.244694 0.1411
Figure 12.b 0.004039 0.014441 0.004945 0.243893 0.1522

10 Discussion

The experimental results demonstrate the quality and potential of
our shape and appearance reconstruction method on a variety of ob-
jects. To better quantify the robustness and accuracy of our method,
we perform an in-depth study on synthetic datasets that allow us to
study each component in isolation. In particular we explore: the
accuracy of the geometry and appearance reconstruction, and the
robustness to the pose calibration, lighting, initialization, and rota-
tion speed.

We employ the following error metrics:

• Shape: To avoid bias due to misalignment and/or differences
in mesh-resolution, we will use the Hausdorff distance with an
Euclidian distance metric and a local search range of 1% on
the recovered object normalized by the length of the longest
axis of the bounding box.

• Normal: Similar as for the shape error, we employ the Haus-
dorff distance (i.e., 1% normalized by bounding box) and use
the angle difference between normals as a distance metric.

• Appearance: Instead of directly measuring the distance be-
tween two reflectance functions, which is an open research
problem, we quantize the difference in appearance by comput-
ing the RMS error on renderings of the recovered and ground
truth object.

10.1 Accuracy Validation

Impact of Shape We validate the impact of the object’s shape on
the accuracy of the recovered geometry and appearance by com-
puting the reconstruction error on three different shapes with dif-
ferent types of geometrical features: two spherical shapes with
(gradual and sharp) concavities, and an object with sharp and
rounded corners. In all three cases we use the Wallpaper SVBRDF
dataset [Dong et al. 2010] which contains a mixture of diffuse and
highly specular features, and simulate a video sequence illuminated
by the “Uffizi Gallery” light probe. Figure 8 shows visualizations of
the ground truth and recovered geometry for the three objects under
novel lighting. Overall, the recovered shape and surface reflectance
closely matches that of the ground truth. However, visually, we can
detect larger error around the sharp edges in Figure 8.c. Sharp ge-
ometrical features like these require either careful placement of the

Figure 8: Impact of Object Shape. Visualizations of recovered
shape and appearance for three different object shapes exhibiting
different geometrical characteristics compared to ground truth vi-
sualizations.

Figure 9: Robustness to Input. Our method is robust to differences
in the initial geometry and the lighting environment under which the
video sequence is captured. Initial Geometry: (b) recovered shape
and appearance from a distorted visual hull (a) as initial geome-
try robustly recovers the shape and reflectance. In contrast, naively
applying appearance-from-motion to the initial geometry fails to
faithfully reproduce the appearance (c). Capture Lighting: (d) re-
covered shape and appearance from a sequence lit by a “Parking
Lot” lighting environment exhibits similar quality compared to the
reconstruction from a sequence captured under the “Uffizi Gallery”
light probe (Figure 8.a). We assume that the incident lighting ex-
hibits strong discontinuities; violation of this assumption results in
less sharp surface reflectance estimates and a reduction in surface
detail (but an overall correct global shape), as demonstrated in
(e) for recovery of shape and appearance under a blurred “Uffizi
Gallery” light probe (with Gaussian kernel with σ = π

60 rad).

vertices to align them with the sharp features, or a very high mesh
density. A similar effect can be detected on the Carved Disc in Fig-
ure 1. Table 1, rows 1-3, summarize the error statistics for the dif-
ferent recovered shapes and surface reflectances. For comparison,
Figure 9.c shows the result of directly applying appearance-from-



Figure 10: Impact of Material Properties. Visualizations lit by
the St. Peter’s Basilica light probe of recovered shape and surface
reflectance with different material properties: (a) measured copper
with rich texture detail, (b) glossy (roughness = 0.04), (c) rough
glossy (roughness = 0.115), and (d) diffuse.

motion [Dong et al. 2014] on the initial geometry without shape
refinement. As expected, the recovered surface reflectance fails to
faithfully reproduce the appearance. Similarly, directly applying a
surface reconstruction method such as multi-view stereo, fails to
produce reasonable geometry due to the strong specular reflections.

Impact of Material Properties We validate the impact of the un-
derlying materials on the accuracy of the shape and appearance re-
covery on a selection of different material properties: a measured
copper dataset [Wang et al. 2008] with rich texture detail (Fig-
ure 10.a), and three homogeneous materials (Figure 10.b-d) ranging
from glossy (roughness = 0.04), rough glossy (roughness = 0.115),
to diffuse – note that we do not enforce homogeneity of the ap-
pearance which is recovered for each surface point separately. Our
method is able to achieve reconstructions of comparable quality for
all four materials (Table 1, rows 4-7).

