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Problem: Strained Trust Model
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Additional Complications: 
• Future legislation compelling intermediary liability

• National Security Letters for data request
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Cast as “Delegation" Problem

Threat Model 
Null 

Approach 
• X. 509 extensions expressing “A authorizes B to perform an action.” 
Tuck et al., Internet X.509 Public Key Infrastructure Proxy Certificate Profile.  (draft-ietf-pkix-proxy-03), 
2002

Cooper et. al, RFC 5280: Internet X.509 Public Key Infrastructure  Certificate and Certificate Revocation 
List (CRL) Profile, Section 4.2.1.10 “Name Constraints”, 2008

• DANE extensions “…” 
Liang, et al., When HTTPS meets CDN: A Case of Authentication in Delegated Service. IEEE S&P, ’14.
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Cast as “Coupling of Auth/Integrity 
with Distribution” Problem

Threat Model 
CDN may modify content and/or try to impersonate Content Provider 
“Trust but verify” 

Approach 
• Application layer: User obtains signed manifest from Content 

Provider. 
 Levy et al., Stickler Defending Against Malicious CDNs in an Unmodified Browser, IEEE S&P ’16.

• Transport layer:  Content Provider and CDN cooperatively create 
TLS stream. 

Lesnieski-Lass and Kasshoek, SSL splitting: securely serving data from untrusted caches, USENIX 
Security ’03.

Nick Sullivan, Keyless SSL: The Nitty Gritty Details,  https://blog.cloudflare.com/keyless-ssl-the-
nitty-gritty-details/, 2014
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Cast as “Secure Remote 
Computation” Problem

Definition  
Secure remote computation is the problem of executing software 
on a remote computer owned and maintained by an untrusted 
party, with some integrity and confidentiality guarantees.

Motivates revised CDN trust model:  
Can the Content Provider reduce the adversarial power of the CDN to 
that of a traditional on-path HTTPS adversary?

!7



Intel Secure Guard Extensions (SGX)
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Figure 1: The threat model of SGX. SGX protects ap-
plications from three types of attacks: in-process attacks
from outside of the enclave, attacks from OS or hypervi-
sor, and attacks from off-chip hardware.

ing framework tips the application’s working set size past
this mark, the enclave will incur expensive swapping.

Shielding complexity. SGX hardware can isolate an ap-
plication from an untrusted OS, but SGX alone can’t pro-
tect an application that requires functionality from the
OS. Iago attacks [18] are semantic attacks from the un-
trusted OS against the application, where an unchecked
system call return value or effect compromises the ap-
plication. Iago attacks can be subtle and hard to com-
prehensively detect, at least with the current POSIX or
Linux system call table interfaces.

Thus, any SGX framework must provide some shield-
ing support, to validate or reject inputs from the untrusted
OS. The complexity of shielding is directly related to the
interface complexity: inasmuch as a library OS or shim
can reduce the size or complexity of the enclave API, the
risks of a successful Iago attack are reduced.

Application code complexity. Common example ap-
plications for SGX in the literature amount to a sim-
ple network service running a TLS library in the en-
clave, putting minimal demands on a shim layer. Even
modestly complex applications, such as the R runtime
and a simple analytics package, require dozens of sys-
tem calls providing wide-ranging functionality, includ-
ing fork and execve. For these applications, the options
for the user or developer become: (1) modifying the ap-
plication to require less of the runtime; (2) opening and
shielding more interfaces to the untrusted OS; (3) pulling
more functionality into a shim or a library OS. The goal
of this paper is to provide an efficient baseline, based on
(3), so that users can quickly run applications on SGX,
and developers can explore (1) or (2) at their leisure.

Application partitioning. An application can have mul-
tiple enclaves, or put less important functionality outside
of the enclave. For instance, a web server can keep cryp-
tographic keys in an enclave, but still allow client re-

quests to be serviced outside of the enclave. Similarly, a
privilege-separated or multi-principal application might
create a separate enclave for each privilege level.

This level of analysis is application-specific, and be-
yond the focus of this paper. However, partitioning a
complex application into multiple enclaves can be good
for security. In support of this goal, Graphene-SGX can
run smaller pieces of code, such as a library, in an en-
clave, as well as coordinate shared state across enclaves.

3 Design Overview
This section discusses the threat model, how Graphene-
SGX defends against attacks from the untrusted OS, and
how users configure policies for defenses.

