SecureCDN;:
Providing End-to-End Security in
Content Delivery Networks

Stephen Herwig
University of Maryland, College Park

Content Delivery Networks

/

CDN Edge Server

I

user

I

user

AN

HTML

Content Provider

]

CDN Edge Server

I

user

I

user

Performance
Scalability
Security

AN

HTML \

AN

HTML

CDN Edge Server

I

|

user

user

HTML

/

CDNs and HTTPS

Content Provider

CDN Edge Server

I

I

? CDN Edge Server

I

user

user

I

user

user

Performance

Scalability
Security?

Y —

? CDN Edge Server ?

I

|

user

user

Liang, et al., When HTTPS meets CDN: A Case of Authentication in Delegated Service. IEEE S&P, *14

Cangialosi et al., Measurement Analysis of Private Key Sharing in the HT'TPS Ecosystem, CCS, ’16

Problem: Strained Trust Model

User
l trusts?

Content Provider

l trusts?

CDN

l trusts?

3rd Party Machine

Additional Complications:
e Future legislation compelling intermediary liability
e National Security Letters for data request

Cast as “Delegation” Problem

Threat Model
Null

Approach

e X. 509 extensions expressing “A authorizes B to perform an action.”
Tuck et al., Internet X.509 Public Key Infrastructure Proxy Certificate Profile. (draft-ietf-pkix-proxy-03),
2002

Cooper et. al, RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile, Section 4.2.1.10 “Name Constraints”, 2008

e DANE extensions “...”
Liang, et al., When HTTPS meets CDN: A Case of Authentication in Delegated Service. IEEE S&P, *14.

Cast as “Coupling of Auth/Integrity
with Distribution” Problem

Threat Model
CDN may modify content and/or try to impersonate Content Provider
“Trust but verify”

Approach

e Application layer: User obtains signed manifest from Content

Provider.
Levy et al., Stickler Defending Against Malicious CDNs in an Unmodified Browser, IEEE S&P ’16.

e Transport layer: Content Provider and CDN cooperatively create

TLS stream.
Lesnieski-Lass and Kasshoek, SSL splitting: securely serving data from untrusted caches, USENIX

Security *03.

Nick Sullivan, Keyless SSL: The Nitty Gritty Details, https://blog.cloudfiare.com/keyless-ssl-the-
nitty-gritty-details/, 2014

https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-details/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-details/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-details/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-details/

Cast as “Secure Remote
Computation” Problem

Definition

Secure remote computation is the problem of executing software
on a remote computer owned and maintained by an untrusted
party, with some integrity and confidentiality guarantees.

Motivates revised CDN trust model:
Can the Content Provider reduce the adversarial power of the CDN to
that of a traditional on-path HTTPS adversary?

Intel Secure Guard Extensions (SGX)

Local host

poTTTTmT T mmm— 3 Exchange R ¢
i In-process attacks | Enclave data attestation emote

1
1

1

1

l .

: i (memory corruption, service
= ROP attacks) or

1
1
1
%

_____________________________ Enclave code enclave

i OS attacks
: (e.g., rootkits)

.......................

1
Enclave |,
creation :

! Off-chip | Hardware attacks
I hardware : (c.g., cold-boot attacks) i]

...................................

Figure 1: The threat model of SGX. SGX protects ap-
plications from three types of attacks: in-process attacks
from outside of the enclave, attacks from OS or hypervi-
sor, and attacks from off-chip hardware.

Threat Model

Enclave code author need only trust the CPU
Untrusted System can always deny service

Limitations

Total enclave memory restricted to 128 MB

Enclave cannot explicitly share memory pages with other processes

An RPC out of the enclave is 8,200 - 17,000 cycles (vs. 150 for a typical syscall)

8

Approach: Minimal Code in Enclave

.

Application-specific data (ex_data) 5;2
p
- N o == 1 -
Userdevel | | Cryplographic |+ "1™t il xsog
threads algorithms P_____ | T
. |\ 1, - - -~ 1m0~
Random Multi- 11 BIO
numbers threading ASNT : : F_,E_M_ ! code _
enclave

I "I Shadowing

I ! Secure callback

Figure 1: TaLoS TLS implementation

Source 1 Creating

Microns

s N Enclave-bound
Add calls to

Compiler 5
Instrumentation

Code
L Panoply API)
| Intel
Add Flow Panoply || ¢y
. Checks Shim SDK |
Programmer p anoply
Annotations Panoply Application
Fig. 4. System Overview. PANOPLY takes in the original program and the

partitioning scheme as input. It first divides the application into enclaves and
then enforces inter-micron flow integrity, to produce PANOPLY application.

Aublin et. al, TaLLoS: Secure and Transparent TLS Termination inside SGX Enclave, Technical Report, 17.
Shinde et. al, PANOPLY: Low-TCB Linux Applications with SGX Enclaves, NDSS "17.