10.2 Robustness to Input

Impact of the Initial Geometry The initial geometry serves to
indicate the size of the bounding volume, and to aid in recovering
an initial lighting estimate. Therefore, our method is robust to the
quality of this initial geometry, as demonstrated in Figure 9 where
we recover shape and reflectance (b) from an low-frequency dis-
torted visual hull (a). The obtained shape and reflectance is qualita-
tively and quantitatively comparable to the recovered results from
a “clean” visual hull (compare to Figure 8.a, and Table 1, first row
versus row 8).

In general, the initial shape should have the same topology as the
target object, preferably smooth, as this tends to result in a smoother
initial estimate of the lighting. We found that our method works
well for most reasonable initial shapes. For example, all synthetic
examples (excluding those in Figure 9), use a sphere as an initial
shape, including the cube-example in Figure 8. We further demon-
strate the robustness with respect to the initial shape on the Clay
Teacup example, and use a sphere and the visual hull respectively
as the initial geometry (Figure 11). While the quality of the recov-
ered shape and appearance is similar, using the sphere as an initial
shape requires more iterations to converge due to the larger differ-
ence in shape.

Impact of Incident Lighting We validate the repeatability of our
algorithm under different types of incident lighting for the same
object and material properties. Figure 9.d shows the resulting re-
construction of an object recorded under a “Parking Lot” lighting

Figure 11: Robustness to Initial Shape. Visualizations from two
different viewpoints of the recovering shape and appearance for
two different initial shapes. Both the visual hull (a,c) and a sphere
(b,d) as the initial shape produce a similar quality result.

Figure 12: Robustness to Pose Calibration. Recovered shape and
appearance from image sequences where random offsets are added
to the camera position and orientation. (a) reconstruction from
a sequence with an average reprojection error of 0.4 pixels (2.0
maximum). (b) reconstruction from a sequence with an average
reprojection error of 2.0 pixels (10.0 pixel maximum error).

environment. The reconstruction is similar in quality to the recon-
struction under the “Uffizi Gallery” light probe (compare to Fig-
ure 8.a, and Table 1, first row versus row 9). Note, the “Parking
Lot” light probe exhibits a very long edge in the lighting, and it re-
quires only three rotations to adequately “scan” each surface point,
whereas the “Uffizi Gallery” light probe has relative shorter edges,
and it requires at least six rotations to obtain good reconstructions.
In general, smaller discontinuities require more rotations to ade-
quately “scan” all surface points.

We rely on the presence of a sharp discontinuities in the inci-
dent lighting to infer both shape and appearance. As analyzed by
Dong et al. [2014], surface reflectance will be blurred if the in-
cident lighting does not contain such a sharp discontinuity (or if a
surface point is not scanned by such an edge). Due to the close rela-
tion between surface normals, surface reflectance and observed ra-
diance, blurred surface reflectance translates in less detailed surface
normals. However, due to the general smoothness of the apparent
normal field, global shape is less affected by a lack of sharpness in
the incident lighting (Figure 9.e).

Impact of Object Pose Calibration Our algorithm expects for
each input frame corresponding relative object pose transforma-
tions. To better understand the impact of inaccuracies in the cal-
ibration, we perform a synthetic experiment where we add random
offsets to the relative camera positions and orientations. Figure 12
shows two such cases where the average reprojection error is 0.4
pixels and 2.0 pixels, and with a maximum reprojection error of
2.0 pixels and 10.0 pixels respectively. Despite the significant error
in the calibration, our method is still able to produce good quality
geometry and surface reflectance (Figure 12). In general, the re-
constructions are more blurred than the ground truth, with a recon-
struction error less than an order of magnitude larger than a well-
calibrated reconstruction (Table 1, rows 10-11).



Figure 13: Impact of Rotation Speed. Relative Hausdorff dis-
tance (normalized by the length of the largest bounding box axis)
for mean, maximum and RMS error on the recovered geometry for
a temporally subsampled sequence mimicking different object rota-
tion speeds with a fixed camera exposure.

Impact of Rotation Speed A final variable is the rotation speed
at which we record the object. Assuming a fixed exposure, faster
rotation implies a subsampling of the temporal traces. Hence, its
effect will depend on the sharpness of the specular reflections – a
low sampling rate could result in missing the passage of a lighting
edge. Figure 13 shows the effect of subsampling the frame rate on
the recovery of shape and appearance of the synthetic scene cap-
tured under the “Uffizi Gallery” light probe. A full sampling rate
corresponds to 4320 frames or 6 full rotations at 0.5 degrees per
frame. The visual quality of the recovered shape and reflectance
remains good upto a 1/8-th sampling rate, after which it degrades
substantially. Quantitatively, the mean and RMS error vary little for
a 1/4-th reduction or less.