3.1 Threat Model
Graphene-SGX follows a typical threat model for SGX
applications. The following components are untrusted:
(1) hardware outside of the Intel CPU package(s), (2)
the OS, hypervisor, and other system software, (3) other
applications executing on the same host, including unre-
lated enclaves, and (4) user-space components that reside
in the application process but outside the enclave. Our
design only trusts the CPUs and any code running inside
the enclave, including the library OS, the unmodified ap-
plication, and its supporting libraries.

We also trust aesmd, an enclave provided by the In-
tel’s SGX SDK, which verifies attributes in the enclave
signature and approves the enclave creation. Currently,
any framework that uses SGX for remote attestation must
trust aesmd. Graphene-SGX uses, but does not trust, the
Intel SGX kernel driver. Other than aesmd and the driver,
Graphene-SGX does not use or trust any part of the SDK.

Denial of service, side channels, and controlled-
channel attacks [54] are vulnerabilities common to all
SGX frameworks, and are beyond the scope of this work.

3.2 User Policy Configuration
Before an application is first executed using Graphene-
SGX, the user must make certain policy decisions. Our
goal is to balance policy expressiveness with usability.

As with Graphene and several other systems, each ap-
plication requires a manifest to specify which resources
the application is allowed to use, including a unioned,
chroot-style view of the file system (comparable to aufs),
and a set of iptables-style network rules. In Graphene, a
program cannot access any resources not declared in the
manifest. The original intention of the manifest was to
protect the host: a reference monitor can easily identify
the resources an application might use, and reject an ap-
plication with a problematic manifest.

In Graphene-SGX, the manifest is extended to protect
the application from the host file system. Specifically,
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Threat Model 
Enclave code author need only trust the CPU

Untrusted System can always deny service


Limitations 
Total enclave memory restricted to 128 MB

Enclave cannot explicitly share memory pages with other processes

An RPC out of the enclave is 8,200 - 17,000 cycles (vs. 150 for a typical syscall)
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Approach: Minimal Code in Enclave

Aublin et. al, TaLoS: Secure and Transparent TLS Termination inside SGX Enclave, Technical Report, ’17.

Shinde et. al, PANOPLY: Low-TCB Linux Applications with SGX Enclaves, NDSS ’17.
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Fig. 3. Overview of codename architecture. All the regions within an enclave
are trusted, the regions shaded as black are untrusted, grey shaded regions are
newly added / modified as a part of codename system.

global property, we demonstrate real attacks on several case
studies similar to those in Section II-B, which succeed even if
memory isolation properties are enforced locally on all of the
enclaves. Second, the shim library performs checks for Iago
attacks [26], safeguarding against low-level data-tampering for
OS services. It acts as an interface to invoke other services such
as threading, synchronization and event management.

To achieve low TCB, PANOPLY chooses a delegate-rather-
than-emulate strategy. First, PANOPLY delegates all the system
calls to the untrusted OS. PANOPLY intercepts the calls to
the glibc API, which allows us to leave the glibc library
outside enclave TCB (Figure 3). Second, PANOPLY re-thinks
the design of threading, forking and other interfaces so as
to not emulate the entire OS logic in the TCB, but instead
delegating it to the OS. PANOPLY delegates the scheduling
logic with the underlying OS. Thus, the application scheduling
is not guaranteed to be same as the original code (hence API
is WILD). However, this trade-off is justified because OS can
anyways launch a DOS attack and is in-charge of enclave
scheduling. As an advantage, it allows us to place minimal
number of checks within the enclave, thus significantly re-
ducing the TCB. Lastly, PANOPLY modularly includes API
calls in the enclave i.e., only the APIs which are used by a
given enclave-bound code are included inside the enclave. This
choice is inspired from micro-kernels to reduce the TCB.