Approach: LibOS in Enclave

Picoprocess (protects host from guest)

Enclave (protects guest from host)

SGX driver Drawbridge\ﬁost

Host kernel (Windows)

Figure 2: Haven components and interfaces

Library OS inside TCB Minimal TCB

(0x0)

Untrusted system calls (x4°°0°%

Application (un,mOdiﬁed binary)) | Application Code | | Application Code | | Application Code | (orepoeny
“L-lk;r-e:r-y-(-)-S- Hindows B ATl _smommommose g | Libraries | | Libraries | | Libraries |
___________ Drawbridge ABI === 5 | cubrary | Shim C Library | clbrary |

Shield module = A [‘g’ | Library OS | | Shielding layer I

* Threads « Virtual memory |28 2 g | Shielding layer |

- Scheduling + File system g% |3 g | Clibrary |

---------- Untrusted Interface_=| 52 = & | Host OS || Host OS || Host OS |
Untrusted runtime Bl = (@) (b) (©
-=-==-Drawbridge ABI, SGX priv. ops\ E § -

Figure 1: Alternative secure container designs

(0x10000000)

Executable code RX (/usr/sbin/apache2)

Executable data RW (/usr/sbin/apache2)

Library heap Rwx
User library (libcrypt.so)
Libc (libc.so)

Libc loader (1d-linux-x86-64.s0)

Library OS (libLinux.so)
Shield code RX (libshield.so)
Shield data RW (libshield.so)

Manifest + file hashes RO

D Trusted

!_-_-! Untrusted

=4- Library API

4. System calls
(as functions)

4 Graphene host ABI

Enclave Interfaces

1
i Enclave Platform Adaption Layer (pal-sgx) }
L It v System calls

Figure 3: The Graphene-SGX architecture.

Graphene-SGX Driver
(/dev/gsgx)

Intel SGX Driver
(/dev/isgx)

The exe-

cutable is position-dependent. The enclave includes an
OS shield, a library OS, libc, and other user binaries.

Baumann et al., Shielding Applications from an Untrusted Cloud with Haven, OSDI ’14
Amautov et al., SCONE: Secure Linux Containers with Intel SGX, OSDI ’16
Tsai et al., Graphene-SGX: A Practical Library OS for Unmodified Applications on SGX, USENIX ATC *17

10

SGX LibOS Performance

__10.0 7 »¢Linux ! 10.0 7 =¢Linux | i 10.0 - »*Linux
S 201 Ldrenesox 5 8 801 e sox i § o b Shgsios O
- f S - [-
& 6.0 - S 6.0 - T|: S 6.0 - \ X
S— | S]
> > - > '
4.0 4.0 - 4.0 -
VoS 17
2.0 - 2.0 A : 2.0 - .
© © —« T S pe S
- 00 T T T T T T T T T T T 1 - OO T T T T T T T T T 1 -l 00 ------------
0 5,000 10,000 0 5,000 10,000 0 5,000 10,000
Throughput (req/S) Throughput (req/S) Throughput (req/S)
(a) Lighttpd (25 threads) (b) Apache (5 processes) (c) NGINX (event-driven)

Figure 5: Throughput versus latency of web server workloads, including Lighttpd, Apache, and NGINX, on native
Linux, Graphene, and Graphene-SGX. We use an ApacheBench client to gradually increase load, and plot throughput
versus latency at each point. Lower and further right is better.

Latency is 12-35% more than native
For Apache, peak throughput is 75% of native
For NGINX, peak throughput is 40% of native

11

Current SGX LibOS Shortcomings

Multiprocess Abstractions
Haven & SCONE:
limited to a single process
Graphene-SGX:
Implements fork as process migration. Limited support for POSIX IPC / shared memory

Filesystems
Haven:

Encrypted virtual disk image formatted as FAT filesystem
SCONE:
For security guarantees, a union fs: host is read-only; writes copy file to in-memory fs

Graphene-SGX:
For security guarantees, host fs is read-only

Time
All: To prevent lago attacks, need a trusted source of time

Availability
Haven & SCONE:
Closed source
Graphene-SGX:

Open-sourced (https://github.com/oscarldB/graphene)

https://github.com/oscarlab/graphene

Remaining Threats

An untrusted may still observe:
e Executables that are run and the libraries that they load

e Shape of the process trees, IPC relationships, resource usage
e Access patterns to the libOS’s filesystem

Use a filesystem with ORAM properties?

Ahmad et al., OBLIVIATE: A Data Oblivious File System for Intel SGX,
NDSS °18

 Fingerprints of web requests (e.g., object sizes)
e Linkability of client requests

e Socket metadata and network traffic patterns

Move the network stack into the libOS; incorporate VPN/
Tor into this stack?

13

Larger Goal: Oblivious Host

Although we framed the problem as a Secure CDN, are we
really aiming for an oblivious host — a host that is “unaware”
of the processes it is running?

14