10.3 Limitations

Recovering both shape and surface reflectance under uncontrolled
lighting is a challenging problem. While our method works well in
many practical situations, it is not without limitations.

The first stage of our shape reconstruction algorithm works on a dis-
crete voxel grid with finite resolution, which places an lower limit
on the thickness of geometrical features that can be successfully re-
covered. Foregoing the voxel-based optimization, however, would
necessitate repeated resampling of the mesh due to the large non-
uniform deformations in the first few iterations, resulting in a detail
loss comparable to the voxel grid resolution. Furthermore, moving
a mesh vertex changes the apparent temporal trace, and thus ap-
parent normal. In the first iterations (which exhibit large deforma-
tions), it is more efficient to precompute the apparent normals for
each voxel rather than recompute them at every vertex deformation.

Furthermore, as our method relies on appearance-from-
motion [Dong et al. 2014] to recover surface reflectance and
lighting, we also share its limitations with respect to interreflec-
tions and its limitation to isotropic surface reflectance. While
we take occlusions in account during shape reconstruction, we
ignore them for reflectance recovery [Dong et al. 2014]. This
can aversely affect the normal estimation and lighting recovery
for objects dominated by diffuse or rough glossy reflections
especially for concave object shapes. Furthermore, similar as in
appearance-from-motion, recovering the lighting is a by-product
of the recovery process, and there is no guarantee on the accuracy
of the recovered lighting. Due to the bandpass behavior of the
surface reflectance, the recovered lighting is generally more blurred
than the ground truth lighting. As in appearance-from-motion,

we shock-filter the recovered lighting, and focus on the strong
discontinuities to mitigate the effects of blurring. However, for
very sharp specular materials, appearance-from-motion requires
very accurate geometry and pose estimates to recover the incident
lighting with a sufficient degree of accuracy in order to faithfully
recover the surface reflectance. Small errors in the shape or pose
will induce a blurring in the recover lighting, which subsequently
results in a blurred surface reflectance estimate. In the case of
very specular materials, our method is still able to recover a high
quality shape. However, depending on the complexity of the
shape, the accuracy of the recovered geometry might not suffice
to recover sharp lighting details, and thus the sharp specular
surface reflectance. For example, the “Bronze Cup” exhibits sharp
specular reflections which can still be recovered because its shape
is relatively simple. However, for the spherical shape used in
the synthetic validations, our method is not able to recover sharp
specular surface reflectance due to the more complex geometry.

Our method assumes the lighting remains static during acquisi-
tion, which might be difficult in dynamic scenes (e.g., clouds on
a windy day). Furthermore, we also assume that each surface point
is “scanned” from multiple directions by a strong discontinuity in
the lighting. While any type of discontinuity suffices, long edges
are more efficient than point discontinuities which require more ro-
tations to ensure sufficient coverage. Furthermore, different surface
points “scan” a different subset of the incident lighting, possibly
resulting in a slightly different reconstruction of the appearance.
However, because neighboring surface points’ temporal traces are
strongly correlated, these differences in appearance reconstructions
vary slowly over the surface. This effect can be observed on the
Cloissoné Bell around the lower edge (Figure 7).

As with many methods that recover various combinations of shape,
reflectance, and lighting, our formulation does not formally guar-
antee convergence. In practice, we found that our method typically
converges to a solution that qualitatively matches the expected so-
lution. It is an interesting avenue for future research to derive, start-
ing from the proposed method, a formal theory of joint recovery of
shape and reflectance under uncontrolled natural lighting.

Finally, our method requires prior knowledge on the object pose
with respect to the camera and lighting, which might be difficult to
obtain for certain cases. While our method is not married to a par-
ticular pose estimation technique, it does require high quality pose
estimates, especially for objects containing sharp specular material
properties.

11 Conclusion

We presented a robust integrated method for estimating both shape
and appearance that only requires a video of a rotating object un-
der unknown and uncontrolled lighting. Our method does not rely
on active illumination or on specialized hardware, making it an ac-
cessible and practical method applicable under wide variety of con-
ditions. The key enabling observation is that reflectance, surface
normal, and surface position affect the temporal trace differently.
We demonstrated the robustness and effectiveness of our method
on a variety of synthetic and real test cases, exhibiting different
combinations of shapes and material properties.

Avenues for future work include joint camera and object orientation
calibration, and handling interreflections robustly. Furthermore, we
would like to extend our method to the case of moving the camera
instead of rotating the object.
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