B. Usage Model & Scope

PANOPLY consists of a set of runtime libraries (including
the shim library), and a build toolchain that assists developers
in preparing microns. PANOPLY takes as input the application
program source code and per-function programmer annotations
to specify which micron should execute that function. Thus,
if the analyst wishes to partition the application into multiple
microns, she can annotate different functions with correspond-
ing micron identifiers. Functions that are not marked with
any micron identifiers can be bundled and delegated to one
separate micron by default. In cases that PANOPLY is not
able to identify the micron for a function, it prompts the
analyst for providing additional annotations or sanitization
code. PANOPLY instruments the application, creating multiple
micron binaries, each embedded with its own shim code. Each
micron is compiled as a library package (e.g. micron-A.so).
It consists of 3 libraries internally: PANOPLY shim library, the
Intel SDK library and any other libraries that micron code
uses. Figure 4 shows the schematic view of the PANOPLY
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Fig. 4. System Overview. PANOPLY takes in the original program and the
partitioning scheme as input. It first divides the application into enclaves and
then enforces inter-micron flow integrity, to produce PANOPLY application.

system. The compilation phase adds code for inter-micron flow
integrity and PANOPLY APIs.

Out-of-scope Goals. The choice of partitioning scheme is or-
thogonal to our work and is left to the security analyst. Existing
tools for program partitioning could be leveraged here [22],
[24]. Instead, PANOPLY focuses on porting the partitioned code
to enclaves. PANOPLY does not reason about the functional
correctness of original application implementation. Any bugs
or vulnerabilities in the original application would persist in the
micron-based application. PANOPLY cannot prevent denial-of-
service attacks from the OS, since SGX itself does not provide
this guarantee. Our system currently does not take special
measures to thwart enclave side-channels. However, one can
employ orthogonal defenses for enclave side-channels [30],
[44]. Lastly, we blindly trust all analyst-inserted annotations
and instrumentation to be secure and correct. We trust the
SGX hardware, which includes a secure implementation of
(a) isolated memory, (b) cryptographic attestation for enclaves,
and (c) random-number generator.

IV. PANOPLY DESIGN & SECURITY

In designing PANOPLY, we aim to support essential UNIX
abstractions as well as provide necessary security guarantees
for single or multi-micron execution of an application. We
implement several checks within each micron, which allows
us to adhere to delegate-rather-than-emulate design decision.
We describe the important design choices in PANOPLY and its
security guarantees.

A. Runtime Micron Management

PANOPLY processes the source code along with user an-
notations to identify how the analyst wishes to separate the
application logic among microns. As done in several other
works [24], [35], PANOPLY partitions the micron application
code accordingly. PANOPLY instruments it to output a micron
binary file (a shared library) at the end. The PANOPLY shim
library ensures that the final micron code supports secure
micron initialization and inter-micron flow integrity.

Micron Initialization and Identity Establishment. PANOPLY
creates an instance of a micron within an enclave via Intel
SGX SDK API which takes the micron binary file as an input.
PANOPLY generates the micron binary file based on the devel-
oper annotations provided in the source code. If the micron is
created successfully, the hardware returns an identifier which
is a unique value for that instance of micron. The OS assigns a
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Figure 1: TaLoS TLS implementation

cross the enclave boundary are converted into ecalls and ocalls, as
supported by the SGX SDK (see §2).

3.1 Enclave TLS implementation

We face two challenges when implementing TLS inside the en-
clave: (i) function callbacks are part of the LibreSSL API, but are
untrusted and must be invoked outside the enclave, which could
leak sensitive data. We address this issue by implementing secure
callbacks; and (ii) applications may try to access internal TLS data
structures that are security-sensitive and thus placed inside the en-
clave. We support this by shadowing such data structures as ex-
plained below.
Secure callbacks. Some API functions permit applications to sub-
mit function pointers. For example, SSL_CTX_set_info_callback()
registers a callback to obtain information about the current TLS
context. To execute such callback functions referring to outside
code from within the enclave, TaLoS must execute corresponding
ocalls rather than regular function calls. TaLoS proceeds in four
steps as shown in the following listing (with error checks, shadow
structures and SDK details omitted for simplicity):2

1 /* LibSEAL API */

2 void SSL_CTX_set_info_callback(SSL_CTX *ctx, void (*cb)(const

SSL *ssl, int type, int val)) {

3 ecall_SSL_CTX_set_info_callback(ctx, (void*)cb);

4 }

5
6 int ocall_SSL_CTX_info_callback(const SSL* ssl, int type, int

val, void* cb) {

7 void (*callback)(const SSL*, int, int) = (void (*)(const

SSL*, int, int))cb;

8 return callback(ssl, type, val);

9 }

10
11 /* inside the enclave */

12 void* callback_SSL_CTX_info_address = NULL;

13
14 static int callback_SSL_CTX_info_trampoline(const SSL* ssl, int

type, int val) {

15 return ocall_SSL_CTX_info_callback(ssl, type, val,

callback_SSL_CTX_info_address);

16 }

17
18 void ecall_SSL_set_info_callback(SSL_CTX *ctx, void* cb) {

19 callback_SSL_CTX_info_address = cb;

20 SSL_CTX_set_info_callback(ctx,

&callback_SSL_CTX_info_trampoline);

21 }

(1) The TaLoS API function executes an ecall into the enclave
(line 3); (2) the enclave code saves the address of the outside call-
back (line 19) and passes the address of a newly-defined callback
trampoline function (line 14) to the original API function (line 20);
(3) when the callback function is invoked, the trampoline function
is called instead (line 14); and (4) the trampoline function retrieves
the callback address and performs an ocall into the outside appli-
cation code (lines 6 and 15).

2Note that while there are two functions SSL_CTX_set_info_

callback(), there is no name clash as only one is inside the enclave.
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Figure 2: Asynchronous enclave transitions in TaLoS

For applications that register multiple callback functions, TaLoS
uses a hashmap to store and retrieve callback associations.

We manually inspect 17 callbacks for LibreSSL to ensure that
TaLoS does not leak sensitive data. In the worst case, TaLoS can
pass a pointer to trusted memory outside of the enclave. SGX en-
sures that these pointers can not dereferenced by untrusted code.
Further manual checks and the shadowing mechanism presented
below mitigate pointer swapping attacks.
Shadowing. Applications may access fields of TLS data structures
directly. For example, Apache and Squid access the SSL structure,
which stores the secure session context. TaLoS supports such ac-
cesses in a secure manner by employing shadow structures. In ad-
dition to the security-sensitive structure inside the enclave, TaLoS
maintains a sanitised copy of the SSL structure outside the enclave,
with all sensitive data removed. TaLoS synchronises the two SSL

structures at ecalls and ocalls as follows:

1 BIO * ecall_SSL_get_wbio(const SSL *s) {

2 SSL* out_s = (SSL*) s;

3 SSL* in_s = (SSL*) hashmapGet(ssl_shadow_map, out_s);

4
5 SSL_copy_fields_to_in_s(in_s, out_s);

6 BIO* ret = SSL_get_wbio((const SSL*)in_s);

7 SSL_copy_sanitized_fields_to_out_s(in_s, out_s);

8 return ret;

9 }

The association between the enclave structure and the shadow
structure is stored in a in-enclave thread-safe hashmap.

3.2 Reducing enclave transitions

Implementing the TLS API requires enclave transitions. However,
each enclave transition imposes a cost of 8,400 CPU cycles—6✓
more costly than a typical system call. We therefore apply three
techniques to reduce the number of ecalls and ocalls in TaLoS:
(1) Instead of performing ocalls to allocate non-sensitive objects
from within the enclave, TaLoS uses a pre-allocated memory pool
to manage small objects frequently allocated from inside the en-
clave. This avoid ocalls to malloc() and free() by replacing them
with less costly enclave-internal calls to the memory pool.
(2) Instead of using the pthread library [2] for synchronisation,
TaLoS avoids ocalls to pthread by using the thread locks imple-
mentation provided by the SGX SDK. TaLoS further uses the SGX
random number generator inside the enclave to avoid ocalls to the
random system call.
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Approach: LibOS in Enclave

 Baumann et al., Shielding Applications from an Untrusted Cloud with Haven, OSDI ’14

Amautov et al., SCONE: Secure Linux Containers with Intel SGX, OSDI ’16

Tsai et al., Graphene-SGX: A Practical Library OS for Unmodified Applications on SGX, USENIX ATC ’17
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ing, and I/O streams (e.g., files and network sockets). Up-
calls are initiated by the host, have only input parameters,
and do not return; they are used for initialisation, thread
startup, and exception delivery. In Haven, as in Draw-
bridge, the picoprocess serves to protect the host (i.e., the
cloud provider) from a potentially-malicious guest.

The Drawbridge LibOS is a version of Windows 8
refactored to run as a set of libraries within the picopro-
cess, depending only on the ABI. It consists of lightly-
modified binaries for most user-mode and some kernel
components of Windows, and a “user-mode kernel” that
implements the interfaces on which they depend.

Together, the picoprocess and LibOS enable sandbox-
ing of unmodified Windows applications with comparable
security to virtual machines, but substantially lower over-
heads. While Drawbridge aims only to protect the host
from an untrusted guest, Haven shields the execution of
the application and LibOS from an untrusted host, thereby
enabling mutual distrust between host and guest.

4 Design
We now present the design of Haven, which leverages the
instruction-level isolation mechanism of SGX to achieve
shielded execution of entire legacy application binaries.
In doing this, we address two key challenges: protecting
from a malicious host OS, and executing existing binaries
in an enclave. We first discuss these in more detail.

4.1 Design challenges
Malicious host OS A general class of threats known
as Iago attacks arises when a malicious OS attempts to
subvert an isolated application by exploiting its assump-
tion of correct OS behaviour, for example when using
the results of system calls [10]. Besides simply return-
ing semantically-incorrect results from system calls (e.g.,
returning the address of an already-allocated region for a
new memory allocation), the malicious OS may seek to
exploit latent bugs in the application. For example, it may
allocate valid but abnormally-high virtual addresses, re-
turn unusual values for parameters such as memory size
and number of processors, alter timing to seek to exploit
latent race conditions, inject spurious exceptions, return
unexpected error codes from system calls, or simply fail
calls that an application naively assumes will succeed.

Our approach to this challenge is twofold. First, we
limit its scope using a LibOS within the enclave. The
LibOS implements the full OS API using a much nar-
rower set of core OS primitives. Since the LibOS is under
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Figure 2: Haven components and interfaces

user control, and can be arbitrarily tested or inspected of-
fline, we assume that it is not malicious (to the user), even
though it may be large, complex, and contain bugs. Sec-
ond, having reduced the scope of attacks by narrowing
the interface they must traverse, we use established tech-
niques to correctly implement the OS primitives in the
presence of a malicious host: careful defensive coding,
exhaustive validation of untrusted inputs, and encryption
and integrity protection of any private data exposed to un-
trusted code.

Unmodified binaries SGX was designed to protect lim-
ited subsets of application logic [24], however full appli-
cation binaries have properties that make them challeng-
ing to execute in an enclave. They load code and data at
runtime, dynamically allocate and change protection on
virtual memory, execute arbitrary user-mode instructions
(including some not supported by SGX), raise and handle
exceptions (e.g., page faults, divide-by-zero or floating-
point exceptions), and use thread-local storage.

Haven addresses each of these challenges. For some,
such as thread-local storage, we rely on enhancements to
SGX described later in §5.4. For most, we work around
the limitations, by emulating unsupported instructions,
carefully validating and handling exceptions that occur
within an enclave, and modifying LibOS behaviour.

4.2 Architecture
Figure 2 shows the architecture of Haven. We create an
enclave within the Drawbridge picoprocess containing the
entire application and LibOS. To protect the LibOS and
application from a malicious host, Haven augments Draw-
bridge with two layers: a shield module below the LibOS
in the enclave, and an untrusted runtime outside the en-

Service TCB No. host Avg. Latency CPU
size system calls throughput utilization

Redis 6.9✓ <0.1✓ 0.6✓ 2.6✓ 1.1✓
NGINX 5.7✓ 0.3✓ 0.8✓ 4.5✓ 1.5✓
SQLite 3.8✓ 3.1✓ 0.3✓ 4.2✓ 1.1✓

Table 1: Relative comparison of the LKL Linux library

OS (no SGX) against native processes that use glibc

tions of SGX. To justify the design of SCONE, we first
explore alternate design choices.

(1) External container interface. To execute unmod-
ified processes inside secure containers, the container
must support a C standard library (libc) interface. Since
any libc implementation must use system calls, which
cannot be executed inside of an enclave, a secure con-
tainer must also expose an external interface to the host
OS. As the host OS is untrusted, the external interface
becomes an attack vector, and thus its design has secu-
rity implications: an attacker who controls the host OS
can use this interface to compromise processes running
inside a secure container. A crucial decision becomes
the size of (a) the external interface, and (b) the TCB re-
quired to implement the interface within the enclave.

Figure 1a shows a prior design point, as demonstrated
by Haven [6], which minimizes the external interface by
placing an entire Windows library OS inside the enclave.
A benefit of this approach is that it exposes only a small
external interface with 22 calls because a large portion of
a process’ system support can be provided by the library
OS. The library OS, however, increases the TCB size in-
side of the enclave. In addition, it may add a perfor-
mance overhead due to the extra abstractions (e.g., when
performing I/O) introduced by the library OS.

We explore a similar design for Linux container pro-
cesses. We deploy three typical containerized services
using the Linux Kernel Library (LKL) [45] and the musl
libc library [38], thus building a simple Linux library OS.
The external interface of LKL has 28 calls, which is com-
parable to Haven.

Table 1 reports the performance and resource metrics
for each service using the Linux library OS compared
to a native glibc deployment. On average, the library
OS increases the TCB size by 5✓, the service latency
by 4✓ and halves the service throughput. For Redis and
NGINX, the number of system calls that propagate to
the untrusted host OS are reduced as the library OS can
handle many system calls directly. For SQLite, however,
the number of system calls made to the host OS increases
because LKL performs I/O at a finer granularity.

While our library OS lacks optimizations, e.g., mini-
mizing the interactions between the library OS and the
host OS, the results show that there is a performance
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Figure 1: Alternative secure container designs

degradation for both throughput and latency due to the
kernel abstractions of the library OS. We conclude that
the large TCB inside of the enclave and the performance
overhead of this design is not a natural fit for containers.

Figure 1b shows the opposite, extreme design point:
the external interface is used to perform all libc library
calls made by the application. This raises the challenge
of protecting the confidentiality and integrity of applica-
tion data whilst exposing a wide interface. For example,
I/O calls such as read and write could be used to com-
promise data within the enclave, and code inside the se-
cure container cannot trust returned data. A benefit of
this approach is that it leads to a minimal TCB inside the
enclave—only a small shim C library needs to relay libc
calls to the host libc library outside of the enclave.

Finally, Figure 1c shows a middle ground by defin-
ing the external interface at the level of system calls ex-
ecuted by the libc implementation. As we describe in
§3, the design of SCONE explores the security and per-
formance characteristics of this particular point in the
design space. Defining the external container interface
around system calls has the advantage that system calls
already implement a privileged interface. While this de-
sign does not rely on a minimalist external interface to
the host OS, we show that shield libraries can be used to
protect a security-sensitive set of system calls: file de-
scriptor based I/O calls, such as read, write, send, and
recv, are shielded by transparently encrypting and de-
crypting the user data. While SCONE does not support
some system calls, such as fork, exec, and clone, due to
its user space threading model and the architectural lim-
itations of SGX, they were not essential for the micro-
services that we targeted.

(2) System call overhead. All designs explored above
pay the cost of executing system calls outside of the
enclave (see §2.3). For container services with a high
system call frequency, e.g., network-heavy services, this
may result in a substantial performance impact. To quan-
tify this issue, we conduct a micro-benchmark on an Intel
Xeon CPU E3-1230 v5 at 3.4 GHz measuring the maxi-
mum rate at which pwrite system calls can be executed
with and without an enclave. The benchmark is imple-
mented using the Intel SGX SDK for Linux [32], which

4
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Figure 3: The Graphene-SGX architecture. The exe-
cutable is position-dependent. The enclave includes an
OS shield, a library OS, libc, and other user binaries.

starts. In order to support this ELF behavior, we cur-
rently map all enclave pages as readable, writable, and
executable. This can lead to some security risks, such as
code injection attacks in the enclave. In a few cases, this
can also harm functionality; for instance, some Java VM
implementations use page faults to synchronize threads.
Version 2 of SGX [41] will support changing page pro-
tections, which Graphene-SGX will adopt in the future.

Position-dependent executables. SGX requires that all
enclave sizes be a power-of-two, and that the en-
clave starts at a virtual address aligned to the enclave
size. Most Ubuntu Linux executables are compiled
to be position-dependent, and typically start at address
0x400000. The challenge is that, to create an enclave
that includes this address and is larger than 4MB, the en-
clave will necessarily need to include address zero.

We see including address zero in the enclave as a net
positive, but not strictly necessary, as we are reluctant to
make strong claims in the presence of code that follows
null pointers. Graphene-SGX can still mark this address
as unmapped in an enclave. Thus, a null pointer will still
result in a page fault. On the other hand, if address zero
were outside of the enclave, there is a risk that the un-
trusted OS could map this address to dangerous data [10],
undermining the integrity of the enclave.

4.2 Shielding Single-Process Abstractions
For a single-process application running on Graphene-
SGX, most Linux system calls are serviced inside the
enclave by the library OS. A Graphene-SGX enclave in-
cludes both the same library OS in “classic” Graphene,

Classes Safe Benign DoS Unsafe

Enter enclaves & threads 2 0 0 0
Clone enclaves & threads 2 0 0 0
File & directory access 3 0 0 2
Exit enclave 1 0 0 0
Network & RPC streams 5 2 0 0
Scheduling 0 1 1 0
Stream handles 2 2 1 0
Map untrusted memory 2 0 0 0
Miscellaneous 1 1 0 0

Total 18 6 2 2

Table 1: 28 enclave interfaces, including safe (host be-
havior can be checked), benign (no harmful effects), DoS
(may cause denial-of-service), and unsafe (potentially at-
tacked by the host) interfaces.

that would also run on a Linux or FreeBSD picoprocess,
as well as an SGX-specific platform adaptation layer
(PAL), which implements 36 functions of the host ABI
that the library OS is programmed against. This PAL
funnels to a slightly smaller set of 28 interfaces which
the enclave calls out to the untrusted OS (Table 1).

The evolution of the POSIX API and Linux system
call table were not driven by a model of mutual distrust,
and retrofitting protection onto this interface is challeng-
ing. Checkoway and Shachman [18] demonstrate the
subtlety of detecting semantic attacks via the POSIX
interface. Projects such as Sego [33] go to significant
lengths, including modifying the untrusted OS, to val-
idate OS behavior on subtle and idiosyncratic system
calls, such as mmap or getpid.

The challenge in shielding an enclave interface is care-
fully defining the expected behavior of the untrusted sys-
tem, and either validating the responses, or reasoning that
any response cannot harm the application. By adding
a layer of indirection under the library OS, we can de-
fine an enclave ABI that has more predictable semantics,
which is, in turn, more easily checked at run-time. For
instance, to read a file, Graphene-SGX requests that un-
trusted OS to map the file at an address outside the en-
clave, starting at an absolute offset in the file, with the
exact size that the library OS needs for checking. After
copying chunks of the file into the enclave, but before
use, the contents can be hashed and checked against the
manifest. This enclave interface limits the possible re-
turn values to one predictable answer, and thus reduces
the space that the OS can explore to find attack vectors to
the enclave. Many system calls are partially (e.g., brk)
or wholly (e.g., fcntl), absorbed into the library OS,
and do not need shielding from the untrusted OS.

Table 1 lists our 28 enclave interfaces, organized by
risk. 18 interfaces are safe because responses from the
OS are easily checked in the enclave. An example of
a safe interface is FILE MAP, which maps a file outside
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(a) Lighttpd (25 threads)
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(b) Apache (5 processes)
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(c) NGINX (event-driven)
Figure 5: Throughput versus latency of web server workloads, including Lighttpd, Apache, and NGINX, on native
Linux, Graphene, and Graphene-SGX. We use an ApacheBench client to gradually increase load, and plot throughput
versus latency at each point. Lower and further right is better.

Graphene are more apparent when the system is more
lightly loaded, at 15–35% higher response time, or 13–
26% lower throughput. Without SGX, Graphene in-
duces 11–15% higher latency or 13-17% lower through-
put over Linux; the remaining overheads are attributable
to SGX—either hardware or our OS shield.

Apache [2] is one of the most popular production web
servers. We test Apache using 5 preforked worker pro-
cesses to service HTTP requests, in order to to eval-
uate the efficiency of Graphene-SGX across enclaves.
This application uses IPC extensively—the preforked
processes of a server use a System V semaphore to syn-
chronize on each connection. Regardless of the work-
load, the response time on Graphene-SGX is 12–35%
higher than Linux, due to the overhead of coordination
across enclaves over encrypted RPC streams. The peak
throughput achieved by Apache running in Graphene-
SGX is 26% lower than running in Linux. In this work-
load, most of the overheads are SGX-specific, such as
exiting enclaves when accessing the RPC, as non-SGX
Graphene has only 2–8% overhead compared to Linux.

NGINX [7] is a relatively new web server designed
for high programmability, for as a building block to im-
plement different services. Unlike the other two web
servers, NGINX is event-driven and mostly configured as
single-threaded. Graphene-SGX currently only supports
synchronous I/O at the enclave boundary, and so, under
load, it cannot as effectively overlap I/O and computa-
tion as other systems that have batched and asynchronous
system calls. Once sufficiently loaded, NGINX on both
Graphene and Graphene-SGX performs worse than in a
Linux process. The peak throughput of Graphene-SGX
is 1.5⇥ lower than Linux; without SGX, Graphene only
reaches 79% of Linux’s peak throughput. We expect that
using tools like Eleos [43] to reduce exits would help this
workload; in future work, we will improve asynchronous
I/O in Graphene-SGX.

5.2 Command-Line Applications
We also evaluate the performance of a few commonly-
used command-line applications. Three off-the-shelf ap-

plications are tested in our experiments: R (v3.2.3) for
statistical computing [9]; GCC (v5.4), the general GNU
C compiler [4]; CURL (v7.74), the default command-
line web client on UNIX [3]. These applications are cho-
sen because they are frequently used by Linux users, and
each of them potentially be used in an enclave to handle
sensitive data—either on a server or a client machine.

We evaluate the latency or execution time of these ap-
plications. In our experiments, both R and CURL have
internal timing features to measure the wall time of in-
dividual operations or executions. On a Linux host, the
time to start a library OS is higher than a simple process,
but significantly lower than booting a guest OS in a VM
or starting a container. Prior work measured Graphene
(non-SGX) start time at 641 µs [52], whereas starting an
empty Linux VM takes 10.3s and starting a Linux (LXC)
container takes 200 ms [12].

On SGX, the enclave creation time is relatively higher,
ranging from 0.5s (a 256MB enclave) to 5s (a 2G en-
clave), which is a fixed cost that any application frame-
work will have to pay to run on SGX. Enclave creation
time is determined by the latency of the hardware and
the Intel kernel driver, and is primarily a function of the
size of the enclave, which is specified at creation time
because it affects the enclave signature. For non-server
workloads that create multiple processes during execu-
tion, such as GCC in Figure 6, the enclave creation con-
tributes a significant portion to the execution time over-
heads, illustrated as a stacked bar.

R [9] is a scripting language often used for data pro-
cessing and statistical computation. With enclaves, users
can process sensitive data on an OS they don’t trust.
We use an R benchmark suite developed by Urbanek et
al. [8], which includes 15 CPU-bound workloads such as
matrix computation and number processing. Graphene-
SGX slows down by less than 100% on the majority
of the workloads, excepts the ones which involve al-
location and garbage collection: (matrix1 creates and
destroys matrices, and both FFT and hilbert involve
heavy garbage collection.) Aside from garbage collec-
tion, these R benchmarks do not frequently interact with
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Latency is 12-35% more than native 
For Apache, peak throughput is 75% of native 
For NGINX, peak throughput is 40% of native
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Current SGX LibOS Shortcomings
Multiprocess Abstractions 

  Haven & SCONE: 
      limited to a single process 
  Graphene-SGX:  
      Implements fork as process migration.  Limited support for POSIX IPC / shared memory  

Filesystems 
    Haven: 
        Encrypted virtual disk image formatted as FAT filesystem 
    SCONE:  
        For security guarantees, a union fs: host is read-only; writes copy file to in-memory fs 
    Graphene-SGX: 
        For security guarantees, host fs is read-only 

Time 
    All: To prevent Iago attacks, need a trusted source of time 

Availability 
    Haven & SCONE: 
        Closed source 
    Graphene-SGX: 
        Open-sourced (https://github.com/oscarlab/graphene)!12

https://github.com/oscarlab/graphene


Remaining Threats
An untrusted may still observe: 
• Executables that are run and the libraries that they load 

• Shape of the process trees, IPC relationships, resource usage 

• Access patterns to the libOS’s filesystem 
        Use a filesystem with ORAM properties? 
        Ahmad et al., OBLIVIATE: A Data Oblivious File System for Intel SGX, 
           NDSS ’18 

• Fingerprints of web requests (e.g., object sizes) 

• Linkability of client requests 

• Socket metadata and network traffic patterns 
        Move the network stack into the libOS; incorporate VPN/   
         Tor into this stack?
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Larger Goal: Oblivious Host

Although we framed the problem as a Secure CDN, are we 
really aiming for an oblivious host — a host that is “unaware” 
of the processes it is running?
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